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Figure 1: Outside view and virtual unfolding of a segment of a CT data set of a healthy colon with a resolution of 198x115x300.

Abstract

The majority of virtual endoscopy techniques tries to simulate a
real endoscopy. A real endoscopy does not always give the opti-
mal information due to the physical limitations it is subject to. In
this paper, we deal with the unfolding of the surface of the colon
as a possible visualization technique for diagnosis and polyp detec-
tion. A new two-step technique is presented which deals with the
problems of double appearance of polyps and nonuniform sampling
that other colon unfolding techniques suffer from. In the first step,
a distance map from a central path induces nonlinear rays for un-
ambiguous parameterization of the surface. The second step com-
pensates for locally varying distortions of the unfolded surface. A
technique similar to magnification fields in information visualiza-
tion is hereby applied. The technique produces a single view of a
complete virtually dissected colon.
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1 Introduction

The inspection of anatomical cavities using medical imaging (e.g.,
CT and MRI) and computer visualization techniques is called vir-
tual endoscopy. A real endoscopy is an invasive procedure which
involves a certain degree of risk for the patient. In some diagnostic
procedures, virtual endoscopy has the potential to be used in clini-
cal routine to avoid the inconvenience of a real endoscopy.

Most of the developed techniques concentrate on simulating the
results that would be obtained with a real endoscope [6, 11]. Al-
though this can be useful in some cases, like in an intraoperative
scenario, virtual endoscopy should not constrain itself to simulate
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the results of a real endoscope. In a virtual environment, without
physical limitations, more suitable visualization techniques can be
offered. In the case of diagnosis, the physicians are mainly inter-
ested in exploring the inner surface of the organ where polyps might
be detected. Large polyps are more likely to develop into maligni-
ties than small ones. Usual endoscopic views visualize just a small
part of the surface of the organ. Furthermore, it is difficult to detect
polyps that are located behind folds. In this paper, we concentrate
on virtual colonoscopy, which focuses on the examination of the
colon.

Recently, new methods to visualize anatomical cavities (e.g., the
colon) have been proposed. These methods are based on the fact
that an efficient way to inspect the inner surface of the colon would
be to open and unfold it, in order to examine its internal surface. In
the real world this is not possible, but there is no patient damage in-
volved if this dissection of the organ can be achieved virtually with
the medical data obtained by CT or MRI (i.e., the virtual organ).

In our previous work [3], a method for unfolding the colon was
presented. This method results in a video with correct unfolded
portions of the colon in each frame. The method solves problems
that previous techniques have, like double polyp appearance (i.e.,
the same polyp can show up more than once). On the other hand,
it has the drawback that the physician has to review a video and
cannot visualize the complete surface at once. In this paper, we
describe a new method to obtain the whole colon unfolded in one
view. The physician can easily detect areas where polyps appear,
and furthermore get an idea of their shape and size. Afterwards,
the physician can concentrate in doing an exhaustive inspection of
the problematic areas. This method proposes solutions to several of
the problems that appear in previous similar techniques. Although
in this paper we concentrate on the colon, the technique could be
applied to any tubular organ.

In the next section, we review related work and discuss the dif-
ferences to our method. Section 3 gives an overview of the new
method. Sections 4 and 5 present in detail the main steps of the



method. Results are presented in section 6 and conclusions and
future work are described in section 7.

2 Related Work

The straightforward techniques to unfold an organ [10, 14] start
with defining a path which is placed as close to the center of the
cavity as possible. After that, a sequence of frames is calculated.
For each frame, a cross-section orthogonal to the path is computed.
Then the central path is straightened and the cross-sections are piled
up to form a stack. As a last step, the straightened colon is unfolded
obtaining a volume model of the unfolded colon. The model is
displayed afterwards using standard volume rendering techniques.

These methods allow to visualize the complete surface at once.
One of the main problems of these techniques is present in high
curvature areas of the central path, i.e., at path locations where the
radius of curvature is bigger than the organ diameter. In such cases,
orthogonal cross-sections intersect each other or are far apart in
other regions (see figure 2). As a consequence, a polyp can appear
twice in the flattened model or it can be missed completely. Wang
et al. in later work [13, 12] try to overcome this problem. The au-
thors use electrical field lines generated by a locally charged path
to govern curved cross-sections instead of the planar sections. The
cross-sections tend to diverge avoiding conflicts. If the complete
path is charged then the curved planes will not intersect. However,
for each point of the field lines the contribution of each charge in
the path must be calculated. This operation is so computationally
expensive that the authors propose to just locally charge the path.
A small segment of the path contains the charges for each cross-
section. In this way, the method is feasible in practice, but it cannot
ensure that the curved cross-sections will not cross anymore.

Haker et al. [5] use conformal mapping, which is angle preserv-
ing, to project the polygonal colon surface, colored with its Gaus-
sian curvature, to a plane. One of the main problems of this method
is that a highly accurate segmentation is necessary to ensure good
results for diagnosis. The whole surface is being flattened, so the
information by which the physician has to recognize a polyp is the
shape of the color-coded Gaussian curvature of the extracted sur-
face.

cross-sections

Central path

missed polyp

double polyp

Figure 2: Illustration of the possible undersampling and double ap-
pearance of polyps due to intersections of the cross-sections in high
curvature areas. The dashed cross-section line produces a double
appearance of a polyp.

Paik et al. [9] propose various kinds of camera projections for
virtual endoscopy. With a normal endoscopic view just 8% of the
solid angle of the camera is visible in each frame. Paik et al. project
the whole solid angle of the camera by techniques known from car-
tographic projections. They suggest the usage of the Mercator pro-
jection to map the solid angle to the final image. This technique

Figure 3: Illustration of the elimination of double polyp appearance
by nonlinear ray casting.

samples the solid angle of the camera, after which the solid angle is
mapped onto a cylinder which is mapped finally to the image.

In our previous work [3], a video is generated by projecting the
organ surface to a cylinder which is moved along the path. This
avoids the appearance of double polyps since intersections can just
appear between different frames.

On the other hand, it has the drawback, as the method of Paik et
al., that the physician does not have a complete view of the colon
and has to inspect a complete video.

All of the unfolding methods introduce some kind of deforma-
tion since it is mathematically impossible to perform a mapping
between two surfaces which preserves angles and area at the same
time if the two surfaces do not have the same Gaussian curvature.

In this paper, a method is proposed which results in a complete
view of the unfolded colon avoiding the problem of double appear-
ance of polyps and the possibility of missing polyps. In our ap-
proach the unraveling does not just produce a surface but also a
height field (distance of the colon surface to central path), which
avoids that the polyps are flattened. In the next sections, this method
will be discussed in details.

3 Method Overview

Our method for unfolding the colon can be divided into two main
steps: nonlinear ray casting, which solves the problem of double ap-
pearance of polyps, and nonlinear 2D scaling, which improves the
nonuniform sampling, and therefore avoids that polyps are missed.

The input data of the technique is a segmented volume data set
of a colon. The segmentation is needed to find the central path. It
is important that the segmentation is conservative, meaning that it
does not contain any point outside of the colon. In our approach
the central path is computed by thinning the segmented volume.
The path is smoothed, but ensuring that it will not cross the colon
surface. We use the algorithm presented in our previous work [2].

A distance map is generated from the calculated central path. A
distance map is a volume data set whose voxels contain the distance
to the nearest object voxel [8]. In our case, the object is the central
path.

A coordinate frame is moved through the path. For each position
along the path, rays are traced starting in the plane orthogonal to the
path, and following radial directions (constant angle sampling). To
avoid double polyp appearance in high curvature areas of the path,
the rays follow the negative gradient direction of the precalculated
distance map. The rays are not straight lines any more, but they
do not intersect (see figure 3). Nonlinear ray casting has already
been investigated before [4]. Section 4 explains how these rays are
traced.



Along each curved ray the volume is sampled in a uniform way
and direct volume rendering is performed. The ray is terminated
when it hits the surface of the colon. The result of the nonlinear
ray casting can be interpreted as a 2D parameterization of the inner
colon surface projected to the central path. One parameter corre-
sponds to the position along the path. The second parameter speci-
fies the ray within the plane orthogonal to the current path position.
The distances between ray origins (i.e., in the central path) and hit
surface points (i.e., on the colon surface) determine a height field.
Afterwards, the height field is unfolded. Actually, the result corre-
sponds to a parallel projection of the unfolded height field.

Nonlinear ray casting samples the height field nonuniformly. A
straightforward unfolding to a regular grid contains severe area dis-
tortions and is therefore not optimal. In the second step an iterative
method transforms the previously generated 2D parameter grid to
compensate for these distortions. Afterwards, the ratios between
the area that the samples represent and their area in the 2D grid are
approximately equal. The second step is based on nonlinear scaling
that is used in a similar way for magnification fields in information
visualization [7]. In section 5, the algorithm is described in detail.
Next, the surface is resampled with a quasi-uniform sample rate
using the 2D grid after the nonlinear 2D scaling.

The main steps of the outline presented in this section will be
discussed in more detail in the next sections.

4 Nonlinear Ray Casting

The curve C(v), which represents the central path of the colon, is
calculated using thinning and the smoothing algorithm presented
in our previous work [2]. In order to trace the nonlinear rays, a
distance map D(p) of a point p to the central path C(v) is computed.
D(p) is calculated in discrete space. D(p) is a volume data set
that contains the minimum distance to the path for each voxel. A
reconstruction filter is used to approximate the distance map d(p)
in continuous space.

For the calculation of D(p), a minor modification of the Eu-
clidean distance transformation presented by Lohmann [8] is used.
The modified distance transformation saves for each voxel the vec-
tor ~D(p) from the voxel to the closest object point, D(p) = k~D(p)k.
Using this information, the distance map d(p) in any point p 2 IR3

is defined using the following reconstruction function.

d(p) = f min(kpi +~D(pi)� pk) j 8i 0� i� 7; pi 2 IN3 g

where pi represent the eight voxels of the cell that contains p. This
reconstruction gives the exact value when one of the eight neighbors
pi has the same closest object point as p. Trilinear interpolation
supposes a linear behavior of the distance map function which is
just true in some special cases.

The nonlinear rays are traced from the central path uphill, i.e.,
along the negative gradient direction,�∇d(p), of the distance map
d(p). d(p) is continuous in the first derivative nearly everywhere,
except for ridge and valley lines. The distance map induces a vec-
torfield which is defined by the gradient of the distance map (i.e.,
∇d(p)). Trajectories traced in this vectorfield are unambiguous.
These trajectories correspond to our nonlinear rays. It is known
that trajectories of such vectorfields will not intersect [1]. Further-
more, they will not produce cycles, since it is impossible to return
to the same point if you always move uphill. In the worst case, the
nonlinear rays will merge in ridge and valley lines, but they will not
intersect. With these curved rays the appearance of double polyps
is avoided and an unambiguous parameterization of the colon inner
surface is obtained.

4.1 Casting of Nonlinear Rays

The nonlinear rays are traced by moving a coordinate frame along
the curve C(v). The frame is moved using a minimal rotation frame
(see [3] for more details). For each position in the path, a con-
stant number of rays is traced. The initial point of each ray is
placed in the plane orthogonal to the path. Note that the gradient is
not defined within the path since it is a valley line of the distance
map d(p). Therefore, the initial points are located in a circular ar-
rangement at a small distance from the path position. Once the ini-
tial points have been determined (u parameterization), the rays are
traced incrementally following the negative gradient of the distance
map (see figure 4).

The rays have the tendency to be perpendicular to the path since
it is the direction of maximal change of d(p) in linear segments of
the path. The rays become curved in areas where the curvature of
the path increases (see figure 3 and 4).

u

C(v)

a) b)

Figure 4: The nonlinear rays traced from a specific path position:
a) the curved rays in areas of high curvature for two consecutive
points along C(v), b) nonlinear rays traced in u direction.

4.2 Colon Surface Parameterization

The previous section presented how to trace curved rays from the
central path which will not intersect each other. While the rays are
traced, direct volume rendering is performed. The ray terminates
when the surface is hit. The result of the nonlinear ray casting is
then a sampling of the inner surface of the organ.

Figure 5: Surface obtained after nonlinear ray casting. It can be
observed that the sampling of the surface is nonuniform.



The tracing of the nonlinear rays defines an unambiguous param-
eterization of the inner colon surface s(u;v). Here, v is the parame-
ter of the curve which describes the central path C(v), and u is the
radial angle along which the nonlinear rays are started (u 2 [0;2π]).

Figure 5 shows s(u;v) which results from applying nonlinear ray
casting to a piece of the colon. The lines correspond to the iso-
lines of the parametric surface. The parametric space is sampled
uniformly in the u and v direction, but this does not correspond to a
uniform sampling of s(u;v).

A straightforward mapping of a parametric surface onto a plane
can be easily achieved by mapping the parametric space. Figure 6b
shows the mapping of the surface s(u;v) shown in figure 5 to a 2D
regular grid (in parametric space).

Nonlinear ray casting avoids that features appear more than once,
but on the other hand the sampling of the surface is far from being
uniform. There are oversampled areas, which lead to geometric
deformations, and also undersampled areas. In the last case, not
just deformations appear but features of the surface can be missed.

Figure 6a is the result of unfolding to a regular grid using straight
rays (see figure 2). The solid circles indicate areas where double
features appear. It can be observed that in the same areas using
nonlinear ray casting, the double polyps disappear, and instead an
enlargement of the feature appears. The areas encircled with dashed
circles indicate undersampled areas and therefore areas where fea-
tures are possibly missed. Note that the same undersampled areas
are present in both figures.

u

v

a) b)

Figure 6: a) Unfolding of the colon surface of the data set presented
in figure 5 using straight rays. Solid circles indicates double polyp
appearance areas. Dashed circles indicate undersampled areas. b)
unfolding of the parametric surface shown in figure 5 by mapping
the parametric space to a regular grid.

In the next section, an algorithm is presented to obtain an un-
folding of the parametric surface s(u;v) avoiding geometric defor-
mations and missing features.

5 Nonlinear 2D Scaling

5.1 Height field unfolding

In the previous section, an unambiguous parameterization of the
inner surface projected to the central path has been introduced. The
distance between the surface point s(u;v) and the corresponding
path position C(v) defines a height field r(u;v).

Figure 7a is an illustration of a cross-section of the height field
where v is constant. The unfolding to a 2D regular grid of r(u;v)
in figure 7a corresponds with figure 7b. The parallel projection of
the unfolded height field corresponds to the mapping of the surface

s(u;v) presented in section 4.2. It can be observed that the object is
locally scaled, and geometrically deformed, depending on the value
of the height field r(u;v).
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Figure 7: Illustration of height field unfolding: a) cross-section of
r(u;v) for a fixed value of v, b) unfolding to a regular grid, c) un-
folding preserving the edge lengths of the 3D quadrilateral mesh
in the 2D grid d) unfolding of the height field preserving the edge
lengths of the 3D quadrilateral mesh.

The sampling of the surface s(u;v) defines a quadrilateral mesh
on the surface of the colon (see figure 5). The quadrilaterals vary
considerably in size. From the 3D quadrilateral mesh, we know the
distances between adjacent points (i.e., the length of the edges of
the quadrilateral). If these distances are preserved in the 2D grid,
the sizes of the quadrilaterals will be approximately preserved.

Figure 7c shows the result of preserving the 3D edges of the
quadrilateral mesh that corresponds to figure 7a. Geometric defor-
mations still appear. The geometric deformations depend on the
values of the height field r(u;v).

Using the previous method, we do not preserve the edges of the
3D quadrilateral mesh in the unfolded height field, but in its parallel
projection to the 2D grid. This is not what is desirable. The edges
of the unfolded height field have to have the same length as the
edges of the 3D quadrilateral mesh. This implies that the distance
between edges in the 2D grid has to correspond with the projection
of the edges of the 3D quadrilateral edges to the central path.

To calculate the projected edge values we use different approx-
imations for the u and v direction. For the edges in the u direction
(see figure 7d), each sample represents a length in the u direction
approximated by

a(pi; j) = 2� tan
�α

2

�
� r(pi; j)

where pi; j corresponds to (ui;v j), ui is the ith sampled parameter
value in the u direction and vj the jth in the v direction. α is the



angle between the straight rays from the path to pi; j and pi+1; j (see
figure 7d). For simplicity we illustrate in figure 7d the case where
the angle α is the same between consecutive rays. α is not con-
stant due to the curvature of the nonlinear rays. The projected edge
distance between two consecutive samples in the u direction is ap-
proximated by

e(pi; j; pi+1; j) =
a(pi)+a(pi+1; j)

2
(1)

This equation cannot be used for the v direction since angle α is
not defined. Therefore, in the v direction the following expression
is used

l =
r(pi; j)+ r(pi; j+1)

2

~m j =C(v j)+
s(ui;v j)�C(v j)

r(pi; j)
� l (2)

e(pi; j; pi; j+1) = k~m j�~m j+1k

Equation 2 gives an approximation of the projected distance be-
tween samples (see figure 8).
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Figure 8: Illustration of height field unfolding in the v direction.

Using equations 1 and 2, we have defined the length of the edges
that the 2D grid has to have in order that the 3D edges of the quadri-
lateral mesh are preserved in the unfolded height field. In the next
section, an algorithm to construct such a 2D grid is presented.

5.2 Nonlinear 2D scaling

The objective of the nonlinear 2D scaling algorithm is to generate
a 2D grid whose edges preserve the size of the corresponding pro-
jected edges calculated using e(pi; j; pk;l). An analytical solution to
the problem is too complex, so a numerical solution is adopted. To
generate such a grid we will use an approach similar to the one pre-
sented by Keahey et al [7]. The main difference is that the new algo-
rithm achieves not just area preservation, but also the edge lengths
are preserved.

The idea is that we want to find a transformation
T (i; j) : IN2 ! IR2 of a 2D regular grid such that for all
values of i and j the equation e(pi; j; pk;l) = kT (i; j) � T (k; l)k
holds, where pk;l is a 4-connected neighbor of pi; j.

T (i; j) has to be C0-continuous and it should preserve the order
(no edge or grid node flipping). The condition to preserve the order
is defined as

(x;y) = T (i; j) (x0;y0) = T (k; l)

i < k () x� x0 j < l () y� y0 (3)

We define a 2D scaling field S as a field of scalar values. Each
edge scalar value indicates the scaling factor that a transformation

has applied to the edge. The scaling field for an edge defined be-
tween T (i; j) and T (k; l) is S(i; j;k; l) = kT (i; j)�T (k; l)k. A 2D
scaling field S is defined for any transformation T .

We define Sg(i; j;k; l) = e(pi; j; pk;l). Using the 2D scaling field
Sg we want to construct its corresponding C0-continuous and or-
der preserving transformation Tg. Tg will correspond to the desired
nonlinear scaled 2D grid. The major problem is to find the right
coordinates (x;y) of the transformation Tg given a scalar value of
the 2D scaling field Sg. It is clear that for the same 2D scaling field
several transformations are possible.

To approach this problem, we have used an iterative method
which will provide a numerical solution. The goal of the algorithm
is to find a transformation Tc that provides a good approximation of
Tg.

Given a transformation Tc, the corresponding scaling field can
easily be calculated by Sc(i; j;k; l) = kTc(i; j)�Tc(k; l)k. A scaling
field error can then be computed by Se = Sg � Sc. Se gives the
difference between the computed scaling field Sc and the desired
scaling field Sg.

The iterative algorithm starts with a regular grid Tc. Then Sc and
Se are calculated. The algorithm iterates over each node of the grid.
For each node, the value of Se for each of the 4-connected neighbors
is consulted. If Se > 0 (i.e., the edge in Tc is not long enough) then
the neighbor is moved away from the node . If Se < 0 (i.e., the
edge Tc is too long) then the neighbor is pulled towards the node.

The edge is modified by a length of Se(i; j;k;l)�Cr
2 where Cr 2 [0;1]

is a parameter of the algorithm. The division by 2 is necessary
because each edge is treated twice, once for each end point of the
edge. Changing an edge is thus done by modifying each of its end
nodes. An important requirement of the algorithm is to preserve the
order. So the neighbors are moved as far as Se and Cr allow without
violating equation 3.

The neighboring nodes are changed with coordinate-aligned
movements. The movements correspond to the original orientation
of the edges in the regular grid (i.e., horizontal and vertical). This
means that if the current node is (i; j) and the node to be moved
is (i+ 1; j), the translation of the neighbor will be in the horizon-
tal direction. The movement is computed such that the resulting
edge has the expected length determined by Se and Cr. In the same
way, if the neighbor to be moved is (i; j + 1), the translation will
be in the vertical direction. These movements have the tendency to
preserve the rectangular appearance of the quadrilateral defined by
fTc(i; j);Tc(i+1; j);Tc(i+1; j+1);Tc(i; j+1)g, which for exam-
ple does not degenerate to a triangle.

Once the iteration has run for all the nodes, the new Tc is gener-
ated. Then, a new Sc and a new Se are calculated from the resulting
Tc. Se is calculated just once per iteration.

The algorithm’s convergence depends on the complexity of the
scaling field Sg and the value of Cr. If Cr = 0, no movement will
occur. If Cr = 1, the neighbors will be moved the maximum pos-
sible displacement. This can make the convergence faster, but can
also lead the approximation to a damaged state and then to even not
converge at all. A trade-off between speed and quality has to be
made in defining the value of Cr.

The convergence factor is measured using the distance between
the approximated scaling field Sc and the desired 2D scaling field
Sg. This is expressed as the root mean squared error σ. Given a grid
of size n�m the convergence factor is defined as follows.

σ =

vuuut
m�1
∑
j=0

n�2
∑

i=0
Se(i; j; i+1; j)2 +

m�2
∑
j=0

n�1
∑

i=0
Se(i; j; i; j+1)2

2nm�n�m

The algorithm terminates when the value of σ is smaller than
a defined constant or when after several iterations no considerable
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Figure 9: Illustration of the nonlinear 2D scaling algorithm using the same data set than in figure 5. a) Initial Tc corresponding to a 128x171
grid. b) Tc after 960 iterations of the algorithm. c) Tc after 1687 iterations.

improvement occurs anymore. The value of σ does not vary much
in successive iterations.

The convergence of the algorithm can be improved by starting
with a Tc which is a closer approximation of the desired result than
a regular grid. The length of the edges within a horizontal line
(i.e., the horizontal edges between nodes with the same j value)
are set such that the line approximates the perimeter of the colon in

the corresponding cross-section (i.e., ∑n�2
i=0 Sg(i; j;i+1; j)

n�1 ). The distance
between two consecutive horizontal lines is set to an average of the
vertical edge lengths in Sg which join the nodes between the two

lines (i.e., ∑n�1
i=0 Sg(i; j;i; j+1)

n ). This method has shown to accelerate
the convergence without altering the results obtained with a regular
grid.

The pseudocode that illustrates the presented algorithm is given
below.

proc NonLinear2DScaling(
in: 2DScalingField Sg,float Cr,
out: 2DTransformation Tc)

f
2DScalingField Sc;
2DScalingField Se;
boolean bNoEnd;

Tc = IntialGrid(Sg);
Sc = Calculate2DScalingField(Tc);
Se = Sc�Sg;
σ = CalculateRootMeanSquare(Se);
bNoEnd = FinishApproximation(σ);

while (bNoEnd) f
forall Tc(i; j)f MoveNeighbors(Tc,i, j,Se,Cr);g
Sc = Calculate2DScalingField(Tc);
Se = Sc�Sg;
σ = CalculateRootMeanSquare(Se);
bNoEnd = FinishApproximation(σ);

g
g

Figure 9a shows the initial grid Tc for the segment of the colon
presented in figure 5. The resolution of the grid is 128x171 and
the initial value of σ is 0:8008. After 960 iterations Tc has been
developed into what can be seen in figure 9b. In this case the value

of σ is 0:2808. Figure 9c is the result of the algorithm after 1687
iterations. It can be observed that the grids are similar. In this case
the value of σ is 0:2650.

Once the nonlinear 2D scaling has been done, we obtain the par-
allel projection of the unfolded height field to a 2D grid preserv-
ing the edge lengths. This avoids geometry deformation due to the
nonuniform sampling. In the next section, a method to resample
the undersampled areas and to detect possible missing features is
presented.

5.3 Resampling

The nonlinear 2D scaling algorithm provides a mapping between
the 3D quadrilateral mesh and a 2D grid avoiding geometric de-
formations. For each node of the 2D grid, the corresponding color
obtained in the nonlinear ray casting is assigned. Bilinear interpo-
lation is used to fill the quadrilaterals of the grid. An example can
be seen in figure 10a. The areas encircled by dashed ellipses are the
same as in figure 6. It can be observed that features are missing due
to undersampling.

The undersampled areas are easily identifiable from the 2D grid.
A minimum sample step h for the 2D grid is defined. The sample
step corresponds directly with a sample step in the 3D space. Each
of the 2 quadrilaterals with one or more edges with a length bigger
than h are subdivided. For a quadrilateral, the subdivision consists
in generating a subgrid whose edge lengths are smaller or equal to h.
The result of such a subdivision operation can be seen in figure 10b.

The resulting subdivided grid has assigned color values just in
the nodes of the original quadrilateral. Therefore a resampling of
the colon surface has to be done for each of the newly generated
nodes. Each point in the grid can easily be identified with its cor-
responding point in 3D using linear interpolation. The 3D points
do not correspond to surface points, but they are close to the colon
surface. Therefore, curved rays are traced several steps backwards
following the nonlinear ray casting algorithm. Then the rays are
traced forward again to find the correct surface point. The color of
the sampled point is determined by the same procedure as described
in section 4.

The resulting color values are mapped directly to the correspond-
ing point in the 2D grid. The results of the resampling can be seen
in figure 10c. The encircled areas show areas where features were
not present in figure 10a but now are present in figure 10c.
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Figure 10: Resampling after the nonlinear 2D scaling. a) 128x171
shaded grid using bilinear interpolation. b) the resulting grid of the
nonlinear 2D scaling after resampling c) Shading of the resampled
grid.

6 Results

In this section, we describe the results of the virtual colon unfolding
algorithm with several data sets.

One data set is a CT volume data of an extracted colon with a
resolution of 381x120x632 (see figure 11). The colon is 50 cm
long and contains 13 polyps. These polyps have a size between
3.5x2.5 mm and 11.8x9.0 mm. The results of the unfolding proce-
dure for this colon can be seen in figure 12. All the polyps could
be detected by inspection. The extracted colon was physically dis-
sected and several pictures of the dissected colon were also taken.
These pictures enable a qualitative comparison between the real
data and the results of the presented algorithm (see figure 12 right).

A second data set is a segment of the extracted colon with a res-
olution of 190x120x150. This data set has been used throughout
the paper to illustrate the algorithm. This data corresponds with the
right-bottom picture of figure 12 and contains three polyps.

The third data set is from a CT data set of a healthy colon seg-
ment with a resolution of 198x115x300. The unfolding of the data
set and an outside view can be seen in figure 1. This colon is
healthy, so no polyps could be found on the unfolding.

For videos and further images please refer to:
www.cg.tuwien.ac.at/research/vis/vismed/ColonUnfolding/.

The table 1 shows the calculation times of the presented method
on a Pentium II (400MHz). The times correspond to preprocessing
since once the method has been executed the physician can inspect
the results interactively. The table is divided in three parts. The first
part presents the times obtained from generating the nonlinear rays
and doing the direct volume rendering. The times depend on the
resolution of the sampling, i.e., the number of samples taken in the
u and v direction, and the data set resolution.

The middle part of the table shows the times for the nonlinear
2D scaling algorithm. The speed of the convergence of the algo-
rithm depends basically on the grid resolution and its complexity,
the value of Cr and σ (i.e., the precision achieved by the unfold-
ing). It can be seen that in the first two data sets the increase of Cr
produces a reduction of the convergence rate while for the healthy
colon it improves. The value of Cr has to be tuned for each data set.

Finally, a column for the resampling process is presented. The
times depend basically on the sampling step of the grid and the dif-
ference between the original grid and the resampled grid (i.e., num-
ber of resampling points). We present the times with a resampling
step h of 0.5 and 1 times the size of a voxel in 3D space.

The time of the whole process depends on the data set and the
precision of the results. In total, the time of the whole process, in-
cluding the distance map calculation, is in the range of hours. This
time is a preprocessing time. Once the computation has been done,
the resulting 2D grid can be inspected interactively by the physi-
cian. The physician uses the result like an overview map. If sus-
picious areas are identified he inspects them more carefully using
other tools like cross-sections of the original data set or conven-
tional rendering of the area.

Experiments have shown that the algorithm is quite sensitive to
the smoothness of the path. For a good result, it is important that
the path is smooth and it has as many linear segments as possible.

The nonlinear ray casting features a problem that occurs when a
ridge line is inside the colon. Then, there will be rays that would
never reach the surface of the colon. Although this case never ap-
pear in the tested data sets, a solution to this situation has to be
studied. A possible solution would be to combine the path distance
map with the surface distance map.

In the presented algorithm just the areas that are directly pro-
jected to the central path are taken into account. Areas which are
behind mushroom-like folds are not visualized. Using more than
one surface point per ray, could solve the problem of occluded ar-
eas due to mushroom-like folds.



Nonlinear Ray Casting Nonlinear 2D Scaling Resampling
Data Set

Grid time(min) Cr iterations σ sec./iter. h time(min)
0.3 352 0.2797 0.5 83.80

Extracted Colon 128x890 21.65
0.5 601 0.3165

0.797
1.0 26.50

Segment of the 0.3 960 0.2808 0.5 15.46
Extracted Colon

126x171 3.4
0.5 1687 0.3511

0.141
1.0 5.32

0.3 70 0.2799 0.5 59.18
Healthy Colon 200x1178 13.2

0.5 58 0.2797
1.656

1.0 6.75

Table 1: This table illustrates the calculation times depending on the different parameters of the algorithm. The times are calculated using a
Pentium II CPU (400MHz).

7 Conclusions and Future Work

In this paper, a new unfolding method to inspect cavity organs has
been presented. The goal is to enable the physician to inspect and
get as much information as possible of the inner organ surface at
a first glance. The problematic areas can be identified quickly and
inspected later in more detail. The presented approach solves the
problem of double appearance of polyps using nonlinear ray cast-
ing. Compensation of the distortions due to the unfolding of the
colon is achieved using an iterative method called nonlinear 2D
scaling which is similar to the nonlinear magnification fields used
in information visualization. Finally, a method is presented to re-
sample in areas where features have been missed due to undersam-
pling. The methods have been tested with several data sets. One of
them enabled a qualitative comparison of the resulting images with
images of the corresponding extracted colon.

Improvements of the method for the cases of ridge lines inside
the colon and occluded areas due to mushroom-like folds are sub-
ject of future work. Acceleration of the different preprocessing
steps is also a subject of future study.

The presented method has shown to be promising, and it should
be tested with more data sets of real pathological cases. The algo-
rithm is not restricted to the colon. It has the potential of being used
for any tubular organ.
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Figure 11: Outside view of the segmented surface of the extracted
colon CT data set with resolution 381x120x632.
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Figure 12: Left Virtually unfolded extracted colon with the polyps numbered according to the real dissection. Right qualitative comparison
of the virtually unfolded colon with pictures taken from the real dissection. Right bottom image corresponding to the segment of the
extracted colon data set used throughout this paper as example. The orientation in which the pictures were taken does not correspond with
the orientation of the virtually unfolded colon.


