
Flexible Direct Multi-Volume Rendering in Dynamic Scenes

Sören Grimm†, Stefan Bruckner†, Armin Kanitsar‡, Eduard Gr̈oller†

† Vienna University of Technology, Austria
‡Tiani Medgraph AG, Austria

Email: {grimm, bruckner, gr öller }@cg.tuwien.ac.at , kanitsar@tiani.com

Abstract

In this paper we describe methods to efficiently vi-
sualize multiple intersecting volumetric objects. We
introduce the concept of V-Objects. V-Objects rep-
resent abstract properties of an object connected to
a volumetric data source. We present a method to
perform direct volume rendering of a scene com-
prised of an arbitrary number of possibly intersect-
ing V-Objects. The idea of our approach is to distin-
guish between regions of intersection, which need
costly multi-volume processing, and regions con-
taining only one V-Object, which can be processed
using a highly efficient brick-wise volume traversal
scheme. Using this method, we achieve significant
performance gains for multi-volume rendering. We
show possible medical applications, such as surgi-
cal planning, diagnosis, and education.

1 Introduction

Direct volume rendering is an important and flexi-
ble technique for visualizing 3D data. It allows the
generation of high quality images without a need of
an intermediate interpretation. Traditionally, medi-
cal volume visualization systems feature only sim-
ple scenes consisting of a single volumetric data set.
It has been proposed to extend these scenes to a
more complex description [13]. In this paper we in-
troduce a flexible data structure called V-Objects for
representing scenes containing multiple volumetric
objects. We present an efficient approach to ren-
der a scene composed of V-Objects. Furthermore,
by presenting practical examples for possible appli-
cations we demonstrate that medical visualization
systems can take advantage of V-Objects. The main
contributions of this paper are an efficient technique
to render V-Objects and to show that common medi-
cal volume visualization systems can greatly extend
their flexibility by supporting concurrent display of

multiple volumetric objects.
The presentation of the paper is subdivided as

follows: Section 2 surveys related work. In Sec-
tion 3 we present as a new data-structure V-Objects
and an approach to efficiently render a scene com-
posed of multiple V-Objects. In Section 4 we
present possible medical applications. Finally, in
Section 5 we give ideas for future work and con-
clude our work.

2 Related Work

The past decade has seen significant progress in
volume visualization, driven by applications such
as medical imaging. A number of different vol-
ume rendering algorithms have been developed, im-
proved, and extended [8, 6, 12]. Today, it is possi-
ble to perform interactive high-quality volume ren-
dering on commodity hardware [15, 2]. Hybrid al-
gorithms have been designed, which allow concur-
rent display of intersecting volumetric and polygo-
nal objects [9, 5]. Direct rendering of scenes con-
sisting of multiple volumetric objects, however, has
received less attention. With the increasing per-
formance of modern hardware, we feel that this
topic will become more important in the future.
Our work was inspired by Leu and Chen, who in-
troduced a two-level hierarchy for complex scenes
of non-intersecting volumes [7]. While their ap-
proach allows multi-volume rendering, the individ-
ual volumes cannot intersect. However, the dis-
play of intersecting semi-transparent objects can be
a powerful visualization technique. In the work
of Nadeau [13] intersecting volumes are possi-
ble, however, the whole scene description has to
be re-sampled every time a volume’s transforma-
tion changes. The idea behind our approach is to
allow multiple intersecting volumetric objects to
be rendered directly, without requiring costly re-

VMV 2004 Stanford, USA, November 16–18, 2004



sampling. Thus, our algorithm is well-suited for
animations.

3 V-Objects

A V-Object is an element of a scene description
which is connected to one volumetric data source.
The V-Object comprises the following visual prop-
erties:

• Illumination: This includes the selected Illu-
mination model and its parameters. For exam-
ple, for the Phong-Blinn Illumination model
the ambient, diffuse, specular, and emissive
material coefficients are specified.

• Transfer Functions:For each defined region in
the attached volumetric data source a mapping
function between scalar values and colors as
well as opacities is stored.

• Region of Interest:An arbitrary number of
planes define a convex region of interest.

• Transformation: An affine transformation
defining position, orientation, and scaling of
the V-Object.

The separation of visual properties and volumetric
data sources allows an arbitrary number of varying
representations of the same data source within one
scene, as illustrated in Figure 1. This is achieved by
assigned several V-Objects to the same volumetric
data source. To take full advantage of the V-Objects
we apply direct volume rendering to simultaneously
visualize a scene consisting of several V-Objects.
The properties of a V-Object influence the points
in a scene at which it is defined. For example, re-
gions of the volume which are classified as trans-
parent due to the transfer function specification are
not part of a V-Object.

The following section briefly describes how
mono-volume raycasting can be greatly acceler-
ated by a bricked volume layout and an appropriate
brick-wise processing scheme. This performance
benefit is then exploited in Section 3.2 to acceler-
ate multi-volume raycasting.

3.1 Mono-Volume Rendering

The discrepancy between processor and memory
performance is rapidly increasing, making memory
access a potential bottleneck for applications which
have to process large amounts of data. Volume ray-
casting is prone to cause problems, as it generally

V-Objects

data sources

Figure 1: Different representations of the same data
source using V-Objects.

leads to irregular memory access patterns. There are
approaches which address this issue, such as Knit-
tel et al. [4] or Mora et al. [11]. The basic idea is
to employ a spread memory layout. They achieve
high frame-rates. As we are interested in render-
ing of multiple volumes these approaches are not
well suited, due to their immense memory require-
ments. Therefore we first take a look at an appro-
priate memory layout.

The most common way of storing volumetric
data is a linear volume layout, see Figure 2(a).
Volumes are typically thought of as a number of

(a) (b)

Figure 2: (a) Linear memory layout. (b) Bricked
memory layout.

two-dimensional images (slices) which are kept in
an array. This three-dimensional array has the ad-
vantage of a simple address calculation. It has
disadvantages when used in raycasting, due to its
view-dependent memory access patterns. A much
more suitable memory layout for raycasting is based

666



on the concept of bricking. It has been shown
that bricking is one way to achieve high cache co-
herency, without increasing memory usage. Brick-
ing supposes the decomposition of data into small
fixed-size data blocks. Each block is stored in lin-
ear order, see Figure 2(b). The basic idea is to
choose the block size according to the cache size
of the architecture so that an entire block fits in a
fast cache of the system. To take full advantage of a
bricked memory layout, especially of its very good
cache coherency, a suitable addressing and process-
ing scheme must be used. We apply the one pro-
posed in [3].

They propose a brick-wise processing scheme,
as shown in Figure 3 and present an approach to
take full advantage of commodity multi- and hyper-
threading technology. Different bricks are pro-
cessed in parallel on different physical CPUs, while
single bricks are processed in parallel on different
logical CPUs on the corresponding physical CPU.
By this processing scheme, the main memory to
CPU transfer is considerably reduced.

5

4 5

53 4

542 3

5431 2

image plane

advancing

ray-front

1110986 7

109876

9876

876

76

6

Figure 3: Brick-wise processing scheme. The num-
bers correspond to processing order of the bricks,
with respect to the visibility order.

The other important issue is the access of data
in a bricked volume layout. Accessing data in a
bricked volume layout is very costly. One way to
avoid the costly address computation is to inflate
each brick by an additional layer. However, this
considerably increases the memory consumption.
A solution to this issue is the proposed addressing
scheme in [3]. They propose to use offset lookup-
tables to address the direct neighbors of one sample.
The key to efficiency are a small lookup table and
a sophisticated indexing of this look-up table. Ba-

sically, they differentiate the possible sample posi-
tions, within a brick, by the locations of the needed
neighboring samples. This is illustrated in 2D in
Figure 4 for a eight- and a 26-neighborhood. The
principle can be mapped straightforwardly to 3D.
Each shaded area defines a subset. For each subset,
the offsets to access the corresponding eight or 26
neighbors are constant, assuming that one brick is
stored one after the other in memory. With the aid
of these subsets, a very small offset lookup table can
be created. This table can then be very efficiently
indexed, as shown in [3]. By using this addressing
scheme, the neighbors can be accessed in constant
time, similar to the addressing in a linear volume
layout.

Figure 4: Different brick addressing patterns: Solid
lines represent brick boundaries and crosses corre-
spond to samples. Left side: 8-neighbor-addressing
pattern (4 subsets). Right side: 26-neighbor-
addressing pattern (9 subsets).

The next important issue to accelerate volume
raycasting is to efficiently skip empty regions. As
we are interested in rendering multiple V-Objects,
the memory consumption as described earlier is of
great importance. We therefore apply the approach
presented in [2], which is based on a hybrid trans-
parent region removal and skipping technique. The
work-flow is shown in Figure 5. At first transparent
regions are removed on a brick basis (Figure 5a→
Figure 5b). Then to support even more refined re-
moval of smaller transparent regions they perform
octree projection (Figure 5b→ Figure 5c). Due
to efficiency reasons the octree subdivision, con-
tained in each brick, does not fully go down to indi-
vidual cells. This granular resolution of the octree
leads to approximate rays-volume intersections. To
overcome the resulting performance penalty they
use a Cell Invisibility Cache to skip the remain-
ing transparent cells (Figure 5c→ Figure 5d). We
use the complete pipeline of the hybrid transparent
region removal and skipping technique. However,

666



our main focus is on the octree projection which we
will extend and exploit for multi-volume rendering
in Section 3.2.

(a) (b) (c) (d)

fully transparent

brick partially transparent

brick

Figure 5: General work-flow of our hybrid transpar-
ent region removal and skipping technique: Thick
solid lines are brick boundaries, thin solid lines are
octree boundaries, / are transparent regions and\ is
visible volume data. (a)→ (b): transparent region
removal of bricks. (b)→ (c): removal based on an
octree projection. (c)→ (d): removal using a cell
invisibility cache.

3.2 Multi-Volume Rendering

Before describing our approach to accelerate multi-
volume rendering, we briefly discuss how we per-
form compositing of multiple volumes [1]. The ba-
sic idea of volume raycasting is to cast for each
pixel of the image plane a ray through the volume.
For a single object we determine the final color and
opacity of the image pixel by the over-operator [14]
in front-to-back order. That is, at each re-sample lo-
cation, the current color and alpha values for a ray
are computed in the following way:

cout = cin + c(x)α(x)(1 − αin)
αout = αin + α(x)(1 − αin)

(1)

cin andαin are the color and opacity the ray has
accumulated so far.x is the reconstructed func-
tion value andc(x) andα(x) are the classified and
shaded color and opacity for this value.

For the simultaneous processing of multiple vol-
umes it must be decided how they should be com-
bined. We consider volumes as clouds of particles
and take into account all volume simultaneously at
the corresponding sample position. The simultane-
ously compositing of multiple volumes is achieved
by sequentially applying Equation 1 for each indi-
vidual volume. Hereby we obtain an approximation
for compositing multiple volumes at the same loca-
tion.

As described in Section 3.1, the key to high per-
formance for mono-volume rendering is to optimize
the memory access pattern. This can be achieved by
using a bricked volume layout. However, to find
such a suitable memory layout for multi-volume
rendering is very difficult, due to the unpredictable
memory access pattern. Every time multiple vol-
umes have to be simultaneously processed, several
data entities from memory regions far apart have to
be accessed. This leads to enormous cache trash-
ing. To keep this cache trashing penalty as low as
possible, we propose to separate multi-volume ren-
dering from mono-volume rendering within a scene
composed of multiple volumes. While the process-
ing of the intersection between multiple volumes
requires costly computations, the non-intersecting
regions could be efficiently computed by using a
mono-volume rendering technique. In the follow-
ing we will address this issue and present a solu-
tion to efficiently decompose the scene in mono-
and multi-volume rendering regions.

We start by distinguishing between the concepts
of a mono- and a multi-volume renderer. Both types
of renderers are initially supplied with a list of rays.
Each entry in the ray data structure contains, among
other data, a start and an end depth. A mono-
volume renderer processes one V-Object using the
brick-wise processing scheme described in the pre-
vious section. It operates efficiently by using the
cache coherent volume traversal presented in [3].
A multi-volume renderer performs compositing in
multiple V-Objects. As the V-Objects can have dif-
ferent volumetric data sources and transformations,
efficient brick-wise traversal is in general not possi-
ble. Thus, the multi-volume renderer performs clas-
sical ray traversal. As re-sample positions along a
ray are likely to lie within totally different memory
locations for different V-Objects, lacking cache co-
herence results in considerable performance penal-
ties. In our approach, a mono-volume renderer is
set up for every V-Object in the scene, while there
is only one global multi-volume renderer.

The main idea is to first identify different seg-
ments along a ray’s path in the initialization phase.
There are two basic types of segments:

• Mono-object segment:A mono-object seg-
ment is a continuous interval along a ray lying
within the same V-Object.

• Multi-object segment:A multi-object segment
is a continuous interval along a ray lying

666



within one or more V-Objects. Thus, each
mono-volume segment is also a multi-volume
segment.

In our approach, when performing this kind of
segmentation, the goal is to maximize the combined
length of mono-object segments, as mono-object
segments can be processed more efficiently. In gen-
eral, for this the intersections between a ray and all
V-Objects need to be known. We apply a conser-
vative approach by using the octree projection ex-
plained in the previous section. For each V-Object,
the entry and exit points of all rays can be obtained
by projecting its octree and setting the depth test
to either less or greater. By a depth sort of these en-
try and exit points mono- and multi-object segments
can be determined.

All mono-object segments are added to the
mono-volume renderer which is responsible for
this V-Object. These segments can then be pro-
cessed efficiently, as brick-wise traversal is possi-
ble. All other segments are added to one global
multi-volume renderer. This renderer traverses ev-
ery ray segment and performs multi-volume com-
positing in every step for all V-Objects which are
defined at one re-sample location. This distribution
of ray segments between mono- and multi-volume
rendering is done in the initialization phase. After
all ray segments have been assigned to their corre-
sponding renderer, the actual raycasting process is
started. All renderers operate independently. After
they have finished, a final compositing step is re-
quired which combines the values accumulated in
each segment of a ray.

The distribution of ray segments between mono-
and multi-volume renderers is illustrated in Fig-
ure 6. Ray A consists only of one mono-object seg-
ment (A1). Ray B consists of the mono-object seg-
ments B1 and B3 which pass through V-Object II,
and the multi-object segment B2 which passes
through the intersection of the two V-Objects. Ray
C consists of the mono-object segments C1 and
C3 which pass through V-Object II, and the multi-
object segment C2 which passes through the inter-
section of the two V-Objects. Thus, A1 is the only
ray segment added to the mono-volume renderer for
V-Object I. The segments B1, B3, C1, and C3 are
added to the mono-volume renderer for V-Object II.
The multi-volume segments B2 and C2 are added
to the global multi-volume renderer. Through this
kind of distribution only a fraction of the ray seg-

ments have to undergo costly multi-volume pro-
cessing.

A

B

C

A1

B1 B2 B3

C1 C2 C3

V-Object I

V-Object II
V-Object I

∩

V-Object II

multi-volume renderer

B2

C2

mono-volume renderer

 for V-Object I

A1

mono-volume renderer

for V-Object II

B1

B3

C1

C3

Figure 6: Top: Segmentation of three rays, A, B,
and C, in a scene consisting of two V-Objects.Bot-
tom: Distribution of ray segments among mono-
and multi-volume renderers.

The performance gains achieved through our
multi-volume rendering approach depend on the
size of intersections between the individual V-
Objects. Typically, intersections are small, which
allows us to exploit the high performance of mono-
volume processing to accelerate the rendering.
Moreover, if there is no intersection between any
V-Object, our algorithm evaluates to a pure mono-
volume renderer.

We have compared our approach to a standard
multi-volume raycaster where rays are processed
sequentially, performing re-sampling and composit-
ing in each of the V-Objects defined at every point
along a ray. Figure 7 shows the speed-ups we
achieve for different degrees of intersection. As can
be seen from the figure, the performance gains due
to our algorithm depend on the size of the inter-
section between the V-Objects. For typical scenes,
where size of intersections is normally not exces-
sively large, we achieve speed-ups of about 2.5.

666



43.5%

1.93

21.7%

2.43

0.0%

2.78

Scene 1 Scene 2 Scene 3

Figure 7: Obtained speed-ups for different degrees
of intersection. The first row displays the ratio be-
tween the combined lengths of all ray segments
and the multi-object ray segments, row two shows
the achieved speed-up of our approach compared
to brute-force multi-volume rendering. The images
(512×512) in row three show the rendering results.
The last row displays the corresponding octree pro-
jections of both V-Objects. Test system specifica-
tions: Intel Pentium 4, 2.4 GHz, 1 GB RAM.

4 Exploring the capabilities of V-
Objects

In general, in a volume rendering system there exist
several means to enhance visual perception. Such
means are for example transfer function specifica-
tion, segmentation and clipping. Since their in-
troduction to volume visualization by Levoy [8],
piecewise linear transfer functions mapping scalar
values to colors and opacities are featured in vir-
tually every volume visualization system. Many
researchers have proposed to extend transfer func-
tions to higher dimensions to increase their usabil-
ity, as their specification is a non trivial task. Some
approaches for semi-automatic transfer function
definition have been presented, however fully auto-
matic transfer function selection remains a widely
unsolved problem. Still, much research needs to be
done to produce results automatically as shown in
Figure 8 (color plate), first row, image (a).

One way to simplify the transfer function spec-
ification is segmentation. Many methods exists to
identify certain structures within the data. Most of
these approaches produce a labelling of the data.
Different transfer functions can be assigned to iden-
tify regions or objects. Figure 8 (color plate), first
row, image (b) shows an example of segmentation

based on region growing. The main vascular struc-
tures and the kidneys have been segmented.

One problem in the visualization of volumetric
data is occlusion. While transparency can be use-
ful to simultaneously display different structures of
interest, it can lead to cluttering when used exten-
sively. It is therefore common to cut away opaque
objects to reveal occluded features. Cutting can be
performed using axis aligned or arbitrarily oriented
planes, convex regions or arbitrarily shaped objects.
However complex cutting shapes are often difficult
to interpret by the user. Figure 8 (color plate), first
row, image (c) shows the use of cutting planes to
reveal an aneurism. In the following we show how
such basic tools can be greatly enhanced by the use
of V-Objects.

Though many systems allow modification of
transfer functions, and illumination properties can
be specified on a per object basis, certain limitations
apply: objects typically can not intersect, are unique
and static. By assigning V-Objects to components
of a data set we can overcome these limitations in
a natural way. For example, with V-Objects it is
possible to move an object while keeping a virtual
copy in place. These two objects can have a totally
different appearance. This capability can be used in
applications such as surgical planning, education,
illustration, and for investigation or exploration of
data. In the following we give several examples for
the use of V-Objects in combination with the previ-
ous described basic tools. We show examples for
moving objects, simultaneously changing the ap-
pearance of objects, time varying, and multi-modal
data. As some of these concepts are very hard to
illustrate using still images, we have produced sev-
eral animation sequences. Our application features
an interactive tool for the generation of animation
sequences using key-framing. V-Objects can be in-
teractively positioned in the scene and their proper-
ties can be modified. Between the key-frames, V-
Object states are interpolated. This enables speci-
fication of animation paths, transfer function fades,
light movement, control of clipping planes, change
of data sources, enabling and disabling of objects,
etc. For each of these properties, different interpo-
lation schemes can be applied. In the following we
present our application examples.

666



4.1 Advanced Browsing Techniques

Traditional techniques for inspecting volumetric
data like cutting, involve removing portions of the
data. This has the disadvantage of potentially hid-
ing important contextual information. McGuffin et
al. [10] have presented novel tools for browsing
volume data which employ transformations and de-
formations of semantic layers contained in the data
set. In the future, we feel that multi-volume render-
ing will be an important tool to improve the visual
quality of such interaction techniques. In Figure 8
(color plate), second row, we demonstrate that V-
Objects can be used to realize this kind of visualiza-
tion. Although we support only affine transforma-
tions currently, we are confident that we can extent
our concept to more complex deformations in the
future. One the other hand V-Objects can be used to
indicate the positions of displaced structures. Mul-
tiple V-Objects can be assigned to the same struc-
ture in the data, only one of these V-Objects is de-
formed, the other objects remain in place to indicate
the original position in space. Transparency is espe-
cially useful to indicate the position while not hid-
ing surrounding important information. In Figure 8
(color plate), third row, we show an example of such
an application of V-Objects. The images represent
stills of an animation we made. In the animation
you can see, for example, that a kidney is relocated
to the left to reveal an occluded tumor. Other inter-
esting features are shown, such as transfer function
fading, moving, and object specific cutting planes.

4.2 Time Varying Data

Visualization of time varying volume data is a very
complex task. Animations due to their dynamic na-
ture often do not allow an in depth analysis of cer-
tain data characteristics. Static images on the other
hand, often suffer from cluttering when many time-
steps are visualized. Therefore, it has been pro-
posed to apply more advanced projection and map-
ping techniques to aid the understanding of such
data. For example, Woodring at al. [16] apply
hyper-slicing to a 4D dataset. The flexibility of V-
Objects allows to use a variety of different map-
pings by combining transfer functions and varying
the spatial arrangement of objects. We show an ex-
ample of a time varying data set, see Figure 8 (color
plate), fourth row. It is a electrocardiogram trig-
gered CT scan of beating heart. Time is mapped to

color and opacity. This type of visualization allows
the three dimensional examination of several time
steps simultaneously. The fanning in time allows to
convey similarities and differences in the progress
of time. Furthermore, a topological relationship be-
tween different time steps is visualized. In general,
V-objects support the explorations of useful layouts
and mappings. In the future, we therefore seek to
further investigate the application of multi-volume
rendering to 4D data visualization.

4.3 Multi-Modal Imaging

Multi-modal imaging is a method for combining
disparate sets of 3D imaging data that contain
complementary information on overlapping length
scales. In medicine, for instance, morphological
modalities are combined with functional modalities
in order to increase the information content of the
resulting image. The concept of V-Objects inher-
ently includes the ability to perform multi-modal vi-
sualization of registered data sets. In Figure 8 (color
plate), first row, image (d) we show an example of
a combination of computed tomography (CT) and
positron emission tomography (PET). While the CT
method supplies high precision, it is difficult to dis-
tinguish between tumors and healthy tissue. PET,
on the other hand, is a functionally oriented method
that allows to identify tumors, but only provides
lower resolutions.

5 Conclusion and Future Work

We presented V-Objects, a concept of modelling
scenes consisting of multiple volumetric objects.
We have shown that an efficient volume renderer
based on a brick-wise traversal scheme can be ex-
tended to handle scenes comprised of multiple pos-
sibly intersecting V-Objects. As regions of inter-
section typically do not cover all the objects, we
achieve significant performance gains by identify-
ing mono-volume regions and performing efficient
brick-wise traversal of these regions. The advan-
tage of our approach is that it allows to efficiently
render multiple intersecting volumetric objects di-
rectly from their grid representation. Multi-volume
rendering is a promising technique for visualizing
medical data. We showed three examples for its ap-
plication: browsing, time varying data, and multi-
modal imaging. Each of them emphasized that the

666



concept of V-Objects can provide advanced means
to explore and investigate data. In the future, we
will further investigate the topic of multi-volume
visualization as we believe it has great potential to
improve medical applications.

The animation sequences described in this paper
and additional material are available at:
http://www.cg.tuwien.ac.at/research/vis/adapt/2004vobjects

6 Acknowledgements

The work presented in this publication has
been funded by theADAPT project (FFF-
804544). ADAPT is supported by Tiani
Medgraph, Vienna (http://www.tiani.com),
and the Forschungsf̈orderungsfonds für
die gewerbliche Wirtschaft, Austria. See
http://www.cg.tuwien.ac.at/research/vis/adapt
for further information on this project. The
used data sets are courtesy of AKH Vienna and
Univ.-Klinikum Freiburg.

References

[1] W. Cai and G. Sakas. Data intermixing and
multi-volume rendering.Computer Graphics
Forum, 18(3):359–368, 1999.

[2] S. Grimm, S. Bruckner, A. Kanitsar, and
E. Gr̈oller. Memory efficient acceler-
ation structures and techniques for cpu-
based volume raycasting of large data. In
IEEE/SIGGRAPH Symposium on Volume Vi-
sualization and Graphics, 2004. To appear.

[3] S. Grimm, S. Bruckner, A. Kanitsar, and
E. Gr̈oller. A refined data addressing and pro-
cessing scheme to accelerate volume raycast-
ing. Computers and Graphics, 28(5), 2004.
To appear.

[4] G. Knittel. The Ultravis system. InIEEE Sym-
posium on Volume visualization, pages 71–79,
2000.

[5] K. A. Kreeger and A. E. Kaufman. Mixing
translucent polygons with volumes. InPro-
ceedings of IEEE Visualization, pages 191–
198, 1999.

[6] P. Lacroute and M. Levoy. Fast volume ren-
dering using a shear-warp factorization of the
viewing transformation. Computer Graph-
ics, 28(Annual Conference Series):451–458,
1994.

[7] A. Leu and M. Chen. Modelling and render-
ing graphics scenes composed of multiple vol-
umetric datasets.Computer Graphics Forum,
18(2):159–171, 1999.

[8] M. Levoy. Display of surfaces from volume
data. IEEE Computer Graphics and Applica-
tions, 8(3):29–37, 1988.

[9] M. Levoy. A hybrid ray tracer for render-
ing polygon and volume data.IEEE Com-
puter Graphics and Applications, 10(2):33–
40, 1990.

[10] M. McGuffin, L. Tancau, and R. Bal-
akrischnan. Using deformations for browsing
volumetric data. InProceedings of IEEE Vi-
sualization, pages 401–408, 2003.

[11] B. Mora, J. Jessel, and R. Caubet. A new ob-
ject order ray-casting algorithm. InProceed-
ings of IEEE Visualization, pages 107–113,
2002.

[12] K. Mueller, N. Shareef, J. Huang, and
R. Crawfis. High-quality splatting on recti-
linear grids with efficient culling of occluded
voxels. IEEE Transactions on Visualization
and Computer Graphics, 5(2):116–134, 1999.

[13] D. R. Nadeau. Volume scene graphs. InPro-
ceedings of the IEEE symposium on Volume
visualization, pages 49–56, 2000.

[14] T. Porter and T. Duff. Compositing digital
images.Computer Graphics, 18(3):253–259,
1984.

[15] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl,
and W. Strasser. Smart hardware-accelerated
volume rendering. InProceedings of the Sym-
posium on Data Visualisation, pages 231–238,
2003.

[16] J. Woodring, C. Wang, and H. Shen. High
dimensional direct rendering of time-varying
volumetric data. InProceedings of IEEE Vi-
sualization, pages 417–414, 2003.

666



(a) (b) (c) (d)

Figure 8: First row: (a) Transfer function example. (b) Segmentation example. (c) Clipping example. (d)
Fusion of CT and PET scan based on V-Objects. Second row: Stills of animation to illustrate advanced
browsing of volumetric data based on V-Objects. Virtual dissection of the human skull, uncovering the
nervous and vascular system. Third row: Stills of animation to illustrate advanced browsing of volumetric
data based on V-Objects. Enhancing anatomical features by spatial displacement. Fourth row: Stills of
animation to illustrate 4D visualization based on V-Objects. Fanning in time allows to convey similarities
and differences in the progress of time.

666


