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Balázs Csébfalvi, László Neumann�, Armin Kanitsar, Eduard Gröller
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Abstract

In this paper a novel technique for smooth shape-
based interpolation of volume data is introduced.
Previously simple linear interpolation of signed dis-
tance maps has been used in practice. As it will
be shown, this approach results in artifacts, since
sharp edges appear along the original slices. In or-
der to obtain a smooth 3D implicit function gen-
erated by interpolating 2D distance maps, we use
a global interpolation method instead of a higher
order local technique. The global curvature of the
implicit function representing an isosurface is mini-
mized using an iterative conjugate gradient method.
Because of the iterative approach the user can eas-
ily control the trade-off between the smoothness of
the isosurface and the computational cost of the re-
finement. As opposed to previous techniques, like
variational interpolation, our method can generate a
reasonably good approximation of the ideal solution
in a significantly shorter time.

1 Introduction

In computer graphics research, it is a recurring
problem, how to reconstruct a continuous func-
tion from a finite number of samples located at
regular grid points. The traditional approach is
convolution-based filtering. The sinc function is
considered to be an ideal reconstruction kernel since
it represents an ideal low-pass filter in frequency do-
main [1, 2]. Theoretically, the original signal can be
reconstructed if it is band-limited and the sampling
density is higher than the Nyquist limit. In practice,
it is not always the case. For instance, in a medical
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CT scan the resolution within slices is usually much
higher than the resolution along the axis perpendic-
ular to the slices (often called z-axis). Typically the
sampling distance between the slices is insufficient
for reconstructing small details. If the boundary sur-
face of an organ is varying drastically along the z-
axis the local interpolation methods result in stair-
case aliasing. The question is, what interpolation
technique can be considered to be optimal in such
a case. For example, if it is assumed that the data
contains some smooth surfaces of different organs,
it is worthwhile to aim at the curvature minimiza-
tion of the interpolated function rather than using a
local reconstruction method.

Many volume rendering algorithms require an
isostack of slices, where the inter-slice distance is
equal to the inter-pixel distance inside the slices.
In order to fulfill this requirement, usually a more
sophisticated interpolation method (like cubic B-
spline interpolation) is applied for generating an
isotropic data set, and a simple trilinear interpola-
tion is used in the rendering pipeline [3] to obtain
a continuous representation. Our strategy is simi-
lar. We want to select a subvolume of interest and
create a higher resolution, nearly isotropic volume
out of it using a high-quality shape-based interpo-
lation technique. This higher resolution represen-
tation of the selected region can be visualized by
the traditional volume-rendering methods. In this
sense, our approach can be interpreted as a sharp
volume-zooming technique.

We assume that some fine details are contained
in the selected subvolume, which cannot be re-
constructed by local convolution-based filtering be-
cause of undersampling along the z-axis. Therefore,
instead of interpolating the original density values,
we apply the traditional shape-based approach by
interpolating 2D implicit functions generated from
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the contours inside the slices. Our goal is to cre-
ate a higher-resolution representation of the origi-
nal subvolume. We do this by adding intermediate
slices aiming at a minimal global curvature. The
newly inserted intermediate samples are free vari-
ables, while the samples of the original 2D implicit
functions have to be preserved. Although by a sim-
ple linear interpolation of implicit functions, like
signed distance maps, smoother surfaces can be ob-
tained than by linear density interpolation, some ar-
tifacts like sharp edges at the position of the original
slices are still produced (see figure 1).

In contrast our interpolation technique provides
smooth isosurfaces. All the 2D slices are interpo-
lated at the same time using an iterative method,
where the global curvature is minimized.

Section 2 gives an overview on the previous
shape-based interpolation techniques discussing
their advantages and drawbacks. In section 3 our
novel approach based on global curvature mini-
mization is introduced. In section 4 we go into the
details of the iterative solution using the conjugate
gradient method. In section 5 our method is tested
on artificial and medical data sets and finally in sec-
tion 6 the contribution of this paper is summarized.

2 Previous Work

The previous shape-based interpolation techniques
can be classified into two fundamentally differ-
ent categories: parametric correspondence meth-
ods and implicit function interpolation. The para-
metric methods try to find corresponding pairs of
points between the boundaries of two 2D shapes.
Afterwards the intermediate samples are interpo-
lated from these pairs of points. An early appli-
cation of this approach was a contour interpolation
technique published by Fuchs et al. [4]. The idea
was to find a minimal-area triangulation connecting
two corresponding contours. Further improvements
were also published like defining quality measures
for the correspondence between contours and opti-
mizing the basic method [5, 6]. The major draw-
back of the parametric methods is the problem of
self-intersecting surfaces and branching which are
addressed in recent publications [8, 9].

Applying implicit function interpolation these
problems do not arise, and shapes of different
topologies can be easily transformed. Implicit func-
tion methods operate on a higher dimensional rep-

resentation of objects than the parametric methods
do. Therefore, they have higher computational costs
and memory requirements.

A contour inside a slice can be represented by a
2D implicit function f�x�, as a set of all points x
such that f�x� � �. A 2D implicit function can
be interpreted as a height field, where the contour is
defined as a level line intersecting the height field at
the zero level. Intermediate contours can be gen-
erated by interpolating 2D implicit functions and
searching for the contour points at the zero level.

One possible implicit function is a binary in-
side/outside function or characteristic function.
Such implicit functions are rather simple. They
can only be used for contour transformation if a
more sophisticated interpolation method is applied.
An alternative solution is to perform the interpo-
lation of characteristic functions in the frequency
domain [7]. Smooth intermediate shapes can also
be generated from characteristic functions by using
weighted Minkowski sums [10, 11].

More sophisticated implicit functions like signed
distance maps provide smooth contour transitions
even if a simple interpolation technique is used
[12, 13, 14, 15]. In order to interpolate contours,
the 2D distance maps are evaluated at regular grid
points. Therefore, each pixel contains the signed
Euclidean distance to the nearest contour point in
the given slice. The pixels with negative distance
are outside the object and the pixels with positive
distance are inside the object. An intermediate im-
plicit function is created by a simple linear interpo-
lation and each intermediate contour is determined
as a zero isocontour in an interpolated implicit func-
tion. This method results in quite good results. Be-
cause of the local interpolation, however, some sec-
ond order discontinuities are produced.

An alternative solution to this problem is the ap-
plication of variational interpolation [16]. This ap-
proach simultaneously builds implicit functions and
interpolates between them. Although this method
generates smooth surfaces from contours, it is com-
putationally rather expensive. Furthermore, it pro-
vides an analytic solution which has to be evaluated
at regular grid points to create an input data for vol-
ume rendering.

In contrast our method is based on an iterative
global smoothing of the initial 3D implicit function
which is produced by linear interpolation. There-
fore, the user can easily control the trade-off be-
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(a) Linear density interpolation. (b) Linear interpolation of 2D distance maps.

Figure 1: Density- (a) and shape-based (b) interpolation in a CT scan of a human colon.

tween the smoothness of the interpolated surfaces
and the computational cost of the refinement. On
the other hand the generated result is a volumetric
representation, therefore it is directly available for a
volume-rendering application.

Even if an isosurface is reconstructed from the
volume using the marching cubes algorithm [18],
the vertex normals can be estimated from the neigh-
boring voxels, therefore a smooth Gouraud-shaded
surface can be rendered. In contrast, using the
recent methods which generate triangular meshes
from contours [8, 9] the vertex normals have to be
derived from the orientation of the triangles.

3 Curvature Minimization

The input data of our method is a selected subvol-
ume of resolution X�Y �Z, which contains some
fine details of interest. It is assumed that along the
z-axis the object to be visualized is undersampled.
Our interpolation algorithm consists of the follow-
ing steps:

1. contours specified by a threshold are generated
within 2D slices

2. 2D signed distance maps are created for each
slice

3. intermediate slices are added through linear in-
terpolation of the distance maps

4. iterative refinement using the conjugate gradi-
ent method

5. extracting an isosurface crossing the zero level

First of all, contours specified by an isovalue are
generated in each slice using the 2D version of the
marching cubes algorithm [18]. The next step is
the generation of an implicit function for each slice
by calculating signed distance maps of the contours.
The marching cubes algorithm provides a piecewise
linear approximation of a contour. Therefore, for
each single segment its Euclidean distance from an
arbitrary pixel position can be easily determined.
It is sufficient to evaluate the signed distances just
for a certain pixel neighborhood of each segment,
where the radius depends on the number of interme-
diate slices to be interpolated. After processing all
the segments, each pixel near the contours contains
the signed distance to the nearest contour segment.
Figure 2 shows an example of such a 2D implicit
function, where blue pixels (negative distance) are
outside the object and red pixels (positive distance)
are inside the object.

In the third step the resolution along the z-axis is
increased by a factor of N by linearly interpolating
N � � slices between each neighboring pair of the
2D distance maps. The obtained distance volume of
resolution X�Y � ��Z��� �N ��� is used in the
following steps as a discrete 3D implicit function
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Figure 2: An example of a 2D signed distance map.

denoted by f�i� j� k�.
The fourth step is an iterative refinement mini-

mizing the global curvature of function f . At each
single voxel position �i� j� k�, the local error is de-
fined as the square of the curvature c�i� j� k�, which
can be calculated by finite differences approximat-
ing the following formula:

c�i� j� k� � f�xx�i� j� k��f
�
yy�i� j� k��f

�
zz�i� j� k��

(1)
� � f�xy�i� j� k� � � � f�xz�i� j� k� � � � f�yz�i� j� k��

The global error E is defined as the sum of the
local errors:

E �

Z�X
k��

YX
j��

XX
i��

c�i� j� k��� (2)

where Z� � �Z � �� � N � �. At the minimum
location of the error function E, its partial deriva-
tives according to all the distance values f�i� j� k�
have to be equal to zero, where i � ��� �� ���� X�,
j � ��� �� ���� Y �, k � ��� �� ���� Z��. This is equiva-
lent to the gradient vector rE) being equal to zero:

�E��f�i� j� k� � � �rE � �� (3)

The global error function can be minimized by
applying an iterative gradient method. Note that,

the distance maps of the original slices (k � ��� N�
�� �N � �� ���� Z��) should not be modified during
the iteration. This requirement can be fulfilled if the
iteration is performed in a lower dimensional sub-
space. Let us denote the vector of all the distance
values by f . Using the classical gradient method,
in the ith iteration step vector fi�� is calculated as
follows:

f
i�� � f

i � � � rEi� (4)

In order to leave original slices unchanged we are
not using the gradient vector rE but a projection
rE� onto a subspace. rE� results fromrE by set-
ting all those components ofrE to zero which cor-
respond to original slices. Thus, during the iterative
minimization, vector f converges to the smoothest
solution which fits to the original slices.

Since the error function E is quadratic, its par-
tial derivatives are calculated as a linear function
of the distance values f�i� j� k�. The curvature
formula (1) is approximated by finite differences,
therefore the partial derivatives, which are the com-
ponents of the gradient vector rE, can be deter-
mined by a computationally efficient convolution
with a 	� 	� 	 kernel (see Appendix). Practically,
each iteration step is a simple filtering operation.

Nevertheless, applying the classical gradient
method the iteration converges slowly. In order to
speed up the convergence we rather use an opti-
mized conjugate gradient method [17] although its
memory requirements are higher.

4 Iteration using the Conjugate Gra-
dient Method

In each iteration step, the conjugate gradient
method translates vector f into a direction d so that
one component of the error becomes zero and stays
that way in the further iterations. Thus, if the num-
ber of components is N then after N iterationsrE
would be zero for sure. In an iteration step, we are
not going into the�rE direction but in a modified
direction depending on the previous step:

f
i�� � f

i � �i � di� (5)

where di � �i � di�� �rEi. The initial value
of vector d is defined as d� � �rE�. The opti-
mal scaling factor �i in the ith iteration step is cal-
culated from the current and the previous gradient
vector in the following way:
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�i �
�rEi �rEi���T � rEi

�rEi���T � rEi��
� (6)

The formula for the optimal calculation of the
scaling factor � is derived from the current values
of f and d (see Appendix). Thus, the major steps of
the conjugate gradient method are the following:

1. calculate f� by linear interpolation
2. d� � �rE�

3. calculate an optimal �i

4. f i�� � f
i � �i � di

5. calculate an optimal �i��

6. di�� � �i�� � di �rEi��

7. if jdj � � go to 3.
In order to keep the original slices unchanged,

we slightly modify this classical conjugate gradient
method by substituting rE in steps 2 and 6 by its
projection rE� as it is defined in the previous sec-
tion. According to our experience, the conjugate
gradient method converges much faster (the num-
ber of necessary iterations is less with an order of
magnitude) than the simple “steepest slope” gradi-
ent method. In the conjugate gradient method one
iteration step is more complicated and an additional
floating point field has to be allocated for each voxel
in order to calculate the optimal �i coefficients. Be-
cause of the lower number of necessary iterations
the computational cost is, however, significantly re-
duced.

5 Implementation

The presented iterative smoothing technique has
been implemented in C++ and tested on a Silicon
Graphics O2 workstation. First we used two artifi-
cial data sets for testing, where the 2D signed dis-
tance maps were generated by calculating accurate
Euclidean distances. One of these data sets was a
simple sphere and the other one was a cross-like
shape of tubular objects. In both cases an isotropic
volume was created and we tried to reconstruct the
original volume from a lower resolution representa-
tion taking every eighth slice as an original slice.
Figure 3b and 3d show the results after 15 itera-
tions. Compared to the linear interpolation of the
distance maps (figure 3a and 3c) the surfaces are
much smoother and the second-order discontinu-
ities are significantly reduced.

We also tested our method on real medical data.
From a CT scan of a colon a 
��
��
� subvolume

rE� �i �i f
i��

time 0.69 s 0.09 s 0.81 s 0.14 s

Table 1: Running time measurements for the differ-
ent steps of the conjugate gradient method.

Figure 5: The magnitude of vector d depending on
the number of iterations, where the z-resolution was
increased by a factor of 2, 4, and 8.

of interest was selected. Figure 4 shows the test re-
sults for this subvolume. Similarly to the previous
example, we tried to reconstruct the original subvol-
ume by taking every fourth then every eighth slice
as an original slice. Linear interpolation of the dis-
tance maps (4a and 4c) results in sharp edges along
the original slices while using our method much
smoother surfaces are produced after 15 iterations.
These 15 iterations took 26 seconds on an SGI O2
workstation. Table 1 shows the running time mea-
surements in seconds for the different phases of one
iteration step.

In order to illustrate the nature of the conver-
gence, figure 5 shows the magnitude of vector d
which is used to slightly modify the distance values
f�i� j� k� in each iteration step. The different graphs
belong to different ratios of the original and the new
resolution along the z-axis. For instance, if this ra-
tio is 4 then every fourth slice is considered to be
an original one, therefore 3 intermediate slices are
generated between each pair of neighboring origi-
nal slices. Note that, the more intermediate slices
have to be generated the slower the convergence is,
because of the increased number of free variables.
For a typical medical data set it is usually sufficient
to increase the z-resolution by a factor of 2 in order
to generate a nearly isotropic volume. In such a case
after about 10 iterations the magnitude of vector d
will be practically zero.
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(a) (b)

(c) (d)

Figure 3: Artificial test data generated by linear interpolation of 2D signed distance maps (a, c) and by
using our iterative smoothing method (b, d).

6 Conclusion

In this paper a smooth shape-based interpolation
technique based on an iterative refinement approach
has been presented. We have shown that the tradi-
tional linear interpolation of signed distance maps
can result in sharp edges along the original slices
if the surfaces are varying drastically in the z-
direction. These artifacts can be eliminated by our
method which minimizes the global curvature of the

generated 3D implicit function. Similarly to the
variational interpolation our technique produces all
the intermediate slices simultaneously instead of in-
terpolating between pairs of 2D implicit functions.
Therefore, second-order discontinuities do not ap-
pear along the original slices and the smoothness of
the surfaces is comparable to the results of varia-
tional interpolation.

Furthermore, in our case the trade-off between
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(a) (b)

(c) (d)

Figure 4: Interpolation of a human colon by taking every fourth (a, b) and every eighth slice (c, d) as an
original slice. For the volume reconstruction linear interpolation of approximate signed distance maps (a,
c) and our iterative smoothing method (b, d) were used.

the image quality and the computational cost can be
easily controlled by the user because of the iterative
approach. Thus a good approximation can be ob-
tained in a significantly shorter processing time. In
contrast, variational interpolation calculates an ana-
lytical solution which is computationally rather ex-
pensive. Additionally this analytical solution has to
be evaluated at regular grid points to build a volu-

metric data for an interactive volume-rendering ap-
plication.
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Appendix

The components of vectorrE can be calculated by
a simple 	�	�	 convolution kernel. Let us denote
the layers of this kernel by l�, l�, ..., l�. Because of
symmetry reasons l� � l� and l� � l�. The layers
are defined by the following matrices:

l� �

�
��

� � ����� � �
� � � � �

����� � ��� � �����
� � � � �
� � ����� � �

�
�� �

l� �

�
��

� � � � �
� � � � �
� � �� � �
� � � � �
� � � � �

�
�� �

l� �

�
��

����� � ��� � �����
� � �� � �
��� �� ���� �� ���
� � �� � �

����� � ��� � �����

�
�� �

In the third step of the conjugate gradient method
the optimal � can be calculated by the following
formula:

� �

Z�X
k��

YX
j��

XX
i��

��fi���j�k 	 fi���j�k � �fi�j�k
�

�di���j�k 	 di���j�k � �di�j�k
	

�fi�j���k 	 fi�j���k � �fi�j�k
�

�di�j���k 	 di�j���k � �di�j�k
	

�fi�j�k�� 	 fi�j�k�� � �fi�j�k
�

�di�j�k�� 	 di�j�k�� � �di�j�k
 	 ������

��fi�j���k�� 	 fi�j���k�� � fi�j���k�� � fi�j���k��
�

�di�j���k�� 	 di�j���k�� � di�j���k�� � di�j���k��
	

�fi���j�k�� 	 fi���j�k�� � fi���j�k�� � fi���j�k��
�

�di���j�k�� 	 di���j�k�� � di���j�k�� � di���j�k��
	

�fi���j���k 	 fi���j���k � fi���j���k � fi���j���k
�

�di���j���k	di���j���k�di���j���k�di���j���k

��

��fi���j�k 	 fi���j�k � �fi�j�k

�	

�fi�j���k 	 fi�j���k � �fi�j�k

�	

�fi�j�k�� 	 fi�j�k�� � �fi�j�k

�
	 ������

��di���j�k��	di���j�k���di���j�k���di���j�k��

�	

�di�j���k��	di�j���k���di�j���k���di�j���k��

�	

�di���j���k	di���j���k�di���j���k�di���j���k

�
��
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