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Abstract

In recent years scientific visualization has been driven by the need
to visualize high-dimensional data sets within high-dimensional
spaces. However most visualization methods are designed to show
only some statistical features of the data set. This paper deals with
the visualization of trajectories of high-dimensional dynamical sys-
tems which form aLn

n
data set of a smoothn-dimensional flow.

Three methods that are based on the idea of parallel coordinates
are presented and discussed. Visualizations done with these new
methods are shown and an interactive visualization tool for the ex-
ploration of high-dimensional dynamical systems is proposed.

1 Introduction

Due to the rapid development in computer technology scientists are
able to explore larger and larger data sets. This allows not only
to increase the number of samples under investigation, but it also
allows to increase the number of different parameters sampled at
each location. Multiparameter data collections of high dimension
are becoming increasingly common in many scientific disciplines.
Nearly every field that uses numerical data (such as applied math-
ematics, computer sciences, finance, market research, medical sci-
ences, social sciences and a lot of other fields) deal with data sets of
this type. The need of visualizing such data structures leads to the
development of special visualization and data brushing methods.

Most of these visualization techniques are used to visualize sta-
tistical characteristics such as clustering of data or outliers. In sec-
tion 2 some of these methods are listed and shortly discussed. They
are very well suited for discretly sampled multivariate data sets and
adjusted to specific requirements of this kind of data, e.g., the de-
tection of correlation. They do not, however, reveal very well the
underlying structure when the samples are taken from a smooth,
continuos flow in a high-dimensional space. Such data sets can for
example result from dynamical systems.

Dynamical systems are used for simulating natural processes by
a mathematical model. This model is described by a set of differ-
ential equations, one equation for each state variable. The more
simple a model is, the less state variables does it need. When a
sophisticated, well adapted model is needed, more state variables
have to be added forming a high-dimensional dynamical system.
These systems have been investigated with the same visualization
methods as sampled real world data as described in section 3.

The dynamical behavior of a dynamical system can be described
by its topology, which consists of specific features like fixed points,
cycles, attractors, repellors, and separatrices. These structures
might become visible when a set of trajectories within phase space
is shown. As statistical visualization methods are typically not de-
signed to show integral curves within a high-dimensional phase
space, we focused our work on this problem. In section 4 sev-
eral methods for visualizing high-dimensional trajectories are pre-
sented. Section 5 shows some results achieved with the described
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methods. As this is work in progress some extensions and ideas for
future work are also discussed.

2 Visualizing Multidimensional Data

Multiparameter data sets are becoming more and more common
in many scientific disciplines. Depending on their origin several
different aspects of the data can be distinguished. Data sets can
be discrete (like measured data) or continuos (like dynamical sys-
tems given by differential equations), they can be spatially coherent
(such as medical images) or spatially incoherent (like census data).
Data sets may consist of a collection of sampled data. Each sample
is ann-dimensional data item. For scalar valuesn equals 1, if each
sample consists of three different variablesn equals 3. Thesen di-
mensions are called dependent variables. They vary with the loca-
tion they are sampled at. Them-dimensional space where samples
are taken is described by anm-dimensional lattice. Them location
variables are called independent. High-dimensional data structures
L
m

n
may have a large numbern > 3 of sampled variables, or they

can be sampled within a high-dimensional (m > 3) space [1].
Visualization methods for high-dimensional data can be used to

represent high-dimensional samples on a low-dimensional lattice or
they are used to display low-dimensional data structures which are
sampled within a high-dimensional lattice. Two important goals of
visualization techniques are the identification of individual param-
eters (what is the value of some data within a specific region), and
the detection of regions and correlation of variables (e.g., where do
data points of a specific value reside).

Basically five different sets of visualization methods for high-
dimensional data can be distinguished. These methods are briefly
discussed in the following five subsections. The visualization of
high-dimensional data often uses a combination of two or more of
these methods, e.g., color coding is used on focused data and as-
sisted by interactive sonification. Most of the listed methods are
easy to implement and allow a fast and interactive exploration of
data sets. This is very important since interactivity introduces time
as a fourth dimension into the space where the data is explored.

2.1 Attribute Mapping

Attribute mapping is one of the most common methods to visualize
high-dimensional data. This method uses one or two-dimensional
lattices to define some simple geometric primitives, e.g., contours
or planes. The attributes of these geometric primitives can be used
to visualize the remaining variables. The most often used attribute
is the color of the geometric primitive. Color coding can be em-
ployed to display up to three variables. Each of these variables is
mapped to one component of the underlying color model. The most
common color models are the RGB model and the HLS model. Fig.
1 shows a possible mapping for these two color models.

A major advantage of color coding is the fact that it is very of-
ten used (e.g., weather forecast maps). Therefore many users are
familiar with this kind of visualization. Another advantage is the
easy calculation and interpretation of color coded images. A dis-
advantage is that colors do not have a unique order, so color coded
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Figure 1:Attribute mapping with the RGB and the HLS color model

images have to show a color legend to allow an exact interpreta-
tion. Another disadvantage is the restriction to encode only three
variables. The encoding of all three components of a color model
leads to an image where the three different variables are not dis-
tinguishable any more. In realistic applications color coding is for
example restricted to two variables. Another problem is the fact
that about eight percent of the population suffers from some kind
of color blindness.

2.2 Geometric Coding

Geometric coding, originally proposed by Pickett [17], is used for
displaying high-dimensional data on a low-dimensional lattice by
displaying distinct geometric objects within the lattice and mapping
the high-dimensional data to some geometric features or attributes
of these objects. In the following some of the most well known
objects for geometric coding are listed.

Glyphs are often utilized for interactive exploration of data sets.
A glyph is a generic term describing a graphical entity whose
shape or appearance is modified by mapping data values to
some of its graphical attributes. An interactively positioned
glyph adapts its appearance according to the underlying data.
Variables can be mapped to the length, shape, angle, color and
transparency of the glyph. Examples of this kind of visualiza-
tion are given in [13] and [14].

Icons Another visualization method uses icons as basic primitives.
An icon is a generalization of a single pixel to higher dimen-
sions having multiple perceivable features and attributes. The
fact that shape and color are perceptually separable features
is used for the display of color icons. They merge separable
features by using color, shape and texture perception to code
multiple variables. In [15] an icon is presented that allows
to encode six different parameters by color coding six differ-
ent lines within a square icon. Since the color coding scheme
could code one variable within a color component the method
could be even extended to visualize 18 parameters (three pa-
rameters for each of the six lines). This number can even be
increased by subdividing the length of the lines of the icon
and apply different parameters to the line segments. Individ-
ual variables are not recognizable any more, but correlation
patterns appear.

Chernoff Faces are a well known example to encode multivari-
ate data. The displayed objects are stylized faces and the
variables influence the appearance of the shape of the face,
the mouth, eyes, nose and eyebrows. Chernoff used this
method to visualize a twelve-dimensional data set on a two-
dimensional lattice [4]. Due to the fact that the human brain is
well skilled in recognizing different faces it should be easy to
detect regions of clustered data and outliers with this method.

Data Jacks as used by Cox, Ellson and Olano are three-
dimensional shapes with four different limbs. Again the
length and the color of these limbs are taken to code up to
sixteen parameters.

m-Arm Glyph is another glyph for the visualization of high-
dimensional data sets. This two-dimensional structure intro-
duced by Pickett and Grinstein [18] consists of a main axis

andm arms attached to it. The length and thickness of each
arm and their angle to the main axis encode different parame-
ters.

2.3 Sonification

Sonification is another method of making more than three dimen-
sions perceptible for a researcher. A sound is produced according to
the mapped parameters [7]. Variables can be mapped to the loud-
ness, the pitch and even to the orchestration of the sound. One
disadvantage of these methods is that the various parameters that
characterize a sound influence each other, i.e., a sound at a con-
stant volume but with changing tune is perceived as if the volume
changes too. Nevertheless sonification is a good tool for visual-
izing high-dimensional data sets because it stimulates a different
sense organ and thus may avoid overloading the visual system.

2.4 Reduction of Dimension

An obvious way of visualizing high-dimensional data sets is the
reduction of dimension. This can be done by either focusing, where
only part of the whole data set is shown, or by linking, where some
focused parts are linked together to represent the whole data set.

2.4.1 Focusing

Focusing techniques may involve selecting subsets, reduction of di-
mension by projection, or some more general manipulation of the
layout of information on the screen.

Examples for subset selection techniques are panning, zooming
[3] and slicing [6]. Reduction of dimension can be achieved by
simply projecting high-dimensional spaces along some axes into a
low-dimensional space and/or color coding of multiparameter im-
ages. Techniques for more general layout manipulation include a
variety of techniques for adapting to a user’s point of interest such
a fisheye views [5] and rooms [11].

2.4.2 Linking

One consequence of focusing is that each view will only convey
partial information about the data. This can be compensated by
linking several focused visualizations. Linking can be done by se-
quencing several visualizations over time (guided tour) or by show-
ing them in parallel simultaneously. The parallel visualization can
be done in separate windows as for example with the well known
scattered data plots. It can also be done within one single im-
age by using parallel coordinates [12] (see section 2.5) or dimen-
sional stacking [2]. Dimensional stacking is a recursive projection
method, where two dimensions are mapped on the horizontal and
vertical axis, creating a discrete grid. Within each cell of this grid
the process is applied again with the next two dimensions that have
not been used so far. This process continues recursively until all
dimensions are assigned. A new coordinate system is positioned
at a fixed location within the previous coordinate system. Another
form of linking is the use of hierarchical axis [16] wheren inde-
pendent variables are hierarchically stacked on thex-axis and the
analysis of one dependent variable is done on they-axis. The pixel
constraint on thex-axis is overcome by a set of hierarchical (color
coded) symbols that represent the data not only at data points, but
along whole data lines (or subspaces).

2.5 Parallel Coordinates

Parallel coordinates [12] represent dimensions on parallel axes. All
axes are arranged orthogonal to a horizontal line uniformly spaced
on the display. Each point of the data set corresponds to a polyline



that intersects the parallel coordinate axes at the coordinate values
of the data point. This method allows the detection of special char-
acteristics of the data under investigation by looking at the patterns
that are produced by the polylines. If all variables reside, for ex-
ample, on a line inn-space, then all polylines will intersect each
other at specific points between the (vertical) parallel coordinate
axes. Thus a line withinn-space can be visualized by a set of
points between the parallel coordinate axes. This gives a duality
between points and lines which is an interesting feature of parallel
coordinates. By interactively brushing through the data set statisti-
cal characteristics like outliers and clusters can be recognized very
easily.

3 High Dimensional Dynamical Systems
and Visualization

A lot of natural phenomenona can be approximately described by
differential equations. Scientists in many fields, e.g., in chemistry,
physics, biology, economy, medical research and other fields, inves-
tigate models called dynamical systems. Each differential equation
describes the change of one state variable, thus a set ofn differen-
tial equations defines the behavior ofn state variables describing a
n-dimensional dynamical system. For each ”sampled” set of state
variables the differential equations give ann-dimensional vector
describing the direction of the flow at the specific point. Thus the
discretized flow described byn differential equations forms a vec-
tor field of dimensionn, where each vector itself is of dimensionn.
This can be interpreted as anLn

n
data set (see section 2).

The main difference to measured ”real world” data is that a dy-
namical system typically describes a (maybe) complex but smooth
flow. The behavior of this flow is entirely determined by its topol-
ogy. Visualization methods have to reveal this information to the
scientist. Figure 2 (similar to [19]) shows the visualization meth-
ods described in section 2 and some advantages and disadvantages.
As can be seen all the methods focus on the representation of statis-
tical quantities and do not give any information on theunderlying
flow topology.

An important question that arises is what kind of information
has to be shown to give an insight into the topology of a dynamical
system. For the interpretation of the behavior of the system each
point within n-space can not be investigated by itself but has to be
seen in respect with its neighborhood. This is due to the fact, that
the data is derived from a continuos flow field. There are two basic
approaches concerning this task:

1. The neighboring information can be calculated from the vec-
tor field, e.g., by interpreting the Jacobian matrix, and the de-
rived (for example scalar) data is displayed inn-space. The
derived data has not to be a scalar, but can be of dimension
m itself. The directional information at each point inn-space
may be projected to anm-dimensional data object that de-
scribes some local features of the system. An example is given
by [14], who use a glyph for displaying topological informa-
tion of the flow such as convergence, shear, vorticity and cur-
vature.

2. A direct global visualization of the flow can be done by start-
ing short integral curves, so called trajectories, which follow
the flow, at the nodes of ann-dimensional regular grid. The
detection of topological features such as separatrices can be
done visually by interpreting the flow directions of the trajec-
tories. Unfortunately displayingn-dimensional trajectories is
a non-trivial problem. This problem will be approached in
section 4.

Displaying ann-dimensional trajectory is an important task to
allow a direct global visualization of the behavior of a dynamical

system. One possible way for doing this uses the fact that ann-
dimensional directional vector can be described byn � 1 angles.
Since the direction changessmoothly along a trajectory these angles
can also be used to describe the behavior of a trajectory thus reduc-
ing the dimension by one. This would allow us to display four-
dimensional trajectories in three-space. The investigation of topo-
logical structures such as two-dimensional and three-dimensional
manifolds in four-space has already been done by Hanson (see for
example [9]).

We wanted to find more general methods for visualizingn-
dimensional trajectories withn � 4. In the next section three
methods are described for addressing this problem. Two of these
methods are extensions to Inselbergs parallel coordinates technique
[12]. The third method uses projection and a new type of linking.
Theoretically all these methods are not restricted to a specific max-
imum number of displayed dimensions.

4 Our Approach Towards Visualizing
High Dimensional Dynamical Systems

4.1 Extruded Parallel Coordinates

Extruded parallel coordinates are based on parallel coordinates.
With parallel coordinates a trajectory is sampled during its evo-
lution at discrete points in timefx(t0); x(t1); x(t2); : : :g and its
coordinates are inserted as polylines in a parallel coordinate system
(see left side of Fig. 3). Instead of using the same coordinate sys-
tem for each sample we now move the parallel coordinate system
along the third spatial axis. The polylines of the samples can be
viewed as cross sections of a moving plane with a complex surface
which defines the trajectory. The right side of Fig. 3 shows this
surface and the moving parallel coordinate system at the end of the
surface.

�!
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Figure 3: A discrete sampled trajectory in parallel coordinates (left) and a three-
dimensional extruded surface defining the same trajectory (right)

The geometry of the surface can be generated and modified fast
and easily allowing an interactive exploration of trajectories in the
dynamical system. All exploration methods used by parallel coor-
dinates can be used as well since rotating the surface and parallel
projecting it reveals exactly the parallel coordinate representation.
This can be used as a starting point for the exploration of the trajec-
tory. Clustering and correlation can be visually detected (see [12]).
Rotating the surface a little bit reveals the evolution of the trajec-
tory over time without any animation methods that would have to
be used for parallel coordinates.

Convergence or divergence can be observed by varying the start-
ing coordinates of the trajectory slightly. The changing shape of
the surface shows for each dimension if its attracted or repelled by
some topological structure. If for one dimension a whole interval
is used for the starting points of trajectories the surface expands to
a volume which again can be used for a structural analysis of the
underlying dynamical system.
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Figure 2:Methods for the Visualization of High Dimensional Data (similar to [19])

4.2 Linking with Wings

This idea is based on a new method of linking data. Two arbi-
trary dimensions of the high-dimensional system are selected and
displayed as a two-dimensional trajectory within a base plane (the
high-dimensional trajectory is projected into a two-dimensional
subspace). The third dimension (along thez-axis) can now be used
to display a third variable over the base trajectory. if the resulting
three-dimensional trajectory is connected with the base trajectory
this connection can be thought of as a wing on the base trajectory.
This wing can be tilted ateach point within a plane normal to the
base trajectory. When different tilting angles are used several addi-
tional dimensions can be linked to the base trajectory on separate
wings (see Fig. 4).

x1

x2

x3 x4

Base
Trajectory

Figure 4:Two-dimensional base trajectory with two wings for the third and fourth
dimension linked to it

Theoretically any number of wings can be added to display high-
dimensional trajectories. As the number of wings increases occlu-
sion might become a severe problem. To avoid this the wings can
be rendered transparently with opaque trajectories at the top. Again
this method is easy to implement and fast allowing its use within an
interactive exploration tool. Such a system could for example allow
to animate a flight along the base trajectory, where the change in
the variables linked to wings can be seen easily.

The wings can also be textured with a grid texture allowing an
exact measurement of the wing dimensions. To overcome the prob-
lem of occlusion texture can be used to modulate the transparency
of the wings. Negative values of variables displayed on wings can
be shown by expanding the wing to the opposite side of the base
trajectory or by using an additive offset for each wing so that the
minimum of each variable is mapped to zero. For this approach the
zero line has to be encoded on the wing. This can again be done by
using some specific texture.

When a four-dimensional trajectory has to be displayed, the an-
gles of the wings can be chosen to be�

2
and��

2
. In this case

wings lie within the base plane. The trajectory is shown in a two-
dimensional image without any projectional distortions .

Self intersection of the wings can be a problem. The size of the
wings should be chosen to be rather small with respect to the size
of the base trajectories. This is required to avoid massive occlusion.
Furthermore the angles of the wings must not be too big. This en-
sures that the occurrance of self intersections of the wings within

regions where the base trajectory exhibits big curvature is not a se-
vere problem.

4.3 Three-dimensional Parallel Coordinates

Three-dimensional parallel coordinates are again based on the par-
allel coordinate method. As described in section 2.5 the ba-
sic idea of parallel coordinates is to depict each variable on a
one-dimensional space. All these one-dimensional spaces are put
together within a two-dimensional space and linked with one-
dimensional polylines. All information is packed in the two-
dimensional space. Since the visualization of three-dimensional
structures poses no problem we increased each dimension of the
parallel coordinate method. The basic information now resides in
separate two-dimensional spaces (planes) where two dimensional
trajectories are shown. These planes are combined within three-
space and linked by surfaces which connect the separated projec-
tions of trajectories (see left part of figure 5).

The positioning of the planes is more flexible in comparison to
the parallel lines of the parallel coordinate method. The planes can
be moved and rotated within three-space to avoid occlusion in dif-
ferent regions of the structure. The right side of Fig. 5 shows two
coinciding planes, where the connecting surface is bended normal
to the planes to give a better overview of the linking.
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x1=x3
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Figure 5: Linking parallel planes instead of lines extends the idea of parallel
coordinates by one dimension (left); these parallel planes can coincide, with three-
dimensional linking surfaces (right)

Placing the planes orthogonal to each other as shown on the left
side of Fig. 6 is another possibility of showing the structure of the
linkage of the separated trajectories. All these arrangements can
be stacked to allow the representation of even more dimensions.
An example is given in the right side of Fig. 6, where an eight-
dimensional trajectory is shown. Since the planes and linking sur-
faces are rendered transparently or are approximated with lines, no
massive occlusion occurs (notice that all four separate projections
of the trajectory can be seen easily).

If the structure of the trajectory is more complex, as for exam-
ple in the case of a trajectory of a chaotic attractor, the resulting
visualization can be rather crowded. Since the rendering of the pre-
sented structures is fast, interactive brushing methods can be used
to overcome this problem. For instance the linking surface can be
rendered transparently, and only a small temporal interval of the



linkage is rendered opaquely. When the interval is moved corre-
sponding parts of the trajectories can then be detected (see Fig. 12).
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Figure 6:Planes might be orthogonal (left) and stacking allows an arbitrary number
of dimensions (right)

When within one dimension a whole interval is chosen as ini-
tial region, the linking surfaces expand to linking volumes, whose
changing thickness reveals convergent and divergent regions of the
trajectory. Again this interval can be chosen interactively for each
dimension allowing a quick exploration of the behavior of the dy-
namical system.

5 Results

All three techniques described in section 4 have been implemented
into a rendering system. This prototype implementation has been
used to test the methods for robustness and expressiveness. It turned
out, that occlusion is a problem for still images, but adding trans-
parency and using animation help to overcome this disadvantage.
The methods should work fine within an interactive exploration
tool. The development of such a tool is currently done.

Figure 7:Mixed-Mode oscillations as formed by the peroxidase-oxidase model

Despite the fact that interactivity is necessary to use the full po-
tential of the presented techniques the following images give a fla-
vor of the different visualization methods. Figure 7 shows a trajec-
tory of a four-dimensional dynamical system, i.e., the peroxidase-
oxidase reaction model [10], as extruded parallel coordinates. The
chemical model shows mixed-mode oscillations (oscillations with
alternating amplitudes) in all variables, which is clearly visible
with extruded parallel coordinates. The use of parallel coordinates
would have needed animation techniques to show the mixed-mode
behavior of the model.

Figure 8 shows a trajectory of a chaotic attractor (five-
dimensional system). Again extruded parallel coordinates are used

Figure 8: Small jitter at the starting point (A) of a chaotic attractor yields large
effects after some time period (B)

Figure 9:Self intersecting wings due to high curvature of the base trajectory

for the visualization. To show the chaotic behavior of the attractor,
the starting point of the third dimension is slightly jittered (point
A) and three different trajectories (shown with different colors) are
superimposed. The tiny differences of the starting coordinates pro-
duced large changes after a few time steps of integration (points B).
Interestingly these differences are noticeable only in the first three
dimensions so far (integration over a longer time interval showed
diverging behavior in the fourth and fifth dimension also).

In Fig. 9 wings are applied to a base trajectory of the four-
dimensional wonderland model [8], which describes the interac-
tions of population, economy, environmental health and pollution.
Rather big wings with larger angles are used intentionally to show
the artifacts due to the intersecting wings at the cusp of the base
trajectory (point A). In spite of the self intersections of the wings
the overall behavior of the system is visible: The green trajectory
declines constantly along the whole trajectory, whereas the blue tra-
jectory (describing the environmental health) collapses at point A
and regenerates at point B (here the wings intersect again).

Figure 10 shows a hedge-hog visualization of a four-dimensional
data set. On a regular four-dimensional grid flow directions are de-
picted. The visualization shows a cyclic behavior in the first and
second dimension, whereas the third dimension is attracted and the
fourth is repelled by the origin. The cyclic behavior in the ground
plane is additionally visualized by using oriented line integral con-



Figure 10:Hedge-hog visualization of a four-dimensional data set

Figure 11:A six-dimensional stacked predator-preymodel with simple linkage

volution [20].
In Fig. 11 a six-dimensional predator prey system is stacked with

the extended parallel coordinate method. Due to the simple shape
of the separated trajectories, the linking surfaces can be seen easily
and so the whole dynamics of that specific trajectory is visible. Fig.
12 on the other hand shows a trajectory of a complex dynamical
system derived from a Lorenz system. Here the structure of the
linkage can not be perceived easily. So a small temporal interval
has been highlighted on the linking surface. This interval can be
animated or interactively moved forward and backward to reveal
the structure of the linkage.

6 Conclusion and Future Work

This paper presents various ideas to visualize trajectories of higher
dimensional dynamical systems. These techniques are: an ex-
trusion of parallel coordinates to the third dimension, a two-
dimensional projection with a new type of linking dimensions on
a wing of a trajectory, and the extension of the parallel coordinate
technique by using ”parallel” planes and three dimensional surfaces
for the linkage. Although a prototype implementation shows some
interesting results further research is still necessary to gain experi-
ence in applying these techniques to large real world data. Since all
methods are easy to implement and allow a fast calculation of visu-

Figure 12:Complex linkage with highlighted time interval for the trajectory of a
chaotic attractor

alizations they meet the basic requirements for the implementation
within an interactive exploration tool. In the process of implement-
ing this software some data brushing methods can be adapted to
work with the presented methods.

Another interesting phenomenon we like to explore in the future
is the structure of the linkage surface. When using parallel coordi-
nates, some structures that are formed by the polylines give insight
to the structure of the original data. Since the methods introduced
in this paper are extensions to the parallel coordinates technique,
comparable structures may also occur and give insight to the struc-
ture of the dynamical system. Volume visualization methods and
cross section methods will be used to extract these structure out of
the surfaces linking the separated projections of trajectories.
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