IMAGE ENHANCEMENT IN PROJECTORSVIA OPTICAL PIXEL SHIFT AND OVERLAY SAJADI Behzad et al.

SETUP

- Known target image I_{T} with size $2 \mathrm{n} \times 2 \mathrm{n}$
- Pixel in I_{T} is denoted by $I_{T}(i, j)$ where $1<=i, j<=2 n$
- I_{T} is normalised: $0<=I_{T}(i, j)<=1$
- Projector with resolution $\mathrm{n} \times \mathrm{n}$

GOAL

- Find image I with size $\mathrm{n} \times \mathrm{n}$
- I is shifted and overlay with itself to enhance I_{R}
- I_{R} is perceptual close to I_{T}
- I is shifted by $S_{x}, \mathbf{S}_{Y}:\{-0.5,0.5\}$

$$
I_{T}(i, j) \approx \frac{1}{2} I\left(\left\lceil\frac{i}{2}\right\rceil,\left\lceil\frac{j}{2}\right\rceil\right)+\frac{1}{2} I\left(\left\lceil\frac{i}{2}+s_{y}\right\rceil,\left\lceil\frac{j}{2}+s_{x}\right\rceil\right)
$$

SAJADI Behzad et al. 2013 Equation I

SHIFT AND OVERLAY OF $S_{x}=S_{Y}=0.5$

SAJADI Behzad et al. 2013
Figure I

EQUATION

- $\mathbf{A I} \approx \mathbf{I}_{\mathbf{T}}$
- I_{T} is a known column vector of size $4 n^{\wedge} 2 \times 1$
- A is a known matrix of size $4 n^{\wedge} 2 \times n^{\wedge} 2$
- I can be found by solve the constrained linear least square problem

SOLVING EQUATION

- $\mathbf{A I} \approx \mathbf{I}_{\mathbf{T}}(2)$ can be re-expressed as $\min _{1} \frac{1}{2} r^{r} \boldsymbol{A}^{T} \mathbf{A}-\mathbf{I}^{T_{A} \mathbf{A}^{T} \mathbf{I}_{\mathbf{T}}} \quad$ s.t. $0 \leq \mathbf{1} \leq 1$ (SAJADI Behzad et al. 2013 Equation 3)
- defining $J=\mathbf{A}^{T} \mathbf{A}$
- $h=\mathbf{A}^{T} \mathbf{I}_{\mathbf{T}}$
- This equation is solved with Gaussian Belief Propagation which is faster as Jacobi or Gauss-Seidel methods. Although it does not always return a solution.

SOLVING EQUATION

$$
\max _{\lambda, \gamma \geq 0} \min _{\mathbf{I}} \frac{1}{2} \mathbf{I}^{T} J \mathbf{I}-\mathbf{I}^{T} h-\mathbf{I}^{T} \gamma+(\mathbf{I}-1)^{T} \lambda
$$

SAJADI Behzad et al. 2013 Equation 4

EVALUATION

- Mean CIELAB distance value
- SSIM index [Wang et al. 2004, Image quality assessment: From error measurement to structural similarity]

COMPARISON OFTARGET IMAGE (UP, LEFT), DOWNSAMPLED IMAGE (UP, RIGHT), OPTIMAL INPUT OF IMAGE (DOWN, LEFT) AND RESULTING IMAGE WITH OPTIMAL INPUT (DOWN, RIGHT)

SAJADI Behzad et al. 2013
Figure 2

SHIFTING LENSES

The lenses have the same focal length f

MAGNIFICATION

When placed at distance I from the LCD panel, we obtain a magnification $m=f /(l-f)$

DISTANCE BETWEEN OPTICAL

 AXES

Lamp

Shifting
Lenses

Projection
Lenses

$$
d=(d x, d y)
$$

MAGNIFICATION OF DISTANCE

Pixel p is at position m and position md , because it is shifted by d

MAGNIFICATION OF UNITS

Pixel p is with unit size a, is magnified as ma

Shift between two copies is therefore:

$$
\left(s_{x}, s_{y}\right)=\frac{(1+m) \mathbf{d}}{m a}=\frac{\left(1+\frac{f}{l-f}\right) \mathbf{d}}{\frac{f}{l-f} a}=\frac{\frac{l}{l-f} \mathbf{d}}{\frac{f}{l-f} a}=\frac{l \mathbf{d}}{f a}
$$

SAJADI Behzad et al. 2013 Equation 5

IMPROVEMENTS

- Multiple Overlays
- General Shifts
- Multiple Channels

MULTIPLE OVERLAYS

- Instead of using only two pixels, use multiple (m) pixels
- Can be obtained by using k Lenses

COMPARISON OF (A)TARGET IMAGE, (B) LOW RESOLUTION IMAGE, (C) RESULTING IMAGE WITH SHIFT ONE SHIFT OF (0.5,0.5), (D) RESULTING IMAGE WITHTWO SHIFTS OF $(0,0.5)$ AND ($0.5,0.5$) AND (E) RESULTING IMAGE WITHTWO SHIFTS OF $(-0.5,0.5)$ AND $(0.5,0.5)$

SAJADI Behzad et al. 2013

Figure 4

HOG COMPUTED WITH DIFFERENT PIXEL SHAPES. BLUE IS ONLY A LOWER RESOLUTION,WHEREAS GREEN AND RED ARE PIXEL SHAPES WITH ONLY ONE SHIFT AND RED IS A PIXEL SHAPE WITHTWO SHIFTS SAJADI Behzad et al. 2013

Figure 5

GENERAL SHIFTS

- Instead of shifting by half a step, shift by something between 0 and ।
- Dimensions of \mathbf{A} and \mathbf{I}_{T} change relative to K

DIFFERENT PIXEL SHAPES WITH DIFFERENT K VALUE FOR A SHIFT SAJADI Behzad et al. 2013

Figure 6

COMPARISON OFTHE RESULT OFTHETARGET IMAGE,THE LOW RESOLUTION IMAGE, A SINGLE SIMPLE SHIFT OF (0.5,0.5), A SINGLE SHIFT OF (0.33..., 0.66...),

TWO SHIFTS OF $(0.5,0.5),(-0.5,0.5)$ AND TWO SHIFTS OF $(0.5,0.5),(0.25,0.25)$

SAJADI Behzad et al. 2013
 Figure 7

MULTIPLE CHANNELS

- Instead of calculation everything for one image, it has to be calculated for the r,g and b channels
- Illumination does not have to be the same

(a) I_{T}
(b) $I_{L}: \Delta E=8.7$, SSIM $=0.68$

(c) $I_{R}: \Delta E=7.3, S S I M=0.75$

COMPARISON OF A COLOR IMAGE WITH A LOW RESOLUTION IMAGE AND AN RESULTING IMAGE WITHTWO HALF STEP SHIFTS

$$
\begin{gathered}
\text { SAJADI Behzad et al. } 2013 \\
\text { Figure } 8
\end{gathered}
$$

DISADVANTAGES

Thank you for your attention

Julian Pegoraro, I 225472

