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Abstract

We present a novel approach to shape-based inter-
polation of gray-level volume data. In contrast to
the segmentation-based techniques our method di-
rectly processes the scalar volume requiring no user
interaction. The key idea is to perform the inter-
polation in the directions given by analysis of the
eigensystem of the structure tensor. Our method
processes a 256 � 256 slice within a couple of sec-
onds yielding satisfactory results. We give a quan-
titative and a visual comparison to the linear inter-
slice interpolation. Analysis of the results lead us
to the conclusion that our technique has a strong
potential to compete with well-established shape-
based interpolation algorithms.

1 Introduction

Interpolation is required in imaging, in general,
whenever the acquired image data are not at the
same level of discretization as the level that is de-
sired [1]. In volume visualization by ray casting,
for instance, it is necessary to acquire samples in
regular distances on a ray. The interpolation mech-
anism has to provide the ray caster with values at
any position between grid points. Algorithms for
volume analysis are often based on filtering tech-
niques which presume isotropy. The input data has
to be resampled in most cases to an isotropic dis-
cretization. Medical imaging systems usually ac-
quire the data in slice-by-slice order resulting to dif-
ferent sampling ratios in � , � , and � directions. For
an appropriate medical treatment it is necessary that
the data at requested locations are reconstructed as
precisely as possible taking into account not only
the characteristics of a 3D signal conveying the data
but also the topological properties of the explored
structures.

2 Related work

Interpolation algorithms can broadly be divided into
two categories – scene-based (image-based) and
object-based (shape-based). Although scene-based
filters received a lot of attention in the visualization
community in recent years [9, 7, 15, 14], there is
repeated evidence in the literature of the superior
performance of object-based over scene-based in-
terpolation techniques [2].

From the beginning shape-based algorithms re-
quired a segmented volume, i.e., a description of
objects to be interpolated. The first approaches are
based on contour interpolation.

Raya and Udupa [12] proposed an interpolation
of distance fields computed from binary slices. Hig-
gins et al. [5] also focus on the problem of inter-
polating binary objects rather then high-resolution
gray-scale images. The presented method extends
the approach of Raya and Udupa [12] employing
the original density information to avoid inconsis-
tencies in transition of objects’ cross sections and
their centroids. Turk and O’Brien [16] benefit from
both the contour description and distance fields en-
coded as implicit functions providing a powerful
framework for interpolation of analytically given
objects.

Moshfegi [10] proposes a technique aiming for
removing staircase effects in a manner that is con-
sistent with MIP. The direction of interpolation is
aligned adaptively with the axes of the vessels. The
template matching proposed here considers a pair
of scan-lines iteratively looking for the best match
in reference windows due to mean square error and
a correlation coefficient. The interpolation method
is, however, applied after the projection providing
thus a solution only for 2D scenes.

The first purely gray-level-based approach yield-
ing reasonable results seems to be the three-pass
algorithm proposed by Grevera and Udupa [1].
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In order to adopt the previously introduced tech-
nique [12], the � -dimensional grey scene is lifted
to a � � 	 �  -dimensional binary scene in the first
step. Then binary shape-based interpolation [12] is
applied. Finally, the newly interpolated � � 	 �  -
binary scene is collapsed back to � dimensions. A
drawback of this method is a high time and space
complexity. Two years later this method and two
variants thereof are compared [2] to the five most
referred-to interpolation techniques. The paper em-
phasizes the superior performance of object-based
over scene-based interpolation techniques, too. To
see how far this is evident in a specific applica-
tion, i.e., detection of brain lesions, Grevera and
Udupa [3] statistically compare 100 data sets re-
sulting from 10 patients, 2 modalities and 5 inter-
polation methods.

In contrast to the frequently used techniques we
propose a direction-driven interpolation. The in-
terpolation is conducted by the eigenvectors of the
structure tensor. Structure tensors carry informa-
tion on the density distribution in simple neighbor-
hoods. As they are computed directly from scalar
data our method does not require any segmentation
or user interaction. This makes a reasonable dif-
ference between our method and most shape-based
interpolation techniques.

An introduction to simple neighborhoods and the
related tensor analysis as well as the concept of
our method are presented in section 3. Section 4
discusses implementation issues. To see the per-
formance, qualitative and quantitative evaluation of
our method is given in section 5.

3 Pattern-Driven interpolation

Usual strategies to study local neighborhoods are
based on analyzing discontinuities in the intensity
[8].

The human visual system, however, can easily
recognize objects that do not differ from a back-
ground by their mean gray value but only by the ori-
entation or scale of pattern. To perform this recog-
nition task with a digital image processing system,
operators which determine the orientation of pat-
terns are needed [6].

3.1 Simple Neighborhoods and Structure
Tensor

For an appropriate representation of the emplace-
ment of an object or a texture it is necessary to dis-
tinguish between direction given by an angle from
the interval � � � � � � � � � and orientation � � � � � � � � � .
As we are locally not able to distinguish between
patterns that are rotated by 180 degrees, the opera-
tors are also required to make no distinction.

A representation of the orientation by one scalar
value representing the angle turns out to be not ap-
propriate, because a measure for certainty which
describes the neighborhood independently from the
absolute density is not involved. This leads to a at
least two-component vectorial description.

The attempt to describe a neighborhood by the
gradient vector fails because it does not allow to dis-
tinguish between neighborhoods with constant val-
ues and isotropic orientation distribution where gra-
dients cancel each other as they are integrated over
the neighborhood. This is due to the opposite signs
of gradients at increasing and decreasing edges.

The following optimization method has been pro-
posed [6] to find an operator which encodes the an-
gle of orientation, provides a certainty measure and
distinguishes between constant and isotropic distri-
butions.

The neighborhood ! of the point of interest � "
will be described by a unit vector $� which ex-
hibits the least deviation from the orientations of
all gradients from ! . As the squared scalar prod-
uct % & ( * $� � . between the gradient vector & ( and$� meets criteria for measuring this deviation the fol-
lowing integral will be maximized:/ 0 2 % � " 6 � � % & ( % � � * $� � . 9 � (1)

where

2
determines a weighting function defined on! . The optimization problem given by equation (1)

can be rewritten as $� * ; $� = maximum, where

; ? / AC A 2 % � " 6 � � % & ( % � � & ( % � � * � 9 � (2)

is a symmetric � � � matrix consisting of the fol-
lowing elements:

; G H ? / AC A 2 % � " 6 � � M N ( % � �N � G N ( % � �N � H P 9 � (3)
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The matrix ; is referred to as the structure tensor
and its construction is in more details explained,
e.g., in [4, 6]. The solution to $� is the principal
eigenvector of ; .

In this work we will refer to the eigensystem of; as
� R S � $T S � US V X

and assume the following ordering
of the eigenvalues

R X Y R . Y R U and correspond-
ing arrangement of the eigenvectors $Z X � $Z . � $Z U . We
will assume, w/o l.o.g, that eigenvectors are of unit
length, i.e., � $Z S � ? � .

3.2 Eigenvectors-Aligned Kernel

The aim of our approach to interpolation is to pre-
serve to the most possible extent the boundaries
of objects, as well as the lines, the edges, and the
ridges. To achieve this we propose to conduct the
interpolation in the directions given by these struc-
tures. The presumption here is that the change of
the density values in these directions reaches the
minimum.

Although the structure tensor has originally been
proposed to describe the orientation of a neighbor-
hood by its principal eigenvector $Z X

, there is more
useful information from its analysis. For a fixed
vector $] , the term $] * ; $] gives the square of the den-
sity change in its direction. Under the assumption
that ; is represented by a regular matrix it follows
immediately that the minimum of the squared den-
sity change and therefore also the minimum of the
density change are reached in the direction of the
eigenvector $Z U .

According to the ^ _ � a of tensor ; the following
four cases can be distinguished in a 3D image (refer
also to Table 1):^ _ � a % ; � ? � : The scalar values do not change

in any direction. The represented neighbor-
hood features constant gray values. Interpo-
lation can simply be done with the nearest-
neighborhood interpolation method.^ _ � a % ; � ? � : The scalar values significantly
change in the direction of the principal
eigenvector $Z X

, while in the remaining perpen-
dicular directions, $Z . and $Z U , remain (nearly)
constant. The corresponding neighborhood
contains either a layered texture or a boundary
between two objects. The interpolation
will be conducted by a disc spanned by the
eigenvectors $Z . and $Z U .^ _ � a % ; � ? f : The scalar values significantly
change in the directions $Z X

and $Z . while

remain (nearly) constant in $Z U . The corre-
sponding neighborhood features either an
edge of an object or an extruded texture.
The interpolation will be driven by a stick
determined by the eigenvector $Z U .^ _ � a % ; � ? � : The scalar values change in all di-
rections. There is either a corner of an object
or a distributed 3D texture in the neighbor-
hood. The interpolation therefore shall con-
sider all of the eigenvectors.

The second row of Figure 2 gives examples of color
coding of the rank of the structure tensor. The areas
with ^ _ � a % ; � ? 1, 2, and 3 are encoded by green,
red, and blue color, respectively. Homogeneous ar-
eas are excluded from the rendering.

To perform a directional interpolation at a point� " we will weight the density contributions ( % � � of
voxels � from its neighborhood according to their
relative position to an ellipsoid j % � " � . The main
axes of the ellipsoid will be given by scaled eigen-
vectors $_ S

as follows:^ _ � a ; $_ X $_ . $_ U
1 m $Z X o $Z . o $Z U
2 m $Z X m $Z . o $Z U
3

o $Z X o $Z . o $Z U
(4)

where
o q � s m q � . The purpose of scaling

(4) is to suppress the directions of a large density
change and to emphasize the directions of the small
density change.

We define the weight of a point � from the inte-
rior of ellipsoid j % � " � as:

u % � � ? � 6 Uv S V X x � � 6 � " � $_ S y� $_ S � $_ S y z .
(5)

and set it to zero for the exterior points and the
boundary of j % � " � . This sets a smooth fade-of of
weights from the center of the ellipsoid to its bor-
ders. Fig. 1 demonstrates how the situation may
look like in a plane given by the eigenvectors $Z .
and $Z U . The gray-level coding of the contributing
grid points corresponds to their weights.

Finally, we define the interpolated density value
as a weighted average:

( % � " � ? | ~ �
0 � � � � u % � � ( % � �

| ~ �
0 � � � � u % � � (6)
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Figure 1: The ellipsoid given by the scaled eigen-
vectors and the weighting of the contributing grid
points. The similarity in weighting of the three
light-gray points is due to equation (5).

3.3 Tensor Propagation

The computation of the structure tensor due to equa-
tion (3) applies only to grid points. To calculate
the directional information also at off-grid points a
mechanism to compute the structure tensor there is
needed.

A straightforward solution would be to general-
ize equation (3) involving derivative filters for com-
puting the partial derivatives between grid points [9,
14].

An indirect approach can benefit from the al-
ready computed information at the surrounding grid
points employing an interpolation of the corre-
sponding eigensystems. Using quaternions for this
task is the first choice for a high quality interpo-
lation. On the other hand, since there is a strong
coherence both in orientation and the magnitude of
the structure tensor, it is not necessary to sample the
tensor field densely [6]. Therefore nearest-neighbor
interpolation provides a stable and a much simpler
solution.

4 Implementation

As the interpolation usually is to be performed for a
larger amount of voxels the implementation can be
divided into two steps. In preprocessing, the eigen-
value analysis of the structure tensor is performed
for a set of voxels which surround the positions to
be interpolated.
P1. computation of the structure tensor J:

Identifying the convolution in equation (3)
with a smoothing of the product of partial

derivatives, the elements ; G H of the struc-
ture tensor ; can be computed in terms of
two-pass convolution and a scalar product.
In the first step the differential operators

N � N � S
are applied resulting to the partial

derivatives N ( � N � S
. Then the scalar products� N ( � N � G � N ( � N � H y
are computed. In the final

step the scalar products are smoothed with a
filter corresponding to a weighting function2

. We have used an optimized 3x3x3 Sobel
filter [6] for the differentiation step and the
Gauss filter defined on a 7x7x7 neighborhood
for the averaging step. To reduce the computa-
tional overhead we exploited the separability
of both filters.

P2. eigenvalue analysis of J: Since the structure
tensor ; is represented by a symmetric,
real-valued matrix, the fast-converging Jacobi
method can be used for eigen-analysis, as rec-
ommended by Press et al. [11]. The tuples
of eigenvalues and eigenvectors are then rear-
ranged to satisfy

R X Y R . Y R U .

After the preprocessing step for each requested
position � " the interpolation involves the following
steps.

I1. inheriting the tensor information: In accor-
dance to section 3.3 we have used the nearest
neighbor interpolation for the tensor transfer.

I2. interpolation: For all voxels � S
from the neigh-

borhood of � " determined by the scaling fac-
tor

o
weights u % � S � are computed according

to the equation (4) and (5) and the weighted
average (6) is assigned to the result of inter-
polation. The values of

o
and m have been set

empirically after an error analysis of several
experiments to m ? � � � and

o ? � � f
5 Evaluation

The purpose of this section is to provide a three-
fold analysis of the performance of the proposed
method. Firstly, in section 5.1 we give a quantitative
error analysis and a comparison to the linear filter-
ing in � direction. Secondly, a visual evaluation of
error volumes is presented in section 5.2. Thirdly,
the time and space complexity of our method is dis-
cussed in section 5.3.

For the following analysis and comparison we
have used 11 data sets covering a broad spectrum
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in terms of modality, resolution, noise characteris-
tics and object detail. The first group consists of the
small-resolution, noise-free artificial data sets gen-
erated by the vxt library [13]. The second group
comprises the data acquired from CT and MRI
scanners. All data set were quantized to 256 levels.

5.1 Quantitative Evaluation

The approach to the comparison is to pretend there
is a slice missing in the volume, to estimate this
slice and compare it to the original. For the com-
parison, we reuse the framework for error analy-
sis by Grevera and Udupa [2]. The authors intro-
duced three figures-of-merit (FOM). In the follow-
ing expression of FOMs, � denotes an interpolation
method (linear in � and directional), � is the data set
being interpolated, ( % T � represents the original den-
sity value in the voxel given by coordinates T , and( � % T � represents the density estimation due to the
method � at the voxel given by coordinates T . In-
terpolation runs over all slices of � , where slice � �
is defined by its z-coordinate a .

1. Mean-squared difference:

FOM
X� % � � ? �� v

�
v

� � � � % ( % T � 6 ( � % T � � .
(7)

where
�

is the total number of voxels involved
in the comparison.

2. Number of sites of disagreement

FOM .� % � � ? v
�

v
� � � � � % � ( % T � 6 ( � % T � � �

(8)
where

�
% � � ? � � � if � q �� � otherwise

(9)

3. Largest difference

FOM U� % � � ? � � �  ¡ ¢ ��
� � ( % T � 6 ( � % T � � � (10)

The measurements due to the equations (7)–(10) for
the linear interpolation and the proposed directional
interpolation are summarized in Table 2.

We make the following three observations re-
garding the performance of our technique. 1. Our
technique yields in average better estimates of the
original density values than the linear interpolation.

This is especially remarkable for the vxt data. As
the Engine data set features many z-axis aligned ob-
jects the directional interpolation does not outper-
form the linear interpolation so dramatically. 2. An
exact reconstruction of the original density values
happens at more sites in the case of directional in-
terpolation. Again, it is more obvious in the case
of the vxt data and gets almost negligible for the
scanned data sets. In our opinion, however, these
measurements are of a lower importance than the
mean-squared error. 3. The maximal error is gener-
ally smaller in the case of directional interpolation.

5.2 Visual Evaluation

To evaluate the performance of both interpola-
tion methods visually, we create two error vol-
umes consisting of voxels with densities set to� ( � % T � 6 ( % T � � , where � denotes the interpola-
tion method. The error volumes are then displayed
with splatting. The 3rd and the 4th rows of Figure 2
bring examples on rendering of error introduced by
the linear and the directional interpolation, respec-
tively.

Since the directional interpolation yields very
small differences in the case of the vxt Facet Oc-
tahedron data set, almost every pixel gets rendered
to the background color in the corresponding im-
age. In case of the CT head with markers the im-
provement by our interpolation is mostly apparent
at the positions featuring objects, e.g, the wires in
the markers. As the error measurements for the En-
gine data set do not differ significantly a visual eval-
uation is almost impossible in this case.

5.3 Time and Space Complexity

Referring to the Table 3, the performance of our
method is clearly dominated by the smoothing step
(section 4, P1). The total timing therefore strongly
depends on the size of the support of the weighting
function

2
. Our implementation processes in av-

erage 11000 voxels per second on a 400 MHz Pen-
tium II. This correspond approximately to 6 seconds
for reconstruction of one 256 � 256 slice.

To store the eigenvectors of the structure ten-
sor, our implementation requires a space of £ % � � �
where � is the size of the data to be interpolated.
This can, however, be optimized to an on-the-fly
computation and caching of the structure tensors
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which gives the same space complexity as the one
of linear interpolation, i.e., £ % � � .

6 Concluding Remarks

We present a new method for interpolating the grey-
level volume data taking into account the topolog-
ical properties of the structures. Unlike the meth-
ods which are based on an a priori information
from segmentation, our method processes the den-
sity data directly requiring no user interaction.

In order to preserve the boundaries of objects,
lines, and the ridges to the most possible extent we
proposed to conduct the interpolation by the direc-
tions of these structures. The information on the di-
rection of interpolation is inherited from the textural
description of the objects by the structure tensors.

We compared the performance of our method to
the most used linear interpolation in the direction
of the � axis for 11 data sets concluding that our
method outperforms the linear interpolation in the
mean error, maximal error and in the number of
sites with exact reconstruction.

There are two main issues not addressed in this
work. Firstly, the size of the oriented filter is given
by two constants which have been set empirically
after many experiments. In our opinion this is not
appropriate if the method is required to perform ro-
bustly for all kind of data. Instead of using fixed
constants we think of using parameters which re-
flect the magnitude of the density change separately
in each neighborhood. A good choice for this pur-
pose seem to be the eigenvalues of the structure ten-
sor.

Secondly, we find it necessary to compare our
method to other techniques, especially to the state-
of-the-art in shape-based interpolation introduced
by Grevera and Udupa [1]. We would like to con-
clude with remarks on possible results of this com-
parison. Intuitively, our method requires far less
space and time than the interpolation in [1]. To
interpolate one slice of � voxels, the algorithm by
Grevera and Udupa requires space of £ % ¥ � � where

¥ denotes the quantization level and tens of min-
utes (as measured on a Sparc 2). In contrast, our
method interpolates one slice in a couple of seconds
requiring £ % � � � space. Finally, since we have used
the same error measurements and a statistical com-
parison to the same interpolation method as in [1]
we were able to indirectly compare the error perfor-

mance of both methods. Even though this prelimi-
nary comparison sounds promising for our method,
further work is required to be done. We are con-
vinced that such a comparison has to be done di-
rectly for the same data sets and address it to the
future work.
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^ _ � a % ; � conditions neighborhood description

0
R X ¦ R

.
¦ R

U
¦ � constant neighborhood

1
R X q R

.
¦ R

U
¦ � boundary or layered texture

2
R X ¦ R

.
q R

U
¦ � edge or extruded texture

3
R X ¦ R

.
¦ R

U
q � corner or isotropy

Table 1: The cases of density distribution in a 3D scene

FOM
X

FOM . FOM U
data set z-lin. dir. z-lin. dir. z-lin. dir.

vxt Wire Tetrahedron 13.1 4.5 1 380 1 156 30 16
vxt Wire Octahedron 41.0 0.1 9 672 1 428 24 3
vxt Wire Dodecahedron 14.3 1.8 1 300 963 37 17
vxt Facet Tetrahedron 14.9 4.7 7 877 6 846 24 23
vxt Facet Octahedron 77.7 0.1 22 895 5 644 35 5
vxt Facet Dodecahedron 35.9 2.5 19 612 17 891 31 16
Lobster 51.0 19.8 6 815 6 567 103 61
Engine Block 7.1 6.3 705 850 609 911 36 34
CT Head with Markers 105.3 25.1 133 312 131 901 124 114
MRI Head 84.7 41.3 570 784 556 033 116 90
Vertebra 7.0 4.8 189 584 114 351 32 26

Table 2: Error measurements due to the Equations (7)–(10) for the linear interpolation in z-direction and
the newly proposed directional interpolation.

Input Volume eigensystem of ; interpo- total
Data set Dimensions 3x3 Sobel 7x7 Gauss Jacobi lation

vxt Wire Tetrahedron 50 � 44 � 42 1.2 3.4 1.0 1.6 7.2
vxt Wire Octahedron 59 � 59 � 59 2.3 6.2 1.8 3.3 13.6
vxt Wire Dodecahedron 58 � 56 � 48 1.8 4.9 1.8 3.2 11.7
vxt Facet Tetrahedron 50 � 45 � 42 1.1 3.0 1.0 2.7 7.8
vxt Facet Octahedron 59 � 59 � 59 2.4 6.7 2.0 5.2 16.3
vxt Facet Dodecahedron 59 � 56 � 49 2.0 5.3 2.2 6.8 16.3
Lobster 120 � 120 � 34 5.7 15.6 6.2 5.8 33.3
Engine Block 256 � 256 � 110 88.8 383.2 94.8 140.0 706.8
CT Head with Markers 256 � 256 � 44 33.4 110.6 30.0 39.4 213.4
MRI Head 256 � 256 � 109 74.7 249.1 80.3 127.3 531.4
Vertebra 128 � 128 � 74 12.7 50.4 15.4 20.4 98.9

Table 3: Time in seconds for the directional interpolation as measured on a 400 MHz Pentium II.
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Figure 2: Volume rendering of the original data sets (1st row), color coding of the rank of the structure
tensor (2nd row), error volume of the linear interpolation (3rd row), and error volume of the directional
interpolation (4th row).


