Vorbesprechung Praktika & Projekte

Prof. Dr. Hannes Kaufmann Prof Dr. Horst Eidenberger Prof. Dr. Walter Kropatsch Dipl.-Ing. Soroosh Mortezapoor Dr. Hugo Brument Dr.tech. Jiri Hladuvka

E193-03 Virtual & Augmented Reality Research Group Institute of Visual Computing & Human-Centered Technology TU Wien, Austria

Courses

Winter Semester 2022

- Praktikum aus Visual Computing 1, 6 ECTS
- Projekt aus Media and Human Centered Computing 1, 6 ECTS
- Project in Computer Science 1, 6.0 ECTS
- Summer Semester 2023
 - Praktikum aus Visual Computing 2, 6 ECTS
 - Projekt aus Media and Human Centered Computing 2, 6 ECTS
 - Project in Computer Science 2, 6.0 ECTS
- Both semesters
 - Bachelorarbeit für Informatik und Wirtschaftsinformatik; 10 ECTS
 - Master Thesis, 30ECTS

Project Courses: General Info

- **Supervision:** regular meetings with supervisor (e.g., bi-weekly)
- **Hardware:** Suitable lab equipment is provided
- Process: literature research, iterative design and development of solution, evaluation and presentation
- Strong practical component: independently implement a prototype (hardware and/or software)
- Option to work in a small group (2 people)
- All topics available at
 - <u>https://www.cg.tuwien.ac.at/courses/Topics</u>
 - <u>http://www.vreeclimber.at/student_projects/</u>
 - TISS course pages

VIRTUAL & AUGMENTED REALITY

Univ.Prof. Mag. Dr. Hannes Kaufmann

GCD Center for Geometry and Computational Design

Research Staff

Postdocs: Peter Kán, Iana Podkosova, Christian Schönauer, Francesco De Pace, Hugo Brument **PhDs:** Khrystyna Vasylevska, Emanuel Vonach, Soroosh Mortezapoor, Mohammad Mirzaei + 3 external PhDs

Students: 15 graduate and undergraduate students involved in research

Virtual & Augmented Reality Themenbereiche

Next Steps...

Send us an email with the following information:

- Which course you require credits for
- The idea/topic you wish to pursue
- Your name and Matrikelnummer

To: <*topic supervisor*>

CC: hannes.kaufmann@tuwien.ac.at

We will make individual agreements about

- supervision
- hardware pickup
- specific tasks

List of topics

AUGMENTED REALITY

Prof. Hannes Kaufmann | Hugo Brument

Outdoor Augmented Reality (AR) Tracking System

- AR tracking solutions are not usually suitable for large outdoor areas
- **Task**: development of an outdoor GPS-based tracking system for wearable AR devices (e.g., Magic Leap, Microsoft HoloLens)
 - Verify accuracy of a GPS system (REDCatch):
 - Comparison with the wearable AR device tracking system
 - How to use GPS positional data to improve tracking
 - User tests to assess the effectiveness of proposed solution from a humancentered perspective

• Setup/IDE:

- Many possible solutions (to be discussed)
 - Windows (Unity3D)
 - Android (for GPS)
 - C#, Java/Android
- Scope: Master
- Supervisor: <u>francesco.pace@tuwien.ac.at</u>

AVATARS AND MULTIUSERS APPLICATIONS

Prof. Hannes Kaufmann | Hugo Brument

Co-Embodiment: Non-Human Avatar

- Suitable for: Bachelor thesis, PR
- Goal: develop methods for two (or more!) users to embody and control a nonhuman avatar together
 - In contrast to the previous topic, different users can control completely different parts of the avatar
 - The avatar should be too complex for single-user control
- Tasks
 - Design or find a non-human avatar (any ideas on the body schema welcome!)
 - Implement mapping shared motion control
 - Develop experimental tasks to demonstrate and test co-embodiment
- Environment, hardware etc.: Unity3D, Oculus Quest or HTC Vive, potentially hand tracking and inverse kinematics
- Contact: Iana Podkosova <u>vana.podkosova@tuwien.ac.at</u>, Hugo Brument <u>hugo.brument@tuwien.ac.at</u>

Mixed-Agency interactions in VR

- Context: A VR environment where multiple avatar-embodied users and multiple virtual agents (that look like users but are controlled by computer algorithms) perform tasks together
- Examples: Team sports in VR where some players are human and some are agents, large simulations of building evacuation, social VR platforms with human users and virtual agents
- Goal: Study how users will interact with each other and with virtual agents
- First step: experiment with 2 users and one agent

Virtual and Augmented Reality Group

Contact: Iana Podkosova <u>yana.podkosova@tuwien.ac.at</u>

Multi-user VR Game with virtual agents

- Two users and one agent, the goal is to collect colored cubes, insert them into slots in walls, give them to other users
- Goal: study how users perform collision avoidance with each other and with agents; study how users would choose interaction partners
- Task: Integrate agent animations into the multi-player game scenario, improve user avatars, implement the recording of experimental metrics
 - Game algorithm itself is implemented
- Tools and hardware: Unity 3D, PUN 2 networking plugin, Oculus Quest
- Requirements

- English
- Unity3D
- VR experience and multi-player experience is an advantage
- Suitable for: Project, possible to follow up with MA thesis about mixed-agency interactions
- Contact: Iana Podkosova <u>yana.podkosova@tuwien.ac.at</u>

ARTIFICAL INTELLIGENCE IN VR

Prof. Hannes Kaufmann | Hugo Brument

"Intelligent" Virtual Human in VR

- Create realistic virtual agent in VR environment using Unity 3D or Unreal Engine
- Connect the virtual character with NVIDIA Riva and Rasa systems
 - speech synthesis
 - natural language processing
 - intelligent conversations
- Animations and lip sync
- Connect game engine with grasshopper in Rhino
- Control parametric script with speech

Contact: peter.kan@tuwien.ac.at Scope: PR, Master thesis

Reality Group

ROBOTICS AND VR

Prof. Hannes Kaufmann | Hugo Brument

Mobile Autonomous Navigation: Stair Detection

- We provide a mobile robot (Spot, from Boston Dynamic) capable of autonomously exploring unknown environments (ROS-based solution)
- **Task**: Enable Spot to explore multi-floor environments, connected by stairs
 - Implement a solution for stair detection:
 - RGB and/or RGB-D cameras
 - Implement a solution for "Stair awareness"
 - The robot should know whether it is walking on a stair or not
- Setup/IDE: Ubuntu, ROS (Robot Operating System)
- Scope: PR

Virtual and Augmented Reality Group

• Supervisor: francesco.pace@tuwien.ac.at

CoboDeck

A Large-Scale Haptic VR Interactive System Using a Collaborative Mobile Robot

Safe Haptic Feedback

• Setup:

- Safe RB-Kairos mobile platform with arm & HTC Vive Pro
- Windows + Unity, Ubuntu + ROS
- Various Tasks available:
 - ROS (Linux):
 - Implementation & integration of safety guidelines
 - Development & implementation of a prop change procedure for the robotic arm
 - Fast haptic feedback based on vision and/or prediction
 - Shape simulation with a square flat prop
 - Individual adaptation to user's behavior
- Scope: VR: AT, PR, SE, thesis
- Supervisors: <u>emanuel.vonach@tuwien.ac.at</u>, <u>khrystyna.vasylevska@tuwien.ac.at</u>,

Vision for Robot: Detect the VR User

- Task: Enable fast user detection on the robot for safety and interaction
 - Implement a solution for user detection:
 - Whole body or only hands/legs
 - . Tell apart user from a static obstacle
 - Test for optimal recovery (collision avoidance) behavior
 - For thesis:

Virtual and Augmented Reality Group

- Explore options for time-optimization
- Prepare and help running a user study
- Setup/IDE: Ubuntu, ROS (Robot Operating System)
 Prerequisites: Basic Linux command, Python 2.7 & C++
 Scope: PR, Master thesis
- Supervisors: khrystyna.vasylevska@tuwien.ac.at,

soroosh.mortezapoor@tuwien.ac.at

Material Simulation With A Robotic Arm

- Sensations of texture, temperature, weight, rigidness, elasticity, etc. of an object is essential in providing VR users with realistic haptic feedback in VR.
- **Task:** Implementing a simulator of one of the properties that can be adapted for a robot using a simple lego-like hardware manipulation.
- Setup/IDE: C++ and/or Python, either ROS (Robot Operating System) or Unity

- **Prerequisites:** Programming with Python and/or C++, understanding of spatial transformations
- Supervisors: khrystyna.vasylevska@tuwien.ac.at

Virtual and Augmented Reality Group

Safe Planning & Control of a Robot Arm for VR Use

- Moving a robotic arm close to an unaware immersed VR user can be dangerous.
- A robotic arm can alter the order of moving its different joints (finding and selecting different solutions for an inverse kinematic problem) to create a safer path for its joints to reach a certain goal by making changes in the arm path planning algorithm.
- Task: Employ and configure arm path planning algorithms and inverse kinematic solvers.
- Setup/IDE: Ubuntu, ROS, Gazebo
- Prerequisites: Basic Linux commands, basic understanding of spatial transformations, maybe basic python.
- **Scope:** PR, thesis

Optimize Path Planning For A Mobile Robot

- **Objective:** Test different combinations of path planning algorithms for optimal movement of a mobile robot, which is hovering around an immersed user in a walkable VR brings new **challenges** including
 - Keeping safe distance to the user(s)
 - Stay as reachable as possible for providing services
 - Minimize collision probability
- Task:
 - Configure current implemented algorithms and evaluate results
 - Or implement new application-specific path planning algorithms
- Setup/IDE: Ubuntu, ROS (Robot Operating System)
- Prerequisites: Basic Linux commands, Python 2.7 or C++
- Scope: PR, thesis
- Supervisor: soroosh.mortezapoor@tuwien.ac.at

Analysis Of Human Behavior In Large VR Spaces

- We often need to know in advance what to expect from a VR user
- **Task**: Create a tool for data collection, analysis & prediction •
 - Implement 1+ predictor for user's actions:
 Movement: walking / running / stopping
 Touching objects
- Possible data sources:

- Standard VR setup (HMD + controllers)
- Full-body mocap
- Brain-computer interface or bio signals
- Various cameras
- Setup/IDE: C++, C#, or Python, Unity or ROS
- **Prerequisites:** Programming skills, understanding of predictive systems
- **Scope**: PR, Master thesis
- Supervisor: khrystyna.vasylevska@tuwien.ac.at

Robot Detection by Unaware VR User

• PR, Master thesis

- **Task**: Explore the conditions under which the user in VR might notice that there is a heavy platform is moving in the space near him/her
 - Together with supervisor implement a scenario of interaction with a moving robotic platform with arm in VR
 - (for thesis) Prepare and help running a user study This topic targets a scientific publication as a result.
- Setup/IDE: Unity on Windows, Ubuntu, ROS (Robot Operating System)
- Prerequisites: C#, Basic Linux command, Python 2.7 or C++
- Supervisor: <u>khrystyna.vasylevska@tuwien.ac.at</u>

Interested in CoboDeck?

Supervisor: Depending on topic

- Khrystyna Vasylevska
- Emanuel Vonach
- Soroosh Mortezapoor

Send email for more information and discuss topics:

cobodeck@list.tuwien.ac.at

Safe Planning & Control of a Robot Arm for VR Use

- Moving a robotic arm close to an unaware immersed VR user can be dangerous.
- A robotic arm can alter the order of moving its different joints (finding and selecting different solutions for an inverse kinematic problem) to create a safer path for its joints to reach a certain goal by making changes in the arm path planning algorithm.
- **Task:** Employ and configure arm path planning algorithms and inverse kinematic solvers.
- Setup/IDE: Ubuntu, ROS, Gazebo
- **Prerequisites:** Basic Linux commands, basic understanding of spatial transformations, maybe basic python.
- Scope: PR, thesis

Virtual and

Augmented Reality Group

• Supervisor: soroosh.mortezapoor@tuwien.ac.at

HARDWARE INTERFACES FOR VR INTERACTION

Prof. Hannes Kaufmann | Hugo Brument

Virtual and Augmented Reality Group

Synthetic Heat in XR

- Thermal Grill Illusion
 - Alternating hot/cold areas produce burning heat sensation
- Task
 - Basic Task:
 - Build a (mobile) device that produces the thermal grill illusion
 - Should be small enough to be tested on various body positions (mainly hand/arm/face/neck)
 - Extended Task:
 - Heat controllable from XR application using e.g. Arduino)
 - Wearable form factor
 - Use compresed air and electronically controlled pneumatic valves for cooling
 - Wireless control from mobile XR device etc.
- Topic for: PR, BA, (possibly DA)
- Contact: christian.schoenauer@tuwien.ac.at

Hanger Reflex

- A force illusion that accompanies involuntary body rotation
- Task
 - Development of an interface that generates the Hanger Reflex on different body segments (head, waist, legs).
 - Development of a proof of concept in Unity3D to show how users could be redirected in VR experimental platform using Unity3D
- Knowledge of Arduino/ROS/Microcontrollers
- Contact: <u>hugo.brument@tuwien.ac.at</u>

BUILDING INFORMATION MODELLING (BIM)

Prof. Hannes Kaufmann | Hugo Brument

BIMCheck: Automatic comparisons of BIM models and real buildings

- Goal compare how a building corresponds to its BIM model (3D model + metadata about a building)
- Find differences: missing/misplaced walls, deviations in dimensions, etc.
- Workflow: scan the building (room), match the scan to the BIM file, extract geometry from the scan, find differences between scan and BIM geometry
- Technology: LiDAR scanner (Ouster OS0-128), Kinect for Azure, Kudan SLAM tracking, Point Cloud Library (PCL), OpenCV etc.
- Contact: Iana Podkosova <u>yana.podkosova@tuwien.ac.at</u>

BIMCheck: Kinect Fusion with multiple Azure Kinects

- Task: integrate 3 Kinect for Azure devices into Kinect Fusion (large scale) algorithm, test various scenes and algorithm parameters
- Hardware and tools: Kinect for Azure (x3), Kinect for Azure SDK, C++, OpenCV, PCL (Point Cloud Library)
- Requirements
 - English
 - C++
 - Computer vision methods/OpenCV is an advantage
- Suitable for: Project (PR), can be extended to BA or MA thesis
- Contact: Iana Podkosova <u>yana.podkosova@tuwien.ac.at</u>

BIMCheck: Kudan SLAM accuracy evaluation

- Task: evaluate the accuracy of Kudan SLAM (commercial SLAM tracking solution) using Lighthouse tracking stations and HTC Vive trackers as ground truth
- Hardware and tools: Ouster LiDAR, HTC Vive trackers, existing platform that runs SLAM on Ouster LiDAR data
- Requirements
 - English
 - C++

- Understanding of statistics is an advantage
- Suitable for: Project
- Contact: Iana Podkosova <u>yana.podkosova@tuwien.ac.at</u>

BIMCheck: Extract geometric primitives from the point cloud

- Task: find planes (floor, walls) in a point cloud scan
- BIM model can be used to find primitives (after the point cloud is registered in BIM already implemented)
- Tools: C++, PCL (Point Cloud Library), existing platform for LiDAR point cloud to BIM registration
- Requirements:
 - English
 - C++
- Suitable for: Project, can be extended to MA thesis
- Contact: Iana Podkosova <u>yana.podkosova@tuwien.ac.at</u>

BIMCheck: Soll-Ist Abgleich/target-scan Comparison

- Task: compare the LiDAR scan of a room to the BIM model, find differences in positions and dimensions of elements
- The scan can be in the point cloud form or made of planes
- Tools: C++, PCL (Point Cloud Library), existing platform for LiDAR point cloud to BIM registration
- Requirements
 - English
 - C++
- Suitable for: MA thesis (can be combined with primitives extraction)
- Contact: Iana Podkosova <u>vana.podkosova@tuwien.ac.at</u>

BIMCheck: Kinect + LiDAR data integration

- Task: integrate Kinect depth data + Kinect Fusion data representation (TSDF) with LiDAR data, develop new data structures for scene reconstruction
- Tools: C++, OpenCV, PCL, existing platform for LiDAR data integration
- Requirements
 - English
 - C++

- Suitable for: Project, can be extended to MA thesis and combined with different topics (integration of 3 Kinect devices)
- Contact: Iana Podkosova <u>yana.podkosova@tuwien.ac.at</u>

Next Steps...

Send us an email with the following information:

- Which course you require credits for
- The idea/topic you wish to pursue
- Your name and Matrikelnummer

To: <*topic supervisor*>

CC: hannes.kaufmann@tuwien.ac.at

We will make individual agreements about

- supervision
- hardware pickup
- specific tasks

Questions?

