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Abstract
We present Volume dots (Vots), a new primitive for volumetric data modelling, processing, and rendering. Vots
are a point-based representation of volumetric data. An individual Vot is specified by the coefficients of a Taylor
series expansion, i.e. the function value and higher order derivatives at a specific point. A Vot does not only
represent a single sample point, it represents the underlying function within a region. With the Vots representation
we have a more intuitive and high-level description of the volume data. This allows direct analytical examination
and manipulation of volumetric datasets. Vots enable the representation of the underlying scalar function with
specified precision. User-centric importance sampling is also possible, i.e., unimportant volume parts are still
present but represented with just very few Vots. As proof of concept, we show Maximum Intensity Projection based
on Vots.

Categories and Subject Descriptors(according to ACM CCS): I.3.6 [Computer Graphics]: Graphics Data Structures
and Data Types

1. Introduction

Volumetric data processing is commonly sample-based. Vol-
umetric models consist of a huge number of samples. Each
sample contains only information about the data at one spe-
cific position. In order to reconstruct a continuous function,
neighborhood connectivity is necessary. Volumetric data is
often given on a rectilinear grid. The main advantage hereby
is, that the positions of the data samples are stored implicitly
and that it allows efficient spatial addressing of the data. The
rigid shape of such grids becomes more and more a limita-
tion factor as the data sets are constantly increasing in size
due to more advanced acquisition devices. Furthermore, the
fraction of non relevant volumetric regions in relation to ar-
eas of interest is steadily increasing. Non relevant volumetric
regions, such as empty space, should not be represented ex-
plicitly. Moreover, this explicit representation needs costly
storage resources and introduces additional complexity in
processing algorithms. For example, extensive research in
volume rendering is devoted to efficiently skipping empty
space. Furthermore the discrete nature of grid representa-
tions makes it difficult to apply analytic methods to analyze
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the data. The maximum along a ray, for example, is often
estimated by sampling techniques. A more intuitive solu-
tion would be to analytically compute the maximum directly.
This would be more exact and more efficient.

In this paper we address these issues and propose a new
primitive for volumetric data modelling, processing, and ren-
dering: Volume dots (Vots). Vots are a functional represen-
tation of sample-based volumetric data. A Vot comprises the
coefficients of a Taylor series expansion, which describes the
underlying data of a given region. This approach converts a
discrete representation into an implicit representation, and
therefore allows to exploit the advantages of analytically
processing the data. Vots are a more intuitive and high-level
description of the data. They enable the application of focus
and context strategies to visualize data and allow to repre-
sent regions with different levels of detail. Vots also allow to
leverage resources where they are needed, because they can
be placed at any position.

The Vot representation opens new ways of data process-
ing, it does not intend to replace the conventional represen-
tations. Vots are not well suited for very complex datasets
with a high level of variation among the samples, in which
every sample is of equal importance. However, Vots work

This is a preprint of an Article accepted for publication in Computer Graphics Forumc©
The Eurographics Association and Blackwell Publishing 2004. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.



Grimm et al. / Vots

well for volumetric data in which only parts of the volume
are of great importance.

This paper is structured as follows: Section 2 surveys re-
lated work. Section 3 presents the general Vots data struc-
ture. Section 4 describes the Vot generation. Section 5 shows
Maximum Intensity Projection based on Vots as an example
application. In Section 6 results are presented and discussed.
Finally in Section 7 we conclude our work and present ideas
for future work.

2. Related Work

Recently more and more research is focused on point-based
primitives for representation, modeling, processing, and ren-
dering. The main reason for this is the increasing amount
of data due to more advanced acquisition devices. Common
representations reach their limits in the sense of performance
and usability, therefore new ways of data representations
have to be exploited. Our research is also focused on such
a point-based representation and is mainly inspired by the
following work:

Levoy [LW85] first proposed points as a rendering prim-
itive in the mid-eighties. Following this idea, Pfister et al.
[PZvBG00] discussed Surfels as a powerful paradigm to
efficiently render complex geometric objects at interactive
frame rates. Unlike classical surface discretizations, i.e., tri-
angles or quadrilateral meshes, surfels are point primitives
without explicit connectivity. Welsh et al. [WM03] present
an algorithm that uses wavelets to convert regular sampled
point data to an irregular point hierarchy without reducing
the precision of the data. Alexa et al. [ABCO∗01] propose a
definition of a smooth manifold surface from a set of points
close to the original surface. It is based on local maps from
differential geometry, approximated by the method of mov-
ing least squares. Carr et al. [CBC∗01] propose to use Radial
Basis Functions (RBF) to reconstruct surfaces from point-
cloud data. Surfaces are defined implicitly as the zero set
of a RBF. Hopf et al. [HE03] propose a hierarchial splat-
ting algorithm to visualize very large scattered point data at
interactive frame-rates. Expensive re-sampling of the data
is hereby avoided. Qu et al. [QKSK03] propose a render-
ing primitive called O-Buffers. It is a flexible structure that
stores the positions of arbitrarily distributed samples rela-
tive to a regular grid. Rössl et al. [RZNS03] present a new
approach to reconstruct non-discrete models from gridded
volume samples. As a model, they use quadratic, trivariate
super splines on a uniform tetrahedral partition. Csebfalvi
et al. [CSK03] propose a volume-rendering technique based
on Monte Carlo integration. A point cloud of random sam-
ples is generated using a normalized continuous reconstruc-
tion of the volume as a probability density function. This
point cloud is then projected onto the image plane. Lu et
al. [LME∗02] present a framework for an interactive direct
volume illustration system that simulates traditional stipple
drawing. Xie at al. [XWH∗03] address the problem of sur-

face reconstruction of highly noisy point clouds. They fit at
each sample point a quadric field which are then blended to-
gether to produce a pseudo-signed distance field. Turk et al.
[TO02] introduce new techniques for modelling with inter-
polating implicit surfaces. A 3D implicit function is created
using a variational scattered data interpolation approach. The
result surface is described by an iso-surface of this func-
tion. Ohtake et al. [OBA∗03] investigate a shape represen-
tation, the multi-level partition of unity implicit surface,
that allows to construct surface models from sets of points.
There are also approaches which propose hybrid solutions.
For example Wilson et al. [WMC02] propose to mix con-
ventional hardware assisted texture-based volume rendering
with point-based rendering.

We extend and integrate these ideas and present a new
primitive for volumetric data modelling, processing, and ren-
dering, comprising an efficient compact representation of the
underlying volumetric data.

3. Vots Data-Structure

Many volumetric datasets can be seen as a volumetric scalar
function f : U ⊆<3→<, whereU is the domain off . With
Vots we propose a piece-wise representationf̃i : Vi ⊆U →<
of the volumetric scalar functionf . Vi with

⋃
i=1..N Vi ⊆ U

partitions the underlying spaceU . Unimportant areas ofU ,
e.g., background areas are omitted. The scalar function over
setVi is represented by an individual VotVi . Analogous to
a Taylor series expansion all the relevant information for lo-
cal function reconstruction is concentrated at a specific point
Pi within a Vot Vi . Relevant information includes the func-
tion value and higher order derivatives, such as gradient and
Hessian matrix, at this pointPi . Vots are thus a set of points
{P1,P2, ...,PN} in <3. Each pointPi = (Pi

x,Pi
y,Pi

z) con-
stitutes a Taylor expansion point and locally represents the
scalar volume function via the Taylor series expansion.

In general, the Taylor series expansion is defined as:

f (P+∆P) = ∑
|α|≤N

1
α!

∂α f (P)∆Pα +R

R= ∑
|α|=N+1

1
α!

∂α f (P+θ∆P)∆Pα, θ ∈ [0,1]

with:

α ∈ {x,y,z}∗
∂α = ∂αx

∂xαx
∂αy

∂yαy
∂αz

∂zαz

α! = αx!αy!αz!
Pα = Px · · ·Px

︸ ︷︷ ︸
αx

Py · · ·Py
︸ ︷︷ ︸

αy

Pz· · ·Pz
︸ ︷︷ ︸

αz

Herebyαµ denotes the number of occurrences of character
µ in string α. For Vots, only terms of the Taylor series ex-
pansion up to a specific degreeN are taken into account. We
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approximate the Taylor series expansion by:

f (P+∆P)≈ f̃ (P+∆P) = ∑
|α|≤N

1
α!

∂α f̃ (P)∆Pα (1)

Due to increasing storage demands and computational com-
plexity with higher degrees, a degree of two or three is a
good choice from a practical point of view. The derivatives
up to degree three are given as:

∇ f̃ (P) =




f̃x
f̃y
f̃z




H f̃ (P) =




f̃xx f̃xy f̃xz

f̃yx f̃yy f̃yz

f̃zx f̃zy f̃zz




Tf̃ (P) =




f̃xxx f̃xyx f̃xzx

f̃yxx f̃yyx f̃yzx

f̃zxx f̃zyx f̃zzx


 ,




f̃xxy f̃xyy f̃xzy

f̃yxy f̃yyy f̃yzy

f̃zxy f̃zyy f̃zzy


 ,




f̃xxz f̃xyz f̃xzz

f̃yxz f̃yyz f̃yzz

f̃zxz f̃zyz f̃zzz




Hereby∇ denotes the gradient,H denotes the Hessian ma-
trix, andT the tensor of third partial derivatives. The Hes-
sian matrix, as well as the tensor of the third derivatives are
symmetric. This property can be exploited for storage opti-
mization.

Since each VotVi represents a certain neighborhood of
the volumetric scalar functionf , we also define a validity
areaVi . This areaVi can be of arbitrary shape. From a practi-
cal point of view convex shapes such as spheres, ellipsoids,
boxes, k-dops, etc. are advantageous. Each of these valid-
ity areasVi is defined in such a way that for a given errorε
(which might be zero) it holds:

∀(Pi +∆Pi)⊆Vi : | f (Pi +∆Pi)− f̃ (Pi +∆Pi)|< ε. (2)

A basic VotVi consists of:

• PositionPi .
• (∂α f̃ (Pi))|α|≤N
• Validity areaVi for a givenε.

Vot properties can be extended to include attributes such
as time-step, importance, etc. Vots represent the underlying
volume data with data centric importance. Important data ar-
eas (i.e., large function variation) are represented with many
small Vots (small validity areasVi). Homogenous areas are
represented with just a few large Vots. In addition the user
may locally vary the approximation errorε, allowing a user-
centric importance sampling. Focus areas are represented
with ε = 0. The context areas might have large errors, which
could, for example, increase with distance to the focus area.

The Vots data structure concentrates the information where
data needs it and the user wants it.

4. Vot Generation

Before presenting a general method for Vot construction we
first show, for illustration purposes, how to directly obtain
a Vot representation for a 2x2x2 cell of a rectilinear grid.
As reference reconstruction we assume trilinear interpola-
tion within the cell.

4.1. Vot Generation For A Cell

A cell is given as eight pairs:(Pi jk , fPi jk )i, j,k∈{0,1}. Hereby
Pi jk denotes a position at one of the corners of the cell, and
fPi jk the corresponding function value. Furthermore we as-
sume a trilinear reconstruction filter. The expansion point
needed for the Taylor expansion is defined as the center of
the cell by:

P =
1
8 ∑Pi jk

The terms f̃ (P), ∇ f̃ (P), H f̃ (P), andTf̃ (P) for the Taylor
series expansion up to degree three can directly be specified
by:

f̃ (P) = 1
8 ∑ fPi jk

∇ f̃ (P) = 1
4




∑ j,k fP1 jk −∑ j,k fP0 jk

∑i,k fPi1k −∑i,k fPi0k

∑i, j fPi j1 −∑i, j fPi j0




H f̃ (P) = 1
2




0 f̃xy f̃xz

f̃xy 0 f̃yz

f̃xz f̃yz 0




Tf̃ (P) = f̃xyz

(3)

where

f̃xy = ∑i jk∈{000,001,110,111} fPi jk−
∑i jk∈{010,011,100,101} fPi jk

f̃xz = ∑i jk∈{000,010,101,111} fPi jk−
∑i jk∈{001,011,100,110} fPi jk

f̃yz = ∑i jk∈{000,011,100,111} fPi jk−
∑i jk∈{001,010,101,110} fPi jk

and

f̃xyz= ∑i jk∈{001,010,100,111} fPi jk−
∑i jk∈{000,011,101,110} fPi jk

Every data value within the cell can be reconstructed by eval-
uating Equation 1. The Vots representation of a cell requires
altogether eight values.̃f (P) ; 1,∇ f̃ (P) ; 3, H f̃ (P) ; 3,
andTf̃ (P) ; 1. All the remaining values are either redun-
dant due the symmetry of the Hessian matrix or are zero. In
terms of storage requirement a Vot representation is equal to
a cell representation. However, in a regular grid, grid points
are reused for (eight) neighboring cells. A straightforward
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conversion of a regular grid into a Vot structure would there-
fore increase the storage requirements by a factor of eight. A
closer look reveals that only every other cell (in each of the
three spatial directions) must be represented by a Vot. The
function in cells which do not contain a Vot can be exactly
reconstructed from the neighboring Vots. Such an approach
would not change the storage requirements. With the Vots
representation we have a more intuitive specification of the
underlying function.

4.2. General Vot Generation

One of the major reasons for the introduction of Vots is to
be able to leverage resources where they are needed. Ho-
mogeneous or non important regions should be represented
just by few resources. On the other hand, inhomogeneous
and important regions should be represented by an adequate
amount of resources. The amount is defined by the desired
accuracy. Vots provide this feature, as they can be placed at
any arbitrary position.

In the following we present an approach to generate a Vot
for a given set ofm scattered data pointsQ j ∈ <3 with data
values fQ j . We assume that a Vot uses the Taylor series ex-
pansion up to degreeN = 3, as shown in Equation 1. This
can be extended to arbitrary degrees straightforwardly. To
generate the Vots, we use an approach which is similar to
the linear regression approach for normal vector estimation
used in [NCKG00]. To be able to apply this approach we
define the mean square error of the fitting process as:

E(· · ·) =
m

∑
j=1

( f̃ (Q j )− fQ j )
2 (4)

Hereby fQ j denotes the function values given at the m scat-
tered points,f̃ (Q j ) denotes the function value reconstructed
by the approximated Taylor series̃f at Q j , andE is the sum
of the squared differences between the original values and
the reconstructed values. As Taylor series expansion point
we choose the center of gravity:

P =
1
m∑Q j

The unknown variables ofE are:

f̃ , f̃i , f̃i j , f̃i jk

where i, j,k ∈ {x,y,z} and f̃i , f̃i j , f̃i jk denote the partial

derivatives∂i f̃ ,∂i j f̃ ,∂i jk f̃ . The number of unknowns can be
reduced due to symmetry of the Hessian matrixH and the
the tensorT of the third derivatives to 20 unknowns. Fur-
thermore we define:

∆Q j = Q j −P = (Q j
x−Px,Q j

y−Py,Q j
z−Pz)

The minimum of the error functionE is determined by
taking the partial derivatives with respect to the unknowns
and setting these partial derivatives to zero. To achieve this,

f̃ (Q j ) is substituted according to Equation (1) with:

∑
|α|≤3

1
α!

∂α f̃ (P)∆Q j
α

The derivatives are given as:

∂E
∂ f̃

= 2
m
∑
j=1

(
∑

|α|≤3

1
α! ∂α f̃ (P)∆Q j

α− fQ j

)

∂E
∂ f̃x

= 2
m
∑
j=1

(
∑

|α|≤3

1
α! ∂α f̃ (P)∆Q j

α− fQ j

)
∆Q j

x

...

∂E
∂ f̃xy

= 2
m
∑
j=1

(
∑

|α|≤3

1
α! ∂α f̃ (P)∆Q j

α− fQ j

)
∆Q j

x∆Q j
y

...

∂E
∂ f̃xxy

= 2
m
∑
j=1

(
∑

|α|≤3

1
α! ∂α f̃ (P)∆Q j

α− fQ j

)
(∆Q j

x)2∆Q j
y

...
(5)

Setting the derivatives to zero, leads to the following system
of linear equations:

M




f̃
f̃x
...

f̃xy
...

f̃xxy
...




=




m
∑

j=1
fQj

m
∑

j=1
fQj

∆Q j
x

.

.

.
m
∑

j=1
fQj

∆Q j
x∆Q j

y

.

.

.
m
∑

j=1
fQj

(∆Q j
x)2∆Q j

y

.

.

.




(6)

where M is the 20×20 matrix resulting from the following
sum of vector direct products:

M =
m

∑
j=1




1
∆Q j

x

∆Q j
y

∆Q j
z

(∆Q j
x∆Q j

x)/2
∆Q j

x∆Q j
y

∆Q j
x∆Q j

z

(∆Q j
y∆Q j

y)/2
∆Q j

y∆Q j
z

(∆Q j
z∆Q j

z)/2
(∆Q j

x∆Q j
x∆Q j

x)/6
3 · (∆Q j

x∆Q j
x∆Q j

y)/6
3 · (∆Q j

x∆Q j
x∆Q j

z)/6
3 · (∆Q j

x∆Q j
y∆Q j

y)/6
3 · (∆Q j

z∆Q j
x∆Q j

z)/6
∆Q j

x∆Q j
y∆Q j

z

(∆Q j
y∆Q j

y∆Q j
y)/6

3 · (∆Q j
y∆Q j

y∆Q j
z)/6

3 · (∆Q j
y∆Q j

z∆Q j
z)/6

(∆Q j
z∆Q j

z∆Q j
z)/6




⊗




1
∆Q j

x

∆Q j
y

∆Q j
z

(∆Q j
x∆Q j

x)/2
∆Q j

x∆Q j
y

∆Q j
x∆Q j

z

(∆Q j
y∆Q j

y)/2
∆Q j

y∆Q j
z

(∆Q j
z∆Q j

z)/2
(∆Q j

x∆Q j
x∆Q j

x)/6
3 · (∆Q j

x∆Q j
x∆Q j

y)/6
3 · (∆Q j

x∆Q j
x∆Q j

z)/6
3 · (∆Q j

x∆Q j
y∆Q j

y)/6
3 · (∆Q j

z∆Q j
x∆Q j

z)/6
∆Q j

x∆Q j
y∆Q j

z

(∆Q j
y∆Q j

y∆Q j
y)/6

3 · (∆Q j
y∆Q j

y∆Q j
z)/6

3 · (∆Q j
y∆Q j

z∆Q j
z)/6

(∆Q j
z∆Q j

z∆Q j
z)/6




T

(7)

The inversion of matrix M produces the solution
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for the unknown variables. The error is calculated by
ε = maxj | f̃ (Q j )− fQ j |. The mechanism described allows
the construction of a Vot for a given input set of points
Q j ,( j = 1, ...,m).

4.3. Vot-Space

Vots allow an importance-based representation of volume
data. To achieve this they abandon the implicit connectiv-
ity information of regular grids. The most basic question
the data structure has to answer is: Given an arbitrary point
P find the corresponding VotVi (P ∈ Vi) so that the func-
tion value at positionP can be determined. Depending on
the shape of the validity areaVi efficient indexing structures
from computational geometry, such as range trees, interval
trees, octrees and bounding volume hierarchies can be used
to accelerate this search. Application dependent, indexing
structures might also help to quickly address, for example,
all the Vots whose gradient is within a certain magnitude or
direction range.

A Vot-Space(V j ,I) comprises a set of VotsV j and a set
of indexing structuresI. I contains at leastI∗, which is an
unsorted list of all Vots. It is used to address each Vot. For
some application this simple indexing structure is sufficient,
see Section 5. It is application specific on which kind of in-
dexing structure a Vot-Space depends on.

5. Application

To give a proof of concept of our new data structure, we
show an application of Vots. We present Maximum Inten-
sity Projection of a Vot-Space. Maximum Intensity Projec-
tion [MGK99] is a technique that displays the maximum
scalar value seen through each image pixel. By depicting the
maximum data value, high intensity structures contained in
the data are captured. A straight-forward method for calcu-
lating Maximum Intensity Projection is to perform ray cast-
ing and search for the maximum sample value along each
ray. We use this visualization method to illustrate the ad-
vantages of Vots. Instead of using sampling, we analytically
determine the maximum of a viewing ray within the validity
area of a Vot.

5.1. Vots Generation

As input we assume a rectilinear grid. It is given as a
set of pairsG = {(Pj , fPj ), j = {1, ...,N}} where Pj =
(P j

x,P j
y,P j

z) defines a position within the grid andfPj the
corresponding function valuef (Pj ). The task is to find a
small number of VotsV j which covers completely the un-
derlying volumetric data. Reconstruction should be bound
by an errorε, as given in Equation 2.

We use a growing approach. As growing criteria we define
the functionF(T) as follows:

F(T) = maxj | f̃ (Q j )− fQ j |,Q j ∈ T (8)

Figure 1: Vot density distribution of lobster dataset: 114 665
Vots generated from 445 568 input samples.

whereT ⊆ G. F implements Equation 6, it solves the lin-
ear equation system and returns the maximal error. Further-
more, for simplicity we assume box-shaped validity areas of
the Vots. As possible start positions of Vots we choose the
positions given byG. The validity area of each Vot is ini-
tially cell-sized, covering eight adjacent grid positions. At
this point, we iteratively start the growing process of each
Vot by increasing one of its validity area dimensions either
in the positive or negative direction. In every step we test
the error computed byF . The current input setT is defined
by all grid positions which lie within the increased validity
area. According to the outcome ofF and the givenε-bound
we either keep the increased validity area as new area or we
keep the old validity area. A Vot grows until errorF(T) is
larger thanε. According to Equation 8 the error is just tested
at positionsQ j .

The result of this process is a set of the largest Vots for
every grid position. The next step is to find a minimal sub-
set of the set of Vots which completely cover the underlying
volumetric data. To achieve this we assign to each VotV j a
cover weightW j . The weights initially correspond in size to
the validity areasVj . The Vots are sorted according to their
weightsW j in decreasing order. We take the Vot with the
largestW and assign it to the subset of the minimal Vots. We
determine the number of grid points this Vot would cover in
the grid. Only those grid positions are counted, which are
not covered by other Vots in the current small subset. We
adapt the weightsW j of all the remaining Vots, according
to the number of grid positions they could cover, which are
not already covered by other Vots out of the current small
subset. Then the Vots are re-sorted and the process starts all
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over. Once the complete grid is covered the process stops
and we have found a small subset of Vots which defines our
Vot-Space with a given indexing structureI∗.

Figure 1 and Figure 2 show the Vot distribution of typi-
cal data sets. Dark areas correspond to high Vot density and
bright areas to low Vot density.

Figure 2: Vot density distribution of UNC head dataset:
570 690 Vots generated from 1 746 360 input samples.

5.2. Maximum Intensity Projection of a Vot-Space

For Maximum Intensity Projection the following question
arises: Given a VotV and a viewing direction, how do we
compute the maximum along this ray. To answer this, we
look again at the Taylor series expansion of one Vot, as given
in Equation 1. For simplicity reasons we chooseN = 2. From
this follows that the Taylor series is given as:

f̃ (P+∆P)= f̃ (P)+∇ f̃ (P)∆P+ 1
2∆P H f̃ (P) ∆P (9)

A ray r is given as:

r(t) = S+ tD

To determine the extreme the ray equation is set into Equa-
tion 9 and the first derivative is taken. Furthermore we define
∆PS := S−P and obtain:

∂1 f̃ (S+ tD)= a0 +a1t

with

a0 = f̃xDx + f̃yDy + f̃zDz+
f̃xxDx∆PS

x + f̃yyDy∆PS
y + f̃zzDz∆PS

z+
f̃xy(Dx∆PS

y +Dy∆PS
x)+ f̃xz(Dx∆PS

z+Dz∆PS
x)+

f̃yz(Dy∆PS
z+Dz∆PS

y)
a1 = f̃xx(Dx)2 + f̃yy(Dy)2 + f̃zz(Dz)2+

2 f̃xyDxDy +2 f̃xzDxDz+2 f̃yzDyDz

The position of the extreme is then determined by setting the
first derivative to zero. The resulting equation is solved with
respect tot:

t =
−a0

a1

To determine wether the extreme is a maximum or mini-
mum, we setS+ tD into Equation 9, take the second deriva-
tive and obtain:

∂2 f̃ (S+ tD) = f̃xx(Dx)2 + f̃yy(Dy)2 + f̃zz(Dz)2+
2 f̃xyDxDy +2 f̃xzDxDz+2 f̃yzDyDz

The sign of the second derivative determines if the extreme
is a maximum or a minimum. Knowing these two derivatives
it is straightforward to determine the maximum along a ray
within the validity area of a Vot. There are two cases:

1. A maximum within the validity area is found.
2. No maximum within the validity is found, the maximum

along the ray occurs at one of the intersection points with
the validity area box.

With this method, the maximum scalar value of an arbitrary
ray passing through a Vot can be determined. The algorithm
now works as follows: The unsorted list of Vots is traversed.
For each Vot, its validity region is represented by a polyg-
onal model. For every ray that intersects the Vot, the inter-
section pointS is calculated and the maximum along the ray
is computed and stored in an image. There is one image for
each visible face of the polygonal model. In our case, the
validity area is always box-shaped, therefore at most three
faces are visible. Texture mapping is used to transform the
images according to the validity area geometry. The images
are textured onto the corresponding faces of the model, as
illustrated in Figure 3. We utilize the graphics hardware’s

Texture of

maximum

values

Polygonal box

model of a Vot

validity area
Corresponding

maximum value along

a ray through a Vot

Figure 3: Maximum Intensity Projection of one Vot.

capability to perform maximum blending. With our proto-
type application we rendered two example datasets shown in
Figure 4 and Figure 5.

6. Discussion and Results

This work is at an initial stage and still has many issues to
address. The brute-force algorithm, of Section 5.1, for con-
verting a rectilinear data set into a Vot-Space representation
has high computational complexity. Even for small data-sets,
for example of size1283, it needs several hours of computa-
tion time on a commodity PC. This is mainly due to the ap-
plied growing strategy. The larger a validity areaVi becomes,
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Figure 4: Maximum Intensity Projection of Lobster:
114 665 Vots.

Figure 5: Maximum Intensity Projection of UNC head:
570 690 Vots.

the more number of fitting operations have to be performed.
Currently we grow Vots from every grid-position and later
on a huge number of redundant Vots are discarded. It is ob-
vious that for example centers of homogeneous regions are
better choices to place Vots than inhomogeneous regions. We
believe that applying a more sophisticated seeding strategy
will considerably reduce the Vots generation effort.

Another issue which needs to be addressed is the size of
Vots and the number of Vots needed. In Figure 1 and Figure
2 a quite high number of Vots is used. Such high numbers
are only of limited practicability. A Vot with a Taylor se-
ries expansion of up to degree three defines a rather rigid
underlying volume function with limited shape possibility.
Medical data often contains high frequencies and noise. To
adhere to the defined error bound the Vots are thus rather
limited in size. To obtain bigger Vots or a smaller number
of Vots one has to allow a higher errorε. However, a higher
error ε leads to discontinuities. Table 1 shows the resulting
number of Vots for different error boundsε. Discontinuity
at the borders can be handled through blending of adjacent
Vots or of Vots with overlapping validity areasVi . Overlap-

Error ε: 0.4096 4.096 40.96 409.6

(a) ; # Vots: 570 690 538 919 333 650 35 079
(b) ; # Vots: 114 665 114 665 112 604 60 353

Table 1: Number of Vots for different error boundsε. The
error ε defines the maximum allowed deviation with re-
spect to the original samples. Reconstructing data sam-
ples in between the original samples can lead to larger
errors. The data range interval is [0,4095]. (a) UNC
head (126x126x110): 1 746 360 samples. (b) Lobster
(118x118x32): 445 568 samples.

ping is not an issue in the presented MIP application, as the
maximum along a ray remains the same even if it is deter-
mined multiple times due to the overlapping. In our current
implementation the error function of Equation 8 is evaluated
only at sample positionsQ j . To ensure the error bound also
in between a finer sampling of this error function is recom-
mended. The overall fitting process remains the same.

Finally a rendering approach of a Vot-Space is needed,
which performs at least in the same range as conventional
volume rendering approaches. In general it should be pos-
sible to apply image- and object-order direct volume ren-
dering. We plan to investigate both. For an image order ap-
proach one could send a ray through the Vot-Space,jump-
ing from Vot to Vot in the correct visible order while re-
sampling each individual Vot along the ray. Thejumpingcor-
responds to empty space skipping. For object order render-
ing one could apply a technique similar to splatting. How-
ever, an appropriate interpolation kernel has to be developed
as a Vot contains the condensed information of a region in-
stead of one sample position.

7. Conclusion and Future Work

We propose a novel primitive for volumetric data modelling,
processing, and rendering. As we move the data represen-
tation from a discrete to an implicit representation, a new
paradigm is presented. The new function oriented paradigm
is a more intuitive and constructive representation of the
data. The volumetric data is divided into regions to achieve a
more expressive representation. Some Vots represent larger
regions than others, but all Vots represent the data in the
same way. The size of a Vot can be adjusted by modifying the
allowed error boundε. This allows user-centric importance
sampling. Unimportant regions are represented by just a few
Vots, while important regions are represented with many
Vots. One Vot contains all the information about the volu-
metric data within a region, thus no explicit connectivity be-
tween Vots is necessary for reconstruction. Furthermore, the
Vots representation allows to process the data analytically as
shown with Maximum Intensity Projection. In general, Vots
open a wide range of new data examination approaches. In
the future we will continue to explore the new possibilities

c© The Eurographics Association and Blackwell Publishing 2004.



Grimm et al. / Vots

and approaches that the new paradigm of Vots introduces.
One challenge is to construct Vots from other types of data
structures, such as point clouds, unstructured grids, curvi-
linear grids, etc. Different strategies must be developed to
obtain an accurate conversion. Vots provide a starting point
for new types of volume processing, new ways of render-
ing, even exploring new types of visualization based on the
condensed information that a Vot contains. It would also be
interesting to map Vots onto graphics hardware and analyze
their capabilities from that point of view.

A related area we will investigate is a point cloud repre-
sentation of volume data. Moving Least Square (MLS) will
be used to dynamically fit a Vot to an arbitrary re-sampling
position. In this case the fitting process of Section 4.2 will be
slightly modified as each point is weighted by the distance
to the re-sampling position. We believe similar operations as
done for MLS fitting of surfaces can also be done for MLS
fitting of volumetric functions, such as point cloud thinning,
importance-based sorting of the point cloud, etc.
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