
Point-Based Impostors for Real-Time
Visualization

Michael Wimmer, Peter Wonka, François Sillion
iMAGIS - GRAVIR/IMAG-INRIA, Vienna University of Technology

Abstract. We present a new data structure for encoding the appearance of a ge-
ometric model as seen from a viewing region (view cell). This representation can
be used in interactive or real-time visualization applications to replace a complex
model by an impostor, maintaining high quality rendering while cutting down
rendering time. Our approach relies on an object-space sampled representation
similar to a point cloud or a layered depth image, but introduces two fundamental
additions to previous techniques. First, the sampling rate is controlled to pro-
vide sufficient density across all possible viewing conditions from the specified
view cell. Second, a correct, antialiased representation of the plenoptic function
is computed using Monte Carlo integration. Our system therefore achieves high
quality rendering using a simple representation with bounded complexity. We
demonstrate the method for an application in urban visualization.

1 Introduction

Fig. 1. A scene from an urban walkthrough. Geometry in the red region has been replaced by a
point-based impostor, providing for fast, antialiased rendering of the far field.

A general and recently quite popular approach to handle the interactive display of com-
plex scenes is to break down the view space into cells (view cells) and compute opti-
mizations separately for each view cell. A typical example is region visibility, which
calculates the potentially visible set (PVS) of objects from a specific view cell.

In this paper we address the problem of simplifying distant geometry (the far field)
for view cells (see Fig. 1). This is an important problem because rendering distant ge-
ometry often leads to aliasing artifacts and, even after visibility calculations, the amount
of geometry remaining in the PVS is often overwhelming for current graphics acceler-
ators.



We begin by defining our goals in this process. First, we set out to build a rep-
resentation that provides a high-quality rendered image for all views from a specific
view cell. This means that we try to avoid artifacts such as holes, aliasing or missing
data, and that we require high fidelity in the rendering of view-dependent appearance
changes. Second, we insist that our representation be as compact as possible, while
being amenable to hardware acceleration on consumer-level graphics hardware.

Distant geometry has some peculiarities resulting from its complexity that make
simplification difficult:

• One aspect is that because of limited image resolution and perspective projection,
typically several triangles project to a single pixel. This makes antialiasing and
filtering an important issue.

• Another aspect is that we can not rely on surfaces to drive the simplification pro-
cess: the triangles that project to one pixel can stem from disconnected surfaces
and even from different objects. This means, for example, that there is no well-
defined normal for such a pixel.

Generally, simplification can be based either on geometric criteria as in most level-
of-detail approaches, or on image-based representations. Geometric simplification is
useful for certain models, but has its limitations. Scenes with alpha textures, regular
structures as found in buildings, chaotic disconnected structures as found in trees, or
new shading paradigms such as pixel and vertex shading are not easy to deal with even
in recent appearance-based simplification methods. We will therefore concentrate on
image-based simplification approaches.

We observe, however, that none of the simplified representations proposed to date
meets all the goals defined above:

• Layered depth images (LDIs) and similar representations introduce bias in the
sampling patterns, and cannot accommodate situations in which many primitives
project onto each pixel of a view. In the presence of such microgeometry, we
also have to be aware that appearance can change with the viewing direction.
This requires a representation with directionally dependent information, such as
a light field.

• Light field approaches are powerful enough to cope with complex and direction-
ally dependent appearance. However, geometric information needs to be incorpo-
rated into the light field in order to obtain acceptable quality within a reasonable
amount of storage space [3]. A possible starting point to build an impostor would
therefore be a surface lightfield [28], but as the name of this primitive already
indicates, this requires a surface (and its parameterization).

In this paper we introduce a new representation for a complex geometric model that
is especially useful to build impostor objects to replace the far field for a given view
cell. The proposed representation effectively decouples the geometry, represented as a
set of 3D points, and the appearance, represented as a simplified light field computed
from the original model. In our algorithm, the points are selected from a number of
viewpoints, chosen so as to approach a minimal sampling criterion in image space,
across the entire view cell. Therefore our sampling mechanism prevents the appearance
of holes. In the context of very complex models composed of a great many indepen-
dent primitives, 3D points can not be considered as representatives of a well-defined
surface, as in the surfel or QSplat techniques [20, 21]. In contrast, we define a proper
characterization of the radiance contribution to the image from these points, which can
be computed using Monte Carlo integration, and is encoded as a texture map to model



view-dependent effects. The resulting representation is compact, renders quickly us-
ing existing graphics hardware, produces a high quality image with little aliasing, has
no missing or disappearing objects as the viewpoint moves, and correctly represents
view-dependent changes within the view cell (such as occlusion/disocclusion effects or
appearance changes).

The paper is organized as follows: after reviewing previous work in section 2, we
present an overview of the proposed representation, its construction and its usage in sec-
tion 3. We then provide in section 4 an in-depth analysis of the point-sampled render-
ing primitive, its meaning in terms of appearance modeling and theoretically founded
means of representing image radiance information at these points. Section 5 presents
the details of the current implementation, which computes impostor representations for
the far field. Results are presented and discussed in section 6.

2 Previous Work

Our work can be seen in the context of image-based rendering. The idea of image-
based rendering is to synthesize new views based on given images. Ideally, we would
like to replace distant geometry by one image, an alpha texture map, because it is very
fast to render [14]. Schaufler et al. [22] and Shade et al. [24] used this idea to build a
hierarchical image cache for an online system, with relaxed constraints for image qual-
ity. However, to properly capture parallax effects of the replaced geometry, it would be
necessary to precalculate many alpha texture maps for several viewpoints in the view
cell and to blend between them dependent on the viewing position. This is basically
equivalent to storing the five-dimensional plenoptic function (the function that encodes
all possible environment maps from any point in the scene [17]) and requires too much
memory if high image quality is desired. A more efficient solution is a 4D parameter-
ization of the plenoptic function, the light field [11], which can be seen as a collection
of images taken from a regular grid on a single plane. At runtime it is possible to syn-
thesize images for new viewpoints not only on this plane, but also for all viewpoints
within a certain view cell behind the plane. Gortler et al. [9] independently developed
a similar parameterization. They additionally use depth information for better recon-
struction. Depth information can also be added as a triangle mesh to create surface light
fields [19, 28]. Shum et al. [3] study the relationship between depth and (spatial) spec-
tral support of the light field in more detail and add depth information to the light field
in layers. Although light fields can be rendered interactively, memory consumption and
calculation times make it hard to use them for most real-time rendering applications.

Starting from the texture map idea, depth information can be added to make an
image usable for a larger number of viewpoints, for example by using layers [18, 23].
These layers can be rendered quickly on existing hardware, but they contain a strong
directional bias which can lead to image artifacts, especially in complex scenes. Several
authors have added depth information to images using triangles [1,7,8,15,26]. While a
(layered) depth mesh can be calculated and simplified for one viewpoint, the represen-
tation is undersampled for other viewpoints, leading to disocclusion artifacts or blurring
effects. The calculation of an equally sampled high quality triangle mesh remains an
open problem. Finally, depth can be added per point sample. In particular, layered
depth images (LDI) [16,25] provide greater flexibility by allowing several depth values
per image sample. However, warping the information seen from a view cell into the
image of a single viewpoint again leads to a sampling bias. To overcome this problem,
several LDIs have to be used [4, 13].

As an alternative, point-based rendering algorithms were investigated by Levoy et



Fig. 2. Left: Geometry is sampled using three perspective LDI cameras from a view cell. Right:
Rays are cast from the view cell to calculate a Monte Carlo integral. A texture map on the
sampling plane records contributions for different view cell locations.

al. [12], Grossman et al. [10] and Pfister et al. [20]. These algorithms are currently not
implemented in hardware and especially hole filling is a challenging problem. For faster
rendering, warping can be replaced by hardware transformation together with a splatting
operation [21]. The main argument for the use of points is their simplicity. However,
in the context of complex geometry, points can no longer be seen as point samples on
a surface [20, 21]. Therefore, our work stands in contrast to previous point rendering
techniques and we will derive a characterization of points that differs fundamentally
from those approaches.

3 Overview of the algorithm

We propose a rendering primitive based on points to replace geometry as seen from a
view cell. The system implements the following pipeline:

• Sampling geometry: we calculate sample points of the geometry using three per-
spective LDIs to obtain a dense sampling for a view cell (Fig. 2, left). We call the
plane defined by the three camera locations the sampling plane.

• Sampling appearance: The antialiased appearance of each point is calculated for
different view cell locations using Monte Carlo integration. We shoot rays from a
rectangular region which is contained in the triangle formed by the three cameras
(see Fig. 2, right). Each point is associated with a texture map which encodes the
appearance contributions for different view cell locations.

• Real-time display: point-based impostors make full use of existing rendering
hardware for transforming each point as well as shading it with its associated
texture map depending on the current viewer location. No additional software
calculations are necessary.



4 Point-Based Impostors

4.1 Complexity of appearance

The plenoptic function P (s, ϕ) completely models what is visible from any point s in
space in any given direction ϕ. Rendering is therefore the process of reconstructing
parts of the plenoptic function from samples. Both geometry and appearance informa-
tion of scene objects contribute to the plenoptic function. Current rendering algorithms
usually emphasize one of those aspects:

• Light fields record rays regardless of geometric information, even if they all hit
the same diffuse surface.

• Other, geometric approaches usually model appearance only to a degree allowed
by their lighting model. They cannot account for microgeometry, i.e., geometry
that projects to less than a pixel. Microgeometry can have different appearance
when viewed from different angles (see Fig. 3, left). This usually results in alias-
ing artifacts or is dealt with by blurring, thereby discarding possibly important
information.

Our point-based representation contains both geometric information (the 3D loca-
tion) and directionally dependent appearance information. It therefore captures all of
these aspects:

• Point sampling can easily adapt to unstructured geometry in the absence of sur-
faces or a structured model.

• A point on a diffuse, locally flat surface which projects to more than a pixel has
the same appearance from all directions and can be encoded with a single color.

• Objects with view-dependent lighting effects (e.g. specular lighting) show differ-
ent colors when viewed from different angles.

• Microgeometry is also view dependent and is encoded just like lighting effects.

4.2 Geometric sampling

The first step in the creation of a point-based rendering primitive is to decide on the
geometric location of the sample points. The points encode the part of the plenoptic
function defined by the view cell and the geometry to be sampled. To allow hardware
reconstruction, there should be no holes when projecting the points into any possible
view from the view cell.

A sufficient criterion that a point-sampled surface will have no holes in a projection
is that the projected points can be triangulated so that the maximum projected edge-
length is smaller than the side length of a pixel [10].

It is in general difficult to prove that a particular point-based representation fulfills
this criterion. For unit magnification and orthographic viewing, three orthogonal LDIs
provide such an adequate sampling [13]. Although this sampling strategy works with
our method, it is not well suited for far-field objects because the sampling density is
not adapted to the possible viewing directions from the view cell and typically results
in a large number of point samples. Therefore, our method chooses perspective LDIs to
better distribute the samples with respect to the view cell.



Viewpoints

Microgeometry

Fig. 3. Left: Microgeometry: if the structure in the figure projects only to a pixel for the view
cell, directional appearance information is required to let it appear shaded light in the left camera
and dark in the right camera. Right: The figure shows the relation of the plenoptic function and
plenoptic image function parameters.

4.3 Appearance: the plenoptic image function

The geometric sampling step results in a set of n points p1, . . . , pn with fixed locations
in 3D space. In this section, we derive a method to determine color values for each of
these points. We examine the meaning of a point in light of our goal: for each viewing
location and camera position in a view cell, the image obtained by rendering all points
p1, . . . , pn should be a correctly filtered image of the far field objects (i.e., one slice of
the plenoptic function P (s, ϕ). Our derivation will show that several colors per point
are needed for that.

Most rendering algorithms use a z-buffer or depth ordering to determine the visi-
bility of the primitives they render. A point, however, is infinitely small. Its meaning
is mainly determined by its reconstruction. In many reconstruction methods (as, for
example, in hardware rendering) only one point is visible per pixel and determines the
color of the pixel. Due to finite image resolution, a point can be visible or occluded de-
pending only on the viewing camera orientation. The plenoptic function is not powerful
enough to model this form of occlusion.

Consequently, we introduce the plenoptic image function PIF(s, θ, x). The param-
eter s represents the 3D viewer position, θ is a camera orientation, and x is a 2D pixel
coordinate in the local camera coordinate system. Fig. 3 (right) illustrates how the
domains of the PIF and the plenoptic function relate to each other: any pair (θ, x)
corresponds to one ray orientation ϕ(θ, x) from the plenoptic function, so under ideal
conditions (i.e., infinitely precise displays etc.), the PIF is related to the plenoptic func-
tion P via

PIF(s, θ, x) = P (s, ϕ(θ, x))

Note that this mapping is many to one. The PIF with its additional parameters will
allow us to incorporate the visibility term inherent to current reconstruction techniques
directly into our calculations.

We now interpret points via the images they produce (their image functions) when
rendered with a specific rendering algorithm—in our case, z-buffered hardware render-
ing.

If we consider only one point pj alone, the point defines an image function rj(s, θ, x).
This function specifies a continuous image for each set of camera parameters (s, θ).
Each of those images is set to the typical reconstruction filter of a monitor, a Gaussian
centered at the pixel which the point projects to (see Fig. 4, top). However, it is very
crucial to see a point pj in relation to the other points in the point set. We have to take



�

s

x

x
pj

s

p1

p2

pj

Fig. 4. These figures explain the image function of a point pj and the influence of visibility. The
left column shows a 2D cross-section for fixed camera parameters (s, θ). Note that we only show
one component of the 2D image coordinates x. The central column shows the point pj in the
resulting image. The top right figure shows the image function rj(s, θ, x). While the top row
considers only point pj , in the bottom row, two additional points p1 and p2 have been added.
Here, the point p1 occludes the point pj due to the z-buffer, causing the visibility term vj(s, θ) of
point pj to be 0. Therefore, Qj(s, θ, x) (in the bottom right figure) is 0 for all image coordinates
x.

into account a visibility term vj which evaluates to 1 if the point pj is visible in the
image defined through the camera parameters (s, θ) and 0 otherwise. This gives us the
actual image function Qj of a point (see Fig. 4, bottom):

Qj(s, θ, x) = vj(s, θ)rj(s, θ, x)

From an algebraic point of view, we can regard the functions Qj , 1 ≤ j ≤ n, as
basis functions spanning a finite dimensional subspace of the space of all PIFs. One
element PIFfinite of this finite dimensional subspace can be written as a weighted sum
of the basis functions of the points:

PIFfinite(s, θ, x) =
∑

j

cjQj(s, θ, x)

Note that the weight cj is the color value assigned to the point pj . The weights
cj should be chosen so as to make PIFfinite as close as possible to PIF. This can be
achieved by minimizing ‖PIFfinite − PIF‖ (with respect to the Euclidean norm on the
space of functions over (s, θ, x)), and the resulting weights can then be found via the
dual basis functions as

cj =
∫∫∫

qj(s, θ, x)PIF(s, θ, x)ds dθ dx

where qj(s, θ, x) is the dual basis function (the dual basis functions are defined via
〈qj , Qk〉 = δjk).

This representation only assigns one color value per point, regardless of the lo-
cation s in the view cell. However, because of view-dependent shading effects and



micro-geometry as discussed in section 4.1, a point might need to show very different
appearance from different viewing locations. Thus, we make the model more powerful
by replacing the weights cj by functions cj(s). In order to represent those functions,
they are discretized with respect to the space of possible viewing locations (this is simi-
lar in spirit to the camera aperture necessary when sampling light fields). Given a basis
Bi(s) for this space, we can write each cj(s) in terms of this basis, with coefficients
found via the dual basis bi(s):

cj(s) =
∑

i

cijBi(s), where cij =
∫

cj(s)bi(s)ds

One possible choice for the basis Bi(s) is to use a regular subdivision of a plane
with a normal directed from the view cell towards the objects. The weights cij for each
point pj can then be stored in a texture map. This means that cj(s) will be looked up
in a texture map, which is typically reconstructed with a bilinear kernel, so Bi(s) is
actually just a bilinear basis.

Putting all parts together, the rendering process is described with the formula

PIFfinite(s, θ, x) =
∑
i,j

cijQj(s, θ, x)Bi(s)

and the weights to make the PIFfinite resemble most closely the PIF are calculated
as

cij =
∫∫∫

PIF(s, θ, x)qj(s, θ, x)bi(s)ds dθ dx (1)

The final task is finding the dual basis functions. If our basis functions QjBi were
orthogonal, we would have qj = Qj and bi = Bi (apart from normalization issues).
In the non-orthogonal case, however, calculating the real duals is tedious: geometric
occlusion means each one would be different; one would really have to invert a large
matrix for each one to find a (discretized) version of the dual. We have opted for an
approximate approach inspired by signal theory: both the bilinear basis Bi and the
monitor reconstruction filter rj can be regarded as an approximation to the ideal (and
orthogonal) reconstruction filter, a sinc-function. As is common practice, we approxi-
mate the ideal lowpass filter (the signal-theoretic version of dual basis functions) using
Gaussians.

The integral (1) can be estimated using Monte Carlo integration with bi and qj

as importance functions. Samples PIF(s, θ, x) = P (s, ϕ(θ, x)) are calculated with a
simple ray tracer.

5 Implementation

In this section we describe the choices made in our particular implementation of the
method.

5.1 Obtaining geometric samples

To place the three LDI cameras used to obtain geometric samples, a sampling plane
is chosen to parameterize viewer positions within the view cell: as in light fields, we
use a plane oriented from the view cell towards the far field. Then, we calculate the



intersection of the supporting planes of the view cell and the far field with the sampling
plane. We select three cameras on a triangle that tightly bounds the resulting polygon
(i.e., the triangle with minimum circumference).

In order to determine the LDI resolution necessary to avoid holes in the reprojection
of the sampled points, our method offers a sampling mechanism based on a 2D obser-
vation: suppose we have two cameras on both ends of a segment of possible viewing
locations in 2D, and a short edge viewed by the two cameras. These two cameras are
used to sample the endpoints of the edge. Resampling happens from a camera placed
anywhere on the segment between the two cameras. It can now be shown that the
“worst” discrepancy between the resampling angle and the sampling angle appears if
the edge is parallel to the segment joining the two cameras, and if the center of the edge
is equidistant to both cameras.

Inspired by this, we have developed a heuristic in 3D which takes the following
effects into account:

• Movement within the view cell: for three cameras looking at a plane parallel to
the sampling plane, the worst mutual sampling resolution occurs at the point on
the plane that is equidistant from the three cameras. This point is the circumcenter
of the triangle defined by the three cameras, projected on the plane in question.
The sampling angle of the three cameras has to be chosen so that neighboring
samples project to less than a pixel when viewed directly from the circumcenter
(where the maximum projection occurs).

• Perspective: perspective cameras have varying angular resolutions in space: a
feature (e.g., a triangle) projects to more pixels at the border of the viewing frus-
tum than in the center when seen under the same viewing angle. The sampling
resolution has to be increased accordingly by the factor between angular resolu-
tion in the center of the camera and at the border of the viewing frustum. For a
field of view of 45◦ for example, this factor is about 1.17.

• Sampling pattern orientation: if perspective cameras are used for sampling, the
sampling pattern on objects in space is tilted with respect to the viewing camera.
Therefore, given a minimum sampling angle from a point, the resolution has to
be calculated from the pixel diagonal and not the pixel edge. This accounts for a
factor of

√
2.

Sampling resolution is chosen according to these factors. In practice, we employ a
simple heuristic to reduce the number of points: many points are sampled sufficiently
already by a single camera. This means that a triangulation of the sampling pattern
from this camera in a small neighborhood contains no edge which projects to more
than a pixel in any view. If a point recorded by one camera lies in a region which is
sampled better and sufficiently by another camera, we remove it. This typically reduces
the number of points by 40–60%, leading to a ratio of about 2–3 points projected to a
screen pixel.

5.2 Monte Carlo integration of radiance fields

The goal of the Monte Carlo integration step is to evaluate integral (1) to obtain the
weights cij of the reconstruction basis functions. The domain in s is a rectangle on the
sampling plane. The index cij corresponds to one point pj and one rectangle on the
sampling plane represented by a texel ti in the texture map for point pj .

We select a viewpoint s on this rectangle (according to bi(s), a Gaussian distribu-
tion), a random camera orientation θ in which the point is in the frustum, and shoot



an occlusion ray to test whether this point is visible in the selected camera (this cor-
responds to an evaluation of vj(s, θ)). If it is visible, we select a ray according to
qj(s, θ, x) (a Gaussian distribution centered over the pixel which the point projects to
in the selected camera) and add its contribution to ti. Rays are shot until the variance
of the integral falls below a user-selectable threshold.

5.3 Compression and Rendering

Points are rendered with z-buffered OpenGL hardware. For each point, the directional
appearance information is saved in a texture, parameterized by the sampling plane. The
texture coordinates of a point are calculated as the intersection of a viewing ray to the
point with the sampling plane. This can also be interpreted as the perspective projection
of the sampling point into a viewing frustum where the apex is defined by the viewpoint
and the borders of the projection plane by the four sides of the bounding rectangle on
the sampling plane.

Perspective projections can be expressed using the 4x4 homogeneous texture-matrix
provided by OpenGL. However, since switching textures for every point is costly, we
pack as many point textures into one bigger texture as the implementation allows. This
requires adding a fixed offset per point to the final texture coordinate, which, although
not available in standard OpenGL, can be done using the vertex program extension [5].

Interpolation between the texture samples (which corresponds to the basis function
Bi(s)) is done using bilinear filtering. A lower quality, but faster preview of the repre-
sentation can be rendered by using only one color per point and no texture. However,
directional information will be lost in this case.

To compress our representation, we calculate the variance of the color information
of a texture to identify points that only require one color for the whole view cell. Fur-
ther compression can be obtained by using hardware supported vector quantization [6],
which provides for a fixed compression ratio of 8:1. Note that this adapts to the scene
complexity: regions with low perceived geometric complexity will always be repre-
sented by simple colored points.

6 Results

We used an 800 MHz Pentium III with a GeForce II GTS graphics card for our tests.
The vertex program used to calculate texture coordinates is simulated in software. To
give an impression of the expected performance of a hardware implementation, we also
rendered simple textured points.

Three different test scenes are used to demonstrate the behavior of point-based im-
postors. Table 1 shows results for each scene, based on an output screen resolution of
640x480 pixels. It includes the number of points in the impostor, the approximate num-
ber of pixels covered by the impostor for a view in the center of the view cell (based
on the screen bounding box), and the resulting number of points per projected pixel.
The table also shows the time required for computing the impostor, and the memory
requirements. The last two rows represent average frame rates achieved for some posi-
tions within the view cell.

Generally, it can be observed that it takes about 75,000 points to cover a screen area
of about 300x100 pixels.

Although we are using an unoptimized ray tracer, preprocessing times are still rea-
sonable. For each point, an 8x2 texture map was found to sufficiently capture view-
dependent effects for the view cells considered (determining the size of the texture



Results scene1 scene2 scene3
#points 80,341 87,665 31,252
#points/screen pixel 2.35 2.42 2.8
approx. #screen pixels 34,000 36,000 11,000
Preproc. time (min) 22 41 31
Memory (MB) 1.6 1.75 0.6
Rendering performance SW (Hz) 36 32 98
Rendering performance HW (Hz) 60 54 160

Table 1. The table shows results from impostors of three scenes, calculated for a screen resolution
of 640x480 pixels. Hardware rendering is emulated by rendering simple textured points.

Fig. 5. The figure shows the impostor from scene 3 placed in the city. The view cell shown in the
dark rectangle is 63 meters wide and 120 meters long. The impostor shown in the light polygon
is about 700 meters long and placed 200 meters from the view cell.

map automatically would warrant further investigation). The memory requirements are
listed without applying the variance-based reduction of textures to single colors.

One of the strong points of our representation is high rendering quality in the pres-
ence of detailed geometry. Fig. 7 (see also appendix) shows the filtering of many thin
tree branches in front of a moving specular highlight. Fig. 6 (see also appendix) demon-
strates correct antialiasing even for extreme viewing angles on building fronts.

Fig. 8 (appendix, bottom) shows how a point-based impostor can be used to improve
the rendering quality of the far field in an urban scene which contains several polygons
per pixel. It should be noted that the improvement over geometry is even more notice-
able when moving the viewpoint. Furthermore, the impostor in Fig. 8 (bottom) replaces
a geometric model of about 95,000 vertices, but consists only of about 30,000 points.
This shows that the impostor not only improves the rendering quality of the far field,
but also reduces the rendering load on the graphics hardware. Fig. 5 shows the place-
ment of this impostor and its view cell in the city model and gives an impression of the
typical relative sizes of view cells and impostors.

In the current experimental system, view cells are formed from street segments,
and impostors placed at the ends of street segments, in a fashion similar to previous
impostor systems [8, 26]. Our test scene is 4 square kilometers large and consists of



2.1 million polygons. After the application of a conservative region-visibility algorithm
[27], we identified view cells with too many visible polygons [2]. A rough estimate
of the memory requirements using a brute force impostor placement strategy results in
about 165 MB used for 437 impostors. Note, however, that the development of good
impostor placement strategies is not straightforward and subject to ongoing research.
Our future work also aims at reducing memory requirements by sharing information
between neighboring view cells, and finding guarantees to ensure a minimum frame
rate.

7 Conclusions

We have introduced point-based impostors, a new high-quality image-based represen-
tation for real-time visualization.

The value of this representation lies in the separation between the geometric sam-
pling problem and the representation of appearance. Sampling is performed by combin-
ing layered depth images to obtain proper coverage of the image for the entire view cell.
Based on the mathematical analysis of point-based models, we compute the rendering
parameters using Monte Carlo integration, eliminating most of the aliasing artifacts.
Rendering information is compactly encoded and can be rendered on contemporary
hardware. Point-based impostors show great promise for all situations in which a geo-
metrically very complex model constitutes the far field, such as in urban walkthroughs
of detailed models. The rendering times indicate that this representation is applicable
to real-time visualization applications, where frame times above 60 Hz are required.

Acknowledgements

This research was supported by the EU Training and Mobility of Researchers network
(TMR FMRX-CT96-0036) “Platform for Animation and Virtual Reality” and by the
Austrian Science Fund (FWF) contract no. P13867-INF.

References
1. Daniel Aliaga, Jon Cohen, Andrew Wilson, Eric Baker, Hansong Zhang, Carl Erikson, Keny

Hoff, Tom Hudson, Wolfgang Stürzlinger, Rui Bastos, Mary Whitton, Fred Brooks, and
Dinesh Manoclia. MMR: An interactive massive model rendering system using geometric
and image-based acceleration. In 1999 Symposium on interactive 3D Graphics, pages 199–
206, 1999.

2. Daniel G. Aliaga and Anselmo Lastra. Automatic image placement to provide a guaranteed
frame rate. Computer Graphics, 33:307–316, 1999.

3. Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum. Plenoptic sampling.
In Siggrapph 2000, Computer Graphics Proceedings, pages 307–318, 2000.

4. Chun-Fa Chang, Gary Bishop, and Anselmo Lastra. LDI tree: A hierarchical representation
for image-based rendering. In Siggraph 1999, Computer Graphics Proceedings, pages 291–
298. ACM Siggraph, 1999.

5. NVIDIA Corporation. Nv vertex program extension specification, 2000. available at
http://www.nvidia.com/Marketing/Developer/DevRel.nsf/Pro-grammingResourcesFrame.

6. NVIDIA Corporation. Using texture compression in opengl, 2000. available at
http://www.nvidia.com/Marketing/Developer/DevRel.nsf/WhitepapersFrame.

7. Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Navigating static environments us-
ing image-space simplification and morphing. In 1997 Symposium on Interactive 3D Graph-
ics, pages 25–34, 1997. ISBN 0-89791-884-3.



8. Xavier Decoret, François Sillion, Gernot Schaufler, and Julie Dorsey. Multi-layered im-
postors for accelerated rendering. Computer Graphics Forum, 18(3):61–73, 1999. ISSN
1067-7055.

9. Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumi-
graph. In SIGGRAPH 96 Conference Proceedings, pages 43–54, 1996. held in New Orleans,
Louisiana, 04-09 August 1996.

10. J. P. Grossman and William J. Dally. Point sample rendering. In Rendering Techniques ’98,
pages 181–192, 1998.

11. Marc Levoy and Pat Hanrahan. Light field rendering. In SIGGRAPH 96 Conference Pro-
ceedings, pages 31–42, 1996. held in New Orleans, Louisiana, 04-09 August 1996.

12. Marc Levoy and Turner Whitted. The use of points as a display primitive. Technical Report
TR 85-022, University of Carolina at Chapel Hill, 1985.

13. Dani Lischinski and Ari Rappoport. Image-based rendering for non-diffuse synthetic scenes.
In Rendering Techniques ’98, pages 301–314, 1998.

14. P. Maciel and P. Shirley. Visual navigation of large environments using textured clusters.
SIGGRAPH Symposium on Interactive 3-D Graphics, pages 95–102, 1995.

15. William R. Mark, Leonard McMillan, and Gary Bishop. Post-rendering 3D warping. In
1997 Symposium on Interactive 3D Graphics, pages 7–16, 1997. ISBN 0-89791-884-3.

16. Nelson Max. Hierarchical rendering of trees from precomputed multi-layer Z-buffers. In
Eurographics Rendering Workshop 1996, pages 165–174, 1996. ISBN 3-211-82883-4.

17. Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering sys-
tem. In SIGGRAPH 95 Conference Proceedings, pages 39–46, 1995. held in Los Angeles,
California, 06-11 August 1995.

18. Alexandre Meyer and Fabrice Neyret. Interactive volumetric textures. In Rendering Tech-
niques ’98, pages 157–168, 1998.

19. Gavin Miller, Steven Rubin, and Dulce Ponceleon. Lazy decompression of surface light
fields for precomputed global illumination. In Rendering Techniques ’98, pages 281–292,
1998.

20. Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Surfels: Surface
elements as rendering primitives. In Siggraph 2000, Computer Graphics Proceedings, pages
335–342, 2000.

21. Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution point rendering system
for large meshes. In Siggraph 2000, Computer Graphics Proceedings, pages 343–352, 2000.

22. G. Schaufler and W. Stürzlinger. A three-dimensional image cache for virtual reality. In
Proceedings of EUROGRAPHICS’96, 1996.

23. Gernot Schaufler. Per-object image warping with layered impostors. In Rendering Tech-
niques ’98, pages 145–156, 1998.

24. Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and John Snyder. Hierarchi-
cal image caching for accelerated walkthroughs of complex environments. In SIGGRAPH 96
Conference Proceedings, pages 75–82, 1996. held in New Orleans, Louisiana, 04-09 August
1996.

25. Jonathan W. Shade, Steven J. Gortler, Li-wei He, and Richard Szeliski. Layered depth im-
ages. In SIGGRAPH 98 Conference Proceedings, pages 231–242, 1998. ISBN 0-89791-
999-8.

26. François Sillion, G. Drettakis, and B. Bodelet. Efficient impostor manipulationfor real-time
visualization of urban scenery. Computer Graphics Forum, 16(3):207–218, 1997. Proceed-
ings of Eurographics ’97. ISSN 1067-7055.

27. Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Visibility preprocessing with oc-
cluder fusion for urban walkthroughs. In Rendering Techniques 2000, pages 71–82, 2000.

28. Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H.
Salesin, and Werner Stuetzle. Surface light fields for 3D photography. In Siggraph 2000,
Computer Graphics Proceedings, pages 287–296, 2000.



Fig. 6. An impostor for a number of buildings. The inset shows the aliasing that would result if
geometry were used.

Fig. 7. Note the correct filtering of the trees against the building front and the specular highlight
in the windows for the impostor (top), and severe aliasing in the trees for geometry (bottom).



Fig. 8. Top: An impostor for a number of buildings (inset: geometry). Center: Filtering of trees
for impostor (top) against geometry (bottom). Bottom: Impostor for a city walkthrough. Note the
correct filtering of the impostor (top) compared to geometry (bottom).


