
Real-Time Techniques For 3D Flow Visualization

Anton Fuhrmann and Eduard Gröller

Vienna University of Technology*

ABSTRACT
Visualization of three-dimensional steady flow has to overcome a
lot of problems to be effective. Among them are occlusion of
distant details, lack of directional and depth hints and occlusion.
In this paper we present methods which address these problems
for real-time graphic representations applicable in virtual
environments. We use dashtubes, i.e., animated, opacity-mapped
streamlines, as visualization icon for 3D-flow visualization. We
present a texture mapping technique to keep the level of texture
detail along a streamline nearly constant even when the velocity
of the flow varies considerably. An algorithm is described which
distributes the dashtubes evenly in space. We apply magic lenses
and magic boxes as interaction techniques for investigating
densely filled areas without overwhelming the observer with
visual detail. Implementation details of these methods and their
integration in our virtual environment conclude the paper.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation - Viewing Algorithms; I.3.6
[Computer Graphics]: Methodology and Techniques - Interaction
Techniques.

Additional Keywords: virtual environments, flow
visualization, texturing, interaction, magic lens, focussing

1 INTRODUCTION AND MOTIVATION
Many visualization techniques for two-dimensional flows have
already been investigated in detail [Post93]. Visualization of 3D
flow phenomena, however, tend to produce complex images with
often heavily overlapping geometry. Occlusion, ambiguities in
depth and orientation of flow strain the viewer’s abilities to
interpret the visualized data.

The main point of this paper is to show how real-time graphics
in a virtual environment can be used to overcome some of these
problems. Stereo cues, interactive and intuitive changes of the
viewpoint and the feeling of immersion allow users to get a better
impression of the structure of the 3D flow in a virtual
environment as compared to a desktop system.

We present a combination of selected visualization and
interaction techniques, which enable the user to rapidly explore
complex 3D vector fields. Fast texture-based visualization
techniques, which utilize the graphics hardware to get real-time
performance, are applied to streamlines. A new parameterization
scheme allows a direct mapping of a wide range of flow velocity
to texture velocity without loss of detail. These techniques
together with interactive 3D focussing enable the user to quickly
identify and explore areas of interest. The focussed volume is
selected with magic lenses and magic boxes that also use mainly
hardware accelerated features. Animation is realized in the texture
coordinate domain with moving opacity maps. This reduces
occlusion and cluttering by simulating particle traces. An

automatic streamline placement algorithm [Joba97] is extended
into the third dimension to generate an even distribution of
streamlines in the virtual environment.

2 RELATED WORK
Several techniques for the visualization of 2D and 3D flows
inspired this work. Some examples of texture based techniques for
the visualization of 2D flows are [Cabr93], [Wijk93], [Stal95].
We already applied texture-based visualization techniques in
[Löff97].

FROLIC [Wege97a] is a variation of OLIC (Oriented Line
Integral Convolution, [Wege97b]) based on LIC [Cabr93]. OLIC
uses sparse textures and an asymmetric convolution kernel to
encode the orientation of the flow in still images. Costly
convolution operations as done in LIC and OLIC are replaced in
FROLIC by approximating a streamlet by a set of disks with
varying intensity. The visualization icons we call dashtubes are
basically 3D streamlines with animated texturing and apply
similar techniques to 3D flows.

Interrante et. al. [Inte97] use LIC for 3D flow volumes. Halos
around streamlets offer additional depth and ordering cues. The
high cost of volume rendering, however, precludes an interactive
exploration. Texture splats as discussed in [Craw93] encode
direction and orientation of 3D flows. Fast splatting operations are
realized with hardware supported texture mapping. Animated
texture splats illustrate the flow dynamics. While these techniques
produce good results, their rendering times are prohibitive for
real-time applications.

Max et.al. [Max94] presented various techniques for visualizing
3D flows close to contour surfaces. Motion-blurred particles are
generated in the vicinity of surfaces. Particles are started
automatically on a lattice. Generation and deletion of particles is
density based. Line bundles are realized as texture splats with
antialiased lines as texture. Hairs are 3D particle traces originating
on the surface. Additional information is encoded in the color,
length and transparency of these hairs.

Streamline placement is an important task to achieve an
approximately uniform coverage of phase space. An image-guided
streamline placement has been presented in [Turk96]. Another
approach for creating evenly spaced streamlines uses a regular
grid [Joba97]. For each grid element a list of passing streamlines
determines whether there is still space for the placement of
another streamline.

Queues of streamline vertices administer possible seedpoints for
new streamlines. Tapering of streamline widths produce hand-
drawing effects. Directional glyphs illustrate flow orientation. A
3D variation of the streamline placement in [Joba97] was used in
our approach (see section 3).

3 DASHTUBES: STREAMLINES WITH
ANIMATED OPACITY

Streamlines are an intuitive way of visualizing flow. Their
applicability in 3D-space however is limited, since they do not

* Institute of Computer Graphics, Vienna University of
Technology, Karlsplatz 13/186, A-1040 Vienna, Austria
email: {fuhrmann|groeller}@cg.tuwien.ac.at
URL: http://www.cg.tuwien.ac.at/home/



provide the visual cues needed. Normally, lines are rendered with
the same width regardless of distance to the viewpoint so they
lack perspective distortion, which is a significant cue for judging
distance.

Additional techniques like halos [Inte97] are necessary to
resolve the ambiguities of overlapping lines. When visualizing
flow, streamlines need to be enhanced to convey the direction of
the flow. This can be done by directional color variations or by
placing icons along the streamline as shown in [Joba97]. Texture
based techniques like LIC can be modified to include directional
variations as we have shown in [Wege97a] and [Wege97b]. A
more direct approach however is the visualization of flow by
animation. In the 2D case we use FROLIC combined with lookup-
table animation to do this in real-time. Bryson [Bry97] has
successfully used streaklines - 2D particles moving along the
vector field - in the virtual windtunnel to animate flow in space.
This technique depends on continually updating the position of all
particles with every animation step, leading to a considerable
consumption of processing power.

In this paper we present dashtubes as visualization tool for
steady 3D-flow. Dashtubes are generalized cylinders extruded
along the direction of the flow (Figure 1). Their geometry is
displayed with animated, opacity mapped texturing to visualize
velocity and direction of flow. They appear as "dashes" - short
opaque segments - moving along the direction of the flow.

Our requirements for dashtubes are:

Volume-filling properties: the dashtubes have to exhibit an
even distribution over the volume of interest. Otherwise the
omission of interesting features would be probable.

Reduced occlusion: we need a method which reduces the
occlusion of distant features by features near the observer. This
demand is almost the opposite from the volume-filling properties
mentioned above.

Animation of flow: the velocity and direction of the flow
should be visible in the animation. Dash velocity should directly
correspond to flow velocity.

Visibility of dashes: the length of the dashes should not vary
too much with velocity. High velocity areas would otherwise
produce long dashes and gaps, which do not give the desired
appearance, while low velocity would lead to very short dashes
and eventually to aliasing artifacts.

Fast Rendering: Since one of our main points is the real-time
applicability, we want a fast, hardware-assisted rendering method.
Like FROLIC we would like to use the graphics hardware to do
the animation, leaving the CPU time for simulation and
interaction. This is advantageous as the graphics hardware has
anyhow to update the image continuously when rendering a
virtual environment.

Dashtubes meet the mentioned requirements. To avoid the
occlusion of distant parts of the visualization by closer features
and to generate the desired effect of particles moving along the
dashtube we render it partially invisible. This is done by using an
opacity texture, which includes transparency information for the
rendering hardware. Since semi-transparency does not work well
in combination with z-buffered visibility resolution, we only map
completely opaque or complete transparent values to the
geometry. Thereby we avoid artifacts produced by the order in
which we render different parts of the scene. The dashtubes are
assigned texture coordinates, which correspond to a temporal
parameterization along streamlines.

Figure 1: Streamline geometry without texturing

Figure 2: Dashtubes with opacity-texture

When combined with an appropriate opacity texture, this leads
to the desired dashed appearance, with opaque dashes intermitted
by empty sections (Figure 2). Since animating the texture image
itself is a relatively time-expensive operation on most graphics
hardware, we just transform the texture coordinates along the
direction of the tube. In OpenGL this can be done by modifying
the texture transform matrix, which has the additional advantage
that it works even when more than one texture map is used.
Animation is an essential part of the method, since otherwise
structural information visible in Figure 1 would be lost in the
opacity-mapped representation (Figure 2).

Early tests showed that the animated texture produces annoying
visual artifacts at the ends of the dashtubes. The opaque segments
entering and leaving the surface of the extrusion exhibited an
irritating ”blinking” behavior, comparable to the pulsation we had
to overcome in FROLIC. We treated this by reducing the radius of
the first and last cross-section of the dashtubes to null, thereby
tapering the extrusion at the ends (Figure 1 and Figure 2). This
yields smooth transitions at both ends, comparable to a ”fade-in”
effect.



4 ADAPTIVE TEXTURE-MAPPING
As most texture mapping techniques, our method is prone to
aliasing. When the length of one dash in image-space is reduced
to a single pixel width or below annoying artifacts make the
distinction of dashes difficult. Even worse, the speed and direction
of the visualized flow becomes impossible to observe.

These effects appear when the viewpoint moves away from the
texture-mapped tube or when the flow velocity is very low. In
both cases a large texture area is mapped to a small region of the
screen.

Therefore we need a method to reduce aliasing while preserving
the essential properties of dashtubes: a high contrast texture
moving along the tube at the speed of the visualized flow which
contains distinctive opaque and completely transparent sections.
Furthermore the maximum length of a dash and gap sequence
must not be too big. Otherwise the appearance of the dashtube as
a line of moving particles would suffer. Long dashes, while giving
a good impression of the direction of the flow, occlude much of
the scene farther away and reduce the impression of a volume
flow. Ideally we want approximately uniform spaced dashes in
image space, independent of viewpoint and flow velocity.

4.1 Mipmap Method
Most commonly the mipmap-method [Will83] is used to reduce
texture aliasing. Thereby the texture is filtered to consecutively
lower resolutions. A single texture is represented by a series of
texture maps with decreasing size and texture-frequency (Figure
3a). Since this method does the filtering in a pre-processing step,
the additional expenses at runtime are relatively low making it the
method used by most real-time graphics hardware.

To apply mipmaps on dashtubes we have to alter the standard
algorithm of producing the reduced texture maps. Normally each
sub-map of a mipmap contains a filtered version of the level
above, thereby halving resolution and maximum frequency of the
texture (Figure 3a) This clashes with our rejection of semi-
transparent objects in section 3: the contrast of lower resolution
maps is reduced due to filtering, which also produces semi-
transparent areas. The flow velocity is preserved, but the dashes
get shorter in areas with reduced velocity or a more distant
viewpoint.

So we have to produce sub-maps which do not exhibit this
undesired properties. Figure 3b shows an example how such maps
could look like: They posses the fractal property of having the
same amount of detail on every level.

Using such a mipmap produces the following effects: If the
viewpoint moves farther away, the texture (the dashes) shrink
continuously in length until a new mipmap level is reached, where
the switch to a coarser resolution is performed and the dashes
again have a distinguishable length. Sections of dashtubes where
the low flow velocity would produce very short dashes are also
mapped to coarser resolutions and therefore exhibit longer dashes
(Figure 4).

An important aspect of this approach is that only the contents of
the texture are switched, not the mapping of texture to object. This
leads to the intended effect when animating the texture: the
velocity of the texture along the tube directly corresponds to the
flow velocity independently of the length of the dashes.

D�

E�

Figure 3: Mipmap textures

D�

E�

Figure 4: dashtubes with (a) and without (b) mipmap-texturing

The main problem when using mipmaps for adaptive texture-
mapping arises from the small number of available mipmap
levels: Since every two-dimensional sub-map has exactly the
double resolution of the next lower level, the memory
consumption exponentially rises with the number of levels.
Additionally the switch between one level and the next leads to
discontinuities in the texture appearance. Since the textures move
along the tubes these discontinuities are especially annoying when
they appear along a single tube.

Most mipmap implementations - including the one used in
OpenGL - reduce the artifacts due to level switching by
interpolating between two adjacent sub-maps. We can not apply
this method in our case since this strongly reduces contrast
because the interpolation is performed between two essentially
different maps, not between maps only differing in the high-
frequency components. Furthermore the interpolation produces
semi-transparent areas causing the already in section 3 discussed
problems when rendering into the z-buffer.

These problems occur since the transition between one level and
the next is relatively coarse. If we could reduce the difference
between level resolutions and increase the number of levels we
would be able to exactly specify how switches between longer
(less) and shorter (more) dashes are performed. The vast memory
consumption of mipmaps with a high number of levels denies us
the trivial solution of this problem, so we have to approach it
differently.

In section 4.2 we show a different approach to adaptive texture-
mapping, which overcomes some of the problems mentioned
above.



[

YHORFLW\

$ % &

D�

E�

F�

IORZ�GLUHFWLRQ

Figure 5: Adaptive texturing with texture-coordinate method

WLPH

YHORFLW\

IDVW

D�

VORZ

F�

VORZLQJ

E�

Figure 6: Texture usage of texture-coordinate method

D�

E�

Figure 7: dashtubes with (a) and without (b) adaptive texturing

4.2 Texture-Coordinate Method
If the flow velocity along a dashtube is falling as in Figure 5a, the
resulting texturing leads to short dashes in the low-velocity region
of the dashtube (Figure 5b, region C). This behavior violates our
demands from section 3, where we require the dashes to be
distinguishable independently of flow velocity. Since these short
dashes can lead to undesirable aliasing artifacts, we would prefer
longer dashes in region C, which should still reflect flow velocity.
If we want longer dashes moving with the same speed as the
shorter ones, we have to somehow reduce the number of dashes
travelling from region A to region C. A possible solution, which
reduces annoying artifacts shows region B in Figure 5c: every
three dashes leaving region A get joined to a single dash while
moving through region B. The low-velocity part (region C) of the
dashtube contains one long dash in Figure 5c for every three short
dashes in Figure 5b. When animated, this shows three dashes
leaving the high-velocity region A of the dashtube, which reduce
their gaps until they merge into one longer dash in the low-
velocity region C.

To implement this behavior using conventional (OpenGL)
texture-mapping hardware we have to alter the way we map a
texture to the geometry of the dashtube. In ordinary texture-
mapping applications two spatial texture coordinates are mapped
onto the 2D surface of an object. Since the rotationally-symmetric
dashtubes represent essentially 1D objects - the underlying
streamlines - we only need one texture coordinate for the spatial
mapping. We use the remaining texture coordinate to smoothly
vary the dashes appearance.

Figure 6 shows a texture map, which maps velocity and time
along the dashtube onto opacity. For constant velocity horizontal
rows of the texture are mapped along the tube. Constant low
velocity maps the lowest row of the texture onto a short segment
of the dashtube (Figure 6c), whereas constant high velocity maps
the uppermost row of the map onto a long segment of the tube
(Figure 6a). Changing velocity along a segment samples the map
along a slanted line (Figure 6b), thereby producing the effects
depicted in Figure 5c, region B.

The merging dashes in the transitions exhibit slightly irritating
artifacts when the gaps shrink to one pixel width. To reduce this
effect, we want to map the transitions only to short segments of
the dashtubes. Between this transition segments we allow the
dashes to lengthen or shorten a bit, without altering their number.
This gives the motion of the dashes a more uniform appearance.

The texture map in Figure 6 is designed to restrict the transition
segments (Figure 5c, section B) to small velocity ranges. In the
areas where the texture contains parallel, vertical stripes the
sampled texture is independent of the velocity. Only when the
sampling passes into one of the branching areas of the map dashes
are joined or split.

5 STREAMLINE PLACEMENT
When using streamlines for flow-visualization, the quality of the
result depends heavily on the placement of the streamlines. Even
when visualizing two dimensional flow fields a uniform
distribution is desirable, but when extending the flow
visualization to three dimensions the added complication of
occlusions make an even placement essential. The start- and
endpoints of streamlines introduce distracting artifacts into the
visualization so we want to keep their number small. Therefore
we want to populate our flow volume with evenly distributed
streamlines of maximum length.

To accomplish this we extend the algorithm of Jobard and Lefer
[Joba97] to three dimensions. The streamlines are placed in
[Joba97] by using local criteria only. A new streamline can only
be placed if the distance to already existing streamlines does not
fall below a certain minimum. Since the speed of the algorithm
depends mainly on this distance test, certain techniques are
applied to accelerate the test. Each streamline is approximated by
a set of evenly spaced sample points. The distance between two
streamlines is defined as the minimal distance between any of
their sample points. This works reasonably well when the sample
points are always closer spaced than the minimum distance
between lines. A regular grid is used to reduce the set of points to
be tested to the ones in the immediate neighborhood of a new
point. The distribution of seedpoints depends on the desired
density of the resulting images. For densely placed streamlines the
seedpoints are distributed randomly, while for sparsely placed
streamlines the seedpoints are introduced near the sample points
of existing streamlines.



The adaptation of this algorithm to our needs was quite
straightforward. We extended the grid to three dimensions,
making it necessary to check now a maximum of 27 cells per
distance test. Another technique presented in [Joba97], the
agglomerative seedpoint placement for sparse distributions mainly
produce visually appealing results in 2D. In 3D, where
streamlines can pass in front of each other and their visual
distance depends mainly on the viewpoint it produces no
distinctive advantage opposed to random startpoint placement.

For this reason we chose to distribute the seedpoints on a
jittered grid, a process which works faster than agglomerative
seedpoint placement and produces acceptable results. Since
streamlines which are short with respect to the dash length can
produce irritating ”blinking” artifacts, we reject them as soon as
they are introduced, therefore allowing other streamlines to grow.

6 FOCUSSING AND CONTEXT
One of the main problems when visualizing 3D flow fields is
finding the correct information density. Too much information per
volume occludes features further away and too little information
may hide important details. When using streamlines for 3D-flow
visualization, the amount of information in a given volume is
directly related to the number of streamlines through it. To a
lesser degree it also depends on the number of sample points
along the streamline. As described in section 5 we place our
streamlines approximately equidistant to each other. Therefore
density of the streamlines in the resulting images depends mainly
on this user selected distance. Other factors contributing to the
general appearance are width of the streamline and - in case of
dashtubes - the length ratio of opaque to transparent sections.

When investigating a 3D flow we first try to get an overview of
the flow field. This includes investigation of global features, the
identification of areas of special interest, like vortices,
separatrices, and cycles. Then, when an interesting feature has
been identified, we want to single out this feature and investigate
it. We want to view it in great detail, without distractions or
occlusions from other features.

In many practical cases, these two different goals are difficult to
achieve simultaneously. Therefore we tested techniques where we
first use the context of a coarse representation to identify
interesting regions. Then we use one of the mechanisms described
in sections 6.1 and 6.2 to focus our attention on these regions and
investigate them with finer detail.

Magic lenses, as presented in [Bier97] are transparent user
interface elements for conventional 2D windowing desktop
environments. They are represented by special windows, which do
not display their own independent content but rather change the
representation of the underlying information. They can be used for
filtering or otherwise modifying underlying image data but also
for more abstract operations like showing additional information
like comments. In [Vieg96] magic lenses are used in virtual
environments. This work also deals with volumetric lenses, an
extension of magic lenses in three dimensions.

We use these interface elements to view a higher resolution
representation of the flow field. This representation contains
more streamlines per volume and the streamlines are thinner and
generated with closer spaced vertices than the representation used
for coarse navigation. We found that both focussing techniques -
lenses and boxes - have specific advantages.

 

YLHZSRLQW

PDJLF�OHQV

IRFXV

FRQWH[W

FRQWH[W

Figure 8: Volume defined by magic lens

Figure 9: Focussing with a magic lens

6.1 Magic Lenses
A magic lens is a planar polygon with arbitrary boundaries (e.g.,
circle, square) which can be positioned with a 6DOF input device,
normally a 3D mouse or tracked pen (Figure 9). When looking
through the lens, the user focuses on the high-resolution
representation.

The main difference to 2D magic lenses is that our lens
additionally acts as a clipping plane, allowing only the parts of the
high resolution scene behind the lens to be seen. Without this
clipping plane, the lens would also display features of the detailed
representation between lens and viewpoint, resulting in the same
occlusion problems as if the entire detailed flow visualization
were to be investigated. Together with the current viewpoint a
magic lens effectively defines a viewing frustum with its near
clipping plane lying in the plane of the lens and its cross-section
defined by the shape of the lens (Figure 8).

Working with the magic lens is easy and intuitive. The user
positions it in front of interesting features and views them through
it like through a magnifying glass (Figure 9). The frame of the
lens masks the border between focus and context. While
presenting an effective and visually appealing investigation
mechanism, magic lenses have one distinctive disadvantage
compared to magic boxes (section 6.2): the focussed volume
depends strongly not only on the position of the lens but also on
the viewpoint. This does not matter when a single user is looking
for a local feature. The user typically sweeps the lens through
space, positioning it and himself until the area of interest is
located. When this has been accomplished, the investigation
technique normally changes: Now, that the detail has been
located, it has to be examined from different angles, a procedure



for which magic lenses are not well suited. The lens has to be
dragged around the feature together with the changing viewpoint.
This is a cumbersome process, which may lead to accidental loss
of the focus area and the contained feature.

6.2 Magic Boxes
Magic Boxes - volumetric magic lenses - overcome the above
mentioned disadvantages of viewpoint dependency. Instead of
only implicitly defining the focussed volume depending on the
current viewpoint (Figure 8), they explicitly define a volume of
interest (Figure 10). In the interior of a magic box the detailed
representation of the flow is displayed.

 The user positions the box with a 6DOF input device until it
contains the local feature (Figure 11). Then this feature may be
viewed from all directions. This is especially important when
there are several users viewing the same focus like in our multi-
user virtual environment STUDIERSTUBE [Szal98]. When using
magic lenses every user has to position his own lens according to
his position, or different users have to trade places when looking
through a single lens.

The border between focus and context is more noticeable when
using boxes instead of lenses, since it consists of the whole
surface of the box and cannot be masked by a frame like the
image-aligned border of the lens. On the other hand the confined
volume of the box allows focussing in all three dimension,
whereas magic lenses do not inherently define a far plane of the
focus. Additionally the box occludes features of the context
behind it, thereby reducing distraction.

PDJLF�ER[

YLHZSRLQW

FRQWH[W

IRFXV

Figure 10: Volume defined by magic box

Figure 11: Focussing with a magic box

Figure 12: Interaction using the PIP

7 IMPLEMENTATION
The visualization and investigation methods described above were
implemented in C++ using Open Inventor [Stra92]. This OpenGL
based graphics toolkit enabled us to efficiently realize our
methods providing high-level graphics concepts like a scene graph
and sophisticated desktop interaction elements, which we used in
the early phases of our tests. The main advantage when
implementing our methods was Open Inventors ability to supply
these high-level concepts while simultaneously enabling direct
access to all OpenGL functions. This was essential when
manipulating rendering sequences for magic lenses and magic
boxes. Since our virtual environment STUDIERSTUBE is also
based on Open Inventor, the transfer from a desktop
evaluation-implementation to the application in our virtual
environment was straightforward. The following sections describe
implementation details of the techniques and their integration into
our virtual environment.

7.1 Interaction in the Virtual
Environment

STUDIERSTUBE [Szal98] is a multi-user augmented
environment, which we use for scientific visualization [Fuhr97]. It
implements basic interaction methods like positioning objects by
dragging them with a 6 DOF pen (Figure 9 and Figure 11) as well
as conventional 2D interaction elements like sliders, dials and
buttons for parameterization of the visualization methods. These
purely virtual interface elements are positioned on the PIP
[Szal97], a handheld tablet. Users hold this board in their non-
dominant hand while they make adjustments to the interface
elements with the same pen they use for 6 DOF interaction
(Figure 12). In our application we used the PIP to adjust
parameters of the dynamical system which provided the flow field
as well as properties of the dashtubes and the magic box. The
speed, length of dashes and distance between dashes was
adjustable with dials. Sliders on the PIP adjust the overall size of
the magic box and allow independent scaling of one dimension of
the box. This transforms the box to a ”slab”, allowing the user to
use it to cut slices of arbitrary width out of the flow field. Buttons
on the PIP were used to switch between magic lens and magic box
and to disable the coarse representation on demand.



Figure 13: Contraction artifacts due to torsion

7.2 Dashtubes
Dashtubes are realized as textured polygonal extrusions along the
direction of the flow. Ideally the cross-section of the extrusion
should be a circle to provide a symmetric appearance from all
directions, but we found that the polygonal approximation can be
reduced down to 3 to 6 edges depending on the resolution of the
display and the required quality of the image. By using Gouraud
shading the resulting discontinuities of the approximation are only
visible along the silhouette edges. Coarse tesselations like these
are prone to generating artifacts when the geometry is twisted
along the extrusion axis. The resulting radial contractions lead to
irritating variations in the width of the dashtube (Figure 13). To
avoid this, we generate the segments of the extrusion not by
following the Frenet-frame along the streamline. We use a
algorithm similar to [Bloo90], which reduces the torsion by
aligning the orientation of the polygonal cross-sections along the
segments.

The geometry of the dashtubes was implemented as Open
Inventor Shapekit, containing fields for the vertices of the
extrusion axis, the texture parameters and the geometric
parameters of the cross-section. The Shapekit produces OpenGL
trianglestrips, which give a better rendering performance than
other OpenGL primitives. Rendering the dashtubes with culled
backfaces produces a ”halfpipe” appearance at both ends of the
opaque segments as visible in Figure 7. Since this is only evident
in extreme close-up, we decided that the rendering speedup
justifies this artifact.

7.3 Magic Lenses
Magic lenses act as window from context to focus. Our
implementation uses SEAMs [Scha98], a mechanism to connect
two virtual worlds by "windows" of arbitrary geometry. Our
magic lens has the appearance of a magnifying glass, using a
circular SEAM inside a ring geometry providing the frame
(Figure 9). According to the nomenclature of [Scha98], the
context outside the lens would be the ”primary world” and the
focus seen through the lens the ”secondary world”. The geometry
of both worlds is given as a directed acyclic graph (scene graph).
The scene graph of the context is traversed and rendered. When a
SEAM is encountered, the associated polygon - in our case the
”lens” - is passed to the rendering hardware for scan conversion.

To restrict the rendering of the focus to the area covered by the
SEAM we use the OpenGL stencil buffer, an additional layer for
masking areas of the screen during rendering. For all pixels that
the z-test for the SEAM polygon finds to be visible:

• The frame buffer is set to the background color of the
secondary world (clear screen),

• the Z-buffer is set to infinity (clear Z-buffer),
• the mask (stencil buffer) is set to 1.

Note that these image modifications are only carried out for the
visible portion of the SEAM surface. After this preparation step,
rendering the focus is performed inside the stencil mask created in
the previous step. This prevents that the focus is drawn outside the
SEAM area. A clipping plane coincident with the SEAM polygon
prevents the focus from protruding from the SEAM. Finally -
before rendering of the context proceeds - the SEAM polygon is
rendered again, but only the computed depth values are written
into the z-buffer. Thereby the SEAM is ”sealed”. The resulting z-
values are all smaller than any z-value of the focus. This asserts
that no geometric primitive of the context located behind the
SEAM will overwrite a pixel generated by rendering the focus.

This gives the desired impression of a "window" behind which
only the focus is displayed (Figure 9).

7.4 Magic Boxes
We found that displaying only the contents of the magic box
without visual representation of its boundaries makes it difficult to
locate and position the box and tends to confuse the user.
Therefore we added a cube as geometric representation of the
focussing volume. The front faces of the cube are culled, leading
to an ”open front” appearance regardless of the viewpoint.

Magic boxes are rendered using the same SEAM algorithm as
described above, but use a cube instead of a plane to define the
”windows” between focus and context. Six clipping planes
coincident with the faces of the cube clip the secondary world (the
detailed representation).

Our implementation renders the complete scene (focus and
context) only once, while [Vieg96] needs six rendering passes,
one for each halfspace derived from a cube face. This leads to a
significant improvement in the frame rate. Our method does not
display any parts of the context that lie behind the box, which for
our application would anyway only be distractive.

8 EVALUATION AND RESULTS
Animated dashtubes produce an intuitive visualization of a 3D
flowfield. The main problem when applying our focussing
techniques lies in finding the correct density for focus and
context. When testing lenses and boxes with different densities of
dashtubes in the focus we found that magic boxes work better
than lenses with densely placed dashtubes. Since lenses do not
clip distant parts of the detailed scene they are only applicable to
scenes of higher density when they are rendered with strong depth
cues (haze, fog).

Most users applied magic lenses without any problems, but
needed some experimentation to grasp the concept of volumetric
magic boxes.

The method of slicing the flow field with ”slabs” - magic boxes
of small height - as mentioned in section 7.1 was implemented
after users started to experiment with the distances of near and far
clipping plane of the view volume to achieve this "slicing" effect
in a view dependent manner.

When using magic boxes, most users applied the following
technique: position coarse representation conveniently; position
box until interesting features visible; switch off coarse
representation; magnify box with included details for
investigation



Since our application allowed independent positioning of
focussing element and flow field, some users preferred
positioning the flow field and keeping the box or lens stationary.
During the design phase of the dashtubes we used shutter glasses
to produce stereoscopy. While this works very well for the
examination of the flow field, interaction with magic lenses and
magic boxes using the 2D desktop mouse is cumbersome and non-
intuitive compared to the interaction in the virtual environment.

9 CONCLUSION
In this paper we discussed several techniques which facilitate 3D-
flow visualization within a virtual environment. The newly
introduced adaptive texture mapping method shows that texture
hardware can be efficiently used to produce dashtubes with
uniform spatial resolution. The approach ensures that velocity
variations are still encoded in the animation. Dashtubes are
automatically positioned in phase space to produce an even
representation of the underlying 3D flow.

Interactive tools like magic lenses and magic boxes proved to be
valuable in the investigation of local features. They enable the
user to interactively select finely detailed features and reduce
distraction by context. In our investigations 3D phase space
contains spatially complex structures, which are difficult to
interpret. The added cues of a virtual environment (e.g.,
stereoscopic viewing, interactive and intuitive viewpoint change)
are quite helpful when inspecting these structures.

ACKNOWLEDGEMENT
Special thanks to Hermann Wurnig, who did more than his

share to implement the interaction methods, and to Michael
Gervautz, Robert Tobler, Dieter Schmalstieg and Helwig
Löffelmann for their help and suggestions.

This work has been supported by the Austrian Science
Foundation (FWF) under project no. P-12074-MAT.

REFERENCES
[Bier97] E. Bier, M. Stone, and K. Pier. Enhanced illustration

using magic lens filters. IEEE Computer Graphics and
Applications, 17(6), pages 62–70, November/December 1997.

[Bloo90] J. Bloomenthal. Calculation of Reference Frames
Along a Space Curve. Graphic Gems, pages 567-571. Academic
Press, Cambridge, MA, 1990.

[Bry97] Steve Bryson and Creon Levitt. The virtual windtunnel:
An environment for the exploration of three-dimensional unsteady
flows. In Visualization ’91, pages 17–24, 1991.

[Cabr93] B. Cabral and L. C. Leedom. Imaging vector fields
using line integral convolution. In Proceedings SIGGRAPH ’93,
pages 263–272, 1993.

[Craw93] R. Crawfis and N. Max. Texture splats for 3D scalar
and vector field visualization. In IEEE Visualization ’93
Proceedings, pages 261–266. IEEE Computer Society, October
1993.

[Fuhr97] A. Fuhrmann, H. Löffelmann, and D. Schmalstieg.
Collaborative augmented reality: Exploring dynamical systems.
IEEE Visualization ’97 Proceedings, pages 459–462. IEEE
Computer Society, October 1997.

[Inte97] V. Interrante and Ch. Grosch. Strategies for effectively
visualizing 3D flow with volume LIC. In Proceedings of
Visualization ’97, pages 421–424, 1997.

[Joba97] B. Jobard and W. Lefer. Creating evenly spaced
streamlines of arbitrary density. In Wilfrid Lefer and Michel
Grave, editors, Visualization in Scientific Computing, pages 43–
55. Springer-Wien-NewYork, 1997.

[Löff97] H. Löffelmann, L. Mroz, E. Gröller, W. Purgathofer.
Stream Arrows: Enhancing the Use of Stream Surfaces for the
Visualization of Dynamical Systems. Visual Computer, Springer,
Vol. 13(8), pages. 359-369, 1997.

[Max94] N. Max, R. Crawfis, and Ch. Grant. Visualizing 3D
velocity fields near contour surfaces. In IEEE Visualization ’94
Proceedings, pages 248–255. IEEE Computer Society, October
1994.

[Post93] F. H. Post and T. van Walsum. Fluid flow
visualization. In H. Hagen, H. Müller, and G. M. Nielson, editors,
Focus on Scientific Visualization, pages 1–40. Springer, 1993.

[Scha98] G. Schaufler and D. Schmalstieg. Sewing worlds
together with seams. Technical Report TR-186-2-98-11, Institute
of Computer Graphics 1862, Technical University of Vienna,
Vienna, Austria, August 1998.

[Stal95] D. Stalling and H.Ch. Hege. Fast and resolution
independent line integral convolution. In Robert Cook, editor,
Computer Graphics (SIGGRAPH 1995 Proceedings), pages 249–
256, August 1995.

[Stra92] P. Strauss and R. Carey. An object oriented 3D
graphics toolkit. In Proceedings SIGGRAPH 1992, pages 341–
347, 1992.

[Szal97] Z. Szalavari and M. Gervautz. The personal interaction
panel A two-handed interface for augmented reality. Computer
Graphics Forum, 16(3):C335–346, Sep 1997.

[Szal98] Z. Szalavari, D. Schmalstieg, A. Fuhrmann, and M.
Gervautz. Studierstube - An Environment for Collaboration in
Augmented Reality. Virtual Reality: Research, Development &
Applications, 1998.

[Turk96] G. Turk and D. Banks. Image-guided streamline
placement. In Proceedings SIGGRAPH 1996, pages 453–459,
1996.

[Vieg96] J. Viega, M.J. Conway, G. Williams, and R. Pausch.
3D magic lenses. In ACM UIST’96 Proceedings, pages 51–58.
ACM, 1996.

[Wege97a] R. Wegenkittl and E. Gröller. Fast oriented line
integral convolution for vector field visualization via the internet.
In IEEE Visualization ’97 Proceedings, pages 309–316. IEEE
Computer Society, October 1997.

[Wege97b] R. Wegenkittl, E. Gröller, W. Purgathofer,
Animating Flowfields: Rendering of Oriented Line Integral
Convolution, Computer Animation '97, pages 15-21, IEEE
Computer Society, June 1997.

[Will83] L. Williams. Pyramidal parametrics, Computer
Graphics (SIGGRAPH 1983 Proceedings), 17(3), pages 1-11, July
1983.

[Wijk93] J. J. van Wijk. Flow visualization with surface
particles. IEEE Computer Graphics & Applications, 13(4):18–24,
July 1993.


