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Overview 
 

Abstract 

Different approaches of visualization techniques and segmentation methods for 

computed tomograpy angiography datasets are investigated. The particular 

characteristics of this data are addressed. A global path-optimisation method for a 

reliability-enhanced vessel-tracking method was introduced. Furthermore an 

interactive segmentation technique focusing on the clinical use is proposed.  

Kurzfassung 

Verschiedene Ansätze von Visualisierungstechniken und Segmentierungs-

methoden für Datensätze aus der Computertomograhie-Angiographie werden 

untersucht. Auf die besonderen Eigenschaften dieser Daten wird näher 

eingegangen. Eine Methode zur globalen Optimierung eines Pfades für 

zuverlässige Gefäßverfolgung wird vorgestellt. Weiters wird eine interaktive 

Segmentierungstechnik mit Fokus auf den klinischen Einsatz vorgeschlagen. 
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Chapter 1 

Introduction 
 

Medical image analysis is a rapidly growing field in information technology. 

Especially in the field of computed tomography new areas of application arise due 

to the progress in computed tomography modalities. As higher resolutions in the 

spatial domain can be achieved, further research in new investigation techniques 

has to be done. The methods used for these techniques depend very much on the 

application, which they are focused on. One of such applications is computed 

tomography angiography (CTA) of peripheral vascular diseases. 

Lower extremity arterial disease is a significant health problem in the industrial 

world. The prevalence of symptomatic disease (intermittent claudication) in 

patients between 55 and 74 years of age is 4.6% [24]. For planning of surgical or 

transluminal revascularization procedures of patients with sever claudication or 

limb threatening ischemia, the entire inflow and runoff vessels of the lower 

extremities need to be visualized. Today, intraarterial digital subtraction 

angiography (iaDSA) is the pretherapeutic imaging technique of choice. iaDSA, 

however, is an invasive and costly procedure, which requires arterial 

catheterisation. A non-invasive technique for imaging the entire inflow and runoff 

vessels is therefore highly desirable. 

Computed tomography angiography (CTA) of the arteries using standard 

(single-slice) helical CT has been performed previously and has shown high 

accuracy in the detection of vascular occlusions and in the grading of high-grade 

stenoses. Latest technical developments in CT – notably multi-slice helical CT – 
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allow an approximately three-fold increase of volume coverage, while 

maintaining longitudinal resolution, and without incurring more helical artifacts. 

Multi-slice helical CT thus has the potential to accurately show the entirety of the 

lower extremity vessels with a single intravenous contrast-medium injection at 

unprecedented, near isotropic spatial resolution. 

In order to visualize the entire arterial system of the lower-limb vessels with CTA, 

a stack of approximately 900 to 1500 transversal images have to be reconstructed 

per patient. It is obvious, that such datasets cannot be reviewed by a radiologist on 

the basis of single images to diagnose the presence, degree, and location of 

obstructive vascular diseases. Image post-processing is thus an indispensable 

prerequisite for using multi-slice CTA as a non-invasive imaging tool. 

Currently available editing and rendering techniques require more than 4 hours of 

manual editing and interaction of a well-trained user (radiologist or technologist) 

to obtain images that provide any diagnostical value. Compared to the acquisition 

time of 25 to 60 seconds it is obvious that post-processing time has to be reduced. 

Segmentation of medical data is a very difficult task. A lot of research has been 

done up to now by many groups of scientists around the world. However, no fully 

automatic segmentation technique for medical image analysis is known yet which 

produces correct results in all possible cases. In the following two different 

investigation methods are presented which provide semi-automatic investigation 

for arteries of the lower limbs. The first one proposes a new technique for the 

generation of curved planar reformations. The second approach was developed as 

a combination of well-established techniques. 

In chapter 2 the acquisition and the main properties of the used datasets are 

discussed. Furthermore some cases of the spatial relationship between vessel and 

bony structures are described in order to give a better insight into the problematic 

properties of CTA datasets. 

Chapter 3 gives a rough overview of the most common visualization techniques in 

medical image processing. The focal point is set on techniques that are used later 

on. 
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The segmentation techniques described in chapter 4 are the current state of the art 

in medical image processing. Furthermore these techniques are put into relation 

with CTA datasets of lower extremities. 

In chapter 5 the two proposed algorithms are described in detail. The theoretical 

background as well as the similarities and differences to existing algorithms are 

described. 

Chapter 6 gives a short insight into implementation details and complexity 

estimations. In chapter 7 the results of the used algorithms are presented. A short 

discussion and conclusions are stated in chapter 8. In chapter 9 a short version of 

the thesis is added, pointing out the most important topics. Chapter 10 is an 

acknowledgment to all persons who supported the author of this thesis. 

 

 

 

See where you are, 

Define, where you want to be, 

Make your plan, and 

Go! 

 

Robert Johnson 
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Chapter 2 

Characteristics of the patients’ 

datasets 
 

This chapter describes the properties of the datasets in more detail. A short section 

deals with the acquisition methods used in clinical environments. The most 

relevant arterial diseases targeted by CTA are described. Furthermore the 

properties and the spatial relationships between bones and vessels within the 

datasets are discussed. 

2.1 Data acquisition 

Computed tomography angiography (CTA) is a true volumetric imaging modality 

for non-invasive imaging of the human arterial system. The principle of CTA is to 

rapidly acquire a series (stack) of cross-sectional (transversal) CT images through 

the human body while at the same time opacifying the arterial system with a 

radiographic contrast-medium. The contrast-medium is administered 

intravenously, synchronized with the acquisition time, which is in the range of 25 

to 60 seconds. 

The latest technical development in computed tomography (CT) is multi-slice CT.  

In contrast to standard single-slice CT, this technique simultaneously acquires 4 
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slices per revolution of the x-ray tube around the patient (see figure 2.1). Together 

with faster acquisition times, this results in a higher spatial resolution and 

increased volume coverage in the longitudinal or z-direction and thus less partial 

volume effects. Only with multi-slice CT technology it has become possible to 

perform a CT angiography of the entire arterial tree of the lower extremities. 
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Figure 2.1: The multi-slice CT method
asets 

t of a stack of transversal (xy-plane) cross-sectional images. 
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 1500 cross-sectional images, stacked in the longitudinal or 

can be characterized by an inherent spatial domain consisting 
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ensity) values in the datasets are given in Hounsfield units 

, water has an attenuation value of 0 HU; the attenuation 

  



CHAPTER 2. CHARACTERISTICS OF THE PATIENTS’ DATASETS 6 

 

2.3 Properties of arteries 

The arterial tree of interest, which supplies blood to the legs, includes the 

abdominal aorta, the pelvic arteries and the arteries of both legs. The entire 

vascular tree including the abdominal aorta is shown in figure 2.2. Usually the 

attenuation values of opacified blood within the vessels varies from 70 to 480 HU. 

This is because of inhomogenous vascular opacification and because of changes 

of the luminal diameter. The diameter of blood vessels ranges from 45 voxels 

around the aorta down to 1 voxel at the bottom end of the vessel tree. 

The most relevant arterial abnormalities are: 

• Stenosis: A stenosis is a narrowing of the arterial flow lumen. Arterial 

stenoses are caused by atherosclerotic plaque (as can be seen in figure 

2.2a). Atherosclerotic plaques are soft tissue density  lesions within the 

vessel wall, but plaques may also calcify. Atherosclerotic plaques often 

occur near the areas of high turbulences, such as bifurcations and bends. A 

bifurcation is for example the area where the aorta branches into the iliac 

(pelvic) arteries. 

• Occlusion: A complete obstruction of a vessel is referred to as an 

occlusion. The blood flow is redirected through secondary vessels, which 

circumvent the occluded vascular segment, and which are called collateral 

vessels. An example of an arterial occlusion is shown in figure 2.2c. 

• Calcification: The vessel wall of diseased arteries, as well as 

atherosclerotic plaque may calcify. With CT, calcified tissue is of high 

attenuation.  In figure 2.2 several areas of calcification can be seen. One is 

marked with circle b. 
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Figure 2.2: The vessel tree of the lower extremities. a) a short, segmental stenosis 

in the femoral artery. b) calcification near the aortic bifurcation. c) a long 

occlusion in the femoro-popliteal artery. 

2.4 Properties of bones 

In contrast to magnetic resonance angiography (MRA) bones are visible in CTA 

due to their high density. Usually bones have a non-monotonic density as shown 

in figure 2.3. At the level of the knee the density is lower than elsewhere, e.g. in 



CHAPTER 2. CHARACTERISTICS OF THE PATIENTS’ DATASETS 8 

 

the shinbone. It is clearly visible in figure 2.3 that the bone is not solid as one 

might expect. Inside the bone the density is much lower because of the bone 

marrow. The density values therefore range from 70 to 1876 HU. 

 

 

Figure 2.3: Two cutting planes of a CTA-Dataset. 

2.5 Range of density values 

As mentioned above the density of the four different tissues of interest overlap 

significantly. The four different categories are the bones, the blood opacified with 
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contrast agent, calcifications and the remaining soft tissue. A comparison can be 

seen in table 2.1. 

 

 

Table 2.1: Comparison of the density intervals of the four different tissues in 

absolute data values. (i.e., a density-data value acquired by the CTA procedure of 

1500 corresponds to  500 Hounsfield units (HU)) 

2.6 Spatial arrangement of different objects 

Apart from the range of the density values the spatial arrangement of different 

objects is a critical point. Especially for segmentation algorithms, which will be 

described below, this is a key factor to their success. During the research and 

evaluation process some particularily noteworthy spatial arrangements were 

discovered.  

2.6.1 Spatial vicinity of bone and vessel 

Especially in the lower (calf) portion of the vessel tree, arteries frequently come 

very close to bones. This situation can be seen in figure 2.4. In the center of the 

left image the femur (thigh bone) with an artery to it’s right border can be seen. 

The same picture contains an artery with calcification in the right lower part of the 

figure. On the right side the corresponding height field of density values is shown. 

It is difficult to distinguish the artery near the bone from the surrounding soft 

tissue. 
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Figure 2.4: Left: Grey scale image of a 150 x 150 cutout of a slice. Right: Height 

field of the same region based on the density value. The range is from 0 to 2500 

HU. 

2.6.2 Spatial vicinity of bone and calcification 

It may occur that calcified vessel walls and bony structures come together very 

closely. In this case aliasing and partial volume effects might merge these two 

objects. This situation can be seen in figure 2.5. 

 

 

Figure 2.5: Cut out of the aorta with circular calcification of the vessel wall in 

close vicinity to a lumbar vertebra. Note that no contrast agent was applied in this 

case. 
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2.6.3 Fuzzy border 

As mentioned in section 2.4 bones are not entirely bordered by high-density 

values. In some cases arteries may come close to regions where the bones are less 

dense. Hence, no exact separation between bones and arteries based on their 

attenuation values can be done in this situation (as can be seen in figure 2.6). 

 

 

Figure 2.6: A part of a CTA-dataset in the area of the pelvic bone. The tight 

spatial relationship of a bony structure with low density and an contrast enhanced 

artery is clearly visible. 

2.7 Conclusions 

Multi-slice CTA provides high-resolution three-dimensional datasets of the lower 

extremities and their arterial tree. The first challenge in an attempt to 

automatically extract the arterial system in the datasets is that the density values 

of different tissues overlap. The second difficulty is the tight spatial relationship 

of different objects in some anatomic regions. Another inherent problem with 

lower-extremity CTA-datasets is their large size. For these reasons algorithms 

applied to these datasets have to be checked carefully concerning their accuracy 

and efficiency in order to retrieve satisfying results in an acceptable time. 



 

  12

 

 

Chapter 3 

Visualization techniques 
 

Visualization is a rather wide-spread field of research. There are a lot of different 

areas, for instance flow visualization, information visualization, etc. This chapter 

will focus on volume-visualization techniques, which are applicable to 

CTA-datasets. 

3.1 Slicing 

Slicing is a very simple visualization method. However it provides a way to 

precisely navigate through the whole dataset. This feature is provided by almost 

every visualization systems dealing with CT data.  

The basic concept is to resample the volume data on three planes perpendicular to 

the x-, y- and z-axes (transversal aka axial, coronal, and saggital). It is up to the 

user to change the position of the planes within the dataset (see figure 2.3). In this 

way it is possible to investigate the whole dataset by viewing the different 

cutting-planes. The data values are usually displayed using grayscale images. In 

common commercial visualization systems the technique of slicing is known as 

Multiplanar Reconstruction (MPR). 

It is very often desirable to highlight different properties within the dataset by 

focusing on a subset of data values. This method is called windowing and is 
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defined as a function that can be seen in figure 3.1. The window center and 

window width define an interval of data values. Every data value below the lower 

boundary of the interval is displayed as black. Data values above the upper 

boundary are displayed as white. Within the windowing interval the color is 

interpolated according to the data value. 

 

 

Figure 3.1: The windowing function 

The drawback of slicing is the extremely time consuming process of inspection. 

The reason is that the objects of interest (blood vessels, in our case) are not 

entirely visible within one slice. Obviously it is impracticable for a surgeon to 

browse through more than 1000 slices per patient. 

3.2 Direct volume rendering 

Direct volume rendering is a visualization technique that is capable of displaying 

a volume dataset in its entirety. Internal structures can be emphasized by using 

transfer functions and transparency values, which map data values to optical 

properties. Several different algorithms exist for direct volume rendering: 

• Ray casting: For every pixel in the pixel space a ray is cast through the 

voxel space (i.e., the cuboid made up by the volume data set). The 

direction and starting point of the ray depends on the viewing direction 

and the location of the observer. The resulting pixel value is computed 

from all voxels hit by the ray [2] by means of integrating the optical 
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properties of the traversed volume data set. Therefore, ray casting is a 

typical image-order rendering technique. An example image can be seen in 

figure 3.2. In general this algorithm is computationally expensive and not 

fast enough to display volume data interactively. For this reason the 

application of ray casting in an interactive medical environment is 

impractical. 

 

 

Figure 3.2: Direct volume rendering of a human head dataset. For this image a ray 

casting technique is used. The resolution of this sample-dataset is 184 x 256 x 170 

voxels and the image resolution is 512 x 512 pixel.  

 

• Shear-warp factorization: The basic idea of this technique is to achieve a 

trivial case traversing the viewing rays through the dataset by shearing the 

whole dataset in a first step. Shearing is done until all voxels along the 

viewing direction are aligned evenly in the computer’s memory space. As 

a result of this first step a distorted image is produced. A second step has 

to be applied in order to achieve an undistorted picture. The basic process 
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can be seen in figure 3.3.  The rendering speed can further be increased by 

run-length encoding the original data and skipping already opaque pixels 

in the pixel space. In this way interactive visualization of datasets with a 

size of up to 256³ is possible [3]. The drawbacks of this object-order 

method are the poor zooming capabilities because of the 1:1 ratio between 

picture size and voxel set size.  

Because of its simplicity this algorithm is used in a well-known 

hardware-based volume-rendering accelerator [4]. The VolumePro 500 

board is an add on for PC-class computers based on the PCI interface. This 

graphics-accelerator device renders a volume of up to 256³ voxels in real 

time. The lightning is based on the Phong lightning model. The quality of 

the final image (i.e., after user interaction) is enhanced using 

supersampling along the rays. 

 

 

Figure 3.3: Shear-warp factorization [3]. 
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• Splatting: This object-order rendering technique generates a footprint of 

every voxel in the pixel space [26]. One can image this process as 

throwing a snowball on a wall. The resulting footprints are composed 

within the pixel space. This technique produces high quality images in a 

possibly adaptive way. A tradeoff between fast rendering and high quality 

has to be done. 

 

3.2.1 Maximum intensity projection 

Maximum intensity projection (MIP) is a visualization technique, which extracts 

high intensity structures from a dataset. For each pixel only the most intense voxel 

value along the corresponding viewing ray is displayed. Therefore it does not 

matter if an area of voxels with lower intensity lies in front of a region with higher 

values or behind that region. Only the region with higher data values will be 

visible. As can be seen in figure 3.4 bones will always hide vessels if these 

structures cross each other. Note that the left MIP in figure 3.4 is taken from the 

same dataset as the MIP on the right side in figure 3.4. On the right image, all 

bone structures where segmented and removed. Therefore it provides a much 

better overview of the vessel tree as the MIP on the left side. For this reason it is 

desirable to provide a possibility to segment bone structures. 

Fast algorithms exist for calculating maximum intensity projections. They are 

mainly based on the shear-warp factorization. In some cases an intelligent analysis 

of the data can eliminate voxels that will never have an impact on the resulting 

image. Acceptable frame rates can be achieved without hardware acceleration for 

datasets of a size of up to 256x256x124 even on low-end workstations [1]. 
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Figure 3.4: MIP of a CTA-dataset including bones (left) and bones removed 

(right).  

3.2.2 Compositing in direct volume rendering 

The compositing method takes all density values along a viewing ray into 

account. The traversal can be front-to-back compositing, which allows early 

termination when a certain opacity threshold is reached. Another possibility is 

back-to-front compositing, which does not need an accumulation buffer for the 

accumulated opacity.  

To a voxel at position xi an opacity α(xi) is assigned according to its intensity 

value and its local density-gradient vector. Furthermore a color c(xi) is assigned to 

each voxel. The resulting colour value C for a pixel is defined recursively along 

the ray. The following equation is evaluated for back-to-front compositing [2]:  
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 )()())(1(1 iiijj xxcxCC αα ⋅+−⋅=+  (3.1) 

The equation for front-to-back compositing is similar: 

 )()()1(1 iiakkjj xxcCC αα ⋅⋅−+=+  (3.2) 

where 

 )()1( iakkakkakk xαααα ⋅−+=  (3.3) 

Both methods produce the same results and only differ in terms of performance. 

 

Figure 3.5: Left the CTA-dataset is shown. On the right side bones were removed. 

Both pictures are rendered using the same transfer function. The shape of the 

bones was made visible in the right image as a landmark for the surgeon. 
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Assigning a color and opacity to a certain vertex is defined by a so-called transfer 

function. A major goal of this technique is to extract areas of equal intensity from 

the dataset. Some of these regions may have a certain transparency in order to 

provide a better overview. This technique provides a kind of low-level tissue 

classification [2]. 

A transfer function can be defined highlighting the vessel structures by assigning 

a high transparency to density values usually related to bony structures. However, 

this method is not able to make bones from CTA-datasets entirely transparent. 

Due to bone marrow and partial volume effects the intensity histogram of bones 

overlaps with the intensity histogram of arteries as mentioned in chapter 2. 

Furthermore calcified parts of the artery would also disappear which is not 

desirable. This fact can be seen in figure 3.5. 

3.3 Surface-fitting methods: Marching cubes 

In contrast to direct volume rendering techniques described above surface-fitting 

methods use an intermediate representation of the volume data. This is often done 

by using polygons (i.e., triangles). The Marching cubes technique builds an 

iso-surface based on a user-defined threshold. Conceptually the dataset can be 

divided into small cubes consisting of 8 adjacent voxels. Each cube can be 

intersected by an iso-surface in 256 different ways. Therefore, 256 different cases 

of triangulation exist. The original method reduces these 256 cases by rotation and 

inversion to 15 topological different basic cases [5] [6]. A drawback of this 

solution is the existence of so called ambiguity cases. Ambiguity cases arise if it is 

not decidable how to triangulate two adjacent cubes. Due to these cases holes 

within the triangulated mesh can appear. A good solution is to extend the amount 

of basic cases to 23 [7]. With these extra basic cases inversion is not necessary 

anymore. This solves the problem entirely. 

The output of the marching cubes algorithm is a triangulated mesh, which can be 

rendered using mainstream graphics acceleration. Therefore high rendering 

performance can be achieved even on low-level hardware systems. Selecting a 
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proper threshold is the main problem using this visualization technique. The value 

of the threshold has a crucial impact on the diameter and length of a vessel for 

instance (see figure 3.6). Another difficulty is to prevent arteries and bones from 

being merged. For this reason a segmentation algorithm should be applied before. 

 

 

Figure 3.6: Marching cube iso-surface extraction using 180 HU (left) and 140 HU 

(right) as threshold. Bones were segmented and removed from the dataset 

previously. 
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3.4 Curved planar reformation 

A curved plane in 3D space is described by a curved line and a vector. For each 

point of the curved line a straight line is defined which is collinear to this vector. 

The result is a curved plane in 3D space. Figure 3.7 shows a curved line on the 

left side. On the right side a curved plane is constructed using a vector that is 

parallel to the x-axis for each point of the line.  

 

 

Figure 3.7: Left: A curved spatial line. Right: A curved plane defined by the 

curved line and a vector parallel to the x-axis. 

 

The process of extracting a set of voxels lying on the curved plane and displaying 

this set as a straightened plane is called curved planar reformation. This process 

distorts the resulting image in terms of distances and anatomic relationships. 

However, this visualization technique resolves the problem of overlapping (i.e., 

occluding) objects. A curved planar reformation of an artery can be seen in figure 

3.8. Another advantage of this visualization method is that artery diseases can be 

seen very fast.  

The main disadvantage is the time consuming and error prone generation process 

if the curved line has to be defined manually. Another point is that for every 
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vessel a different curved planar reformation has to be done. Which means it is not 

possible to display all arteries simultaneously in one image. 

 

 

Figure 3.8: Curved planar reformation of an artery inside a CTA-dataset 

3.5 Conclusions 

This short overview of applicable visualization techniques for CTA showed that 

satisfying methods exist in case that some pre-processing has been done. 

Maximum intensity projection and direct volume rendering using compositing as 

well as the marching cubes algorithm require a segmentation step prior to the 
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visualization process (bone removal). On the other hand the curved planar 

reformation needs an automatic pre-processing method to find a proper curved 

line inside the arteries. 
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Chapter 4 

Segmentation techniques 
 

The task of segmentation is to separate an image or volume of optical or physical 

properties into different meaningful objects. In the area of CTA the objects of 

interest are vessels and bones. As segmentation has been a field of research for 

many years, the following collection is far from being complete however it 

includes the most common methods. 

4.1 Segmentation of bone structures 

Segmentation focused on bones attempts to identify bones and detect their correct 

shape. These processes are known as recognition and delineation. Recognition is 

the method of identifying the approximate location of a particular object of 

interest and of distinguishing it from other objects. Delineation is the process of 

specifying the precise spatial extent of an object [10].  

4.1.1 Density thresholding and object labeling 

Density thresholding is a rather simple segmentation method. However, it is very 

fast and a possible segmentation technique applicable to very large datasets in 

case interactive segmentation is required. [11] [12]. In a first step all voxels, 

which satisfy the threshold requirements (i.e. being in the range of two specified 
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threshold values) are marked as potentially belonging to objects. These voxels are 

merged into an object if they are adjacent. A second step assigns a type to each 

object. This process is called object labeling. If intensity regions of different 

object types overlap, it is very likely that the segmentation process fails because 

different object types are merged. Therefore a so-called opening operation may be 

performed. The opening operation consists of an erosion operation and a 

subsequent dilation operation. Erosion shrinks a certain object shape by a 

predefined amount of voxels by peeling off layers of the object like the skins of an 

onion. This operation separates different regions of an object allowing the correct 

labeling of wrongly merged objects of different type. In order to recover the 

original size of the object a dilation operation is applied. The dilation operation 

enlarges the object by a defined amount of voxels by adding layers of voxels to 

the surface of the object. 

4.1.2 The live-wire method 

Live-wire is a user-steered boundary detection segmentation technique [11] [13] 

[14]. User-steered means in this context, that the user has to control the 

segmentation process and is able to intervene immediately if the segmentation 

process starts to fail. It is assumed that objects have relatively decidable 

boundaries. This means that the gradient magnitude is high on the border of the 

object. The segmentation process tries to identify these boundaries. Live-wire is 

also sometimes referred to as intelligent scissors [15]. 

4.1.2.1 User interaction 

Using the mouse as input device the user defines a starting point. By moving the 

mouse cursor a line is automatically generated from the starting point to the 

mouse cursor location. This line is attracted to high gradient boundaries. By 

defining a new point (i.e. clicking a mouse button) the current line is “frozen”. 

The new point is considered to be a new starting point and the user may continue 

the process (see figure 4.1). The contour of the object is defined in a piecewise 

manner.  Finally the contour can be closed and the interior area is segmented. 
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Figure 4.1: User-steered live-wire segmentation. The image was brightened in 

order to make the live-wire lines clearly visible. In black color the fixed line can 

be seen. The still interactive movable part is painted in a dark gray color. 

4.1.2.2 Boundary detection 

With live-wire boundary detection is formulated as a graph searching problem. 

Each pixel defines a node. The edges belonging to a node are defined by the 

transitions from the pixel to its eight adjacent pixels. Each edge is weighted by a 

local cost function. This function simulates the physical influence of external 

forces. External forces depend on properties of the image such as image gradient 

magnitude and direction. In contrast to external forces, internal forces only 

depend on the shape of the line, like for instance curvature. W. Barrett and E. 

Mortensen [15] propose formula (4.1) as local cost function: The local cost 

function ),( qpl  from pixel p to its neighboring pixel q consists of three weighted 

components. These components are the gradient magnitude )(qfG , the Laplacian 

zero crossing )(qf Z , and the gradient direction ),( qpf D .  
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 ),()()(),( qpfqfqfqpl DDZZGG ⋅+⋅+⋅= ωωω  (4.1) 

Experiments have shown that appropriate weights are: Gω =0.43, Zω =0.43 and 

Dω =0.14. As high gradient magnitude G should correspond to low cost the 

function )(qfG is defined as follows: 

 
)max(

)(1)(
G

qGqfG −=  (4.2) 

The second component is based on the output IL of the convolution of the image 

with the Laplacian edge operator. This operator is used for edge localization and 

the convolution of an image with this operator approximates the 2nd derivative of 

the image. If 0)( =qI L  or )(qI L  has a neighbor with different sign then 

0)( =qf Z . Else 1)( =qf Z . 

The third, less weighted function ),( qpf D penalizes radical changes in boundary 

direction and therefore acts as a smoothening operator. A high cost to an edge is 

assigned if the image gradient vector G(p) and G(q) are nearly parallel and the 

vector PQvpq =� is nearly perpendicular to G(p) or G(q). If all three vectors G(p), 

G(q) and pqv�  are nearly parallel, a low cost value is added. 

The cost function mentioned above assigns low costs to image areas like borders 

or well-defined edges. A line, which is most likely to be the border of an object, 

can be defined as the set of adjacent pixel pairs Pqp ∈),(  from a starting point s 

to an ending point e satisfying the following expressions: 

 )},(),...,,(),,(),...,,(),,{( 111100 nniiii qpqpqpqpqpP ++=  (4.3) 
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and the cost of path P ( ∑
∈Pqp

qpl
),(

),( ) is minimal for all paths from s to e. 
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4.1.2.3 Optimal path computation 

The computation of such a line is referred to as single-source shortest paths 

problem. It can be shown that finding a single optimal path from a given starting 

point has equal complexity as finding all optimal paths from a given start point. 

The most appropriate algorithm to solve this problem is referred to as Dijkstra’s 

algorithm. The algorithm will be described in chapter 5. 

4.2 Segmentation of blood vessels 

Segmentation focused on vessels identifies vessels as objects. In contrast to bone 

segmentation this is more complicated because of possible disconnections due to 

occlusions and stenoses. Other difficulties arise with the variations in contrast 

medium and partial volume effects. Furthermore calcifications should not be 

removed from the resulting dataset. 

4.2.1 Vessel tracking by delineation 

Vessel tracking is a segmentation technique of low computational effort. Two user 

defined starting points are set as the input of the procedure. Based on a heuristic 

process the algorithm tries to find a path from these starting points to the end of 

the vessel. The resulting curved line can be taken as basis for a curved planar 

reformation. Another possibility is to segment the tracked vessel.  

The algorithm is described in detail as follows [16]. First two points roughly 

corresponding to the beginning of the vessel axis are set by the user. Subsequent 

points of the vessel axis are calculated incrementally. The user-defined points are 

c0 and c1. Always the two last points are taken into account in order to 

approximate a plane, perpendicular to the vessel axis. In the first step the direction 

vector a�  is given by 10cca =� . The step vector nadb �

�

⋅= min  is the normalized 

direction vector na�  scaled with the last minimum vessel diameter mind  (see figure 

4.2). The new point c is defined by bcc i

�

+= +1 . A plane can now be defined using 
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c and b
�

. Within this plane the new center point cnew is calculated as described 

below. The algorithm continues using ci+1 and cnew as input for the next step. 

 

Figure 4.2: One vessel tracking step. The input points are ci and ci+1 and the new 

center point cnew is computed [16] 

The computation of the new center point cnew within the plane is based on a so-

called likelihood function. For each point p in the search rectangle s (see figure 

4.2) a set of lines li (each going through p) is computed. Each line is limited by the 

border of the vessel (see figure 4.3c). Point p divides each line li into 
il

r1 and 
il

r2 . 

 ∑
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),max(

),min(1  (4.4) 

The likelihood function CL (formula 4.4) is computed for every point p in s. A 

height-field of the probabilities of being the center of the vessel results (figure 

4.3b). The point with the maximum likelihood function is assumed to be the new 

center point cnew. 
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Figure 4.3:a) A cut plane with the search rectangle s. b) The corresponding 

probability heightfield CL. c) Lines used for likelihood computation.  This figure 

has been taken from [16]. 

 

4.2.2 The wave algorithm 

The wave algorithm [17] is a special technique for the segmentation of vessels in 

contrast enhanced CT data. After a pre-processing step, which consists of filtering 

and thresholding, the wave algorithm is applied to the pre-segmented data. 

Further, based on a region growing strategy and starting from a seed point (the 

first wave) all direct neighbor voxels are checked, if they belong to the vessel tree 

or not. If yes, these voxels are added to a new wave. To ensure that every voxel is 

only included once into a wave and to ensure that the wave does not run 

backwards, a history structure is created for every voxel. 

To detect branchings in the vessel, every wave is checked if it consists of non-

connected parts. If so, the wave is split into separate waves, which are processed 

independently of each other. To avoid a wrong detection of bifurcations, a 

correction of the direction of the wave is introduced. To get the direction of the 

wave spreading the center point of every wave is calculated. 

This approach yields a graph, which stores the bifurcations and end points of 

vessels. 
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4.2.3 Segmentation based on Multiscale 3D filtering 

Multiscale 3D filtering is a very powerful but computationally expensive 

technique. A dataset of 256x256x102 voxels uses about 10 minutes on a Sparc 

Enterprise Server with eight CPUs and 1GB main memory for multiscale filtering 

[20]. 

The main idea is to take into account the local structure of an object. Three main 

types of object structures exist: lines, sheets, and blobs. These three structures 

correspond to vessels, bone cortices, and nodules. From the point of view of CTA 

investigation line-like structures are of course the most interesting kind of object 

structure [18]. 

The basis of this approach is the so-called Hessian matrix: 
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Where )(2

2

xf
x

f xx ∂
∂=  is the second derivative of f(x). The expression f(x) is the 

intensity function (i.e. the density value) at a point x = (x, y, z). The second 

derivatives of a discrete dataset can be determined by the convolution of the data 

with the second derivatives of a Gaussian filter [19]. The D-dimensional Gaussian 

is defined as: 
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As can be seen in figure 4.4 the kernels of the partial derivatives of the Gaussian 

are symmetric. Therefore the Hessian matrix is also symmetric. Symmetric 

matrices have orthogonal eigenvectors ei. The geometric interpretation of the 

Hessian matrix is that a sphere centered at the origin is mapped by the Hessian 

matrix to an ellipsoid whose axes are along the directions given by the 

eigenvectors. The length of the axes are the magnitudes of the corresponding 

eigenvalues vi. This ellipsoid locally describes the second order structure of the 

image. 
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The eigenvector and eigenvalues are defined as follows: 

A vector 0, ≠ℜ∈ xx n  is called eigenvector of a )( nn × -matrix A correlated to 

the eigenvalue ℜ∈v if vxAx = . 

 

Figure 4.4: The four derivatives of the Gaussian filter (2D case). In this example 

1=σ . 

 

Focusing on the eigenvalues a correlation between the relationship of the 

eigenvalues vi and the local structure can be established as can be seen in table 

4.1. 

Local Structure Eigenvalue Condition Example 

sheet 0123 ≅≅<< vvv  cortex 

line 0123 ≅<<≅ vvv  vessel 

blob 0123 <<≅≅ vvv  nodule 

Table 4.1: Basic condition for each local structure and representative anatomical 

structures [18].  
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The eigenvalues are where v1 is the highest eigenvalue and v3 is the lowest 

eigenvalue. For CTA the line structure is the most interesting structure and will be 

discussed in more detail. It is very intuitive that along the vessel axis the second 

derivation should be close to zero. Thus a vessel is a line-like structure where the 

curvature in all other directions than the one parallel to the vessel axis should be 

high. Therefore v2 and v3 should have values well bellow zero. Arteries are 

assumed to have a rather circular cross section. This is true because of the high 

blood pressure inside arteries. For this reason v2 and v3 should have nearly equal 

values. 

According to these relationships separation functions can be defined enhancing 

the different local structures. Combining them with other properties like the 

intensity value or the gradient magnitude, multidimensional thresholding can be 

applied in order to classify voxels. The method described above is also sometimes 

referred to as vesselness filtering. 

Local structures can exist at various scales. For example the cross section of the 

aorta is larger than the cross section of collateral vessels in the lower portion of 

the vessel tree. The response of the Gaussian filter will be maximum at a scale 

that approximately matches the size of the vessel to detect. By adjusting the 

standard deviation of Gaussian convolution, local structures with a specific range 

of widths can be enhanced. A good solution is to apply filtering and eigenvalue 

computation several times at different scales. The maximum value of each 

computation pass is finally taken into account for classification. 

4.3 Other, general segmentation techniques 

This section contains methods, which do not concentrate on a specific tissue type. 

These methods are very general and do not make use of the problem specific 

properties. 
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4.3.1 Region growing 

Region growing is a well-known technique for image segmentation. Its efficiency 

mainly depends on the employed aggregation criterion [21]. Region growing is 

initiated by the specification of seed locations. The algorithm attempts to merge 

neighboring voxels into this growing regions until no more voxels can be added. 

The goal is to obtain final regions that correspond to whole objects. The process 

of merging voxels is usually based on density values. 

In order to produce larger regions a region-merging step can be applied after the 

first step [8]. The region merging process is often governed by a homogeneity 

criterion. 

Speeding up region growing can be done using parallel computing as in [9].  

4.3.2 Water-shed segmentation 

Water-shed is also a well-established segmentation technique [22]. The algorithm 

works as follows: A gray scale image can be considered as a topographic relief: 

the gray level of a pixel resolves to the elevation of a point, the basins and valleys 

of the relief correspond to the darker areas, whereas the mountains and the crest 

lines correspond to the lighter areas (see chapter 2). The watershed line may be 

intuitively introduced as the set of points where a drop of water, falling there, may 

flow down towards several catchment basins of the relief. 

Basically watershed algorithms can be divided in two groups [23]. The first group 

contains the algorithms simulating the flooding process. The second group is 

made up of procedures aiming at the direct detection of the watershed points. 

In order to identify homogeneous regions by means of the watershed transform, 

the CT-dataset should be first subjected to a smoothening filter. Since the original 

data is very likely to contain noise and therefore a huge amount of small basins, 

the technique results in data over-segmentation. A lot of tiny regions would be 

identified. This problem can be solved using hierarchical segmentation or 

techniques similar to region merging [23]. 
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4.4 Conclusions 

Pure density thresholding does not require any user interaction. As intensity 

ranges of objects overlap, due to calcifications, bone marrow and partial volume 

effects, automatically segmented datasets are not very satisfying. Thresholding is 

however a very fast technique and therefore applicable for nearly interactive user-

interaction for even large datasets. 

Live-wire is a very powerful segmentation technique. Nevertheless it is a 2D 

segmentation technique. Even though 3D extensions of live-wire exist the 

working space is still 2D [10]. To develop a user friendly or even generalized 3D 

segmentation method based on live-wire is an interesting and promising field of 

research. Especially the property of contour catching is very important for 

segmentation of medical datasets. This feature for instance solves the problem of 

low-density marrow inside bones described in chapter 2.  

Vessel tracking is a fast segmentation technique. However substantial drawbacks 

have to be taken into account. In the case of high-grade stenoses and occlusions 

the vessel tracker algorithm is very likely to loose the correct center path. The 

algorithm needs user intervention in these cases. Problems also arise in the case of 

bifurcations because the possibilities how to proceed are ambiguous. So far no 

results for small vessels have been presented in the scientific literature. It has to 

be expected that various problems arise when applying the algorithm on these 

vessels. 

It is very likely that the wave algorithm also yields problems when trying to 

overcome occlusions. Handling stenoses and occlusions can be considered as one 

of the main challenges of segmentation algorithms focusing on vessel structures. 

The multiscale filtering approach is a powerful technique with a sophisticated 

mathematical background. The main problem is the high computational effort. 

Especially the fact that the Gaussian kernel has to be at about the same size as the 

objects that should be enhanced has a high impact on the computational costs. 

Region growing suffers from the tight spatial relationships of arteries and bones. 

In this case partial volume effects are leading to incorrect results. 
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As water-shed segmentation needs clearly defined valleys and basins in order to 

produce correct results it is very unlikely to apply this method successfully on 

regions as described in figure 2.4. A possibility to solve this problem is to use the 

algorithm with the gradients of the dataset. A drawback might be that gradients 

are sensitive to noise. 

Finally it can be stated that many different and powerful segmentation techniques 

exist. Yet every method has its advantages and drawbacks. Until now the one 

‘perfect’ segmentation technique has not been discovered. Especially in medical 

image analysis datasets are very complex. Therefore up to now the human 

operator is often obliged to intervene during a segmentation process in order to 

prevent incorrect results. 
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Chapter 5 

Vessel investigation 
 

Basically two different approaches were followed in order to provide a feasible 

tool for investigating CTA datasets. The first is to generate a curved planar 

reformation (CPR) as described in chapter 3. This method is already used in 

medical environments. Therefore it is a visualization technique that is very likely 

to be accepted for daily clinical use by the medical personnel in hospitals. One of 

the biggest disadvantages of this technique is the very time-consuming and error 

prone manual generation process. For this reason a semiautomatic generation 

method is desirable. The following section is going to describe such an approach. 

The second approach is quite different. As the vessel tree in lower extremity areas 

consists of a huge amount of blood vessels of all sizes it is very difficult to 

identify every single vessel. This is true for algorithms as well as for experienced 

human operators. For instance in the case of very small vessels with a diameter in 

the range of 1–2 voxels partial volume effects have a high impact on the vessel 

size computed by the algorithm. Therefore algorithms identifying vessels as 

distinct objects or algorithms trying to follow vessel structures may produce 

incorrect results. The human operator on the other hand may find it impractical to 

identify every single vessel. These small vessel structures are nevertheless 

important to a radiologist. For instance the lumen of the small collateral arteries 

may allow a deduction of the spatial extend of a stenosis of the main artery. If 
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these secondary arteries are relatively large in size blood supply of subsequent 

vessels through these secondary arteries can be assumed. 

The basic idea is that if it is difficult to identify the structures of interest, it might 

be easier to hide structures of less or no importance. Following this approach the 

whole vessel tree can be made visible by removing the bones from the dataset. 

5.1 Curved planar reformation generation 

Manually defining a curved planar reformation means that an initial cross section 

is rotated by the human operator until the object of interest is visible in its 

entirety. Very often this user interaction is done by adjusting a line in top view, in 

side view, and in frontal view. This line plus a vector corresponds to the curved 

plane in three-dimensional space. The manual generation of curved planar 

reformations is thus a very time-consuming task. For each vessel of interest the 

same procedure has to be repeated. 

Another important fact is the correctness of the curved planar reformation. 

Tubular structures like vessels need to be cut through their central axes in order to 

show the true diameter as the curved planar reformation. Any deviation from this 

axis results in wrong results (see figure 5.1). 

 

Figure 5.1: a) A curved plane through the vessel with a deviation from the central 

axis. b) The error caused by the deviation on a curved planar reformation, (false 

stenosis). 
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It is important to avoid such errors because of this similarity to stenoses. The 

radiologist might misinterpret these errors as stenoses and the danger of a 

incorrect diagnosis exists.  

In the following sections a method is described to generate curved planar 

reformations in a semi automatic way. The terms optimal path and shortest path 

are used as synonyms in the following sections. 

5.1.1 User interaction 

Due to the planned integration of the algorithm into an existing software system 

the user interface provides only a minimum functionality. First the user identifies 

a starting point and at least one endpoint within each desired vessel. Afterwards 

the curved line computation can be started from the attached popup menu. In 

figure 5.2 the right iliac artery was chosen for investigation. 

 

Figure 5.2.: The user interface for curved planar reformation computation 
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5.1.2 Curved line computation 

The curved line computation is based on a modified live-wire algorithm. A proper 

cost function is defined as to keep the calculated path inside the vessel. In contrast 

to the 2D live-wire method this algorithm searches in 3D space for the optimal 

path. 

5.1.3 Cost function 

The cost function is defined in order to make it cheap for the algorithm to go 

through contrast-enhanced vessels. The local cost function consists of an internal 

force and some external forces. The internal force fS helps to keep the path short. 

This is necessary to avoid undesired high curvature regions of the curved line. 

Since this function represents the cost per step, fS is constant: 

 stepS cxf =)(  (5.1) 

Empirical experiences have shown that 200 is an appropriate value for cstep. 

The external forces consist of the density interval function fI, the gradient function 

fG and the Laplacian function fL.  

The density interval function fI ensures that the path stays inside the vessel. In the 

following equations the density function of a voxel x is considered to be f(x). The 

function fI is defined as follows (see figure 5.3): 
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Basically this function consists of four thresholds and two weighting factors. The 

thresholds clowerBorder and cupperBorder define the valid intensity region. Vessels with 

density values within these boundaries are detected. These boundaries assure that 

the calculated path does not leave the vessel. Within the interval defined by the 

other two thresholds clower and cupper the intensity area is considered to be optimal. 

Therefore no punishment is given for voxels having these density values. The path 
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on the border of a vessel is intended to be more costly than in the center of the 

vessel. For this reason all density values between the thresholds clowerBorder and 

clower as well as between the thresholds cupper and cupperBorder are penalized. The 

impact of this penalty can be adjusted by the weights upperω and lowerω . Function 

fI(x) is shown in figure 5.3. 

 

 

Figure 5.3: Density interval function 

 

The gradient function fG(x,y) gives the difference of the intensity value of the 

previous voxel x and the intensity value of the subsequent voxel y. This function 

results from the assumption that in the direction of the central axis of the vessel 

the gradient magnitude is lower than in the direction of the vessel boundary. 

 )()(),( yfxfyxfG −=  (5.3) 

Finally the Laplacian function fL(x) prevents the algorithm from tracking along 

and into bones. As mentioned in chapter 2, bones do not have homogeneous 

intensity values. Therefore the boundary of the bone structure consists of density 

values, which would be preferred by the algorithm. This circumstance should be 

avoided because wrong paths are likely to be calculated and a larger volume has 

to be processed. In some cases it is also possible for the algorithm to track into the 
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bone structure. This for instance can be possible near the knee. Inside the bone 

structure marrow allows the algorithm to continue. The result is an optimal path 

that however does not correspond to the vessel structure anymore. In figure 5.4 

this situation can be seen in image a) and b). 

 

 

Figure 5.4: a) The region computed without Laplacian function. b) The erroneous 

paths calculated without Laplacian function. c) Reduced area affected by the 

algorithm due to the Laplacian function. d) Correct path-calculation making use of 

the Laplacian function. 
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The function fL is defined as follows: 
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where the Laplacian kernel L is defined in 2D as: 
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and claplace is a predefined threshold. 

 

The local cost function fC(x,y) for a single step from a voxel x to the adjacent 

voxel y can be defined as: 

 )(),()()(),( xfyxfxfxfyxf LGISC +++=  (5.6) 

 

An improvement concerning performance can be realized taking into account the 

characteristics of CTA–datasets: A start point is always defined in one of the 

topmost slices. The endpoints are usually defined at the bottom area of the dataset 

as shown in figure 5.2. In order to push the algorithm into the correct direction a 

scaling of the local cost function according to the current slice can be done. 

5.1.4 The path-finder algorithm 

The method of curved line computation is in the following referred to as 

path-finder algorithm. As mentioned above the algorithm is based on the live-wire 

method. The differences between the path-finder algorithm and live-wire are: 

• Different working space: Live-wire is working in 2D space whereas 

path-finder computes the optimal path in 3D. 

• Different local-cost function: Live-wire tries to find a path following edges 

and object boundaries. Hence the cost-function penalizes regions with low 

gradient magnitude. In contrast path-finder is attracted by regions, which 

are very likely to be contrast-enhanced vessels. In other words the 
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cost function prefers regions with a special intensity value and low 

gradient magnitude. 

• Interactivity: Live-wire is an interactive segmentation tool. This is one of 

the main key concepts of live wire. Due to the 3D working space and the 

large datasets mentioned in chapter 2, path-finder provides no interactive 

user interface. 

• Structure of the result: The live-wire algorithm takes a starting point and 

the interactive movable endpoint. If the algorithm starts to fail an 

intermediate point is set. This operation takes the previously movable 

endpoint as new starting point and the actual mouse cursor position is the 

new endpoint. Hence one and only one endpoint is active at one time. The 

path-finder algorithm takes one starting point and n endpoints. Where n is 

only limited to an arbitrary constant for implementation reasons. 

 

5.1.5 Computed-region reuse 

One key feature of live-wire is interactivity as mentioned above. In order to 

maintain this feature it is not possible to recompute the whole path when changing 

the endpoint. Therefore the already computed area is reused [13]. Even though 

path-finder is not an interactive algorithm this feature also makes sense to be 

included in path-finder. Whenever additional endpoints are defined the algorithm 

reuses the already computed area and therefore significantly reduces computation 

time. In the following the algorithm is described in further detail. 

Three different sets of voxels can be defined (see figure 5.5): 

• L: The set of already calculated voxels using Dijkstra’s algorithm. 

• C: The set of voxels that have not been taken into account yet. 

• Q: The set of voxels located on the boundary between L and C. 

Furthermore some information for each voxel is represented by: 

• cc(v): The cumulative cost of a path starting at point s and reaching v. 
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• dir(v): The direction for the optimal path at the position of voxel v. In 

other words it is the pointer to the predecessor of the optimal path reaching 

v. 

First of all a starting point s is defined, by the user for instance. This operation 

requires some initialization: 

sQscc
Cvnullvdirvcc

L
Q

datasetC

←=
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=
=
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The definition of the first endpoint e1 starts Dijkstra’s shortest path computation 

algorithm: 

while Le ∉1 do:

remove a voxel v from Q with minimal cc(v).

place v in L.

for each adjacent voxel v’ of v and Lv ∉' do:

compute )',()( vvfvcctemp C+= .

if )'(vcctemp <

set cc(v’) to temp.

set dir(v’) to the direction from v’ to v.

if Qv ∉'

insert v’ in Q.

endif

endif

endwhile

endwhile

Following the calculated direction information dir(v) for every voxel v from the 

endpoint e1 to the starting point s produces the shortest path. 

If a new endpoint e2 is defined two possibilities arise: 
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1. Le ∈2 : In this case simply the direction information dir(e2) has to be 

followed. The reason for this is that all optimal paths for voxels in L are 

already computed according to Dijkstra’s algorithm. 

2. Le ∉2 : The new endpoint was not computed yet. Therefore the algorithm 

is resumed with the new endpoint e2. It is obvious that the sets L and Q can 

be reused because the boundary Q expands independent of the endpoints. 

 

 

Figure 5.5: Outline computed-region reuse. Not valid marks a region where the 

algorithm should not continue searching for an optimal path (i.e., the cost function 

fC is infinite). 

 

5.1.6 Centering the path inside the vessel 

As mentioned above any deviation from the vessel’s main axis causes errors in the 

curved planar reformation. The pure path-finder algorithm does not assure the 

path to be in the center of the vessel. This can be seen in figure 5.6. It is obvious 

that the path-finder algorithm tries to find a curve within the vessel, which is as 

straight as possible. For this reason a feature is added to correct the path in terms 

of finding the center of the vessel. This algorithm is referred to as center-finder 
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algorithm. The main goal of this algorithm is to improve the path calculated by 

the path-finder algorithm. A comparison of before and after the center correction 

is applied can be seen in figure 5.6. 

 

 

Figure 5.6: Left: Path-finder algorithm without center correction. Right: 

Path-finder algorithm with center correction. 

 

5.1.7 The center-finder algorithm 

The center-finder algorithm is similar to the vessel tracker approach in [16]. The 

difference to the approach in [16] is that the path from the starting point to the 

endpoint is already known (as approximated by the path-finder algorithm). For 

this reason no user interaction is necessary in cases of bifurcations or high-grade 

stenoses. The basic idea is to find the true vessel-center point in a plane 

perpendicular to the previously defined path. Within this plane the center point 

should be the midpoint of a circle. The algorithm consists of four main steps: 

1. Gradient computation: This step approximates the tangent at each voxel of 

the original path. A B-spline curve is used in order to smoothen the 

gradient. 
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2. Plane construction: A 2D cross section is extracted from the 3D dataset 

according to the current point of the original path. It’s generating vector is 

calculated from the B-spline curve (tangent vector). 

3. Center approximation: The true center within the 2D plane is 

approximated. Afterwards the retransformation into 3D space is done. 

4. Path reconstruction: The new path consists of holes and loops because the 

points were moved in 3D space during step 3. These artifacts are removed. 

The following sections describe each step in more detail. 

5.1.7.1 Gradient computation 

A plane in 3D can be defined by a point in 3D space and a 3D vector. This vector 

is perpendicular to the plane. Therefore a vector tangent to the central vessel axis 

together with a point on the according position on the vessel axis defines a 

perpendicular cutting plane of the vessel. Unfortunately none of the above 

mentioned prerequisites are given precisely. For this reasons some approximations 

have to be taken into account. 

The local gradient was found to be much too noisy for perpendicular plane 

computation. Noise within the vessel causes the path to have very high curvature. 

Therefore a B-spline curve Bn,k(t) was applied for gradient computation.  
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where the blending function )(, tN ki  ( sometimes also referred to as B-spline basis 

function) is defined as 
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and the knot vector or knot sequence tj is given by 
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for t the suitable interval is defined as 

 [ ]2,0 +−∈ knt  (5.10) 

where n is the number of control vertices. 

Vessels tend to have quite low curvature. For this reason k = 40 seems to be 

suitable to approximate the structure of the vessel. The control vertexes of the 

B-spline curve are the points calculated by the path-finder algorithm. The vector 

necessary for the plane construction is taken from the B-spline curve. A 3D 

B-spline curve is shown in figure 5.7. The distance from one cross to the next is 

approximately one voxel. The high curvature of the original path can be seen 

clearly. However the low curvature of the vessel is followed by the B-spline curve 

correctly. 

 

 

Figure 5.7: Dotted B-spline curve constructed from the control vertices marked by 

crosses. 
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5.1.7.2 Plane construction 

In this step a plane through every point of the calculated path is generated. The 

plane construction step is using the tangent vB from the B-spline curve at the 

current processed point P. From this vector vB: 
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Two generating vectors can be defined. The first generating vector v1 is normal to 

the vector vB and is in the yz-plane. 
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and finally v2 is computed as the cross product of vB and v1. 
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The plane can now be defined by  

 ],[,21 ddbavbvaMs −∈⋅+⋅+=  (5.14) 

Where d defines the size of the rectangle s inside the plane. The densities within 

plane s are resampled using tri-linear interpolation. Within this plane the center 

point is computed. Similar to [16] the size d of the rectangle s inside the plane 

depends on the most recent vessel diameter.  

5.1.7.3 Center approximation 

In contrast to the method described in section 4.2.1 this center approximation 

approach is more inaccurate. However, it is far more efficient as only one point 

has to be computed. As defined in the previous section the current point of the 
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path being processed is exactly the midpoint of the plane. In the following this 

point is referred to as M. From this point M m+2l rays are cast in a radial fashion. 

The end points of the rays are defined by an upper and a lower threshold. The ray 

is extended until the density value is outside the density value region defined by 

the two thresholds.  These thresholds should include the intensity range of vessels 

and calcifications. For the sake of fault tolerance the l longest and the l shortest 

rays are discarded. This improves the stability of the algorithm as single tracings 

into bones or early stops due to noise are not taken into account. At the end of 

each ray a point Pi can be defined. The distance di between the two adjacent 

points Pi and Pi+1 is calculated. Figure 5.8 shows the above described situation. 

 

P1

P2

Pn

Pn -1

d1

dn - 1

d0

M

 

Figure 5.8: Finding the true center point. 

 

Now the true center point C can be approximated by 
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Even though this is an approximation of the true center point the computation 

produces satisfying results. The resulting center point C is still defined in 2D 

space. The transformation into 3D is accomplished by 

 213 vyvxMC CCD ⋅+⋅+=  (5.17) 

where xC and yC are the 2D coordinates of C and C3D is the calculated center point 

in 3D space. This resulting center point C3D replaces the original point M from the 

optimal path computation. 

5.1.7.4 Path reconstruction 

Due to the vessel center computation points of the optimal path are moved in 3D 

space and holes and loops may appear. Therefore another smoothing operator is 

applied. Again a B-spline curve is used. Hence k is set to 20, which is lower then 

for the gradient estimation mentioned previously. A higher value would have a 

too significant impact on the centered path. This operation closes holes and cuts 

loops. The set of control vertices is now given by the set of points produced by the 

center-finding algorithm. From this B-spline curve the corrected and centered path 

is computed. This path can now be used as a curved line to produce the curved 

plane reformation. 

5.1.8 Conclusions 

The curved line computation was found to be very reliable. The algorithm is very 

likely to produce correct results. On the other hand if the algorithm fails,  the 

failure is obvious and therefore not dangerous. Dangerous is meant in terms of the 

possibility of a false diagnosis done by the radiologist. In some cases centering of 

the path is not necessary. In general it can be stated that the centering and 

correction of the path generated by the path-finder algorithm produces better 

results in the following curved planar reformation. 



CHAPTER 5. VESSEL INVESTIGATION           53 

 

5.2 Gradient-enhanced segmentation of bones 

The method we use for bone removal is a rather basic segmentation technique. A 

combination of thresholding and region growing is applied. One of the main 

reasons for using a simple but cost efficient approach is the large size of the 

datasets. Even though the datasets are large the objects of interest (the vessels) are 

often small and have a tight spatial relation to other objects. For this reason down 

sampling the data volume results in a substantial loss of information. Another 

reason is that no high quality bone segmentation is required. As long as small 

errors do not hide important features the method is applicable. An example of 

these minor errors are for instance the ribs. Due to their spatial relationship to the 

arteries a not correctly identified rib typically has no impact on the investigation 

by the radiologist. 

This approach provides quite acceptable results. Together with the capability of 

user intervention the method provides a useful tool for the segmentation of bones. 

5.2.1 The algorithm’s outline 

The bone-seg algorithm is working on so called slabs. A slab consists of several 

spatially adjacent volume image slices. Typical 30 to 50 slices are combined in 

one slab. The advantages of this arrangement are: 

• Better response time: Because the amount of data is significantly smaller 

than the whole dataset the computation time after a user interaction is 

reduced. 

• Error containment: The error inside one slab cannot propagate over the 

whole dataset. 

• Region dependent parameters: As the correlations and properties of the 

objects differ depending on the regions within the dataset, the parameters 

can be set according to these regions. 

 

The bone-seg algorithm is applied independently for each slab. Basically the 

algorithm consists of 3 steps. First a rough distinction between the different 
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objects is done. Secondly the objects are labeled. In the final step the correct 

shape is computed. A predefined set of parameters is used for each slab. The user 

can change this set of parameters during the segmentation process. For each slab 

the set of parameters consists of: 

• tclass: This threshold is used to distinguish different objects. 

• texpand: This threshold defines the enhancement of already identified 

objects. This threshold is motivated to handle partial volume effects and 

marrow inside the bones. 

• tlabel: The tlabel threshold is used for labeling. The threshold tlabel is 

operating on the average density of objects. For implementation purpose 

the average density of an object is the sum of the densities minus tclass.  

 

The basic steps for the segmentation of one slab are as followed: 

for each slice s in slab t do

classify voxels in s based on tclass.

merge regions in s.

label regions in slab t.

for each slice s in slab t do

classify voxels in s based on texpand.

merge regions in s.

(user interactive labelling)

remove regions classified as bone

 

First all slices are classified using a high threshold tclass in order to distinguish 

different objects. The connected regions are merged and finally labeled according 

to their properties. A second iteration of the whole process (except labeling) is 

done with a lower threshold texpand. This step improves the quality of the 

segmented dataset by reducing noise due to partial volume effects and bone 

marrow. After this step a user defined labeling of objects is possible. Finally the 

objects labeled as bone are removed. 
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5.2.2 Classification 

Classification is meant to be the process of identifying whether a voxel is a 

potential object or not. In this step no distinction is done if a voxel belongs to a 

bone structure or to a blood vessel. As it can be seen in figure 5.9 no clear 

decision can be made concerning the type of the voxel in the area of the knee if 

intensity and gradient magnitude are taken into account. 

 

Figure 5.9: Left top: A slice taken from a CTA-dataset at the level of the knees. 

Left bottom: Manually segmented objects. Right: A scatter-plot showing the 

gradient magnitude and the intensity value according to the object type for each 

vessel. 

 

The classification is done threshold based. The decision process is sketched in the 

following where f(x) is the intensity function and f’(x) is the gradient magnitude of 

an voxel x. 

if f(x) > threshold

if f(x) > (threshold + boundary_area)

x is OBJECT

else

if (f’(x) > max_gradient)

x is NO_OBJECT
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else

x is OBJECT

else

x is NO_OBJECT

 

The values for max_gradient and boundary_area are fixed. Empirical default 

values are 150 and 100 respectively. The threshold value is either tclass or texpand, 

depending on the algorithm step. 

Using this gradient enhanced method for classification, areas which are likely to 

be boundaries of objects are not classified. This can be seen in figure 5.10. 

Regions above the threshold tclass are depicted in dark gray or light gray. The dark 

gray areas do not satisfy the gradient condition in the classification process 

mentioned above. For this reason only the light gray points are investigated as 

potential objects in the next step. As can be seen in figure 5.10 vessels very close 

to the bone remain separate. 

 

 

Figure 5.10: Left top: A slice of a CTA-dataset in the lower leg area. Two critical 

arteries are marked with an arrow. Left bottom: Computed classification. Objects 

are marked light gray. Dark gray areas are not identified as objects. Note that the 

two arteries remain separated from the bone. Right: Scatter-plot of the computed 

classification. 
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5.2.3 Merging regions. 

Region merging is done using the information of the classification step. All voxels 

which are marked as belonging to objects and which are adjacent to each other are 

merged into the same object. During this process information about the whole 

object is collected. The information items are the amount of voxels and the 

density value. This information is necessary for the labeling step. This merging 

process is also described in [7]. 

In the first step of algorithm bone-seg all objects have the same type: NONE. As 

no labeling has been done yet no other type may exist. During the second step of 

bone-seg neighboring objects with different types may exist. In this case it 

depends on the object types if a merging is possible or not. The different object 

types are described below. A summary of the merging rules can be seen in 

table 5.1. 

 

 Object 1 

type NONE BONE VESSEL 

NONE + + + 

BONE + + - 

O
bj

ec
t 2

 

VESSEL + - + 

Table 5.1: Merging rules: + means merging is done, - means merging is not done. 

 

5.2.4 Labeling and removing 

The labeling process assigns to each object a unique type. Depending on 

properties like size and average density the decision on the type of an object is 

made. Three different types exist: 

• NONE: Either the object was not labeled yet or the amount of voxels being 

part of the object is too low. Most common objects of type NONE are 

small fractions of vessels and bones as well as high intensity noise. 
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• BONE: Objects of the type BONE are removed from the dataset. These 

objects are meant to be bones. An object must have a certain size and the 

average density has to be above a certain threshold tlabel. 

• VESSEL: All objects which consists of enough voxels but the average 

density is below tlabel are considered to be contrast enhanced arteries. 

Therefore these objects are not removed from the dataset. 

Finally all voxels within objects of type BONE are removed from the dataset by 

setting the value of the voxel to zero. 

5.2.5 User intervention 

The basic workflow is that the tool first segments the whole dataset using 

predefined settings. No changes are permanent. At the end of the segmentation 

process the whole result is stored in a separate data-file. If the algorithm produces 

incorrect results, the user has to correct the result. Two types of user intervention 

are possible. First the set of parameters can be changed independently for each 

slice. Second the labeling of the final set of objects can be altered manually. 

The different thresholds used in a slab are displayed in an overlay of the MIP 

visualization. It’s up to the user to change these thresholds. This situation can be 

seen in figure 5.11. The leftmost line alters tlabel. The light gray line in the middle 

sets the texpand threshold. Finally the rightmost line changes the threshold tclass. The 

two rightmost lines are in the same value domain. 

 

 

Figure 5.11: Left: Suggestion of the algorithm. Right: Correction of the user by 

changing texpand and tclass. 
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If an object is not labeled correctly the user is able to select this object. In figure 

5.12 such a situation is shown. In the left column a section of the slice window is 

presented. The right column shows a section of the MIP window. In the first row 

the wrongly segmented artery is clearly visible. Starting the manual labeling 

feature shows the objects color encoded as an overlay in the slice window. 

Clicking on the objects using the mouse cursor alters the type of the object. The 

white arrow visualizes the mouse cursor. After this step the type of the object 

changes, which can be seen immediately in the MIP window. This situation is 

shown in the next row of figure 5.12. Closing the manual labeling feature shows 

the changes in full quality (final row). 

 

 

Figure 5.12: Workflow of manual labeling. Left column: slicing window. Right 

column: MIP. The incorrectly labeled object is corrected using the mouse as input 

device (white arrow). 
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5.2.6 Conclusions 

Using bone segmentation as pre-processing step and MIP or direct volume 

rendering as a visualization technique produces quite good results (please refer to 

the results in chapter 7). The reason is that the vessel tree is visible in its entirety. 

Radiologists prefer this kind of visualization because the spatial relation is clearly 

visible and the collateral vessels are also displayed. Especially the second reason 

is important for investigation purposes as mentioned above. However this 

technique suffers from two minor drawbacks: 

• Safety and Correctness: It is by no means guaranteed that vessels are not 

removed accidentally. Especially big vacant calcifications without 

connection to the rest of the vessels may be removed incorrectly. The 

disconnection to the rest of the vessel tree may result from occlusions. 

This drawback can easily be overcome by manual user interaction, after 

the obvious incorrectness is identified. 

• Lack of intuitive user intervention: As this is not a fully automatic method, 

the user has to be trained to handle the specification of the algorithms 

parameters. After a training period, the system however can be used 

intuitively and efficiently. Yet an untrained user will not be able to 

produce results of any diagnostical value. 
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Chapter 6 

Implementation 
 

The following sections describe the implementation of the algorithms discussed in 

chapter 5. C++ was the programming language of choice. The development 

environment consisted of Microsoft Visual Studio 6.0, the graphics interface 

OpenGL in version 1.2.1 and the OpenGL utility GLUT 3.0. As C++ is an object-

oriented language, the code is mainly written in object oriented C. A selection of 

the most important objects is presented below. Only the most important 

information is shown for each object. Type identifiers are abbreviated as shown in 

table 6.1. 

 

i integer ui unsigned integer 

s short us unsigned short 

c char uc unsigned char 

Table 6.1: Abbreviations of the used types. 
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6.1 CData 

The object CData encapsulates the dataset. CData provides a set of access 

methods to the dataset. 

 

class CData

{

us xSize;

us ySize;

us zSize;

void GetSlab(i slab, i length, i size, us* buff);

void GetCacheBlock(i hx, i hy, i hz, us* buff);

CData(c* filename);

CData(us* daten, us xsize, us ysize, us zsize);

};

This object contains the information like the dimensions of the dataset and the 

management of the raw data. Concerning the algorithms the most important 

access methods are GetSlab() and GetCacheBlock(). The first one fills buff with 

the data of the slab number slab. GetCacheBlock() delivers the data of the cache 

block defined by hx, hy and hz in buff. As the datasets are very large it is not 

efficient to allocate memory for the whole dataset in main memory. Therefore the 

dataset is split into so called cache blocks of constant size. The object uses either a 

filename or a data array with dimension information as construction information. 

If a filename is given the file must first contain the dimension information and the 

raw data. 
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6.2 CPathfinder 

typedef struct TListstruct

{

TElement* head;

} TList;

typedef struct TElementstruct

{

us x, y, z;

i value;

struct TElementsrtuct* next;

struct TElementstruct* before;

} TElement;

class CPathfinder

{

TList queue[C];

i queue_pointer;

int SearchPaths(CPunkte* pkt);

void CalculatePaths(CPfad* pfds, CPunkte* pkt);

CPathfinder(CDaten *daten)

};

 

CPathfinder is created with a CData object as constructor parameter. According to 

the shortest path finding algorithm described in chapter 5 the SearchPaths() 

method takes a set of points as input. The output is kept in the direction 

information arrays. This method searches the shortest paths from the starting point 

to the endpoints. 
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As proposed in [13] a circular queue queue[C] of size C is used in order to store 

all vertices that are currently in process (the set Q in section 5.1.5). Each item of 

this queue is a pointer to a double-linked list consisting of elements of the type 

TElement. A queue pointer queue_pointer is initially set to 0. 

All values gained from the local cost function introduced in chapter 5 are 

calculated as integer numbers. For this reason the accumulated cost of each voxel 

can be stored in an integer type. The voxel v is inserted in the queue at the 

position cc(v) modulo C. Where cc(v) is the accumulated cost of v. The value of 

the local cost function has to be less than C. When searching for the voxel with 

the least cumulative cost the first voxel is taken from the list queue_pointer is 

pointing to. If the list is empty queue_pointer is incremented modulo C. As all 

voxels within a list have the same accumulated cost and the value of the cost 

function is always positive and smaller than C, this method yields the voxels with 

the smallest accumulated cost. 

The complexity of inserting a voxel v into this list is O(1). As all voxels within the 

list have the same accumulated cost the new voxel v can be inserted at first 

position for instance. 

The complexity of removing a voxel v from a double-linked list is O(1).  

The worst-case complexity of finding the next voxels with least accumulated cost 

is O(C-1). This is very unlikely, as the local cost function for each vessel has to be 

of value C-1. The number of queue pointer increments to find a new non-empty 

list is usually less than 1% of C [13]. 

As each voxel is processed exactly once (in the moment when this voxel has the 

minimum cumulated cost) the worst case complexity of the algorithm is O(nC) 

where n is the amount of voxels in the dataset. 

CalculatePaths() makes use of the direction information generated in the 

SearchPaths() function to build up the paths as described in chapter 5. The 

direction information is stored in a single byte. As each voxel starting from the 

end points determines the next voxel until the starting point is reached this 

operation is of complexity of O(l) for each path P with path length l.  
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6.3 CBSpline 

class CBSpline

{

void GetNormalVector(i index, TFVector* vkt);

CBSpline(CPfad* pfade, i which, i k);

};

The constructor of CBSpline takes a CPfad object pfade, containing the paths. An 

integer value which defines from which path inside pfade the B-spline curve 

should be constructed. Finally k defines the order of the B-spline curve. 

The function GetNormalVector() returns the tangent vector from the B-spline 

curve at position t = index and returns the information in the structure vkt. 

 

6.4 CNormalEbene 

class CNormalEbene

{

void GetPlane(i pkt, i xDiam, i yDiam, us* ebene);

CNormalEbene(CDaten* d, CBSpline* bs,);

};

CNormalEbene provides a method which returns in ebene a plane perpendicular 

to the B-spline functon bs through control vertex pkt with a dimension of xDiam 

to yDiam. For this reason the constructor needs data access through d and the B-

spline function bs. 
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6.5 CCenterFinder 

class CCenterFinder

{

void GetCorrectedPath(CPfad* paths, i welcher);

CCenterFinder(CNormalEbene* nEbene);

};

The object CCenterFinder takes a CNormalEbene object as input for the 

constructor. GetCorrectedPath() corrects the path defined by nEbene and stores it 

in paths at position welcher. 

6.6 CInteractiveSegmentation 

class CInteractiveSegmentation

{

us *threshold_high; // tclass

us *threshold_low; // texpand

float threshold_avgdensity; // tlabel

FILE** allready_segmented;

void WorkSlab(i slab);

void RemoveSlab(i slab);

void SegmentSlabStart(i slab);

void SegmentSlabFinish(i slab);

void SegmentSlab(i slab);

void SaveAllSlabs();

CInteractiveSegmentation(CDaten* d);

};
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The CInteractiveSegmentation object needs to have access to the data, therefore a 

CDaten object is given at creation time.  

The arrays threshold_high (tclass), threshold_low (texpand) and threshold_avgdensity 

(tlabel) store the slab dependent segmentation parameters as introduced in chapter 

5. If a user intervention was necessary, a temporary file is generated and inserted 

in the array already_segmented according to the specific slab. 

SegmentSlab() segments a slab i according to the parameter for the slab i in the 

arrays mentioned above. Among other functions this method is based on 

WorkSlab() and RemoveSlab(). 

The methods SegmentSlabStart() and SegmentSlabFinish() implement the user 

interactive labelling feature. Between these two functions the user may do manual 

labeling. SegmentSlabStart() calls WorkSlab() and SegmentSlabFinish() calls 

RemoveSlab().  

The WorkSlab() does classification, merging and labeling as described in 

chapter 5. RemoveSlab() removes objects labeled as bones from the slab.  

If no manual labeling was done the segmentation was only based on the 

parameters corresponding to each slab. The segmentation step can be reproduced 

for these slabs. Therefore only the maximum intensity projection visualization is 

altered. If manual labeling was done the segmented dataset is stored in a 

temporary file. This method makes an undo functionality possible without 

decreasing the speed when adjusting only the parameters of the slabs. According 

to these constraints the SaveAllSlabs() method either takes the information of each 

slab from the according temporary file or restarts the segmentation process for the 

slab. The processed slabs are stored in a different file. 
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Chapter 7 

Results 
 

This chapter presents the results of the algorithms proposed in this thesis. Three 

datasets were selected in order to maintain diversity in respect to the dataset size 

and the types of arterial diseases. The test environment consists of a PII 350 MHz 

system with 704 MB main memory, running Windows NT 4.0 SR 5 as operating 

system. The volume rendering was done on the commercial medical image 

processing system JVision/Space-Vision from TIANI Medgraph [25]. 

7.1 The test datasets 

Table 7.1 gives an overview of the datasets parameters. All datasets are real world 

datasets. These datasets were anonymized as patient information was deleted. 

Name Spatial resolution Size in MB 
Volume size 

(mm x mm x mm) 

100_198.dat 512 x 512 x 988 494,5 257 x 257 x 1070 

004_old.dat 512 x 512 x 550 275,5 240 x 240 x 1102 

022_old.dat 512 x 512 x 1000 500  260 x 260 x 1100 

Table 7.1: Parameters of the presented datasets 
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In table 7.2 the time needed for the investigation steps is summarized. As the 

segmentation process is a highly interactive process no division between user 

interaction time and computation time is made. 

Name CPR 

computation time 

CPR user 

interaction time 

CPR center 

finding time 

Segmentation 

time 

100_198.dat 16 min 20 s 1 min 30 s 1 min 14 s 25 min 41 s 

004_old.dat 8 min 10 s 2 min 10 s 28 s 31 min 25 s 

022_old.dat 15 min 40 s 1 min 20 29 s 18 min 11 s 

Table 7.2: Investigation time of the datasets 

7.2 Dataset 100_198.dat 

The patient this dataset has been acquired from suffers from a serious occlusion in 

the left iliac artery. Several high-grade stenoses caused by soft plaque and serious 

calcifications can also be found in this dataset (see figure 7.1). 
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Figure 7.1: MIP of the dataset 100_198. 
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7.2.1 Curved planar reformation 

Different vessels are selected for curved planar reformation. The six endpoints can 

are shown in figure 7.2. The paths are numbered from left to right. The leftmost 

shorter path is number 1. The rightmost path is referred to as number 6. 

 

Figure 7.2: Left: Calculated paths. Right: Centered paths. 

 

In the figures 7.3 to 7.8 the curved planar reformation with the original path is 

shown in the left image. The right image shows the curved planar reformation 

with the centered path. 
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Figure 7.3: CPR of path number 1. 

 

Figure 7.4: CPR of path number 2. 
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Figure 7.5: CPR of path number 3. 
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Figure 7.6: CPR of path number 4. 
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Figure 7.7: CPR of path number 5. 

 

Figure 7.8: CPR of path number 6. 
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7.2.2 Segmentation results 

This section presents the maximum intensity projection (MIP) of the segmented 

dataset 100_198.dat (see figure 7.9). Also images of direct volume rendering with 

this dataset are shown in figures 7.10 and 7.11. The color encoding is red for 

contrast-enhanced vessels, white for calcifications and dark cyan for body and 

bone contours. 

 

 

Figure 7.9: MIP of the segmented dataset 100_198.dat. 
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Figure 7.10: The front side (left) and the back side (right) of the dataset. 

 

Figure 7.11: The dataset from two arbitrary viewpoints. 
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7.3 Dataset  004_old.dat 

The patient of dataset 004_old.dat suffers from serious calcifications and 

occlusions. The bypass in the left iliac artery is an indication of surgical 

intervention. It is very likely that such high-grade arterial diseases lead to a 

symptomatic disease (see figure 7.12). 

 

 

Figure 7.12: MIP of dataset 004_old.dat. 



CHAPTER 7. RESULTS  79 

 

7.3.1 Curved planar reformation 

The five paths are numbered according to their endpoints from left to right. In the 

following CPR based pictures the non-centered paths are shown on the left hand 

side. The centered path reconstruction is shown in the right image of each figure. 

 

Figure 7.13: Left: Calculated path. Right: Centered path. The white arrow marks a 

region where the center-finder algorithm improves the image significantly. 
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Figure 7.14: CPR of path number 1. 

 

 

 

Figure 7.15: CPR of path number 2. A wrong stenosis is pointed out by the arrow 

in the left image. The improvement by centering the vessel is clearly visible in the 

corresponding region of the right image. 
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Figure 7.16: CPR of path number 3.  

 

 

Figure 7.17: CPR of path number 4. 
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Figure 7.18: CPR of path number 5. 

 

7.3.2 Segmentation results 

As can be seen in figure 7.19 in the topmost area the dataset causes some 

difficulties. Therefore more noise than elsewhere in the dataset remains after 

segmentation. 
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Figure 7.19: MIP of the segmented dataset 004_old.dat  
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Figure 7.20: Front view (left) and back view (right) of the dataset. 

 

Figure 7.21: Detail inspection and an arbitrary viewpoint of the dataset. 
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7.4 Dataset  022_old.dat 

Dataset 022_old.dat is a very interesting dataset. Even though no major 

calcifications exist, serious occlusions occur. These long occlusions are caused by 

soft plaque. This dataset is a challenge for every algorithm trying to identify 

vessels. 

 

Figure 7.22: MIP of the dataset 022_old.dat 
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7.4.1 Curved planar reformation 

On this challenging dataset the high reliability of the path-finder algorithm is 

illustrated. Even as no contrast agent is present inside the vessel over long 

distances the path-finder correctly tracks the vessel. Note how the algorithm finds 

the connection through collateral vessels (see figure 7.23). 

 

 

Figure 7.23: Left: Calculated path. Right: Centered path. The black arrow marks a 

region where the path-finder algorithm finds a connection through collateral 

vessels. 
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Figure 7.24: CPR of path number 1. 

 

Figure 7.25: CPR of path number 2. 
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Figure 7.26: CPR of path number 3. 

 

Figure 7.27: CPR of path number 4. 
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7.4.2 Segmentation results 

The very long occlusions are clearly visible in the maximum intensity projection 

of the segmented dataset. The extended collateral vessels in the area of the end of 

the occlusions are also very good visible. These are the areas where the artery 

seems to start again (see figure 7.28). 

 

Figure 7.28: MIP of the segmented dataset.
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Figure 7.29: Front view (left) and side view (right) of the dataset. 

 

Figure 7.30: Two different views of the dataset  
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Chapter 8 

Conclusion 
 

The goal of this explorative thesis is to find appropriate techniques for vessel 

investigation of lower extremities and to prove that faster investigation is possible. 

Both targets were addressed and different solutions were proposed. All solutions 

were approximately 8 times faster as the methods currently in use.  

Different visualization techniques and segmentation methods of computed 

tomograpy angiography datasets have been investigated. A global optimisation 

method for the computation of a curved line was chosen because of high 

reliability. The curved plane reformation based on the semi-automatic computed 

curved-line was considered as an appropriate visualization technique as this 

method is known well in the radiology community. Therefore high acceptance of 

this technique within clinical environments is expected. An enhanced user 

interactive segmentation method focuses on bone removal. The advantage of this 

technique is the well-balanced trade-off between high quality segmentation and 

time requirements. 
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Chapter 9 

Summary 
The following chapter provides a summary of the main topics mentioned above. 

As only the main features and algorithm basics are addressed this chapter provides 

an overview of the thesis. 

9.1 Abstract 

Multi-slice helical computed tomography has the potential to accurately show the 

entirety of the lower extremity vessels with a single intravenous contrast medium 

injection at unprecedented, near isotropic spatial resolution. Large data size and 

the visibility of bony structures makes data set post-processing after data 

acquisition necessary. Two different visualization and segmentation methods are 

presented: A global optimization method for the computation of a curved planar 

reformation is introduced. Secondly a user-interactive segmentation approach is 

proposed. 

9.2 Introduction 

Medical image analysis is a rapidly growing field in information technology. 

Especially in the field of computed tomography new areas of application arise due 
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to the progress in computed tomography modalities. One of such applications is 

computed tomography angiography (CTA) of peripheral vascular diseases. Latest 

technical developments in CT – notably multi-slice helical CT – allow an 

approximately three-fold increase of volume coverage, while maintaining 

longitudinal resolution, and without incurring more helical artifacts. 

Lower extremity arterial disease is a significant health problem in the industrial 

world. Today, intraarterial digital subtraction angiography (iaDSA) is the 

pretherapeutic imaging technique of choice. iaDSA, however, is an invasive and 

costly procedure, which requires arterial catheterisation. A non-invasive technique 

- as CTA - for imaging the entire inflow and runoff vessels is therefore highly 

desirable. 

In order to visualize the entire arterial system of the lower-limb vessels with CTA, 

a stack of approximately 900 to 1500 transversal images have to be reconstructed 

per patient. Currently available editing and rendering techniques require more 

than 4 hours of manual editing and interaction of a well-trained user (radiologist 

or technologist) to obtain images that contain diagnostical value. Compared to the 

acquisition time of 25 to 60 seconds it is obvious that post-processing time has to 

be reduced. In contrast to MRA or iaDSA, CTA requires some sort of post-

processing, as bony structures are visible in the patient’s dataset. These bony 

structures prevent the vessel-tree from being entirely visible. 

Basically two different approaches were followed in order to provide a feasible 

tool for investigating CTA-datasets. The first is to generate a curved planar 

reformation (CPR) as described in section 9.4. 

The second approach is quite different. As the vessel tree in lower extremity areas 

consists of a huge amount of blood vessels of all sizes it is very difficult to 

identify every single vessel. The basic idea is that if it is difficult to identify the 

structures of interest, it might be easier to hide structures of less or no importance. 

Following this approach the whole vessel tree can be made visible by removing 

the bones from the dataset. 
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9.3 Vascular diseases 

The arterial tree of interest which supplies blood to the legs includes the 

abdominal aorta, the pelvic arteries and the arteries of both legs. The entire 

vascular tree including the abdominal aorta is shown in figure 9.1. 

 

Figure 9.1: The vessel tree of lower extremities. a) a short, segmental stenosis in 

the femoral artery. b) calcification near the aortic bifurcation. c) a long occlusion 

in the femoro-popliteal artery. 

The most relevant arterial abnormalities are: 

• Stenosis: A stenosis is a narrowing of the arterial flow lumen. Arterial 

stenoses are caused by atherosclerotic plaque (as can be seen in figure 

9.1a). Atherosclerotic plaques are soft tissue density  lesions within the 



CHAPTER 9. SUMMARY  95 

 

vessel wall, but plaques may also calcify. Atherosclerotic plaques often 

occur near the areas of high turbulences, such as bifurcations and bends. A 

bifurcation is for example the area where the aorta branches into the iliac 

(pelvic) arteries. 

• Occlusion: A complete obstruction of a vessel is referred to as an 

occlusion. The blood flow is redirected through secondary vessels, which 

circumvent the occluded vascular segment, and which are called collateral 

vessels. An example of an arterial occlusion is shown in figure 9.1c. 

• Calcification: The vessel wall of diseased arteries, as well as 

atherosclerotic plaque may calcify. With CT, calcified tissue is of high 

attenuation.  In figure 9.1 several areas of calcification can be seen. One is 

marked with circle b. 

9.4 Semi-automated curved planar reformation 

A curved plane in 3D space is described by a curved line and a vector. For each 

point of the curved line a straight line is defined which is collinear to this vector. 

The result is a curved plane in 3D space. Figure 9.2 shows a curved line on the 

left side. On the right side a curved plane is constructed using a vector that is 

parallel to the x-axis for each point of the line.  

 

Figure 9.2: Left: A curved spatial line. Right: A curved planar defined by the 

curved spatial line. 
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This method is already used in medical environments. Therefore it is a 

visualization technique that is very likely to be accepted for daily clinical use by 

the medical personnel in hospitals. One of the biggest disadvantages of this 

technique is the very time-consuming and error prone manual generation process. 

For this reason a semi-automatic generation method is desirable. The following 

section is going to describe such an approach. 

9.4.1 User interaction 

First the user identifies a starting point and at least one endpoint within each 

desired vessel. Afterwards the curved line computation can be started. The 

resulting path can be inspected and finally this path can be centered in order to 

improve the quality of the resulting curved planar reformation. 

9.4.2 Cost function 

The curved line computation is based on a modified live-wire algorithm [13]. A 

proper cost function is defined as to keep the calculated path inside the vessel. In 

contrast to the live-wire method this algorithm searches in 3D space for the 

optimal path. As the path depends on the sum of the cost function of each voxel 

the path is very likely to lie within the vessels. 

The local cost function fC(x,y) for a single step from a voxel x to the adjacent 

voxel y can be defined as: 

 )(),()()(),( xfyxfxfxfyxf LGISC +++=  (9.1) 

Where fS (x) is a constant cost function in order to keep the path short. This is 

necessary to avoid undesired high curvature regions of the path. 

The density interval function fI(x) ensures that the path stays inside the vessel. 

This is accomplished by penalizing intensity regions, which differ from the 

intensity regions that with high probability represents contrast-enhanced vessels. 

The gradient function fG(x,y) gives the difference of the intensity value of the 

previous voxel x and the intensity value of the subsequent voxel y. This function 

results from the assumption that in the direction of the central axis of the vessel 

the gradient magnitude is lower than in the direction to the vessel boundary. 
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Finally the Laplacian function fL(x) prevents the algorithm from tracking along 

and into bones. This function is necessary because of the partial volume effects 

and inhomogeneous regions of bony structures.  

9.4.3 The algorithm 

In order to find a path with minimal cumulative cost based on the local cost 

function mentioned above, Dijkstra’s shortest path algorithm is used. As this 

algorithm generates all optimal paths for a given starting point s a region L can be 

defined where all shortest paths are computed. The information of all optimal 

paths is stored in a direction information for each voxel. Following the direction 

information from the endpoint to the starting point s produces the shortest path. 

The region L can also be referred to as a set of voxel. The set of voxels located on 

the boundary of L is defined as Q. Initially the sets L and Q are empty. 

If a new endpoint e is defined two possibilities arise: 

1. Le ∈ : In this case simply the direction information dir(e2) has to be 

followed. The reason for this is that all optimal paths for voxels in L are 

already computed according to Dijkstra’s algorithm. 

2. Le ∉ : The new endpoint was not computed yet. Therefore Dijkstra’s 

algorithm is started with the new endpoint e. It is obvious that the sets L 

and Q can be reused because the boundary Q expands independent of the 

endpoints. 

9.4.4 Centering the curved line. 

As any deviation from the vessel main axis causes errors in the curved planar 

reformation, a feature is added to correct the path in terms of finding the center of 

the vessel. The pure path-finder algorithm does not assure the path to be in the 

center of the vessel. This can be seen in figure 9.3. The main goal of the 

center-finder algorithm is to improve the calculated path.  
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Figure 9.3: Left: Curved line computation without center correction. Right: With 

center correction. 

9.5 User-assisted segmentation 

The applied segmentation method is a rather basic segmentation technique. A 

combination of thresholding and region growing is applied. One of the main 

reasons for using a rather simple but computationally efficient approach is the 

large size of the datasets. 

The bone-seg algorithm is working on so called slabs. A slab is a set of several 

spatially adjacent volume slices. Typical 30 to 50 slices are combined in one slab. 

The advantages of this arrangement are: 

• Better response time: Because the amount of data is significantly smaller 

than the whole dataset the computation time after a user interaction is 

reduced. 

• Error containment: The error inside one slab cannot propagate over the 

whole dataset. 

• Region dependent parameters: As the correlations and properties of the 

objects differ depending on the regions within the dataset, the parameters 

can be set according to these regions. 
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The bone-seg algorithm is applied independently for each slab. Basically the 

algorithm consists of 3 steps. First a rough distinction between the different 

objects is done. Secondly the objects are labeled. In the final step the correct 

shape is computed. A predefined set of parameters is used for each slab. The user 

can change this set of parameters during the segmentation process. For each slab 

the set of parameters consists of: 

• tclass: This threshold is used to distinguish different objects. 

• texpand: This threshold defines the enhancement of already identified 

objects. This threshold is motivated to handle partial volume effects and 

marrow inside the bones. 

• tlabel: This threshold separates between objects considered as bones or 

vessels. The threshold tlabel is operating on the average density of objects. 

 

First all slices are classified using a high threshold tclass in order to distinguish 

different objects. The classification process is based on the intensity value and 

gradient magnitude of the voxels. The connected regions are merged and finally 

labeled according to their properties. A second iteration of the whole process 

(except labeling) is done with a lower threshold texpand. This step improves the 

quality of the segmented dataset by reducing noise due to partial volume effect 

and bone marrow. As the merging of different object types is prevented bones and 

vessels remain separated. After this step a user defined labeling of objects is 

possible. Finally the objects labeled as bone are removed. 

9.6 Results 

Table 9.1 gives an overview of the datasets’ parameters. All datasets are real 

world datasets. These datasets were anonymized as patient information was 

deleted. 
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Name Spatial resolution Size in MB 
Volume size 

(mmm) 

100_198.dat 512 x 512 x 988 494,5 257 x 257 x 1070 

004_old.dat 512 x 512 x 550 275,5 240 x 240 x 1102 

022_old.dat 512 x 512 x 1000 500  260 x 260 x 1100 

Table 9.1: Parameters of the presented datasets 

 

The test environment consists of a PII 350 MHz system with 704 MB main 

memory, running Windows NT 4.0 SR 5 as operating system. The volume 

rendering was done on the commercial medical image processing system 

JVision/Space-Vision from TIANI Medgraph [25]. 

In table 9.2 the time needed for the investigation steps is summarized. As the 

segmentation process is a highly interactive process no division between user 

interaction time and computation time is made. 

 

Name CPR 

computation time 

CPR user 

interaction time 

CPR center 

finding time 

Segmentation 

time 

100_198.dat 16 min 20 s 1 min 30 s 1 min 14 s 25 min 41 s 

004_old.dat 8 min 10 s 2 min 10 s 28 s 31 min 25 s 

022_old.dat 15 min 40 s 1 min 20 29 s 18 min 11 s 

Tabelle 9.2: Investigation time of the datasets 

 

In the following the results of the investigation techniques applied on dataset 

004_old.dat are presented.  
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Figure 9.4: MIP of dataset 004_old.dat. 

The patient of dataset 004_old.dat suffers from serious calcifications and 

occlusions. The bypass in the left iliac artery is an indication of surgical 

intervention. It is very likely that such high-grade arterial disease leads to a 

symptomatic disease. 
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9.6.1 Curved planar reformation 

The five paths are numbered according to their endpoints from left to right. In the 

following a CPR based on the non-centered paths are shown on the left hand side. 

The centered path reconstruction is shown in the right image of each figure. The 

CPRs of the four leftmost paths are shown in the following. 

 

 

Figure 9.5: Left: Calculated path. Right: Centred path. The white arrow marks a 

region where the center-finder algorithm improves the image significantly. 
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Figure 9.6: CPR of path number 1. 

 

 

 

Figure 9.7: CPR of path number 2. A wrong stenosis is pointed out by the arrow 

in the left image. The improvement by centering the vessel is clearly visible in the 

corresponding region of the right image. 
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Figure 9.8: CPR of path number 3.  

 

 

Figure 9.9: CPR of path number 4. 
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9.6.2 User interactive segmentation 

As can be seen in figure 9.10 in the topmost area the dataset causes some 

difficulties. Therefore more noise than elsewhere in the dataset remains after 

segmentation. 

 

 

Figure 9.10: MIP of the segmented dataset 004_old.dat  
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Figure 9.11: Front view (left) and back view (right) of the dataset. 

 

Figure 9.12: Detail inspection and an arbitrary viewpoint of the dataset. 
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9.7 Conclusions 

Two different approaches of vessel investigation were presented. A global 

optimization method for the computation of a curved line was chosen because of 

the high reliability. The curved plane reformation based on the semi-automatic 

computed curved-line was considered as an appropriate visualization technique as 

this method is known well in the radiology community. Therefore high acceptance 

of this technique within a clinical environment is expected. An enhanced 

user-interactive segmentation-method focused on bone removal was proposed. 

The advantage of this technique is the well-balanced trade-off between high 

quality segmentation and time requirements. 

Compared to methods currently in use all solutions presented here were 

approximately 8 times faster. 
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