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Figure 1: Close-up of the visible male.

ABSTRACT visualization helps to understand patient’s pathological conditions,
improves surgical planning, and is a big aid in medical education.
Most CPU-based volume raycasting approaches achieve high per-A typical data size of today’s clinical routine is up to 512x512x512.
formance by advanced memory layouts, space subdivision, and ex-However, some examinations, such as peripheral CT angiography
cessive pre-computing. Such approaches typically need an enor+un-offs, require even larger scans. For example Rubin et al. [16]
mous amount of memory. They are limited to sizes which do not reported a mean of 908 transverse reconstructions. Furthermere du
satisfy the medical data used in daily clinical routine. We present a to improved capabilities of newer acquisition devices it is possible
new volume raycasting approach based on image-ordered raycastto scan with higher resolution. The higher resolution is often used
ing with object-ordered processing, which is able to perform high- for difficult cases which also results in larger data. This large data
quality rendering of very large medical data in real-time on com- presents a challenge to current rendering architectures and tech-
modity computers. For large medical data such as computed to-niques. The increasing demand of interactive 3D visualization is
mographic (CT) angiography run-offs (512x512x1202) we achiev basically driven by the size itself. Conventional slicing methods
rendering times up to 2.5 fps on a commodity notebook. We achieve already reach their limit of usability due to the enormous amount
this by introducing a memory efficient acceleration technique for of slices. 3D visualization is more and more explored as an attrac-
on-the-fly gradient estimation and a memory efficient hybrid re- tive alternative additional method for examinations of large medical
moval and skipping technique of transparent regions. We employ data to support the obliged 2D examination. Figure 1 shows an ex-
quantized binary histograms, granular resolution octrees, and a cellample of a 3D visualization.
invisibility cache. These acceleration structures require just a small

extra storage of approximately 10% Within the research area of accelerating volume rendering, two

main research streams can be distinguished. One stream is focused
CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional on exploiting special purpose hardware such as Volume Pro (Pfister
Graphics and Realism—Raytracing; et al. [15]), Vizard (Meissner et al. [8]) or graphic cards (GPU)
(Cabral et al. [1], Westermann et al. [19], Guthe et al. [3] and many
others). This approach usually provides high performance when
data fits into internal memory. However, this issue becomes the
1 INTRODUCTION most critical bottleneck once the data size exceeds the onboard in-
ternal memory capacity. Expensive main memory to internal mem-
Direct Volume Rendering is known as a powerful technique to vi- OrY transfers have to be performed, which lead to an enormous per-
sualize complex structures within three-dimensional data. Its main formance penalty. Furthermore, the accelerated pace of the GPUs
advantage, compared to standard 3D surface rendering, is the abilitydevelopment cycle produces heterogenous multi-user hardware en-
to perform translucent rendering in order to provide more informa- Vironments. This makes the adoption of such special purpose hard-

tion about spatial relationships of different structures. In general 3D Ware solutions even more difficult. The other research stream is
based on CPU technologies. In general they provide better per-

Keywords: volume raycasting, large data, acceleration techniques

*e-mail: gimm@cg.tuwien.ac.at formance for large data due to the inherent larger memory capac-
Te-mail: bruckner@cg.tuwien.ac.at ity. Many proposed approaches for CPU based volume raycasting
*e-mail: kanitsar@tiani.com achieve high performance by utilizing super-computers or clusters;
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SGI Reality Monster and were capable to render the Visible Woman
(approx. 1 GB) with up to 20 fps utilizing 128 processors. How-
ever, it is a large scale solution which does not apply to the needs
and capacities of an ordinary medical environment.



To appear in a IEEE TCVG spo

The purpose of this paper is to present a solution which resolves

the issues presented before: an interactive real-time volume render-

ing approach for large medical data, capable of performing in a het-
erogeneous hardware environment, by using commodity computers
such as notebooks, and providing high performance and high qual-
ity images. We achieve this by introducing an efficient method for
on-the-fly gradient estimation and an efficient hybrid removal and
skipping technique of transparent regions. The presentation of our
new approaches is subdivided as follows: Section 2 surveys related
work. Section 3 presents a brief overview of our raycasting pro-
cessing work-flow. In Section 4 we introduce our refined caching
scheme to accelerate on-the-fly gradient estimation. In Section 5
we focus on removing and skipping of transparent regions by em-
ploying quantized binary histograms, granular resolution octrees,
and a cell invisibility cache. In Section 6 we present the results. In
Section 7 we discuss and give a conclusion. Finally in Section 8 we
give ideas for future work.

2 RELATED WORK

The most popular CPU-based direct volume rendering algorithms
are shear-warp, splatting, and raycasting. Shear-warp is corgidere
to be the fastest software algorithm (Lacroute et al. [6]), however
the inherent bi-linear interpolation provides quality which is in gen-
eral insufficient for medical purposes. Splatting was first proposed
by Westhover et al. [20]. Later it was improved in terms of quality
and speed by Mueller et al. [11, 12], and Hung et al. [4]. This
technigue provides high quality images. However it still lacks the
speed provided by the general volume raycasting technique.
Volume raycasting is still widely used if high quality rendering
of large data is desired. Several acceleration techniques for volume
raycasting have been proposed over the last decade. Knittel et al.
[5] and Mora et al. [10] proposed volume raycasting approaches
for commodity computers. They achieve impressive frame-rates by
using a spread memory layout and pre-computed gradients; how-
ever their method requires a huge amount of additional memory.
The spread memory layout itself increases the memory usage by
factor of four. This becomes a rather limitation factor if large data
needs to be handled, or if the the rendering system is part of a large
visualization systems and memory resources need to be shared.
In contrast to that, our approach does not rely on extensive pre-
computing or a spread memory layout; it is based on a bricked
volume layout. However, to achieve high performance advanced
acceleration structures and techniques are necessary. In the fol
lowing Sections we present several memory efficient acceleration
approaches.

3 VOLUME RAYCASTING WORK-FLOW

The following paragraph presents a brief overview of the work-
flow of our volume raycasting approach. Bricking of volume data
is a well known method to exploit cache coherence [14, 3, 7, 2].
We decompose the volume data in bricks and perform processing
brick-wise. The volume raycasting process is subdivided into pre-
processing, pre-rendering, rendering, and post-renderingpiehe
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different brick lists which are defined by the eight possible

viewing-octants in 3D. Depending on the viewing direction

the appropriate list is selected to process the volume brick-
wise and in correct visibility order.

Rendering: According to the brick list, all rays traverse the bricks
in visibility order, until all bricks are processed or all rays
are terminated due to complete opacity accumulation. During
traversing regular re-sampling, gradient computation, classi-
fication, shading and composition are performed.

Post-rendering: At this point the final image is displayed, written
to a file, or sent over the network to a client.

A more detailed description of the used acceleration techniques and
structures for the pre-rendering and rendering step is given in the
following Sections. There are two major strategies to accelerate

volume raycasting. The first one is to reduce the computational

costs at one re-sampling location. We achieve this by using an ac-
celeration technique for gradient estimation (Section 4). The sec-

ond is to efficiently remove and skip transparent regions, which we

achieve by using quantized binary histograms, granular resolution
octrees, and a cell invisibility cache (Section 5).

4 EFFICIENT GRADIENT CACHING

The most common method to accelerate gradient estimation is to
read pre-computed gradients from memory. However, this acceler-
ation technique has several drawbacks. In order to gain high per-
formance the gradients must be stored in memory, resulting into an
inefficient usage of resources. Furthermore such a solution is lim-
ited by memory bandwidth instead of preferably CPU throughput.
The evolution of computer systems has shown that CPU perfor-
mance increases faster than memory bandwidth. Going one step
further if the data exceeds the main memory capacity, out-of-core
rendering has to be performed and the gap between CPU through-

abut and memory bandwidth becomes even larger. Experience has

rshown, that not every gradient estimation scheme performs equally
well on all kinds of data. Therefore the ability to switch between
different gradient estimation schemes is an important feature and
basically not efficiently given if pre-computing is used. Addition-
ally, often only gradient direction is stored and the gradient mag-

nitude is omitted, otherwise the storage requirements can become

considerably high. Finally, pre-computing the gradients is quite

time consuming. Considering a now-a-days medical visualization

system, the doctor’s main interest is to carry out the examination
as fast as possible. The total time from scanning the patient to the
actual examination is a highly critical factor.

To avoid these issues, our approach performs on-the-fly gradi-
ent estimation. In order to obtain highly accurate images, a dense
object and image sample distance is inevitable, which implies high
computational costs. A typical re-sampling resolution illustrated in
2D is shown in Figure 2a. In this case there are eight re-sample
locations within a cell. Each gradient at the corners of one cell has
to be computed eight times. Furthermore, each corner is shared

processing step is done only once during start-up and the remainingpetween four cells in 2D. The total amount of redundant gradient
steps are performed every time the image needs to be re-renderedsomputations at one corner is eight re-sampling positions multi-

At first we give a brief overview of the four rendering steps.

Pre-Processing: During loading, the data is decomposed into
small bricks of size 32 The data within the bricks and the
bricks themselves are stored in common xyz-order. For each
brick information about the contained density values is stored,
e.g. min-max values, quantized binary histograms, etc.

Pre-rendering: In this phase transparent regions are removed and
the rays-volume intersections are computed. There are eight

plied by four cells which gives a total of 32 computations. In 3D
the computational costs are even considerably higher. These very
costly redundant gradient computations can be avoided by refined
caching. However, not every gradient estimation scheme is suitable
for caching. There are several studies on gradient filters for volume
rendering with focus on accuracy, importance in terms of image
quality and efficiency. Especially, Moeller et al. [9] give a thorough
comparison of commonly used normal estimation schemes. They
differentiate between four types of gradient estimation schemes:
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1. Continuous Derivativaises a derivative filter which is pre-
convolved with the interpolation filter. The gradient at a re-
sample location is then computed by convolving the volume

with this combined filter. Exemplary rays

<« T
2. Analytic Derivativeuses a special gradient filter derived from
the interpolation filter for gradient estimation.

3. Interpolation Firstcomputes the derivative at the re-sample
position by re-sampling the data on a new grid, such that the
used derivative operator can directly be applied. This is very / /
beneficial if orthographic rendering is performed. e

4. Derivative Firstcomputes the gradients at the grid-points and

then interpolates these at the desired re-sample position. . )
Gradient has to be computed Cell has to be classified

For scheme one and two no caching mechanism is available. Onlyeight times per cell eight times
schemes three and four can be considered for efficient gradient
caching. Due to their numerical equivalence only a comparison (a) (b)
with respect to efficiency is necessary. Moeller et al. [9] proposed
the Interpolation Firstmethod as the most efficient one. Consider-
ing volume rendering and no caching this is quite obvious. HOW- Eigre 2. Typical re-sampling resolution of a cell in 2D. (a) In the
ever, applying thénterpolation Firstscheme requires re-sampling  shown case each gradient at the cell corners has to be computed 8
of the original grid to a much larger grid if the object sample dis-  times while processing one cell. (b) In the shown case a cell has to
tance is significantly smaller than one. Already an object sample pe classified 8 times.
distance of 0.25 increases the grid size by a factor of four. This
enormous amount of data makes caching inefficient and difficult. Fully transparent
Especially if the object sample distance should be kept dynami- brick
cal or if jittering techniques to improve the image accuracy are ap- <« Partially transparent
plied. Due to these reasons therivative Firstgradient estimation brick
scheme is more efficient from a performance point of view, since
it is more suitable for caching. In this case, the amount of data to /
cache is always determined. This makes interactive changes of th
object sample distance possible. ] ] W

N

4.1 Per Brick Gradient Caching @ ®) © @
Our caching scheme requires two data structures: the cache itself

and a second structure to store the corresponding valid bits. TheFigure 3: General work-flow of our hybrid transparent region removal
used processing entity is not the whole volume; in fact the volume and skipping technique: Red are brick boundaries, blue are octree
is decomposed in bricks and each brick defines a processing entity.boundaries, grey are transparent regions and green is visible volume
The size of the cache matches the number of gradients needed fodata. (a) — (b): Transparent region removal of bricks, (b) — (c)
one brick. The most straightforward way to use this cache would be removal based on octree projection and (c) — (d) removal using the
to pre-compute all gradients which correspond to the current brick cell invisibility cache.

and use those during brick processing. This would be very ineffi-

cient, since more gradients than necessary would be pre-computed

if only parts of a brick are visible. In contrast to that we addition-

ally use valid bits, which encode if a gradient is already computed peneficial to exploit this transparency information and start the ac-
and stored in the cache. During brick processing every time a gra- tual re-sampling of the data right where the visible data begins. The
dient needs to be Computed, it is checked if the gradient is a|readywork_f|ow of our hybnd transparent region removal and Sk|pp|ng
stored in the gradient cache. If not, the gradient is computed and technique is shown in Figure 3. At first transparent regions are re-
stored in the cache and the Corresponding valid bit is set to true. moved on a brick basis (Figure 3a Figure 3b) Then to support
This mechanism ensures that gradients are computed only once akven more refined removal of smaller transparent regions we per-
each sample position during brick processing. The cache remainsform octree projection (Figure 3b- Figure 3c). Due to efficiency
only valid during the processing of one brick. Once the next brick reasons our octree subdivision does not fully go down to individual
is processed the cache is reset. This has the effect that the gradientgells. The granular resolution of the octree leads to approximate
which are also needed in adjacent bricks are processed more thanays-volume intersections. To overcome the resulting performance
once. The resulting performance penalty is low, since the number penalty we introduce a Cell Invisibility Cache (CIC) to skip the
of those gradients is small compared to the number of all gradients. remaining transparent cells (Figure-3cFigure 3d). In the follow-

ing we describe our hybrid transparent region removal and skipping

technique in more detail.
5 REMOVING AND SKIPPING OF TRANSPARENT REGIONS

. . . . . o . 5.1 Quantized Binary Histograms

For medical imaging, interactive classification of data is manda-
tory. In general during examination it happens quite often, that large At first we describe an efficient encoding for finding transparent
parts of the data are classified as transparent to allow a more precisdricks. The most common method are minimum-maximum encod-
view of the region of interest. For acceleration purposes it is quite ings and a summed area tables. A summed area table encodes the
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opacity integral by binary histogram is more sensitive for largely varying data values.
This property can be efficiently exploited if the binary histogram
S(0) = a(0) encodes a segmentation information volume. In such a volume,
S(k) = S(k—1) + a(k) segmented objects are encoded by labels. These labels can differ

o i largely and interpolation is not applicable. Only pre-classification
Herebyk € H = [0..409, which is the possible range of Hounds-  ~5n pe performed in this case

field units anda represents the opacitymin andimax denote the
minimum and maximum density value within a brick. The inte-
gral of the discrete functioor over the intervalimin,imay can be
approximated in constant time by performing two table lookups:

Quantized binary histogram
of brick

- Min= 0
> -0'0,, Max = 150

Y (k) =Slimas) ~ Slimin)

K=Imin

If S(imax) — S(imin) = 0 then the brick is transparent and can be I I | 150
skipped. At this point we differentiate between pre- and post-
classification. For post-classification the min-max encoding is the \ 270
most accurate, since due to interpolation of data all values be-
tween the minimum and the maximum may occur. However, if
pre-classification is performed the min-max encoding may be too T e o |
ranular when applied on large regions. Figure 4 shows an exam- X m= <————— Min/Max of brick
gle where the miFr)fmax encoging ig to consgervative. The min-max O* - Max=270 I
encoding would report both bricks as being visible. The main issue :
is, that the min-max encoding accuracy relies heavily on the un-
derlying data. If the region is large it is quite likely that its values
differ considerably. The min-max encoding becomes too granular
to effectively encode the area. We use a more refined structure
i.e., a quantized binary histogram. In general a binary histogram is
encoded as:

Figure 4: Min-Max encoding granularity issue if pre-classification is
performed: If the range of non-transparent value is set to 130 to 150,
the min-max encoding would report both bricks as being opaque. The
'quantized binary histograms would report brick | being transparent
and brick Il being opaque.

_J 1, xeB
ox(B) = { 0, otherwise

HerebyB is the set of all density values a brick contains, with
B C H =[0..4099. ox(B) = 1 means that the density valuds
given at least at one grid position in the underlying brick. This with the method described in Section 5.1 entirely transparent
encoding is effective, however it is quite inefficient in terms of pricks are determined and therefore their unnecessary processing
memory usage and efficient evaluation. Additionally to the binary is avoided. We also want to avoid processing of transparent regions
codomain guantization we also quantize the domain itself. This within a brick. Therefore, each brick contains a granular resolution

5.2 Granular Resolution Octrees

quantized binary histograns stored for each brick. octree to enable the determination of transparent regions within a
Itis determined by single brick. A min-max octree is one of the best known space sub-
. . division structures to support refined skipping of small transparent
Gi(B) = { 1, 3x:x€B,x€[128:0..128 (i +1)] areas (Lacroute [6], (Wilhelms et al. [21]), and Mora et al.[10]).
0, otherwise Each brick (32x32x32) contains a 3-level min-max octree, shown

. o i i . in Figure 5a. For each octree level we store the minimum and max-
Where (0 <i < 31). Within quantized binary histograms the €x- jmm value as a pair of numbers. For level 0 we have 8 pairs,
istence of data within a specific interval is encoded. The intervals |oye| 1 needs 8x8 = 64 pairs, and level 2 needs 8x8x8 = 512 pairs.
are concatenated, disjunct, have same length, and cover the rang@yhen classification changes the octree is recursively evaluated by
of Houndsfield units. In the pre-processing phase every brick iS 5 symmed area table for all bricks. We store the classification infor-
parsed and encoded. The same encoding can be performed for thg,4tion efficiently by hierarchical compression [5]. Nodes of level 2
transfer-function with respect to opacity: are either opaque or transparent. All other nodes have an additional
. . . . inhomogeneous state. The information whether a node of level 2
Ai = { (1)’ ;ﬁé?\xggtxx) #0,x€ [1281..128 (i + 1)[ is transparent or opaque is stored in one bit. The state of a level 1
’ node is determined by testing of one byte, which contains all the
bits of its children. For level 0 such a hierarchical compression re-
quires to test 8 bytes for a node and 64 bytes for the brick. Due to
efficiency reasons we explicitly store the state information of level
0. We have three possible states, thus we need 2 bits for each level
0 node. Thus, we additionally require two byte per brick. Due to
Vie[0.3:AAG =0 this encoding, the octree can be very efficiently traversed.

Herebyx € H andi € [0,31]. Every time the transfer-function
changes, the transfer-function is re-encoded in this way.

With this information one can quickly determine the transparent
bricks. A brick is transparent if

This conjunction test can be done very eﬁipiently ona x86 basgd 53 Removing of Transparent Regions

CPU. Note, that this is a conservative estimate a brick’s visibil-

ity. It is possible that due to the chosen encoding we consider We have two structures, a quantized binary histogram and a granu-
a brick as visible although all contained values are classified as lar octree, to find the rays-volume intersections up to the resolution

transparent. However, if we look at Figure 4, we can see that the of the granular octree (Figure 3c). The bricked geometry of the vol-

quantized binary histogram would report the bricks correctly if pre- ume and the octrees within the bricks are converted to a polygonal
classification is performed. This is due to the fact, that the quantized structure and rendered into a z-buffer [17]. Basically we traverse
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Brick \ 54 Cell Invisibility Cache: Skipping of Transparent Regions

I
‘ | As the granular resolution octree does not go down to cell level, a

I
Level 0 | | cell invisibility cache is used to skip the remaining transparent cells
I | | Template ((Figure 3c— Figure 3d)). The volume-rays intersections estima-
| tion by template-based projection of the octree subbricks brings us
| v as close as 4x4x4 samples to the visible data. This is inefficient

from a performance point of view. Especially if first-hit-raycasting
is performed every non skipped sample has a large impact on the
' ' resulting frame-rate. A resolution of 4x4x4 results in a large num-

Level 1

ber of non skipped samples. This is depicted by the red samples
shown in Figure 7. All these samples have to be classified in order

Image plane to determine which cell can be skipped. Depending on the object-
sample distance and the zoom factor these cells have to be classified

@ (b) several times. This is shown for a typical re-sampling resolution in

Figure 2b. In this case each cell has to be classified eight times.

Figure 5: (a) Octree classification scheme for an individual brick. Considering the same example in 3D, the number of redundant cell

Transparent bricks are white, opaque bricks are blue and inhomo- classifications would be considerably larger. Due to this reason we
geneous bricks, partially transparent and partially opaque, are blue introduce a refined cell invisibility caching. We extend the volume
striped. , (b) Brick projection template. raycasting pipeline in such way that classification of these invisi-

ble cells has to be done only once. The extended pipeline is shown
in Figure 6. A Cell Invisibility Cache (CIC) is attached at the be-
ginning of the traditional volume raycasting pipeline. This CIC is
initialized in such a way that it reports every cell as visible. In other
words every cell has to be classified. Now, if a ray is send down the

through the brick list and determine which brick has visible data and PiPeline, every time a cell is classified as invisible (all its samples
needs to be evaluated for rays-volume intersection [3]. The evalu- N@ve zero opacity contribution) this information is cached in the
ation is performed by quantized binary histograms in case of pre- CIC. A cell can either be invisible or visible, this information can
classification or min-max encodings in case of post-classification. P& eéncoded in just one bit. Once a cell is classified as invisible, the

The octree of those bricks is evaluated and the sub-bricks which COStly classification of a whole cell is exchanged by a binary test.
contain visible data are rendered. This rays-volume intersection 1hiS leads to an enormous performance increase. On the one hand,

computation by rendering requires tgeanular resolution of the this is due to the reduced memory access and on the other hand due

octree. With more than three octree levels the number of polygons O the inherent classification and conjunction information of 8 sam-

would exceed the rendering performance of commodity graphics Ples. The information stored in the CIC remains valid as long no
hardware. transfer-function change is performed. The CIC is stored per brick

and therefore allows interactive changes of the transfer function. If
the transfer function changes only the CICs of the bricks which are
affected need to be reset. During the examination of the data, e.g.
by changing the viewing direction, the CIC fills up and the perfor-

Utilizing OpenGL for rendering provides high performance and
high accuracy; however, if the approach is used as an integrated

module it requires off-screen rendering. This is available in mance increases progressively. The same mechanism is also ver
OpenGL by PBuffers. Unfortunately, this feature is not available . prog Y- 2 L y
beneficial for general empty space skipping within the data.

on every graphics card. Furthermore the rendering requires a huge
amount of graphic cards memory. Considering a 1024x1024 im-
age, the needed buffer is already 8 MB. Most of the more ad-
vanced medical visualization systems support high-resolution dual-
displays. This feature normally utilizes all the available graphics | — — — — — — = = = — — — = —
card memory. There is no space left for graphics hardware accel-
erated off-screen rendering. Due to this reason, we also develope )
the rendering in software. This can be done very efficiently, if the ! ?""‘S‘?" estimation
simple polygonal structure of the bricked octree layout is exploited. | fcation Compositing
Since every brick is of the same structure, one can use templatel Shading
based projection of the octree. Similar work has be done by Srini- |
vasan et al. [18]. The main idea is to project just one brick per — — — —
viewing direction for each octree level as shown in Figure 5b. This
projection is used as a template for all other bricks of the same
level. Any other brick of the same level has the same projection
footprint and is obtained by translation. The projected footprint ac-
tually consists of z-values, since we are interested in the z-buffer
footprint of the octree. All possible entry bricks are rendered in a
front-to-back order by using the projected z-value template. The Figure 6: Cell Invisibility Cache (CIC) - Acceleration by caching in-
resulting z-buffer footprint of the octree is then used to determine visibility information of cells. The acceleration path is emphasized in
the rays-volume intersections. This is as fast as the OpenGL imple-red.

mentation, since the costly projection itself has to be done only for

one brick per viewing direction. Furthermore no costly OpenGL

glReadBuffer() instruction is involved and the resulting z-buffer

contains directly the z-components of the ray starting-positions.

Re-sampling
Gradient-

Advance
ray
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Figure 7: Zoomed in granular octree of one brick. Blue crosses: 54.4
skipped samples, white crosses: opaque samples, and red crosses are s0r No cache
samples that can not be skipped due to the granular resolution of Wl Cell cache
the octree. '
Brick cache
30}
27.9
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6 PERFORMANCE RESULTSAND MEMORY CONSUMPTION 132
o .__‘__// '
6.1 Gradient Cache 0 ) ) . 7'9, ,

. . . 1.0 0.75 0.5 0.25 0.125
The memory consumption of the gradient cache is very low. The

cache size is not related to the volume dimensions. It is related
to the brick dimensions. The brick dimensions in our case are ent caching. and per brick eradient caching. Timings are given in
32x32x32, the size of the gradient cachedir{ension of brick1)3 P %h per bnick g aching. g g
L . . X - ) . seconds. e tested object sample distances are 0.125, 0.25, 0.5,

multiplied by dimension of gradienmultiplied bysize of gradient 75 "3nq 1.0, Data: UNC head, 256x256x224, 12 bit. Intensity
componentwhich is(33)°- 3- 4~ 421,14 KByte. Additionally we ;5¢ [0,1136] is mapped to 0.0 opacity and range [1136,4095] to a
store for each cache entry a valid bit, which adds up O B8 ~ linear opacity ramp between 0.0 and 1.0. System specification: CPU
4.39 KByte. This is altogether less than 512 KB. For performance - Intel®Pentium®M 1.6 GHz, Cache - 1 MB Level2, RAM - 1 GB,
reasons the data shall remain in the level 2 cache. This is not anGPU - GForce4 4200 Go (32MB).
issue as current commodity CPUs have a level 2 cache size of 1
MB.

Figure 8 shows the effect of per brick gradient caching compared
to per cell gradient caching and no gradient caching at all. Percell g2 Acceleration Structuresfor Skipping Empty Regions
gradient caching means that gradients are cached while a ray re-
samples a cell. For gradient estimation we used the gradient filter The additional memory usage of all three acceleration structures,
proposed by Neumann et al. [13]. This filter produces slightly bet- quantized binary histogram, granular resolution octree, and the cell
ter quality than the Sobel filter, supports inherent volume filtering invisibility cache is rather low. Considering the size of the vol-
and has approximately the same computational cost. Due to theume as 100%, they increase the size by approximately 10%. We
on-the-fly computations, the filtering can be enabled and disabled use bricks of size 32x32x32 storing 2 bytes for each sample, which
interactively. The on-the-fly filtering has low computational costs is a total of 65536 bytes. Additionally for each brick we store:
and can be used to increase the quality, when a smaller number ofQuantized binary histogram- 4 byte, Min-max information—
rays are shot to increase the frame-rate during interaction. (512+64+8+1) * 4 = 2340 byte, Octree classification information

For testing we chose an adequate opacity transfer function to — (64 + 2) = 66 byte, and Cell Invisibility Caches 32° bit /8
enforce translucent rendering. The charts in Figure 8 show differ- = 4096 byte. In total the storage increase( (4 + 2340+ 66+
ent timings for object sample distances from 1.0 to 0.125 for three 4096)/65536 - 100~ 9.9%.
different zooming factors 0.5, 1.0, and 2.0. In case of zoomiog fa Figure 10 shows the effect of our hybrid removal and skipping
tor 1.0 we have one ray per cell, already here per brick gradient technique of transparent regions and shows the corresponding ren-
caching performs better than per cell gradient caching. This is due dering output. For benchmarking we used a commaodity notebook
to the shared gradients between cells. For a zooming out factor ofequipped with an IntédPentiun®M 1.6 GHz CPU, 1 MB Level2
0.5 both gradient caching schemes perform equally well. The rays cache, 1 GB RAM, and a GForce4 4200 Go (32MB). The graph-
are so far apart that nearly no gradients can be shared. On the otheics card capabilities are only used to display the final image. We
hand for zooming in (2.0), per brick caching performs much better tested different data sets. A rather small data set, the UNC head to
than per cell caching. This is due to the increased number of raysbe able to compare our speed to the approach of Mora et al. [10].
per cell. As more rays process the same cell, the more beneficial theThis approach is slightly faster than the UltraVis system [5]. They
per brick caching becomes. Per brick gradient caching compared toare both based on a spread memory layout and use pre-computed
no caching shows already with a zoom factor of 2.0 and an object gradients. This leads to an inefficient memory usage and so they
sample distance of 0.5 an impressive speedup of approximately 3.0.are restricted to rather small data. Mora’s total render time is ap-
The speedup favorably scales with the zoom factor. Figure 9 showsproximately a factor of two faster than our approach. However,
an example rendering of the Visible Male with a high proportion of Mora’s approach uses pre-computed gradients, does pre-shading
transparency. Our caching scheme compared to no caching showsnd its template based interpolation scheme limits the zooming to
a speedup factor of 2.2. a zooming-factor of four. In contrast to that we chose to sacrifice

Figure 8: Comparison between no gradient caching, per cell gradi-
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some performance for increased flexibility, high quality, and a sig- Univ.-Klinik Innsbruck, AKH Vienna, Univ.-Klinikum Freiburg,
nificantly lower memory usage. This enables us to render large and NLM.

data, used in clinical routine, on commodity hardware. We tested

three different large typical medical data sets. The results show thatREFERENCES

our acceleration techniques typically achieve render-times of about

2 fps even for these large data sets. Figure 10, fourth column, shows [
the total render time achieved by brick based transparent region re-
moval. In the fifth column we additionally apply the granular octree
projection. And finally in the sixth column we enabled the Cell In-
visibilty Cache to see the overall total render time achieved by the
combined effect of all three acceleration structures.

2]

(3]

4
We presented a volume raycasting approach which provides high- l
(5]

quality images in real-time for large data on standard commodity
6]

7 DiscussioN AND CONCLUSION

computers without advanced graphics hardware. For large medi-
cal data such as computed tomographic (CT) angiography run-offs
(512x512x1202) we achieve rendering times up to 2.5 fps on a com-
modity notebook. This shows that real-time rendering of such large
data on commodity notebooks is within reach. Our method can be
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bandwidth Mora et al. [10]. Our refined caching scheme for gradi-

ent estimation in conjunction with hybrid skipping and removal of [11]
transparent regions, enables us to achieve high quality while main-
taining high performance. Due to the efficient memory consump- [12]
tion of our acceleration structures (quantized binary histogram +
granular resolution octree + Cell Invisibility Cache) and the bricked
volume layout we are able to handle very large data. All accelera-
tion structures require only an extra storage of approximately 10%. [13]
Data sizes up to 2GB are possible, which is a limitation imposed by

the virtual address space of current consumer operating systems.

7]

8]

(14]

8 FUTURE WORK
[15]
In the future we want to support out-of-core rendering to be pre-
pared for the next generation of data sizes. First commodity proto-
type scanners already deliver data in the range of 1024x1024x2048[16]
which is about 4GB of data and quite challenging to handle. Addi-
tionally we want to incorporate brick-based compression to achieve
interactive rendering times for these large data. Furthermore we [17]
want to support perspective rendering. The changes which have to
be made, are basically to split the brick rendering lists such that the [18]
correct processing order is ensured. Additionally we have to render
perspective distorted bricks to be able to find the exact entry points
of the rays. Other than that all the presented accelerating techniqueilg]
should work as well as for orthogonal projection. [20]
Additional material can be found at:

http://www.cg.tuwien.ac.at/research/vis/adapt/26t2as [21]
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Figure 9: Data: Visible Male (587x341x1878). System: (Notebook) Intel®Pentium@®M 1.6 GHz. Image size: 1024x768. Object sample
distance: 0.25. Render timings: no gradient caching — 21.1 sec, with full gradient caching — 9.6 sec.

(a)

Name Dimensions Size TBR TBR+OPR TBR+ OPR+CIC
(@) Visible Male 587x341x1878 0.70GB 0.61 sec 0.46 sec 0.40 sec
(b) Visible Male 587x341x1878 0.70GB 0.68 sec 0.53 sec 0.45 sec
(c) Run-off 512x512x1112 054 GB 1.16 sec 0.93 sec 0.61 sec
(d) CTArun-off 512x512x1202 0.59GB 0.86 sec 0.70 sec 0.64 se
(e) CTArun-off 512x512x1202 0.59GB 0.69 sec 0.46 sec 0.87 se
(f)  UNC head 256x256x256 0.03GB 0.71sec 0.26 sec 0.18 sec

Figure 10: Performance results for different data sizes, which are used in daily clinical routine. Image size: 512x512, Sample rate: 0.5, and
Hardware: CPU - Intel®Pentium®M 1.6 GHz, Cache - 1 MB Level2, RAM - 1 GB, GPU - GForce4 4200 Go (32MB). TBR: brick based
transparent region removal. OPR: octree projection based transparent region removal. CIC: cell based transparent region skipping.



