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We propose an algorithm for content-based
retrieval of representative subsets of volume
data. Our technique is based on thresholding
of the eigenvalues of the Hessian matrix. We
compare our approach to feature detection
based on the gradient magnitude and observe
that our method allows the representation
of volumes by a smaller amount of voxels.
Practical applications of our method include
fast volume display due to object-space ori-
ented techniques, generation of preview data
sets for web-based repositories, and the re-
lated progressive visualization over the net-
work. For these applications, the size of the
representative subset can be estimated auto-
matically with respect to the bottleneck of
the visualization system or a network band-
width.
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With the VolumePro board [1] one might have got
an impression that the technology of volume graph-
ics has already matured to become a tool. “The
volume graphics today is where the surface graph-
ics was fifteen years ago,” said David Nadeau at
WSCG 2001 [2], however, and he emphasized two
reasons: the lack of authoring tools which would
help spread volume graphics and the limited dis-
play capabilities. The VolumePro board is able
to display at 30 fps, just volumes of rather small
resolution, i.e., 2563. Without introducing blur,
rendering such volumes can fill only moderately
sized output images, i.e., up to 256 × 256 pixels.
Constrained by a 21-inch monitor with a resolu-
tion of 1280 × 1024 pixels, a projection of a 2563

volume is comparable to as if we were legally
blind and a projection of a 10243 volume to as if
we were visually impaired. In order to approach
the “normal” vision determined by the density of
cones at the fovea, we will need to render vol-
umes of much higher resolution. Use of a 21-
inch screen would require a projection of a 24003

volume. Considering a 180◦ visual field in vir-
tual/augmented reality applications, the volume res-
olutions necessary to satisfy the human eye increase
to 21 6003 voxels.
The current technology is far from displaying such
resolutions at interactive frame rates. The main ad-
vantage of volume graphics over surface graph-
ics, i.e., the display of all volume elements in
a data set, is also its main disadvantage – the
size of data to be visualized limits the practical
use. In his talk [2], Nadeau surveyed how to cope
with this phenomenon and concluded a part of the
keynote with the question “How about changing our
data?”
In this work we give one of the possible answers
to this question. We report on a newly developed
technique aiming at a content-based retrieval of the
most important regions from volume data. Our ap-
proach utilizes convolution, computation of eigen-
systems, and thresholding. It enables representation
of volumes by the crucial features contained in much
smaller subsets.

2 Motivation and related work

A representation of volume data by just a small sub-
set of content-carrying voxels is desirable for and
addressed by many applications.
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Appropriately reorganized sparse volumes can be
rendered using object-space display techniques at in-
teractive frame rates [3, 4]. Saito [5] introduced non-
realistic previewing. Each voxel from a sparse subset
of the volume is represented by a simple 3D en-
tity, such as a point, a line, or a polar cross. A list
of these entities is passed to a conventional render-
ing pipeline achieving real-time results. Splatting,
introduced by Westover [6] and enhanced over the
years [7], usually yields high-quality display results.
Researchers further optimize [8] this technique to
achieve interactive frame rates for volumes of mod-
erate resolution. Recently, point-based visualization
of large data sets became popular due to the work of
Rusinkiewicz et al. [9], because of both simplicity
and speed. The discussions on quality aspects of this
approach were triggered by Pfister et al. [10].
Interactive volume visualization over the internet
based on a client/server architecture profits from
elaborated strategies for progressive data transmis-
sion. Here it is desirable for the content of a vol-
ume to be visually interpretable in the early stages
of transmission to and visualization by a client.
To achieve this, the server may start transmit-
ting salient features earlier than the rest of the
data.
Non-distributed visualization may benefit from stor-
ing a small, representative subset of the data to disk.
Such a representation can be reused later for a quick
preview.
There are many techniques aiming at identifying
important subsets of a volume data set. Isosur-
face extraction algorithms belong to the most com-
monly used techniques for indirect volume ren-
dering. The decisions on the iso-value(s) can be
made interactively [11] or, after a previous analy-
sis, semi-automatically [12] or automatically [13].
Saito [5] employed non-uniform stochastic Pois-
son sampling. The algorithm introduced by Mroz
et al. [14] reduces the size of the data with re-
spect to the applied visualization technique, i.e.,
maximum intensity projection (MIP). Gradient mag-
nitude of the intensity can also be considered as
a priority function. The voxels which mostly attract
the human attention usually belong to the “strong”
boundaries which exhibit high values of the gradient
magnitude.
Similarly, our concept is based on a filtering tech-
nique. The quantity being filtered is the second-order
derivative of the intensity profile. It is extracted from
the eigensystem of the Hessian matrix.

3 Our proposal

In this section we introduce a framework for using
eigenvalues of the Hessian matrix to identify a use-
ful subset of a given volume. Firstly we recall the
necessary definitions of the Hessian matrix and its
eigensystem. Then we show how the eigenvalues are
related to the Laplacian operator and demonstrate
a separability which makes the eigenvalues suitable
for thresholding of features. Based on this knowl-
edge we propose a technique resulting in a sparse
volume [15]. Finally we report on an extension [16]
which assumes that the objects in the volume exhibit
higher intensities than the background.

3.1 The Hessian matrix

A common approach to analyze the behaviour of in-
tensity I in the neighborhood of point x0 of a 2D/3D
image is to consider the initial terms of the Taylor
series expansion:

I(x0+∆x)≈ I(x0)+∆xT ∇ I(x0)+ 1

2
∆xTH(x0)∆x,

(1)
where ∇ I is the gradient vector and H denotes the
Hessian matrix. The Hessian matrix comprises sec-
ond partial derivatives of I and for a 3D image (vol-
ume) is defined as follows:

H =
(

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

)
, where Iab = ∂2 I

∂a∂b
. (2)

Expansion (1) plays a crucial role in filter design [17,
18] and, up to the second order, locally approximates
the structure of the image [19]. Its components, both
the gradient vector and the Hessian matrix, can also
be used separately. The gradient vector is widely
used as a normal to an implicitly defined isosurface.
Its magnitude provides a tool for edge/boundary de-
tection and in volume visualization can be used as
the opacity modulation factor [20].
The Hessian matrix is used whenever a second
derivative at a grid point x0 and a direction ∆x is
requested. The last term of (1), ∆xTH(x0)∆x, repre-
sents a quadratic form and yields the desired second
derivative.
Applications of second-order derivative information
in 3D imaging include boundary detection due to
the Laplacian operator (see also Sect. 3.3), semi-
automatic transfer-function setup [12], and adding
visual cues to isosurfaces due to their curvature
properties [21–23].
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3.2 The eigenvalues of the Hessian matrix

If there is a nonzero vector 0neqe ∈ E3 such that

He = λ e (3)

for some scalar λ, then λ is the eigenvalue of H
with the corresponding eigenvector 	e. As H is a real-
valued and symmetric matrix, its eigenvalues are
real-valued, too. The number of nonzero eigenvalues
is equal to the rank of H, i.e., at most three nonzero
eigenvalues are available. In this work we assume the
following arrangement of eigenvalues: λ1 ≥ λ2 ≥ λ3.
Sato et al. [24] and Frangi et al. [19] independently
employed the eigenvalues to design a filter for ves-
sel enhancement in 3D medical digital images. Two
years later Sato et al. [25] generalized the previ-
ously introduced concept to enhance tubular-, blob-,
and sheet-like structures. The task addressed in their
work was tissue classification. To achieve this they
adopted a concept of a multi-dimensional transfer
function which requires the user to set parameters in
5D space (I , ∇ I , and three functions of the eigenval-
ues) or even, including segmentation information, in
6D space.
The technique presented in this paper requires much
less user interaction. In the following we explain the
theoretical background leading to a two-fold thresh-
olding algorithm where the only task of the user is to
specify two thresholds.

3.3 Relation of the eigenvalues
to the Laplacian operator

Finding the eigenvalues and eigenvectors of the Hes-
sian matrix is closely related to its decomposition

H = PDP−1 , (4)

where P is a matrix the columns of which are H’s
eigenvectors and D is a diagonal matrix having H’s
eigenvalues on the diagonal. The right-hand side
of (4) is a similarity transformation under which
the trace is an invariant, i.e., Tr(PDP−1) = Tr(D).
Putting these facts together for a 3D image we find
the following:

λ1 +λ2 +λ3=Tr(D) = Tr(PDP−1)

=Tr(H) = Ixx + Iyy + Izz

=L . (5)

The rightmost term denotes the Laplacian operator
and (5) puts it into a relationship with the eigenvalues
of the Hessian matrix.

The Laplacian operator and its variant, the Laplacian
of Gaussian (LoG), is widely used as an isotropic
edge detection filter [26]. The importance of edge
information for machine vision is usually motivated
from the observation that a discontinuity in image
brightness can be assumed to correspond to a dis-
continuity in either depth, surface orientation, re-
flectance or illumination [27]. The importance of the
Laplacian and LoG for bioperception has been em-
phasized by the work of Marr [28].
To use the Laplacian filter for boundary detection,
the neighborhood of the inspected voxel must be
checked for zero-crossings, i.e., whether or not the
second derivatives change the sign. Obviously, this
test is more complicated than first-order detection,
which only requires thresholding of the gradient
magnitude. On the other hand, there are two rea-
sons which make second-order detection attractive.
Firstly, only linear operators are involved in the com-
putation. In contrast, the gradient magnitude is only
obtained after squaring and adding first-order deriva-
tive operators, followed by a square root. Secondly,
the result of the search for zero crossings at bound-
aries of the objects always results in closed contours.
This is different to the first-order detection since
thresholding of the gradient magnitude can brake
contours if the boundaries exhibit varying lengths of
gradient.
In the following we introduce a mechanism which
utilizes both the advantages of second-order detec-
tion and the simplicity of thresholding.

3.4 Thresholding of Hessian’s eigenvalues

Given the eigenvalues of the Hessian matrix, (5)
shows that it would be possible to combine them
into the Laplacian operator. By experimenting with
eigenvalue images, however, we have found that
treating the eigenvalues separately rather than adding
them is suitable for thresholding. Figure 1 demon-
strates this property on a 2D example.
For an extraction of features from a 2D image we
propose a two-fold thresholding as follows:

Inew[p] =
{

I [p] if λ1[p] ≥ T1 ∨ λ2[p] ≤ T2 ,

0 otherwise ,
(6)

where p = [x, y] denotes the coordinates of a pixel.
For a 3D image there are three eigenvalues, λ1 ≥
λ2 ≥ λ3, for each voxel. Figure 2 shows axial slices
of eigenvalue volumes computed from a CT head
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1a 1b 1c

1d 1e

2

Fig. 1a–e. An example of an MRI image. a original image I; b gradient magnitude ‖∇ I‖; c response to the Laplacian op-
erator; d λ1 image; and e λ2 image. The Laplacian image corresponds to the sum of eigenvalue images, which can be
thresholded for feature detection
Fig. 2. Part of an interface and demonstration of suitability for thresholding of the eigenvalues λ1 and λ3. The image corre-
sponding to eigenvalue λ2 lacks contrast information and is therefore excluded from thresholding
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data set. Since, in our experience, images corre-
sponding to λ2 lack good contrast, we propose two-
fold (instead of three-fold) thresholding, taking into
account only the outer eigenvalues, λ1 and λ3:

Vnew[v] =
{

V [v] if λ1[v] ≥ T1 ∨ λ3[v] ≤ T3 ,

0 otherwise ,
(7)

where v = [x, y, z] denotes the coordinates of a voxel.
The only task of the user is to specify the two thresh-
olds T1 and T3 (Fig. 2).

3.5 Experimental results

Table 1 and Fig. 3 indicate that (7) allows volumes
to be represented, for visualization purposes, by ap-
proximately 10% of the voxels. The thresholds T1
and T3 allow the user to interactively control the
trade-off between the quality of the display and the
amount of the displayed information.
Equation (7) defines a variant of a second-order
boundary detector which is important for bioper-
ception (see Sect. 3.3). This is mostly noticeable by
comparing the rendered images of the engine block
data sets (top row of Fig. 3). In the sparse volume, ar-
eas corresponding to boundaries are emphasized and
provide the observer with better topological informa-
tion on the data set.
All tested volumes have been quantized to 256 gray
levels. To compare the visual appearance, the vol-
umes have been displayed by a direct volume render-
ing (DVR) algorithm implemented in the VolumePro
architecture [1].

3.6 Further reduction of the subsets

The previously introduced concept can be further
extended [16] by assuming that the objects are
of a higher intensity than the background. In this

Table 1. Results for some typical volume data sets. Columns from left to right: name of the data set, its resolution, number of voxels
in KB, threshold values from (7) used in the generation of a sparse volume, number of nonzero voxels in KB in the sparse volume,
relative size to original volume, and a reference to Fig. 3

Original volume Sparse volume Fig. 3
Data set Resolution KB T1 T3 KB % row

Engine block 256×256×110 7040 21.953 −23.381 658 9.36 1
CT head 128×128×113 1808 16.981 −19.182 183 10.12 2
MRI head 256×256×109 6976 7.822 −6.364 871 12.48 3

case a second-order operator responds with neg-
ative and positive values at the inner and outer
sides of a boundary, respectively. This is in con-
trast with gradient-based edge detection, which
yields an equal response on both sides of a bound-
ary. We exploited this fact to represent the ob-
jects’ boundaries only by their internal side. Com-
pared to the gradient method, such a selection re-
quires a smaller amount of voxels for boundary
representation.
With a gradient-based approach, the magnitude of
the gradient, i.e., the maximal first derivative at the
inspected point, is taken as a measurement of the
boundary strength (importance) and is passed to the
thresholding step.
For the same purpose, we propose the use of the min-
imal second-order derivative at the inspected point.
From the definition of the eigenvalues, Hei = λiei ,
it follows that the eigenvalues λi give the sec-
ond derivatives in the direction of the eigenvectors
ei: λi = eT

i Hei . Since H in this context represents
a quadratic form, computing the smallest eigenvalue
directly yields the minimal second-order derivative
at the point x0. This gives a measurement of the
boundary importance – the lower the λ3, the more
important the boundary.
To compare volume representation by subsets ob-
tained by thresholding the quantities λ3 and ‖∇‖,
we generated sparse volumes where the intensity
of voxels not present in the subset is set to zero.
These volumes were rendered by the OpenSplat
package [29]. In the following we refer to the sparse
volumes comprising p% of the original voxels due
to thresholding of λ3 as Λ(p%) and due to thresh-
olding of ‖∇‖ as Γ(p%). We compare the represen-
tations consisting of 1, 3, 5, and 7% of the original
voxels:

Lobster (Fig. 4): Representation by Λ(1%) subset
provides a better idea about the data set than the
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a b

Fig. 3a,b. Raycasting [1] of a the engine block, CT head, and MRI head data sets and b the corresponding sparse volumes
due to (7) with threshold parameters set as in Table 1. The engine block subset consists of 9.36% voxels of the original data
set, the CT head subset of 10.12% voxels, and the MRI head subset of 12.48% voxels
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a original data set b Λ subsets c Γ subsets

7%

5%

3%

1%

Fig. 4a–c. Splatting [29] of the lobster data set a and its representations due to the thresholding of b λ3 and c ‖∇‖. From top
to bottom the subsets comprise 7%, 5%, 3%, and 1% of the voxels of the original data set
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a original data set b Λ subsets c Γ subsets

7%

5%

3%

1%

Fig. 5a–c. Splatting [29] of the vertebra data set a and its representations due to the thresholding of b λ3 and c ‖∇‖. From
top to bottom the subsets comprise 7%, 5%, 3%, and 1% of the voxels of the original data set
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same amount of voxels in the representation by
Γ(1%). The legs of the lobster are visible and eas-
ily recognizable in the Λ(3%) subset, but they
just start to appear in the Γ(7%) subset. More-
over, the Λ(7%) is already close to describing the
entire topology of the data set.

Vertebra (Fig. 5): Neither of the 1% representa-
tions provide enough information, though there is
more content visible in the Λ(1%) subset. At 3, 5,
and 7% we observe that the contours in the Λ(·)
subsets close much faster than in the correspond-
ing Γ(·) subsets. Moreover, we estimate that the
Λ(1%), Λ(3%), and Λ(5%) subsets provide ap-
proximately the same level of information as the
Γ(3%), Γ(5%), and Γ(7%) subsets, respectively.

4 Implementation and complexity

4.1 Hessian matrix versus gradient vector

Computation of both the gradient vector and the Hes-
sian matrix at grid points involves an approximation
of the first and the second partial derivatives, respec-
tively. For this task, convolution of the data with ker-
nels designed for a particular derivative in a specific
direction is employed.
For the first derivatives, kernels of size up to three
are usually found in textbooks: Roberts, Prewitt and
Sobel filters are feasible for fast computation.
The Hessian matrix requires an estimation of second-
order derivatives which is, especially for small ker-
nels, much more sensitive to noise. The usual prac-
tice is to pre-smooth the input data with a Gaus-
sian filter. Due to the associativity of convolution,
the smoothing step and the differentiation can be
combined, resulting in a convolution of the data
with a derivative of the Gaussian filter of a big-
ger size. To remain consistent in the comparison
of both the quality of results and the computa-
tional costs, we used filters of the same size for
both first and second derivatives. Using the Gaus-
sian filter requires that its size k is proportional to
the standard deviation, so the kernels usually in-
volved are 5, 7, or 9 voxels wide. Convolution with
even moderately sized kernels is usually a com-
putationally expensive process. To speed it up,
hardware features can be used on specific plat-
forms [30, 31]. For software implementation, the
separability of the Gaussian derivative kernels can be
exploited:

( k×k×k︷ ︸︸ ︷
∂o

∂xa∂yb∂zc
Gσ(x, y, z)

)
⊗ I

=
k×1×1︷ ︸︸ ︷

da

dxa
Gσ(x)⊗

( 1×k×1︷ ︸︸ ︷
db

dyb
Gσ(y)⊗

( 1×1×k︷ ︸︸ ︷
dc

dzc
Gσ(z)⊗I

))
,

(8)

where non-negative integers a + b + c = o ∈ {1, 2}
determine the order of differentiation and σ is the
standard deviation of the Gaussian filter Gσ(x) =
exp

(
− x2

2σ2

)
/
√

2πσ . Decomposition (8) reduces the

time complexity O(k3) required by convolution with
one 3D kernel to O(3k) required by convolutions
with three 1D kernels.

4.2 Eigenvalues of the Hessian
versus gradient magnitude

While computing the gradient magnitude by the
Euclidean norm requires three multiplications, two
additions and one square root, the computation of
eigenvalues of the Hessian matrix is more complex.
The explicit formula would require solving cubic
polynomials. In our implementation we used a nu-
merical technique – the fast converging Jacobi’s
method as recommended by Press et al. [32] for real-
valued, symmetric matrices.

5 Concluding remarks

We propose an easy-to-use framework for exploiting
eigenvalues of the Hessian matrix to represent vol-
ume data by small subsets. We recall the relation of
eigenvalues to the Laplacian operator, show the suit-
ability of thresholding eigenvalue volumes, and de-
fine a two-fold threshold operation to generate sparse
data sets.
For data where it can be assumed that objects ex-
hibit higher intensities than background, we modify
the framework taking into account only the smallest
eigenvalue. This results in a further reduction of the
representative subsets by selecting just voxels at the
interior side of object boundaries [16].
We evaluate our method with several data sets from
different modalities. We compare our approach to
feature-detection based on thresholding of the gra-
dient magnitude. We find that for the same level of
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perception our method allows data sets to be repre-
sented by reasonably smaller subsets. The presented
method allows the volume data to be represented by
approximately 6% subsets.
The possible applications of such a compact rep-
resentation are, e.g., fast rendering due to object-
space display techniques, progressive transmission
over the Internet and the generation of preview data
sets. The drawback of our method is a higher compu-
tational cost. Computation of the Hessian’s eigenval-
ues is approximately 1.87 times more expensive than
the computation of the gradient magnitude [33, 34].
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