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Abstract. Level of detail generation is important for
managing geometric complexity of three-dimensional
objects and virtual worlds. However, most algorithms that
compute levels of detail do not deal with the special
requirements of input data in VRML format. We report an
algorithm called LODESTAR, based on octree quantization
that robustly computes simplifications for objects in
VRML.
Keywords: VRML, polygonal object simplification, levels
of detail, octree quantization

1. INTRODUCTION AND MOTIVATION

Levels of detail (LODs) are approximations of an object
with fewer geometric primitives, that are selected at run
time to sustain interactive frame rates [1]. Reducing
geometric complexity of geometric models is particularly
important for VRML worlds for at least two good reasons:
• While 3-D rendering systems are notoriously too slow,

this is particularly painful for low cost devices such as
personal computers that are most frequently used for
VRML applications.

• A single level of detail for a given object can be
considered a form of lossy compression. Effectively,
the size of the original model is reduced at the expense
of quality, allowing for fast transmission and more
effective distributed applications.

Many algorithms have been published on how to simplify
geometric models, but they generally place assumptions on
the data that hamper their application to VRML files.
Many applications that create geometry can now export
models in VRML format, and some of them support level
of detail control. However, since VRML is most often used

with Internet-based applications, in practice one is often
confronted with the problem that the application that
generated the model is no more available. Information on
the internal structure of the model is lost, and so the task
of generating levels of detail for input data that comes in
VRML format is all but trivial. This situation is often
deteriorated by export filters or translators that produce
non-standard VRML files or introduce degeneracies (for
example, non-planar or otherwise distorted polygons are
commonly found).

2. RELATED WORK

The term „geometric primitive“ in the context of
interactive rendering usually means polygons or triangles,
but other geometric entities can be used as well (e.g., a
bounding box of an object can suffice as a “cheap” coarse
LOD). However, the algorithms that have been reported on
only deal with polygonal objects. For a survey, see [5].

2.1 Surface algorithms

The methods that produce the highest quality work on the
surface of polygonal objects, e.g. [9, 11, 2]. For the
moment let us assume that we are only dealing with
triangles. With information on which triangles are
neighbors, local operations can be applied to remove
triangles and fill the holes created by that process. Such
algorithms can take into account local curvature and can
generate simplifications with guaranteed error bounds.
However, they are constrained to objects with well-
connected surfaces. Unfortunately, this constraint is often
not fulfilled by CAD models. Many of these algorithms are
also constrained to preserve the genus of the object, and
can therefore not simplify the objects beyond a model-
dependent level.

2.2 Clustering algorithms

Real-world applications almost always involve ill-behaved
data, and for very large scenes and slow connections, it
should be possible to produce very coarse approximations
as well as moderately coarse ones. More apt to this task are



LOD generation methods that ignore the topology of
objects and force a reduction of the data set. The key idea
here is to cluster multiple vertices of the polygonal object
that are close in object space into one, and remove all
triangles that degenerate or collapse in the process. The
problem here is that exact control over local detail is not
so easily possible, but such an algorithm can robustly deal
with any type of input data, and produce arbitrarily high
compression. Vertex clustering can either be done with a
simple uniform quantization [6] or a binary tree [7].

3. OCTREE QUANTIZATION FOR LODS

We have investigated a level of detail generation algorithm
called LODESTAR. It uses octree quantization [3] for vertex
clustering. Octree quantization is superior in quality to
uniform quantization and in speed to binary trees. The
three-dimensional spatial structure represented by an
octree allows simple clustering operations on three-
dimensional samples in linear time. The method works
well for colors (the three dimensions being the R, G, and B
component), and has been adapted for (x, y, z) vertex
coordinate tuples in this work. In the following, we outline
the quantization method. We start by explaining how to
create the octree data structure, and proceed with details
on how to identify clusters, and how to select the
representative for each identified cluster. Finally, we
describe how to obtain the simplified model from the
original model using the octree as an auxiliary
datastructure.

3.1 Building the octree

Octree quantization was originally developed to select the
entries for a color lookup table that optimally represent a
given image. Instead of color pixels, we enter the vertices
of the model into an octree. Intermediate nodes of the
octree represent subdivisions of the object space along the
x, y, and z direction. The goal is to place exactly one
vertex in each subvolume. The octree is successively
refined by further subdivision of  leaf nodes when entering
new vertices until this criterion is satisfied. Theoretically,
this can generate arbitrarily deep octrees, but in practice a
certain octree depth is never exceeded as the input data
comes in finite precision floating point numbers.

When entering a new vertex, the octree is recursively
traversed by comparing the coordinates of the new vertex
against the coordinates stored in the octree node, and
traversing the link to the appropriate child node until a
leaf or a nil pointer is encountered. Three cases must be
distinguished:

Case 1: The selected link is a nil pointer, so the
corresponding subvolume is empty, and we can simply

create a new leaf node and store the vertex in that node
(Figure 1).

Figure 1: Inserting a vertex into an empty subvolume

Case 2: The link points to a leaf node, and the new vertex
is equal to the vertex stored in the leaf: No new node is
created, but the vertex counter of the existing node is
simply incremented. Note that this automatically sorts out
doublets in the vertices, which are a major defect of many
VRML models found today, because only one copy of each
vertex is finally output (Figure 2).

Figure 2: Inserting an already existing vertex

Case 3: The link points to a leaf node, but the new vertex
is not equal to the vertex stored in the leaf: The leaf vertex
and the new vertex fall into the same subvolume, so the
octree must be subdivided in that location. A new
intermediate node is created, and the old leaf node and a
new node containing the new vertex are inserted as
children of the new intermediate node (Figure 3).

Figure 3: Inserting a vertex into an occupied subvolume



3.2 Vertex clustering

The number of vertices is reduced by combining multiple
close vertices into one cluster. For such a cluster, a
representative is chosen from the set of vertices
represented by that cluster. This has the advantage that no
new vertex must be synthesized, and the original set of
vertices can be kept unchanged.

Vertex clustering is done by replacing leaf nodes that
share an intermediate node as common parent with that
parent, setting the vertex count of the parent to the sum of
the vertex counts of its children. In selecting the cluster,
the following criteria are relevant:
• From all clusters, select the one whose nodes have the

largest depth within the octree, for they represent
vertices that lie closest together.

• If there is more than one such cluster, additional
criteria can be used for the selection according to the
user’s preferences: Selecting the cluster that represents
the fewest vertices will keep the error sum small.
Selecting the cluster that represents the most vertices
will tend to generate coarser representations of finely
tessellated areas with fewer vertices, but preserve small
distinctive features instead. Experiments show that this
latter strategy usually produces better results.

3.3 Selecting the cluster representative

The remaining problem is which strategy to use to select
the representative vertex from the vertices in the cluster.
To do so, we use three different heuristics with user
defined weight. Let the involved triangles be those
triangles that have at least one vertex in the cluster.

Error area is an attempt to measure the change in the
extent of the object’s surface: If a cluster of vertices is
replaced by a representative, the areas of most involved
triangles change.

Figure 4: Different choices of the representative influence
the area of the resulting triangle mesh

The error area is defined as the difference in the summed
area of the involved polygons before and after the
clustering. The vertex that produces the smallest error area
is chosen.

Error volume is an attempt to measure the object’s
change in volume: For every involved triangle, we
construct the tetrahedron from the three original vertices
and the potential representative. The volume of such a
tetrahedron is zero if one of the vertices is elected the
representative. The summed volume of all such
tetrahedrons is taken as the error volume, and the vertex
with the smallest error volume is elected. One
disadvantage of this approach is that all volumes are zero
if the vertices lie in a plane, so it is only useful in
combination with another heuristic.

Figure 5: The error volume is computed from the
tetrahedron with the original triangle ABC as a base and
the chosen representative R as the top

Weighted mean is an attempt to find the vertex that
“best” represents the other vertices: An average vertex is
synthesized from the cluster as a weighted mean, where
the weights are the vertex counts of the nodes in the
cluster (remember that leaf nodes represent a single vertex,
intermediate nodes represent all leaves in their subtree).
The vertex that is closest to the mean is chosen.
Unfortunately, this does not take into account any surface
properties, and our experiments show that results using
this heuristic are visually not as appealing as the other two
heuristics. Weighted mean was kept for the sole purpose of
handling indexed line sets (see below).

3.4 Computing the reduced triangle set

After the number of vertices has been reduced by the
desired amount, the set of triangles associated with the
reduced vertex set must be reconstructed. For every
triangle, its vertices are replaced by the representative
chosen for that vertex. This process may produce doublets
(triangles with identical vertices) for which only one
instance is kept. Triangles may also collapse into lines,
most of which are identical to the edge of another triangle
and can be discarded. The remaining lines are usually



important for the appearance of the model and are thus
saved. Sometimes triangles collapse into points, which are
removed from the model.

4. DEALING WITH VRML SPECIFICS

Up to now we have silently assumed that the geometric
model consists of an unstructured set of triangles, and we
have neglected in the discussion a variety of properties
specific to VRML models.

4.1 Non-polygonal nodes

VRML models do not only consist of triangles or
polygons, but also of other primitives like spheres or text,
and of context-defining nodes such as transformations.
However, the essential structure of VRML scenes is the
IndexedFaceSet and its helper nodes Coordinate3, Normal,
TextureCoordinate2, and Material. Large amounts of
geometric primitives are almost exclusively specified using
IndexedFaceSets, and therefore it is reasonable to
concentrate on this node for level of detail generation.
Level of detail generation dealing with VRML geometry
other than IndexedFaceSets may become an interesting
area for future research, but this is beyond the scope of this
paper.

4.2 Scene graph structure and output
format

VRML models and scenes are not “flat”, but are rather
arranged in a hierarchical scene graph, so an algorithm
dealing with a single set of polygons is not sufficient. The
simple yet effective solution that was used in LODESTAR is
to traverse the VRML model and apply the LOD
generation to every IndexedFaceSet individually,
producing for each a new LOD node (details on how to
deal with multiple IndexedFaceSets are given in section
5).

Figure 6: A single indexed face set is converted into a
subtree with a single LOD node

LODESTAR replaces every IndexedFaceSet in the original
file with a subtree containing the computed LODs. This
subtree contains a single LOD node. If the structure of the
file requires that additional nodes (such as bindings) are
output, the whole structure is wrapped in an additional
Separator. The children of the LOD node are the
IndexedFaceSets containing the computed levels of detail.

If any triangles collapsed to lines are produced as a result
of the clustering process, an additional IndexedLineSet is
generated to complement the IndexedFaceSet, and the
resulting structure is wrapped in a Separator.

4.3 Triangulation

As already mentioned, most level of detail algorithms
including LODESTAR can only deal with triangles as an
input. The triangulation is necessary because after a vertex
clustering operation, any n-sided triangle (with n>3)
almost certainly becomes non-planar. Therefore all n-sided
polygons are triangulated first by using the algorithm from
[4]. As a side effect, all concave polygons are removed
from the model, which allows the use of algorithms that
are simpler, more robust and faster.

The exception are quadrilaterals, for which the error is
often small and hence tolerable (i.e. non-visible). It is
necessary, though, to check any quadrilaterals for validity
after a modification of its vertices. Concave quadrilaterals
or quadrilaterals which are distorted in space more than a
user-specified threshold (measured as the maximum angle
between the normals at the vertices) are split into two
triangles (Figure 7).

Figure 7: Degenerated quadrilaterals must be split

Triangulation increases the number of polygons and can
involve a performance penalty. However, most 3-D
rendering engines triangulate all geometry internally [10],
so with the use of triangle strips, a performance penalty
can be avoided. This consideration of course assumes that
the renderer detects and uses triangle strips, which
unfortunately cannot be influenced from within a VRML
file.



4.4 Lines

IndexedLineSets can be treated almost like
IndexedFaceSets: Vertices are clustered with octree
quantization, and a new IndexedLineSet is constructed
from the reduced vertex set for every level of detail. The
output is equivalent to the structure depicted in Figure 6,
except that IndexedFaceSets are replaced by
IndexedLineSets. However, for IndexedLineSets the only
applicable heuristic for representative selection is weighted
mean.

4.5 Bindings

Non-indexed bindings impose a one-to-one relationship
between entries in the IndexedFaceSet fields and the
corresponding helper nodes. They cannot be maintained if
multiple levels of detail are to share the same materials,
normals etc. Therefore non-indexed bindings are
transformed into the corresponding indexed bindings, and
an index will be synthesized. In this case, an additional
MaterialBinding or NormalBinding is generated.

4.6 Range values

The selection of a LOD in VRML is performed by
comparing ranges. A viewer switches to the next LOD if
the distance of the object to the viewpoint is greater than
or equal to a specified value. For satisfactory performance,
the LOD generator has to compute reasonable range
values.

Figure 8: A heuristic is used to compute the range values
required for the LOD node

The next level of detail is computed by moving vertices
from a cluster to a selected representative. The maximum
visible error introduced by this operation is equal to the
maximum distance a vertex can move in screen space due
to a clustering operation (deviation). The goal is to
compute LOD switching ranges in such a way that this
maximum visible error does not exceed a user defined
threshold, that is specified as a percentage of the screen
height.

The viewer must switch LODs if the maximum deviation
s projected onto the screen is greater than error range
specified as a fraction of the height of the screen. Let
rootsize be the extent of the cube associated with the octree
root (note that the actual size is computed from the local
coordinates in the octree modified by the current scale
factor from preceding Scale or Transform nodes!) and
depth be the level of the octree corresponding to level of
detail being computed:

s = rootsize ⋅ √3 / 2depth-1

The height of the screen h is computed from the camera
height angle alpha and the focal length f:

h = 2 ⋅ tan(α/2) ⋅ f
Given the desired errorrange (in percent), we can compute
the maximum projected deferral ps as:

ps = errorrange/100 ⋅ h
Finally, from the relation d/s = 1/ps, we can compute the
range d as

d = s / (errorrange/100 ⋅ 2 ⋅ tan(α/2))

To take into account the extent of the cluster, for the actual
range one has to add the radius of the bounding sphere of
the cluster to d.

5. JOINING NODES

Often VRML files are produced with primitive converters
that generate many IndexedFaceSets in sequence, each
containing very few polygons.

Computing levels of details for every IndexedFaceSet of
such a model has a tendency of ripping apart the model
and produces useless LODs (see Figure 9), a problem also
reported by [5].

Fortunately, most of these degeneracies can be cured with
a very simple algorithm that joins sequential
IndexedFaceSets into one if possible. This algorithm does
not even require knowledge of the involved geometry but
can operate in purely syntactical way on the VRML file. It
does not work in every case (this would require a deep
analysis of both model structure and geometry), but it
cures most of the degeneracies that we have encountered
so far, and even more importantly, it works very fast.

5.1 Basic joining algorithm

For the components of a boundary representation
(IndexedFaceSet, IndexedLineSet Material, Normal,
TextureCoordinate2, Coordinate3) and Separators, Groups
and Bindings, subsequent nodes of the same type are
joined unless the second is tagged with DEF.



In case of multiple Separator or Group nodes, the sub-
groups can be joined. In this process, the components of a
boundary representation that span multiple sub-groups are
joined into one node of that type, so a single
IndexedFaceSet can be synthesized.

Figure 9: The hull of the ship model was represented by
many small IndexedFaceSets (one shown in upper image).
Holes can be suppressed by joining nodes.

Example 1

Separator {
  Material { diffuse 0.5 0.6 0.4 }
  IndexedFaceSet { coordIndex
                   [1,2,3,-1] }
}
Separator {
  Material { diffuse 0.3 0.3 0.3 }
  IndexedFaceSet { coordIndex
                   [4,5,6,-1] }
}

becomes

Separator {
  Material {
    diffuseColor [0.5 0.6 0.4,
                  0.3 0.3 0.3]
  }
  MaterialBinding { value
                  PER_FACE_INDEXED }
  IndexedFaceSet {
      coordIndex [1,2,3,-1,4,5,6,-1]
      materialIndex [0,1]
  }
}

Joining two Separator nodes with different Material sub
nodes and possibly different IndexedFaceSet sub nodes.
Note that it is necessary to insert a new MaterialBinding
so that the synthesized Material node is put in correct
relation to the synthesized IndexedFaceSet.

Example 2

Separator {
  Coordinate3 { point
   [ 10 11 12, 13 14 15, 16 17 18] }
  IndexedFaceSet { coordIndex
                   [0,1,2,-1] }
}
Separator {
Coordinate3 { point [ 20 21 22,
             23 24 25, 26 27 28] }
IndexedFaceSet { coordIndex
                 [0,1,2,-1]}
}

becomes

Separator {
  Coordinate3 { point
    [10 11 12, 13 14 15, 16 17 18,
    20 21 22, 23 24 25, 26 27 28] }
  IndexedFaceSet { coordIndex
              [ 0,1,2,-1,3,4,5,-1] }
}

Joining two Separator nodes with possibly different
Coordinate3 sub nodes and possibly different
IndexedFaceSet sub nodes: The algorithm also works with
Coordinate3, Normal and TextureCoordinate2 nodes:

5.2 Trailing Separators

The joining algorithms works by traversing the scene
graph bottom-up from the leaves, so that joinability can be
propagated upwards. To improve chances of joinability,
trailing Separators are removed (a Separator node on the
end of a list is not necessary).

Separator {
  Separator { IndexedFaceSet {
             coordIndex [0,1,2,-1] }
  }
}

becomes

Separator {
  IndexedFaceSet { coordIndex
                   [0,1,2,-1] }
}



Limitations. The joining algorithm is a heuristic that was
developed after studying the kind of degeneracies that are
commonly found. It only works for relatively simple cases
involving direct relations between the components of an
IndexedFaceSet. Care must be taken that no other node
such as a Transform is present that forbids the joining.

6. IMPLEMENTATION

The algorithm described in this paper has been
implemented under C++ and ported to a variety of
platforms, including multiple flavors of Unix, OS/2, and
DOS. Because of the design decisions outlined earlier, it
runs very fast. It works reasonably robust on input files
that do not exactly comply to the VRML specification
(such as some Inventor files). Furthermore, the software
can be used as a „cleanup“ filter for VRML files: As
explained in section 3.1, the process removed doublets in
the vertices, colors etc., so invoking the program with the
„no levels of detail“ option cleans up redundant models.
See the appendix for some sample results.

7. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm that produces levels of
detail for polygonal objects. This algorithms reads and
writes VRML files and takes care of the particular needs of
the hierarchical structure and other advanced features of
this format.

Our current implementation was designed to work with
the VRML 1.0 specification. Naturally, we intend to
modify the implementation to  to work with VRML 2.0
files, which will mainly involve adapting the parser.

The LODESTAR software is a partial result of a larger
research project aimed at developing better methods to
control the bandwidth requirements of large distributed
virtual environments. It is used to create the levels of
detail required by the demand-driven geometry
transmission protocol [8] for client-server based virtual
environments. To further increase network performance
and avoid waste of bandwidth, we have also developed a
custom compression method for VRML.

Acknowledgments. Many thanks to Reinhard Sainitzer
and Herbert Buchegger who worked on the
implementation of this algorithm.

Resources. More detailed results of LODESTAR and
binaries for most popular platforms can be obtained free of
charge for non-profit use at

http://www.cg.tuwien.ac.at/research/vr/lodestar/
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Appendix: Results

The LODESTAR code was tested with a large number of
models downloaded via the Internet. Here we present a few
quantitative results and images to give an impression of
the performance of the implementation. The „Enterprise“
model (10 LODs) was computed in 5.4 seconds and the
„Galleon“ model (8 LODs) was computed in 7.8 seconds
on an SGI Indy R4400/150 workstation.



Table 1: „Enterprise“ model statistics
LOD Tri’s Range LOD Tri’s Range

0 6343 36 5 1083 193
1 5020 42 6 553 355
2 3999 52 7 167 679
3 3182 72 8 51 1325
4 1960 112 9 16 2615

Figure 10: Three LODs of the enterprise mode (LOD # 0,
4, 8). If displayed in a size corresponding to the computed
ranges, the quality degradation is no longer visible

Table 2: „Galleon“ model statistics

LOD Tri’s Line Range LOD Tri’s Line Range
0 4698 0 1962 4 1478 8 12505
1 4142 0 2664 5 1478 8 12505
2 3686 0 4070 6 108 4 46122
3 2981 9 6882 7 24 0 90932

Figure 11: Three LODs from the galleon model (LOD # 0,
4, 5)


