Kinect Fusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera

SHAHRAM IZADI, DAVID KIM, OTMAR HILLIGES, DAVID MOLYNEAUX, RICHARD NEWCOMBE, PUSHMEET KOHLI, JAMIE SHOTTON, STEVE HODGES, DUSTIN FREEMAN, ANDREW DAVIDSON, ANDREW FITZGIBBON

PROCEEDINGS OF THE 24TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY. ACM, 2011.

Overview

Difficult goal

3D reconstruction of an indoor scene

Use single depth camera

- Estimate pose of camera
- Compare depth map
- Update 3D reconstruction

Low-cost and real-time

Related Work:

- Active sensors
- Passive cameras
- Online Images
- Simultaneous Localization and Mapping (SLAM)

Design Goals

- Interactive rates for camera tracking and reconstruction
- Direct feedback
- User interaction
- No explicit feature detection
- Camera tracking avoids explicit detection step
- Works on depth maps
- High-quality reconstruction of geometry

Design Goals

- Dynamic interaction assumed
- user interaction is possible
- Dynamically changing scenes

Infrastructure-less

• Reconstruct arbitrary indoor spaces

Room scale

Support room reconstructions and interaction

KinectFusion System

Construct 3D model of the scene:

- Track 6DOF pose of camera
- Fuse live depth data into a 3D model

User explores the space

- New views
- Reconstruction grows
- Image super-resolution

Examples

LEA AICHNER, 1226600

Object Segmentation

Scan specific physical object

- Monitor 3D reconstruction
- Observe changes over time
- Segment repositioned object

Geometry-Aware Augmented Reality

3D virtual world is overlaid onto the real world

Taking Physics Beyond the Surface

Simulate real-world physics.

Reaching into the Scene

User interaction

- Static scene -> dynamic scene
- Robust to transient and rapid scene motions
- Problems with prolonged interactions
 - User moves in front of the camera

Special GPU-based pipeline

- Geometry of background scene
- Geometry of the foreground user

Determine interactions

System pipeline

Camera Tracking

Iterative Closest Point (ICP)

Projective data association

e

• Find correspondences between oriented points

$$\arg\min\sum_{\substack{\mathbf{u}\\\mathbf{D}_{i}(\mathbf{u})>0}}||(\mathbf{T}^{\mathrm{rel}}\mathbf{v}_{i}(\mathbf{u})-\mathbf{v}_{i-1}^{\mathrm{g}}(\mathbf{u}))\cdot\mathbf{n}_{i-1}^{\mathrm{g}}(\mathbf{u})||^{2}$$

Output: relative transformation matrix that minimizes the point-to-plane

Listing 1 Projective point-plane data association.	
1: for each image pixel $\mathbf{u} \in \text{depth map } \mathbf{D_i}$ in parallel of 2: if $\mathbf{D}_i(\mathbf{u}) > 0$ then	do
3: $\mathbf{v}_{i-1} \leftarrow \mathbf{T}_{i-1}^{-1} \mathbf{v}_{i-1}^{g}$ 4: $\mathbf{p} \leftarrow \text{perspective project vertex } \mathbf{v}_{i-1}$ 5: if $\mathbf{p} \leftarrow \text{vertex map } \mathbf{V}$, then	
6: $\mathbf{v} \leftarrow \mathbf{T}_{i-1} \mathbf{V}_i(\mathbf{p})$ 7: $\mathbf{n} \leftarrow \mathbf{R}_{i-1} \mathbf{N}_i(\mathbf{p})$	D : Depth map T : global camera pose
8: if $ \mathbf{v} - \mathbf{v}_{i-1}^{g} < distance threshold and n . \mathbf{n}_{i-1}^{g} < normal threshold then 9: point correspondence found$	V: vertex map N: Normal map B: Potation matrix
	Listing I Projective point-plane data association.1: for each image pixel $\mathbf{u} \in \text{depth map } \mathbf{D_i}$ in parallel2: if $\mathbf{D}_i(\mathbf{u}) > 0$ then3: $\mathbf{v}_{i-1} \leftarrow \mathbf{T}_{i-1}^{-1} \mathbf{v}_{i-1}^{g}$ 4: $\mathbf{p} \leftarrow \text{perspective project vertex } \mathbf{v}_{i-1}$ 5: if $\mathbf{p} \in \text{vertex map } \mathbf{V}_i$ then6: $\mathbf{v} \leftarrow \mathbf{T}_{i-1} \mathbf{V}_i(\mathbf{p})$ 7: $\mathbf{n} \leftarrow \mathbf{R}_{i-1} \mathbf{N}_i(\mathbf{p})$ 8: if $ \mathbf{v} - \mathbf{v}_{i-1}^{g} < \text{distance threshold and}$ $\mathbf{n} \cdot \mathbf{n}_{i-1}^{g} < \text{normal threshold then}$ 9: point correspondence found

Volumetric Representation

3D volume with fixed resolution	Listing 2 Projective TSDF integration leveraging coalesced
	memory access.
Integrate 3D vertices into voxels using	1: for each voxel g in x,y volume slice in parallel do
Signed Distance Euroption (SDE)	2: while sweeping from front slice to back do
Signed Distance Function (SDF)	3: $\mathbf{v}^{\mathbf{g}} \leftarrow \text{convert } \mathbf{g} \text{ from grid to global 3D position}$
 Surface defined by the zero-crossing 	4: $\mathbf{v} \leftarrow \mathbf{T}_i^{-1} \mathbf{v}^{\mathrm{g}}$
Sarrace defined by the zero crossing	5: $\mathbf{p} \leftarrow \text{perspective project vertex } \mathbf{v}$
	6: if v in camera view frustum then
Iruncated Signed Distance Function	7: $\mathbf{sdf}_i \leftarrow \mathbf{t}_i - \mathbf{v}^{g} - \mathbf{D}_i(\mathbf{p})$
	8: if $(\mathbf{sdf}_i > 0)$ then
	9: $\mathbf{tsdf}_i \leftarrow min(1, \mathbf{sdf}_i / \max \text{ truncation})$
	10: else
3D voxel grid is allocated on the GPU	11: $\mathbf{tsdf}_i \leftarrow max(-1, \mathbf{sdf}_i / \min \text{ truncation})$
ac aligned linear memory	12: $\mathbf{w}_i \leftarrow \min(\max \text{ weight}, \mathbf{w}_{i-1} + 1)$
as anglieu illear memory	13: $\mathbf{tsdf}^{\mathrm{avg}} \leftarrow (\mathbf{tsdf}_{i-1}\mathbf{w}_{i-1} + \mathbf{tsdf}_i\mathbf{w}_i)/\mathbf{w}_i$
	14: store \mathbf{w}_i and $\mathbf{tsdf}^{\mathrm{avg}}$ at voxel g

Summary

3D reconstruction and camera pose estimation using single depth camera

Features:

- Novel GPU pipeline real time
- Low–cost object scanning
- Physics based interaction
- Dynamic content

Future work

- Reconstruction of larger scenes
- More details in the reconstruction
- Open new research topics

References

1. S. Izadi et al., "KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera," in Proceedings of the 24th annual ACM symposium on User interface software and technology, 2011, pp. 559–568.

2. https://msdn.microsoft.com/en-us/library/dn188670.aspx