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Figure 1: Liver dataset (a) and its segmented vessel structure using median (b), bilateral (c) and rotated mask filters (d).

Abstract

Non-linear filtering is an important task for volume analysis. This
paper presents hardware-based implementations of various non-
linear filters for volume smoothing with edge preservation. The
Cg high-level shading language is used in combination with lat-
est PC consumer graphics hardware. Filtering is divided into per-
vertex and per-fragment stages. In both stages we propose tech-
niques to increase the filtering performance. The vertex program
pre-computes texture coordinates in order to address all contribut-
ing input samples of the operator mask. Thus additional computa-
tions are avoided in the fragment program. The presented fragment
programs preserve cache coherence, exploit 4D vector arithmetic,
and internal fixed point arithmetic to increase performance. We
show the applicability of non-linear filters as part of a GPU-based
segmentation pipeline. The resulting binary mask is compressed
and decompressed in the graphics memory on-the-fly.
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1 Introduction

Medical datasets obtained from CT or MRI scanners contain noise.
It is due to scanner precision, movement artifacts, inhomogeneous
contrast-agent distribution and many other factors. All these factors
strongly influence the correct reconstruction as well as the diagnos-
tic process. To improve noisy data, filtering turns out to be a funda-
mental task for feature enhancement, data analysis, noise removal,
and finally reconstruction.

Depending on a filter type, filtering is either linear or non-linear.
Linear filtering is a convolution of the dataset with a filter kernel,
which is given as a continuous function or through discrete sam-
ples. The continuous filters respectively their discrete high resolu-
tion representations are typically used for reconstruction purposes.
Another class are low-resolution filters adopted from popular linear
image processing operators. These are a very rough representa-
tions of the continuous kernels. However they are often sufficient
for smoothing, edge detection or gradient estimation. Typical rep-
resentatives are mean or Gaussian smoothing operators and edge
detectors like Sobel or Laplacian operators [Sonka et al. 1995].

Non-linear filters are generally filters that do not fit into the cat-
egory mentioned above, i.e., the filtering cannot be expressed as a
convolution. Typical examples are dilation, erosion, and median
filters used for volume analysis. In this paper we focus on a sub-
category of non-linear filters, i.e., edge-preserving smoothing fil-
ters. The advantage as compared to linear smoothing operators is
that they smooth areas within a particular object, while preserving
its borders.

Edge-preserving smoothing is often used as a preprocessing step
for medical image segmentation. It generally improves the accu-
racy of the segmentation by preserving object boundaries, while
reducing random noise in the interiors of the structures. However,
such filters require more complex processing than linear operators,
so the filtering performance is in most cases worse. We adapt these
filters to the latest consumer graphics hardware. The segmentation
via thresholding is also done on the graphics hardware with the pos-



sibility to interactively adjust the threshold value. The final mask is
then stored in a simple compressed form in a stack of pbuffers. This
compact representation can be transfered back to the main memory
much faster than a mask with the size of the original dataset. The
compact representation can be used for permanent storage of the
segmentation mask. When the mask is used for volumetric clipping
with volume textures directly on hardware [Weiskopf et al. 2002],
it can be decompressed on-the-fly without significant performance
loss. The filtering and segmentation pipeline is illustrated in fig-
ure 2.
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Figure 2: The filtering and segmentation pipeline.

The contribution of this paper is to move the data enhancement
step of the visualization pipeline to the graphics hardware. Cur-
rently the graphics hardware is used mostly for the last step, i.e.,
rendering. However the performance and flexibility of the latest
graphics hardware can be used for other steps as well. The idea
is to upload the dataset into the graphics hardware as textures and
perform all possible tasks on the GPU. We add the pre-filtering step
using complex non-linear filters and the segmentation step. The fil-
tering is shown on three specific edge-preserving filter types. We
also point out general recommendations for hardware-based filter-
ing algorithms that target the current as well as future hardware
generations.

The remainder of the paper is organized as follows: Section 2 de-
scribes features of current graphics hardware. In section 3 we give
an overview on hardware-based filtering and non-linear filtering in
software. Section 4 describes GPU based filtering in general and
then points out specific issues of each filter type implementation.
After the filtering stage of the pipeline, the segmentation stage is
discussed in section 5. Results are shown in section 6 and conclu-
sions are drawn in section 7.

2 Graphics Hardware Issues

In our implementation we exploit the programmable features of the
current graphics hardware such as vertex and fragment process-
ing units. These features make the graphics hardware very flexible
and allow to implement even complex filters efficiently. A vertex
shader allows many manipulations upon vertices, e.g., changing po-
sition, color, texture coordinates or to compute information which
is passed to the fragment shader. Vertex shaders currently sup-
port conditional jumps and subroutine calls. Fragment programs
are similar, but operate on fragments. For both processing units, a
small assembler-like program is loaded to the graphics memory and
executed for each vertex respectively fragment. Most instructions
are four-component vector instructions. For example multiplication
of two float4 registers is a component-wise operation, i.e., four
multiplications can be computed within one instruction. The num-
ber of instruction slots for a vertex respectively fragment program
is limited by the graphics hardware. A fragment program, however,
does not support conditional jumps and subroutines, so the num-
ber of instruction slots limits the number of instructions executable

per fragment. If the filtering process does not fit into one render-
ing pass, i.e., the number of required instructions exceeds the hard-
ware limit, the intermediate results can be rendered into pbuffers.
A pbuffer (pixel puffer) is an offline rendering context which is not
displayed, but has the same features as a framebuffer. Pbuffers are
not limited by the actual screen resolution, because the rendering
context size is limited by only the graphics hardware. Pbuffers can
be directly bound as textures in the next rendering pass without the
need to copy within the graphics memory. These buffers can have
up to 32-bit floating-point precision per color channel.

Recently various C-like high-level shading languages (HLSL)
have been proposed and developed. They enable the compiler
to produce assembly code and offer the developer higher pro-
gramming comfort. Beside this, it is possible to share the same
high-level code among different hardware platforms. The high-
level code is then compiled to hardware specific assembly code
in run-time. The principle is derived from the RenderMan shad-
ing language [Upstill 1990], however RenderMan was not intended
for real-time rendering. The first HLSL using the programmable
graphics hardware is the Stanford Real-Time Shading Language
(RTSL) [Proudfoot et al. 2001], which allows programmability for
four so called computation frequencies: constant, per primitive
group, per vertex, and per fragment. Beside the RTSL other HLSLs
have been developed like DirectX HLSL [2003], OpenGL Shading
Language [2003] or NVIDIA’s Cg Language [Mark et al. 2003].
Cg has some additional advantages as compared to the other shad-
ing languages. It supports both hardware APIs, i.e., OpenGL as
well as DirectX. For easier data transfer Cg uses pre-defined struc-
tures called binding semantics to be used in the vertex shader
and vertex-shader to fragment-shader communication. The API-
to-vertex binding semantics contain all vertex attributes like color,
normal vector, and texture coordinates, which can be arbitrarily
changed in the vertex program. After the transforms have been
done, the output is stored in vertex-to-fragment binding semantics.
The fragment shader receives the interpolated colors and texture
coordinates as input parameters. The input and output binding se-
mantics are denoted as IN for input and OUT for output. The output
binding semantics (OUT) of the fragment shader is output fragment
color, and eventually depth value. Because of this flexible and sim-
ple model we use the Cg Language in our implementation.

3 Related Work

The area of hardware-accelerated filtering has gained wider atten-
tion recently. 3D convolution using graphics workstations was in-
troduced by Hopf et al. [1999]. They perform the linear filtering on
2D slices using the imaging subset of OpenGL 1.2. The separability
property of specific low pass and high pass kernels is exploited. The
filtered 2D slices are then convolved along the third dimension via
1D convolution. Later they extended their work on hardware-based
filtering by morphological operators using multi-pass blending with
min and max operations [Hopf and Ertl 2000]. The first graph-
ics hardware generation featuring programmable units was used for
2D convolution by James [2001]. This approach was intended for
filtering using small kernels, however the filtering result suffered
from precision artifacts. A general approach for hardware-based
linear filtering was presented by Hadwiger et al. in [2001; 2002].
Their work can be applied to arbitrary linear filter kernels, gaining
speed-up from various kernel properties. The main difference to the
previous approaches is to use texture instead of color value for fil-
ter kernel representation. A particular sample is not convolved with
a constant value, but with a kernel tile. This allows to filter with
high-resolution kernels for, e.g., cubic reconstruction.

Nowadays hardware-accelerated three-dimensional linear filter-
ing can be implemented in a rather straightforward way. Also im-
plementation of morphological analysis is simple, because current



hardware directly supports the MIN and MAX instructions. However
the implementation of filters that require complex operations like
sorting, or have iterative behavior is still difficult. These types of
filters have not been implemented on the graphics hardware yet, but
there are already various software implementations available. We
focus on three specific types of edge-preserving smoothing filters.
The first is the median operator. Huang et al. [1979] present one of
the fastest median filtering algorithms. It is based on storing and up-
dating the gray level histogram of pixels within the operator mask.
From one filtered pixel to the next, the m×n operator mask moves
only one column. It means, only n values have to be removed and
n added to the histogram, so the computational complexity is O(n).
Other median estimation algorithms are listed by Press et al. [2002].
The second and nowadays very popular non-linear filter type com-
prises bilateral filters introduced by Tomasi et al. [1998]. The filter
consists of multiplication of two weights, which are different for
each contributing sample. The first weight is based on the geomet-
ric distance between the neighbor and the center pixel. The second
weight is based on the photometric similarity between these two
pixels. A bilateral filter can be used for edge-preserving smooth-
ing. This kind of edge-preserving smoothing was used recently for
displaying high-dynamic-range images [Durand and Dorsey 2002]
and smoothing of normals [Tasdizen et al. 2002]. A very similar
filter was also proposed by Aurich et al. [1995]. They use a filter
chain with varying σ parameters instead of one iteration. The third
category of edge-preserving filters are filters proposed by Nagao
et al. [1979]. The filter computes mean and dispersion for 9 dif-
ferent operator masks. The output value is the mean of the mask
with the smallest dispersion. Similar filters based on similar edge-
preserving constraints are also called rotated mask smoothing fil-
ters [Sonka et al. 1995].

4 Hardware-Based Non-Linear Filtering

Our filtering methods using programmable hardware are in spirit
to previous approaches [James 2001]. Exploiting the latest PC
graphics hardware features allows to increase the computational ef-
ficiency and performance compared to the previous approaches. In
this section we introduce various new techniques that significantly
increase the filtering performance.

The workflow of our algorithms is as follows: First we down-
load the volumetric data into the graphics-hardware memory. The
dataset is stored as 2D textures in contrast to 3D. This preserves the
12-bit precision of medical datasets by using the floating-point for-
mats. These formats are currently available only for 2D textures on
the NVidia hardware. The high-precision fixed-point formats are
not yet supported.

For illustrative purposes, we consider filtering with a filter size
of 5×5×5 voxels. For each filtered slice we set up a corresponding
pbuffer as a destination rendering context. We render a simple quad
geometry and bind 5 textures that contain the contributing voxels.
The texture-coordinate vertex-attributes are set to fit the whole tex-
ture on the quad. This setup is illustrated in figure 3. For each
voxel of the dataset we execute the same vertex and fragment pro-
gram. The filtered output value is rendered into the corresponding
pbuffer. In case of iterative filtering, the pbuffer can be bound di-
rectly as texture for the second filtering pass. In the following we
describe the main filtering part done on the vertex and fragment
processing units.

4.1 Per-vertex stage

To access the value of a particular voxel that contributes to the fil-
tered output value, we have to perform a texture lookup into the
source texture. Normally it would be necessary to compute ad-
dresses from the texture coordinates of the processed output voxel.

TEXTURE STACK PBUFFER STACK

Figure 3: Setup for 2D texture slices and corresponding pbuffers.

For a 5×5×5 filter size this would require 125 instructions to com-
pute the addresses of all contributing voxels for each filtered voxel.
However, using 2D textures, we have in fact only 25 different ad-
dresses within a slice. Current hardware features eight texture co-
ordinates per-vertex. The straightforward way to pre-compute eight
addresses to access different locations within the texture, is to set
up each texture coordinate with a different offset. These addresses
are then interpolated “for free” for each processed fragment. This
leads to a higher performance, but it is still necessary to compute the
addresses of the remaining voxels. We show how to pre-compute
the addresses to all 25 voxels within a slice using just 7 of the 8
available texture coordinates.

Each texture coordinate is a four-dimensional vector. We use the
xyzw notation, where x is the first, y is the second, z is the third,
and w is the fourth component. The graphics hardware directly uses
only xy components for 2D textures. The flexibility of the hard-
ware allows to use zw components for storing addresses as well.
This is done with another feature called the swizzle operator “.”,
which allows the components of a 4D vector register to be arbitrar-
ily rearranged in a new vector. We rearrange the components of a
texture coordinate, to generate another texture coordinate without
any performance loss. Figure 4 shows a close-up at 5× 5 voxels
of the rendering context. Three voxels are highlighted to show the
correspondence between input and output texture coordinates.
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Figure 4: Rendering context of size W × H and stretched quad with
the texture coordinate setup at the vertices (IN.TEXCOORD0). The
close-up shows three highlighted voxels of a 5×5 mask illustrating
the correspondence between the input and output texture coordi-
nates (OUT.TEXCOORD0-6).

Texture coordinates are denoted as TEXCOORD0-TEXCOORD7.
IN.TEXCOORD0.xy contains the x and y address of the central
voxel. IN.TEXCOORD0.xyxy for example is a 4D vector which
contains as first and third component the x-address, and as sec-
ond and fourth component the y-address of the central voxel.
OUT.TEXCOORD0 stores in its xy components the address of the
neighboring voxel with offset [−2,2] from the central fragment.
The zw components contain the address of the voxel with [−1,1]
offset. Using the swizzle operator we can address also voxels with
offsets [−2,1] (xw components) and [−1,2] (zy components). In
other words one texture coordinate register together with the swiz-
zle operator is used to address four neighboring voxels. Similarly



we can address up to three voxels in a row respectively column.
OUT.TEXCOORD2 stores the x and three times the y address of the
central voxel. OUT.TEXCOORD6 stores three addresses within one
row analogously to the OUT.TEXCOORD2 binding semantic. Fig-
ure 5 shows the complete setup of available texture coordinates to
access entire 5× 5 neighborhood. Figure 6 gives the correspond-
ing listing of the vertex shader. The overall speed-up achieved by
the voxel address pre-computation can be up to a factor of 10, de-
pending on the filter and data type used for address computation.
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Figure 5: Pre-computed addressing of neighboring samples within
one slice.

OUT.TEXCOORD0 = IN.TEXCOORD0.xyxy + float4(-2, 2,-1, 1);

OUT.TEXCOORD1 = IN.TEXCOORD0.xyxy + float4( 0, 2, 1, 1);

OUT.TEXCOORD2 = IN.TEXCOORD0.xyyy + float4( 2, 2, 1, 0);

OUT.TEXCOORD3 = IN.TEXCOORD0.xyxy + float4(-2, 0,-1,-1);

OUT.TEXCOORD4 = IN.TEXCOORD0.xyxy + float4( 0, 0, 1,-1);

OUT.TEXCOORD5 = IN.TEXCOORD0.xyxy + float4( 1,-1, 2,-2);

OUT.TEXCOORD6 = IN.TEXCOORD0.xxxy + float4(-2,-1, 0,-2);

Figure 6: Texture coordinate setup for the OUT.TEXCOORD0-
OUT.TEXCOORD6 binding semantics.

Using larger operator masks would require more available tex-
ture coordinate binding semantics. For example a 6× 6 operator
mask would require 9 texture coordinates. We can replace the miss-
ing texture coordinate by the COLOR0 binding semantic that is in-
terpolated for each fragment in the same way as the texture coor-
dinates. Also other vertex attributes can be used for addressing the
contributing neighborhood.

4.2 Per-fragment stage

Apart from the contributing voxels’ address pre-computation the
rest of the filtering process is done in the per-fragment stage. Be-
fore we describe each particular filter type in detail, we point out
some general recommendations, which are important for efficient
hardware implementation.

To efficiently access the graphics hardware memory via texture
fetches, it is important to preserve cache coherence. A texture
lookup operation does not fetch only one texel value, but a whole
block of graphics memory, which is then stored in the cache. It is
important to know how the texture is stored in the graphics mem-
ory, which is different for each texture format. Some formats store
the texture linearly. In this case the cache line is loaded with the
x-axis neighbors. Other formats load a rectangular xy block in a
cache line. Due to hardware limitations we use linearly stored tex-
ture formats. All the texture fetches of contributing neighbors are

performed in the x-axis direction. Beside the 2D slices of the vol-
ume dataset, we also store pre-computed complex functions in the
lookup textures instead of computing them on-the-fly. Such lookup
textures usually suffer from cache misses that may trash the cache,
because of accessing different parts of the texture. If possible it is
recommended to use rather small lookup textures to reduce cache
misses.

Another approach to speed-up the process is to take advan-
tage of 4D vector instructions. A lot of instructions perform per-
channel operations, even instructions like MIN perform component-
wise comparisons. This allows to fold up to four instructions into
a single one. Storing four scalar values in a 4D vector costs four
MOV instructions. Therefore the number of instructions is reduced
only if the vector instructions are executed more than once per con-
tributing fragment. To eliminate the MOV instructions it is necessary
to fetch four values within a single texture-fetch instruction, which
requires four-channel textures.

The shaders allow floating- as well as fixed-point arithmetics.
There are two floating-point possibilities: 32- and 16-bit floating-
point precision. Fixed-point arithmetics operates on a 12-bit fixed-
point type, which is in the interval [−2,2]. The fixed-point arith-
metics is twice as fast as low-precision floating-point arithmetics,
which in turn is twice as fast as high-precision floating-point arith-
metics. Medical datasets are usually stored in a 16-bit integral type,
using only 12 bits. This allows us to use the fixed-point arithmetics
to get the maximum performance without precision loss.

Interestingly also the number of used registers strongly influ-
ences the overall performance of shader execution. An effective
solution could be to rearrange the code into multiple passes instead
of a one pass approach.

Another implementation issue that significantly influences the
performance is the number of conditional operations in fragment
programs. This should be minimized in the HLSL code, because
efficient branching is not yet available and all the instructions in
both branches are executed respectively. Also the discard oper-
ation, i.e., early fragment exit, is still not well supported. Instead
of the early termination of program execution for the current frag-
ment, all remaining instructions are executed and the output value
is just ignored.

If possible the implementation should use the HLSL standard
library functions instead of user written routines. In most cases the
built-in functions are compiled more efficiently into assembly code.

The hardware implementation should take into account all the
mentioned issues, otherwise the computational resources will not
be utilized efficiently. The following subsections describe the effi-
cient fragment shader implementation of three different non-linear
filters.

4.2.1 Median Filter

The most typical representative of non-linear filters is the median
filter. It produces similar results as the mean or Gaussian smoothing
in regions of constant color, but preserves edges in image regions,
where the pixel intensity rapidly changes. For a random variable
x the median M is the value for which the probability of the out-
come x < M is equal to 0.5. In image processing the median is the
central value of the ordered set of the values within the operator
mask. There has been a lot of research involved in efficient median
filter implementation. We have already discussed software imple-
mentations in section 3. Due to graphics hardware limitations our
implementation is not based on such a histogram based approach as
proposed by Huang et al. [1979].

First we describe the basic idea of the algorithm and then show
how to reduce the number of passes exploiting the 4D arithmetics
of current hardware. Our method is based on traversing all voxels
within the operator mask, comparing the estimated pivot value to all



voxel values within the operator mask Q. For the 5×5×5 filter size,
the number N of contributing voxels is equal to 125. Because of the
12-bit precision voxel values are in the range of [0..4095]. The
algorithm performs a binary search on the voxel values within the
operator mask. Initially we set the possible range of median values
to 0 for the lower border, and 4095 for the upper border. The pivot
is set to the average value of the border values. Then we traverse all
voxels and evaluate the number of voxel values f , which are greater
than the pivot. If the number of greater values is smaller than N+1

2 ,
the median is within the range [0, pivot] otherwise it is in the range
[pivot,4095]. According to this condition we update the value of
the corresponding border to the pivot value and repeat traversing
the voxel values again. The pivot is updated to the average value
of the new border values. The number of such iterations is equal to
log(4096), i.e., 12. After the 12th iteration the median value is the
only integer value, which is within the interval of borders.

Current hardware makes possible to compare the voxel value
with four different values using a 4D vector as pivot instead of
scalar value. We generate a 4D vector from the voxel value as well
and perform component-wise comparisons. The difference to the
algorithm described above is that we do not estimate the pivot as
average value from the border values, but divide the actual range
uniformly into five intervals. The algorithm can be also consid-
ered as a histogram search with four bins, where counter contains
cumulative histogram. This reduces the number of necessary iter-
ations from 12 to 6. The pseudo code of the GPU-based median
filter is listed in figure 7.

border = {0, 4095};

mult = {.2, .4, .6, .8};

for (s = 0; s < 6; s++){

counter = 0;

pivot = border.xxxx+(border.y-border.x).xxxx*mult;

for all f(i, j, k) in Q

if (pivot > f(i, j, k)) counter++;

tmp border = border.y;

border.y = pivot.x;

if(counter.x < 63) {

border.x = pivot.x;

border.y = pivot.y;

}

if(counter.y < 63) {

border.x = pivot.y;

border.y = pivot.z;

}

if(counter.z < 63) {

border.x = pivot.z;

border.y = pivot.w;

}

if(counter.w < 63) {

border.x = pivot.w;

border.y = tmp border;

}

}

return floor(border.y);

Figure 7: Median filter code listing for a 5× 5× 5 operator mask
Q, i.e., N = 125.

The GPU-based implementation of the median filter requires a
large number of conditionals. We are using the most effective con-
dition, i.e., the standard library function step(a, x), which re-
turns 0 in case x < a, otherwise it returns 1. Due to an inefficient
implementation of the discard function, we cannot gain a speed-

up from early termination. This will be possible on future graphics
hardware, as the filter will run more efficiently. The speed-up com-
paring to the software implementation of quick median [Press et al.
2002] is a factor of 1.97. The result of a thresholding segmentation
with pre-filtering using the median is shown in figure 11.

4.2.2 Bilateral Filter

As mentioned in section 3, bilateral filters became more important
over the last years. A bilateral filter has a similar behavior like
convolution-based smoothing in regions of more or less constant
color. The filter, however, eliminates the contribution of samples
whose values differ considerably from the center sample. We use
the Gaussian case [Aurich and Weule 1995]. The non-linear Gaus-
sian filter is defined by

g[x] =

∑
q∈Q

h[q] f [q]

∑
q∈Q

h[q]
, (1)

where Q is the operator mask, h[q] the composed filter weight and
f [q] the value of voxel q. The filter weight is composed in the
following way

h[q] = hg[‖q− x‖]hp[ f (q)− f (x)], (2)

which is a multiplication of the geometric and photometric weight.
The term ‖q−x‖ is the Euclidian distance between the contributing
and central voxel. Both weights hg, hp are computed by a Gaussian
function, each with different input and σ values

hg[t] = e
−t2

2σg hp[t] = e
−t2

2σp . (3)

The implementation uses a two-channel register for accumula-
tion. One channel contains sum of the weights computed by mul-
tiplication of the geometric and photometric weight. The other
channel sums the weight multiplied by corresponding neighboring
voxel. To avoid evaluation of a complex function, we pre-compute
the geometric weight coefficients in software and send them to
the fragment shader via free binding semantics like, e.g., COLOR0,
COLOR1 or NORMAL. This can be easily done in software, because
for a 5×5×5 operator mask there are only 10 different geometric
weights. The photometric weight is represented as a 1D lookup
texture. A straightforward approach would use a 2D lookup tex-
ture, where the ( f (q), f (x)) texture entry contains the correspond-
ing hp value. The texture fetch will return the pre-computed com-
plex hp function value. The texture lookup costs one additional MOV
instruction, because the texture coordinates must be stored in one
register. However, we use a 1D lookup texture, where the difference
between two voxel values is the texture coordinate for the lookup.
This eliminates the speed-down caused by cache trashing, which is
often the case when using large 2D lookup textures. The number of
instructions remains the same, only the MOV instruction is replaced
by an ADD instruction. The only remaining problem are negative re-
sults of the difference operation. This problem can be easily solved
by setting the texture wrap mode to mirror the texture. The final
output value is computed as a division between the two channels
to normalize the accumulated intensity. The filtering performs effi-
ciently, because there is no conditional code at all. The algorithm
of the bilateral filter is described in pseudo code in figure 8.

Figure 11 shows the liver dataset segmented via thresholding
with pre-filtering using a bilateral filter. We perform more itera-
tions to increase the smoothing effect. The resulting filtered dataset
is shown after 1, 3, and 5 iterations. The GPU-based implementa-
tion achieves approximately a speedup factor of 1.52.



num = den = 0;

for all f(i, j, k) in Q{

diff = f(i, j, k) - f(central);

h p = tex(photometric tex, diff);

h(i, j, k) = h p * h g(i, j, k);

num += h(i, j, k) * f(i, j, k);

den += h(i, j, k);

}

return num / den;

Figure 8: Bilateral filter code listing.

4.2.3 Rotating Mask Filter

The last filter which we will discuss in more detail is the rotating
mask filter, similar to the Nagao filter [1979]. The basic principle
is to divide the operator mask into several sub-regions and compute
mean and dispersion σ 2 for each sub-region separately. The out-
put value is the mean of the sub-region with minimal dispersion.
We have implemented a 3D version of this filter, considering six
different sub-regions, which are sketched in figure 9.

Figure 9: Sub-regions of the decomposed operator mask.

The dispersion is calculated as proposed in [Sonka et al. 1995]
by the following equation

σ2[S] =
1

NS



∑
q∈S

f [q]2 −

(

∑
q∈S

f [q]

)2

NS



, (4)

where NS is the number of contributing voxels per sub-region, S is
the sub-region mask and f [q] is the value of voxel q.

The implementation accumulates during the texture fetches the
sum of the contributing voxels for each sub-region in sum regis-
ter. The dispersion consists basically of two sums, where one is
already stored in the sum register and the second register (sq sum)
is accumulated as sum of squared values of each fetch. After all
samples of the sub-region are summed in these registers, the dis-
persion is computed. We leave out the scaling factor N−1

S to avoid
unnecessary computations. Then we compare the minimal disper-
sion with the currently computed one. If necessary the minimal
dispersion value is updated and the corresponding sum is assigned
to the result register. Finally we normalize the result register.
The normalization is performed as a multiplication with the N−1

S
value, where N−1

S is the number of contributing voxels per sub-
region. Finally we write the result to the output. The pseudocode in
figure 10 shows the basic steps of rotated mask filtering in graphics
hardware.

Initially was our implementation an single-pass approach. The
sub-regions are overlapping, i.e., some voxels are contributing to

min disper = HIGH NUMBER;

result = 0;

for (s = 0; s < 6; s++) {

sum = sq sum = 0;

for all f(i, j, k) in sub reg[s] {

sum += f(i, j, k);

sq sum += f(i, j, k) * f(i, j, k);

}

disper = sq sum + sum*sum / N S;

if (disper < min disper) {

min disper = disper;

result = sum;

}

}

return result / N S;

Figure 10: Rotated mask code listing.

more sub-regions. To reduce the number of texture-fetch instruc-
tions, we summed the voxel contributions in 6 temporary registers.
The compiled HLSL assembly output used 39 temporary registers
what strongly influenced the performance. After decomposing the
algorithm into 6 passes, the number of temporary registers was re-
duced to 4 per pass and the performance increased by factor 3.29.
The speedup factor compared to a software implementation is 7.26.
The original and pre-filtered dataset using the rotating mask filter is
shown in figure 11.

5 Hardware-Based Segmentation

For particular segmentation purposes a simple thresholding on a
pre-filtered dataset produces acceptable results as compared to
more complex methods. Segmentation of the vessel structure of
the liver turns out to be a good example. The liver does not have a
constant intensity value, and the intensities are close to the intensity
of the vessels. The edge-preserving filters smooth the intensities of
the liver, but preserve the boundaries of the vessels.

The advantage of GPU-based segmentation is the possibility to
interactively adjust the threshold value. The threshold is sent to the
fragment program of the segmentation stage. The thresholding is
done via one simple conditional that evaluates whether the texture
fetch of a source texture is within a given value range. According
to the result of this conditional either 0 or 1 is written to the output.
After the threshold adjustment is done, we apply the thresholding
to the whole dataset and store the segmentation mask in the graph-
ics memory. To keep the segmentation mask as small as possible,
we store it in a compact way using for one segmented slice just
one bit per pixel of a 32-bit pbuffer. Thus the bit mask of 32 slices
can be stored in one pbuffer. The problem is that there is a limited
support of pbuffer formats, which are either fixed- or floating-point.
Floating-point pbuffers are quite inefficient for storing and restor-
ing the segmentation mask, because it is necessary to distinguish
between sign, mantissa and exponent bits. Fixed-point pbuffers are
better, however there is not a one-channel pbuffer support avail-
able yet. Therefore we store the segmentation mask in four-channel
pbuffers, each channel with 8 bits. Current hardware allows to bind
just up to 16 textures (data slices) for one rendering pass. To store
32 mask slices we perform two rendering passes. In one pass we
render 16 mask slices into the red and green channel. In the next
pass we render the next 16 slices into the blue and alpha channel.
These two results are blended into a single pbuffer. Such a pbuffer
is then either sent to the main memory by the OpenGL function
glReadPixels(), or stored in the graphics memory in a compact



way. Sending the compressed data to the main memory is much
faster than sending 32 slices separately. The restoring (i.e., uncom-
pressing) is easily done on-the-fly. The data slice is multiplied with
the corresponding bit slice. The segmentation on the graphics hard-
ware compared to a software version is approximately five times
faster. Sending compressed data instead of the full dataset is about
20 times faster.

6 Results

We have tested the performance of our algorithms on the newest
graphics chip GeForceFX 5900 Ultra [NVIDIA 2003]. The frag-
ment processing unit features 8 texture coordinates and 16 image
textures. The textures and pbuffers support floating-point formats.
The maximal length of a fragment program in OpenGL is currently
1024 instructions, which is enough for small operator masks. For
filters with larger support we have to split the rendering into mul-
tiple passes. The hardware-based filtering is compared to an opti-
mized software version, which was tested on an AMD Athlon XP
2200+ processor with 1.0 GB of RAM (2× 512 DDR, 133 MHz,
CL2) and VIA Apollo KT333 chipset. The size of the test dataset
is 512×512×72 of unsigned short, but only 12 bits are set. We
perform the filtering on a full precision dataset without any quanti-
zation.

In table 1 we summarize the frame rates for filtering a liver
dataset. The complex non-linear filters achieve a speedup factor
in the range of 1.52 – 7.26. Besides the mentioned non-linear fil-
ters, we indicate the performance of the mean and the erosion fil-
ter to show the performance improvements compared to previous
work from section 3. Such simple filters perform better, because
the GPU can execute them more efficiently. The GPU-based seg-
mentation via thresholding achieves a speedup of factor 8.73. Com-
pressing the thresholded dataset does not affect the thresholding
performance significantly. The download of the compressed mask
to the main memory speeds up the transfer by a factor of 20.

Filter Hardware [ms] Software [ms] Speedup
Mean 1688 19443 11.52
Erosion 1685 25399 15.07
Median 24678 48639 1.97
Bilateral 9668 14706 1.52
Rotated Mask 7989 58003 7.26
Thresholding 40 349 8.73
Thresholding
& compression 64 – –

Table 1: Filtering and threshold-segmentation performance on a
liver dataset (512×512×72).

7 Summary and Conclusions

In this paper we presented the implementation of various non-linear
filters on state-of-the-art consumer graphics hardware. We used
a high-level programming interface for comfortable programming
and optimized assembly code. Graphics hardware is now much
closer to general purpose hardware, in the way of flexibility.

The overall segmentation pipeline was illustrated; from loading
the volumetric dataset into the graphics memory to the compact
segmentation mask representation. The compact representation can
be used for GPU-based volume rendering in combination with clip-
ping or can be loaded back to main memory in an efficient way.
Although the performance of GPU-based complex filters was not

dramatically faster for all filter types comparing to the CPU solu-
tions, there was a certain performance achievement. A nice per-
formance gain was achieved in the segmentation step, where the
thresholding, storing and restoring of the segmentation mask was
very fast.

We showed that another important part of the visualization
pipeline can be performed on the graphics hardware. For partic-
ular applications, like for example the liver vessel tree extraction,
the whole pipeline can be done on the graphics hardware.

In the paper we pointed out various implementation recommen-
dations to efficiently use the latest graphics hardware. Keeping
these issues in mind, it is possible to use the graphics hardware,
intended for the gaming industry, for a large spectrum of scientific
visualization applications.

The future GPUs will be even more flexible. Hardware-based
rendering turned out to be a very effective way for volume visu-
alization [Engel et al. 2001; Guthe et al. 2002]. The problem re-
mains the slow data transfer between CPU and GPU in a hybrid
visualization systems. Therefore it is very important to move all
possible steps of the visualization pipeline towards the GPU. The
performance gain for complex filtering tasks was reasonable tough
not spectacular. Interactively steered filtering and segmentation on
GPU is possible without any transfer between CPU and GPU.
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