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Abstract

Automatic segmentation of bony structures in CT angiography
datasets is an essential pre-processing step necessary for most visu-
alization and analysis tasks. Since traditional density and gradient
operators fail in non-trivial cases (or at last require extensive op-
erator work), we propose a new method for segmentation of CTA
data based on a probabilistic atlas. Storing densities and masks of
previously manually segmented tissues to the atlas can constitute
a statistical information base for latter accurate segmentation. In
order to eliminate dimensional and anatomic variability of the at-
las input datasets, these have to be spatially normalized (registered)
first by applying a non-rigid transformation. After this transfor-
mation, densities and tissue masks are statistically processed (e.g.
averaged) within the atlas. Records in the atlas can be later evalu-
ated for estimating the probability of bone tissue in a voxel of an
unsegmented dataset.

Keywords: CT Angiography, Knowledge Based Segmentation,
Probabilistic Atlas, Thin-Plate Spline, Distance Fields, Histogram
Classification

1 Introduction

In this paper we present results of an ongoing, interdisciplinary re-
search project [1], aimed at visualization and treatment planning
of the peripheral arterial occlusive disease (PAOD) by means of
CT angiography (CTA). PAOD is characterized by the formation of
atherosclerotic plaque and vessel wall calcifications, which lead to
luminal stenoses (narrowing) or complete occlusion of the involved
arteries [3]. Diminished blood flow to the legs causes restricted
mobility, pain, and even necrosis, eventually leading to death.

CTA of the peripheral arteries is performed using a multiple-
detector row CT scanner, which allows to acquire a series of 1500-
2000 transverse images of

���������	���
12-bit pixels through the

anatomic region of interest. While the scanning procedure requires
only 30–40 seconds, the analysis of such huge datasets within ac-
ceptable time is impossible without the application of dedicated vi-
sualization techniques. Manual image editing and segmentation us-
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ing currently available commercial medical visualization worksta-
tions is prohibitively long—in the order of two to four hours, even
for a well trained operator.

First results from our early research led to promising techniques
for segmentation and visualization of peripheral CTA datasets [12,
13]. For segmentation we took advantage of the fact that the voxel
density of the enhanced vessels is above that of the surrounding
soft tissue. Thus, density based operators (thresholding, gradients)
were used to detect the vessels by a graph-theoretic approach (ves-
sel tracking [20]). Since the vessel density range overlaps with that
of the bones, it proved advantageous to identify the bones first by
locally dependent thresholding and to exploit the fact that bones
occupy a much larger volume that vessels.

This approach allowed a considerable decrease in postprocess-
ing time for visualizing the peripheral arterial tree, in the range of
15 to 45 minutes of user interaction for each clinical case. This
allowed us to evaluate the technique in a controlled clinical envi-
ronment [15]. Currently, 1 to 2 patients with peripheral arterial
occlusive disease are processed at the Department of Angiography
and Interventional Radiology, University of Vienna General Hos-
pital (Austria) every day. For routine clinical use, however, user
interaction times of at most 15 minutes are desirable. The user
interaction, which is still required is due to the complex anatomy
and the overlapping density properties of the contrast-medium en-
hanced vessels and neighboring bones.

The goal of this paper is to introduce a knowledge-based ap-
proach for identification and labeling of vessels and vessel trees in
CTA data. When fully implemented, will provide us with infor-
mation precise enough for reliable visualization of vessel trees for
diagnosis by a radiologist, as well as for automatic detection and
quantification of the PAOD. The first step along the way to achieve
this goal is to reliably identify bone tissues in the CTA data, since
they can interfere in vessel identification due to their similar density
properties. Once identified, the bone tissue can be excluded from
consideration, thus leaving enhanced vessels and calcifications as
the brightest tissues in the data, which would considerably simplify
their identification.

Bone tissue labeling in CT data is often a very simple problem.
Cortical bone has significantly higher X-ray attenuation than other
tissues and simple thresholding can usually be safely used for its
identification. However, this is not applicable for trabecular bone,
which is the building material of a considerable amount of bones
of the human skeleton. Its density is only slightly above that of the
soft tissue, and—in addition—it overlaps with the density of the en-
hanced vessels in CTA. Moreover, there is a considerable variabil-
ity of the density of trabecular bone between individuals. There-
fore, we propose a knowledge-based approach for segmentation of
bones, based on a probabilistic atlas of the skeletal anatomy, which
will provide us with supplementary information guiding the data
classification in bone/no-bone classes. Probabilistic atlases have
been used by several authors to perform various tasks predomi-
nantly in human brain analysis [10, 18]. However, a similar ap-



proach to the segmentation of large bones from CT data is currently
unknown to us.

Thus, the bone identification task splits into atlas construction
and usage. In the construction phase, a number of data sets is man-
ually segmented by an expert and both the original data and seg-
mented data are non-rigidly transformed to a common coordinate
space. There, statistical properties of the transformed data are eval-
uated (mean density field, probability of bone presence, etc). This
information is later used in the segmentation of an unknown data
set, which is similarly transformed to the same coordinate space.
Currently, the transformation is defined manually by specification
of several landmark points, which is the only necessary user inter-
action.

While the procedure presented in this paper is designed specifi-
cally for bone extraction, we believe that it would be applicable to
a wider class of segmentation problems. For example, we intend to
apply it in a similar way also to the segmentation of the vessel tree
after the bone removal, where we want to represent spatial informa-
tion about the vessel segments and bifurcations.

The paper is organized as follows. In the second section we give
an overview of related techniques known from the literature. In
the third we summarize properties of CTA data from the point of
view of segmentation and in the fourth we present the considera-
tions whicj led us to the idea of an atlas-based segmentation tech-
nique. In the fifth we describe the sequence of operations required
to build the atlas, whereas in the sixth we show how to use it for
segmentation of unknown data sets. In the last but one section we
give details about its implementation, and, finally, in the last section
we summarize the results and sketch directions of our future work.

2 Related work

It is impossible to give an overview of 2D and 3D data segmenta-
tion techniques in a short paper, since normally it is the subject of
voluminous textbooks and monographes [9, 2]. Therefore, we re-
strict ourselves here only to topics relevant to the presented paper:
application of distance fields and deformable and statistical atlases
in segmentation.

Distance transformations (DT) and distance fields (DF, arrays
holding distances to certain objects of interest) [5] represent a pow-
erful means to encode knowledge about spatial relationships in both
planar and volumetric scenes. For example, DT stands in the back-
ground of a fully automatic scheme proposed for brain segmenta-
tion in MR scans by Brummer [6]. There, data voxels are classified
first according to a probabilistic density model. Since in MR data
different tissues occupy the same spectral space, in the second step
only those regions are classified as brain, which have at least a cer-
tain distance from the skin surface. The necessary DF is obtained
by skin identification by thresholding and a DT. Zeng et al [22] pro-
posed a technique for identification of the brain cortex, which takes
advantage of the fact that the cortex is a layer of approximately
3mm thickness. DTs are in this case used to measure the distance
between the inner and outer cortex surface.

Segmentation by means of deformable models and atlases are
usually applied when it is not possible to identify objects of inter-
est based solely on the density data. In this sense, they represent
a complement to the density based techniques, which in a prepro-
cessing step provide the low-level features for the subsequent atlas
matching [18, 17]. For example, Iosifescu et al [10] differentiate
between brain white and gray matter and cerebrospinal fluid in a
first stage by a classification algorithm based on interactive selec-
tion of representative samples for each tissue. In the second stage,
the segmented data set is elastically deformed to an atlas [14], in
order to measure the volumes of small brain structures. The defor-
mation itself is defined by the maximization of a local similarity
structure, leading to a multiresolution FEM solution.

The adaptive, template moderated, spatially varying statisti-
cal classification (ATM-SVC) technique proposed by Warfield et
al [21] combines matching to an anatomical atlas with density
based classification in an iterative loop. Its aim is to propose a gen-
eral purpose technique for segmentation in different anatomy areas
and was tested, among others, on the segmentation of knee carti-
lage from MRI data. First, a template of normal anatomy is build
by an operator-driven manual or semiautomatic technique. Sub-
sequently, it is converted to a set of distance maps, each indicating
locations where bones and cartilage are likely to be found. For each
unknown data set its statistical density model is formed by manual
selection of representative voxels for each tissue type. The itera-
tive loop starts by a rigid transformation of the unknown data to
the template space. Then, coregistered distance and density prob-
ability data are classified by K-nearest neighbor classifiers. In the
loop, both the unknown data set and the template are matched by
an elastic matching procedure, which leads to improved tissue clas-
sification. The loop usually converges in three to five iterations.

3 Segmentation of Bones in CTA Data

In spite of the fact that bones are probably the most often visual-
ized tissue in medical imaging (with the exception of the brain), the
literature on its segmentation is very sparse even in the case of CT,
which is the major 3D modality used for bone imaging. This is due
to the fact that simple thresholding is usually sufficient to identify
the bone tissue based on its higher attenuation of X-rays as com-
pared to soft tissues. The most often discussed problem in segmen-
tation and visualization of bones is the partial volume effect (PVE).
The PVE manifests itself as data blurring and shifting densities of
structures with thickness comparable to the scanner sampling rate
to significantly lower values. This effect is usually accounted for in
visualization by means if non-binary classification and semitrans-
parent rendering [7, 16].

However, only cortical bone features the favorable high density.
A large proportion of the human skeleton is build up of porous tra-
becular bone. Due to its own low X-ray attenuation and PVE it
results in data density equal to or only a little higher than that of
soft tissues. This becomes even more important with older patients,
who are the major group affected by the lower extremity arterial
disease, since they often suffer from osteoporosis, too.

Specifically, in the case of CT-angiography, we distinguish four
relevant tissues: bone, soft tissue, contrast material enhanced blood
(vessels) and vessel wall calcifications, which often occupy the
same density space (Figure 1a):� vessel plaque calcifications overlap with high density bone,

and� blood overlaps with low-density bone, bone areas with PVE
and bone marrow.

The most important features which can significantly influence the
reliability of a segmentation technique are contacts between vessels
and bones, which, due to the overlapping density, cannot be iden-
tified by thresholding (Figure 1b), and interrupted thin vessels due
to the inhomogeneous distribution of the contrast agent and PVE
(mainly in areas, where the vessel is parallel to the scanning plane).

4 General Description of the Method

The implemented method is based on ideas formulated in discus-
sions with skilled radiologists. It seems to be inevitable to incorpo-
rate some pre-knowledge that comprises information about patient
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Figure 1: (a) CT-angiography data histogram, and (b) bone (ver-
tebral body) and blood vessel (abdominal aorta) with overlapping
densities. Close vicinity of both tissues may cause false intercon-
nections in segmentation by thresholding.

anatomy in segmentation, because methods based only on density
and gradient analysis simply cannot cope with the diversity of CTA
data. Similar to a skilled human radiologist, the computer also must
utilize spatial anatomic knowledge and be aware of what kind of tis-
sue could be in the processed areas. This idea leads us to our goal
to construct an atlas comprising spatial probabilistic existence in-
formation about given tissue types. This idea is also encouraged by
the anatomic diversity of the processed data sets that may appear
similar on the first sight, but are not on closer look.

In order to build and use such an atlas it is necessary to deal with
the following issues:� the spatial variability of the processed datasets, caused mainly

by the different positions of the patients during scanning,� the anatomic differences between patients, mainly due to body
proportions, sex and age,� the different scanners and scanning protocols used, resulting
in differences in data sampling, and� to extract, store and interpret the appropriate information of a
given tissue type.

Usage of non-rigid transformations (e.g. thin-plate spline warping)
can help to solve the first three issues. A solution to the last one can
be based on the idea of having a statistics of the possible densities
in the given spatial range, as well as representing the probability of
presence in this range. This idea is based on the observation that
the densities change heavily in the global extent, but just slightly
in the local range, and there exists a statistic measure of presence
of the given type of tissue in the given spatial range. This spatial
statistic measure can be transformed to a distance field which better
represents the probability of tissue presence also in the areas where
there is no relevant information.

The presented method consists of two independent steps: first,
we have to construct the atlas (Section 5) and second, we have to
use the information contained in the atlas for segmentation goals
(Section 6).

5 Atlas Construction

The probabilistic atlas (Figure 2) stores for each voxel information
regarding the Average bone density, Average distance to bone sur-

face and the distance variance. As an auxiliary information, nec-
essary when adding new data sets (records), it also stores the total
number of added records (Record count) and the number of records,
for which the voxel was identified as a bone voxel (Bone count).

The atlas’s Reference frame, which defines its dimensions, sam-
pling rate and a set of landmarks for registration is given by the
first inserted record. Having at disposal this reference frame, one
can easily add new records and compute the necessary informa-
tion. An input record for each new data set to be added to the at-
las consists of the original density volume, a manually segmented
bone mask and a set of landmarks, which define its correspondence
with the reference frame. Currently, the landmarks are set manu-
ally by a simple interactive utility and pairwise correspond to those
set in the reference frame. The density data is segmented by means
of the semiautomatic utility ISEG [19], which is based on interac-
tive thresholding, connected component analysis and application of
morphologic and logic operations.

When adding a new record to the atlas, both the density and mask
volumes are warped by means of the TPS transform (Section 5.1)
to the reference space. However, since the manual landmark setting
proved to be not precise enough, their position is optimized first by
means of a mutual information based cost function (Section 5.2). At
the next step, the atlas average bone density and average distance
volumes are updated, using the warped density and mask volumes
and the atlas record and bone count volumes. The distance volume
of the processed record is computed from the transformed mask
volume by the 345 chamfer distance transform [5]. Prior to the dis-
tance transform, the bone mask is subjected to morphologic closing
in order to fill in-bone holes which belong to areas filled by bone
marrow. A distance transform based closing [11] is used with clos-
ing distance equal to 16. Since in the segmentation phase we take
advantage not only of the mean distance, but also of its variance,
we store in the atlas also a sum of squared distances for each voxel.

5.1 The Thin-Plate Spline Transform

Thin-plate spline (TPS) is an elegant algebraic expression of the
dependence of the physical bending energy of a thin metal plate
on point constraints. Its extension to 3D space allows modeling
of shape deformation changes in 3D datasets (Figure 3). The TPS
transform is defined by [4]:

� 
 ������������������������ "!�� #$ % & �(' %*) �%,+.- ) �% (1)/0
 12�3��14�5����12�6�7��12 �!�� #$ % & �98 %*) �% +.- ) �% (2):;
 < � ��< � ����< � �7��<  !�� #$ % & �(= % ) �% +.- ) �% (3)

where > �@?5�3?A!CB and > �D?5/�?�:EB are points in source and target data
space respectively, and

) �% 
GF*�IH�� %KJ � �LF*�MHN� %OJ � �PFO!QH! % J � . The TPS parameters can be determined if the coordinates of
at least four corresponding points are known. When solving for the
transform parameters � % , 1 % , < % , ' % , 8 % and = % for the given point
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pairs, the following constraints must be also taken into account:#$ % & � ' % 
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These constraints ensure that the volume splines remain stable un-
der application of point loads (Figure 3).

(a) (b)

Figure 3: A typical result of the thin-plate-spline warp. (a) A 2D
slice through a 3D grid filled with 3 orthogonal sets of planes (b)
a 2D slice through the warped grid. The third set of planes is not
visible in (a).

5.2 Optimization of the TPS transformation

According to our experience, it is impossible to define the opti-
mal location of the control point pairs only by manual specifica-
tion of the landmarks. Such manual specification usually results
only in approximate data correspondence after the transformation
(Figure 4a). Therefore there is a need to optimize the position of
the control points in the datasets. The implemented optimization
procedure is based on maximizing the mutual information of the
transformed and reference data sets. The mutual information S�TVU
represents a measure of the mutual correspondence of two data setsW

and X , by by reflecting the number of relevant graphic elements
that coincide in both volumes:S T9U 
 $ % $�Y7Z F*� % ?51 Y J +.[]\ Z F*� % ?�1 Y JZ F*� % J Z F*1 Y J ? (5)

where
Z F_^ J is the density probability in images

W
and X respectively

and
Z F*� % ?_1 Y J is the probability for the combination of given densi-

ties to appear in the corresponding locations in both datasets. All
aforementioned probabilities are approximated by means of either
1D histograms or a 2D scatterplot.

By maximizing the value of S we maximize the above mentioned
correspondence between the transformed and reference dataset.
Due to the high variability of human body properties we apply Eq. 5
only to the subset of the data defined by the bone mask. This de-
cision stems from the observation of larger ”similarity” between
human skeletons than between whole human bodies. A straight-
forward implementation of the optimization method leads to un-
satisfactory results. The mutual information has many local min-
ima because of the ”nearly binary” character of both registered im-
ages which is caused by data masking through the bone selection

mask. To overcome this shortcoming, we filter the data by a low-
pass Gaussian filter.

In cost optimization it is necessary to evaluate the optimized
function many times. Since the computational complexity of the
TPS transform is linear both in the number of voxels and the num-
ber of control points, one pass of the transformation for a full-sized
data set can take a considerable amount of time and the duration
of the optimization would become a problem. Fortunately, sub-
sampled datasets and scaled coordinates of landmarks proved to
be meaningful and delivered good and stable results in acceptable
time.

The results acquired by the optimized TPS transform on sub-
sampled datasets are, although not ideal (Figure 4b), still much bet-
ter in comparison with unoptimized ones (Figure 4a).

(a)

(b)

Figure 4: An overlayed crossection of warped data sets before (a)
and after (b) the optimization.

5.3 Probability Models Derived from the Atlas

The data gathered in the atlas and providing information on average
tissue density and average distance to bone surface is not used for
the segmentation of unknown data sets directly.

Firstly, the information derived from the atlas is specific to the
CTA scans of lower extremities. Central parts of long bones are
characterized by a high density. Therefore bone-tissue histograms
of 2D transversal slices depend on the slice position (Figure 5). This
leads to the idea to exploit this dependency for bone tissue segmen-
tation by means of the analysis of spatially dependent histograms.
For each slice of the average bone density volume a histogram is
built (binned to 256 density levels) and approximated by a modi-
fied Gaussian distribution:Z�` 
Pacb,d�e.f�dDgf_hi_j ?lknm SporqS� ? [Es�t�u6v5w k.x u ? (6)

where qS and y are mean bone density and its standard deviation
within the slice. S is the density of a voxel of the same slice. This
formula assumes that bone is the most dense tissue and therefore all
voxels with density above the bone average are assigned probabil-
ity 1. Figure 6b shows this probability for all voxels in a transversal
slice of one of the data sets used for atlas construction. In com-
parison to the unmodified image density (Figure 6a), we observe a
significant enhancement of bone structures and their spatially ho-
mogeneous density distribution.



Probability
Z�`

is, however, not sufficient for bone identification
in an unknown data set, since it does not eliminate the problem of
those no-bone tissues misclassified as bones, which share the same
spectral space with bones.

A similar situation occurs in brain segmentation, where brain and
non-brain tissues share the same density space in a similar way. As
a solution, a probabilistic atlas has been build [8] by manual seg-
mentation and rigid registration of brains of more than 300 healthy
individuals. By averaging binary masks of tissues of interest a prob-
ability map was obtained, which was subsequently used in classifi-
cation as the Bayesian prior. Our situation is different because we
currently do not have a sufficient number of data sets in the atlas
and also because of the higher variability of bone shapes. There-
fore, instead of deriving the presence probability directly from the
averaged binary masks, we derive it from average of distance maps.
This significantly blurs the bone masks and thus makes the clas-
sification tool less sensitive to the insufficient number of data sets
in the atlas (Figure 6c). From the averaged distance map qz and
its standard deviation y we derive the spatial presence probability
(Figure 6d) in point � byZ({ F*� J 
 b}| g~,�n���iKj��.�,�	�

(7)

In classification of unknown data sets, we merge both probability
measures

Z `
and

Z({
into a joint probability

Z YA� % #]� 
 Z ` Z({ , which,
after thresholding, results in the final bone mask.

(a) (b) (c)

Figure 5: Dependency of density histograms on the slice position.
Each row in (a) and (b) shows the histogram of the corresponding
slice in a dataset, the MIP of which is presented in (c). (a) shows
histograms of all body tissues while (b) only those of segmented
bones.

6 Bone Segmentation by Means of the At-
las

Segmentation of an unknown dataset by means of the information
provided by the atlas requires several steps (see Figure 7).

First, it is necessary to transform the unknown data to the ref-
erence atlas frame. Similarly to the atlas construction, we interac-
tively define the set of landmarks, pairwise corresponding to those

(a) (b)

(c) (d)

Figure 6: A transversal slice of (a) the original data set, (b) prob-
ability of bone presence based on the density, (c) distance fields
showing distance to the bone surface and (d) spatial probability of
the bone tissue.

used for construction of the atlas. Once the transformation is de-
fined, the unknown data set is transformed to the atlas space and
the probabilities

Z `
and

Z({
are computed according to Section 5.3.

Finally, the bone mask is obtained by thresholding the joint proba-
bility

Z YA� % #]� at level R � � .
Similarly to the atlas construction, the manually set landmarks

result in an insufficient correlation of the data set to the atlas. How-
ever, in this case we do not have the necessary bone masks, which
were obtained interactively in the case of atlas construction. In-
stead, we approximately identify the bone tissue by thresholding
the density at a fixed threshold value. We use this mask for opti-
mization of the transformation, in spite of the fact that also no-bone
tissues are selected. Since these tissues occupy significantly less
space than bones, their influence is suppressed by downscaling the
mask and by Gaussian blurring.

7 Implementation and Results

The algorithm was implemented on a dual AMD Athlon 1.6 GHz
CPU workstation with 2GB of RAM. The addition of a new dataset
to the atlas takes about 7 minutes and the segmentation of an un-
known patient dataset takes a comparable amount of time. A ma-
jor problem of the current implementation is its very high memory
requirements since for each data voxel � � R bytes of additional
information have to be added. This causes an initially 300-600
MB dataset to grow easily over 2 GB, which results in memory
management problems (the operation system limits us to 2GB ad-
dress space per task) and rapidly deteriorates the performance of
the whole application.

In the future, we will have to solve this problem by implementing
some type of run-time data compression. A CTA dataset typically
comprises substantial parts of the data representing uninteresting
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Figure 7: Atlas usage.

background (air and parts of the tomograph), which can be eas-
ily identified by a low threshold value. A modified version of the
run-length encoding scheme, compressing only the background re-
gions at both ends of each scanline, was used for this purpose in
the aforementioned segmentation tool [19], saving up to 40% of
memory space and could be appliede here, too.

Figure 8 shows results of the actual test implementation. Here,
only a part of the whole space captured by a CTA based PAOD
study was used to ease and speed up the development. In areas
where the bone anatomy does not vary significantly, we get very
accurate results. Bone tissue is marked with very high probability,
whereas vessels with contrast agent and calcifications are filtered
out. On the other side, in regions with significant anatomical vari-
ability (Figure 8a), we do not get satisfactory segmentation yet. We
partially attribute this to the currently insufficient number of records
in the atlas and partially to the low number of control points used
to define the TPS warping, rendering it to be not flexible enough.

8 Conclusion and Future Work

We proposed a new framework for knowledge-based segmenta-
tion of CT data sets by means of a probabilistic atlas. The atlas
stores voxel density characteristics and spatial information about
the anatomy by elastically matching manually segmented training
data sets to a common reference space. In segmentation of an un-
known data set, the information stored in the atlas is utilized by
warping the data set to the atlas reference space and deriving prob-
ability information about the occupancy of a voxel from it.

This general concept was implemented for segmentation of
bones from CTA data sets. The atlas was created by TPS warp-
ing of five manually segmented data sets to a common reference
space and provides us with spatial distribution of the average bone
tissue density and the average distance of bone/no-bone tissues. In
segmentation, the dependency of the bone tissue density distribu-
tion along the longitudinal axis of the patients body is extracted
from the atlas, together with the spatial probability of bone tissue
presence.

The technique is still in an early stage of development and is cur-
rently not reliable enough to be used in a daily routine. We see the
highest potential for its improvement in the used elastic matching
and classification techniques. Further investigation of the properties
of the TPS transform is necessary, aimed at speed up and fit preci-
sion improvement. In this sense we intend to develop a procedure
for automatic definition of the landmark set. Simultaneously, dif-
ferent elastic deformation techniques should be tested. The second
source of possible improvements resides in the data classification
technique. Obviously, the five data sets, which the atlas is currently
based on, are not enough to build a reliable statistical model. There-
fore, new data sets should be added, until atlas stability is achieved
(i.e., adding new data sets should not influence the atlas signifi-
cantly anymore). Further, new ways how to use the anatomic infor-
mation of the atlas should be sought in order to make it more robust,
namely in those cases, where the new anatomy significantly differs
from the atlas. And finally, questions regarding the precision of the
technique should be addressed, focused on limits of its application
and ways how to measure its efficiency.
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