
1

Efficient ray tracing of complex natural scenes *

Christoph Traxler Michael Gervautz

Institute of Computer Graphics
Technical University of Vienna

Karlsplatz 13/186-2
1040 WIEN
AUSTRIA

email: traxler@cg.tuwien.ac.at gervautz@cg.tuwien.ac.at
url: http://www.cg.tuwien.ac.at/research/csg-graphs/index.xhtml

Abstract

In this paper we present a method for the consistent modelling and efficient ray tracing of complex
natural scenes. Both plants and terrains are modelled and represented in the same way to allow
mutual influences of their appearance and interdependencies of their geometry. Plants are generated
together with a fractal terrain, so that they directly grow on it. This allows an accurate calculation of
reflections and the cast of shadows. The scenes are modeled with a special kind of PL-Systems and
are represented by cyclic object-instancing graphs. This is a very compact representation for ray
tracing, which avoids restrictions to the complexity of the scenes. To significantly increase the
efficiency of ray tracing with this representation an adaptation of conventional optimization
techniques to cyclic graphs is necessary. In this paper we introduce methods for the calculation of a
bounding box hierarchy and the use of a regular 3d-grid for cyclic graphs.

Key Words: natural phenomena, PL-systems, cyclic object-instancing graphs, ray tracing

1 Introduction

Realistic rendering of natural scenes is still a challenging task. Such scenes consist of different
classes of geometrical shapes and usually each class demands a particular modelling and
visualization technique. The necessary combination of these techniques results in problems which
affect the quality of the resulting image. A common method is to render single objects of a scene
with the appropriate method and compose the images with an α-channel. Reeves used particle
systems and probabilistic algorithms to render complex natural scenes with an α-channel related
technology called frame-buffer [REEV85]. Complex reflections and the casting of shadows, like
those of trees onto terrain or themselves, can only be accomplished approximatively in this way.
For the purpose of a consistent rendering method, where all objects are visualized in a uniform way
and can mutually influence their appearance, it is necessary to find a general modelling technique
and an efficient representation for all objects. The common boundary representation is not suited,
because of the very huge data sets needed for natural scenes.

Among all the different techniques for modelling natural phenomena we found parametric L-
Systems (PL-Systems) [PRUS90] to be the most powerful and general one. They are an important

* This project is supported by the “Fond zur Förderung der wissenschaftlichen Forschung (FWF)”, Austria,

(project number: P09818)

2

extension of the classical L-Systems, which were introduced by the biologist Lindenmayr [LIND68]
to simulate the development of the topology of plants. Prusinkiewicz incorporated geometric
aspects by attaching parameters to the symbols of these parallel rewriting systems, making it
possible that the geometry of the plants also evolves out of the process. PL-Systems are mainly used
to simulate the growth of botanical organisms and are fully described in [PRUS90]. A recent
extension are environmentally sensitive PL-Systems [PRUS94], where branches are pruned against
the boundary of a predefined volume. The generality of PL-Systems has not been explored so far.
They have scarcely been used to generate other objects than plants, though they are capable to
generate all objects with a more or less repetitive structure. Smith showed that even conventional L-
Systems (without parametric control) are suitable for the modelling of fractal terrains and linear
fractals [SMIT84]. In our previous work [GERV96] we described how to translate the midpoint
displacement method for the generation of terrains into the notation of PL-systems. The benefits of
stochastic L-Systems, which are important to create different individuals of a plant species, can also
be achieved with PL-Systems. The combination of these systems makes it possible that plants grow
on a fractal terrain. This allows a unique and consistent decsription of very complex natural scenes.

Another major advantage is the unique representation of PL-Systems, which allows a consistent
rendering of all objects in the scene. PL-Systems can be translated into cyclic object-instancing
graphs, which are a memory-efficient object representation for ray tracing and other visualization
techniques. Thus the complexity of the scene is less restricted, like in the usual approach, where the
whole scene is built up explicitly in memory. A similar idea was introduced by Kajiya [KAJI83] for
ray tracing fractal terrains. The triangles of the mesh are only subdivided if a ray hits their bounding
volumes, which are prisms. The height of each prism is estimated from stochastic properties of the
midpoint displacement algorithm. In [BOUV85] this method was improved by using bounding
elipsoids instead of prisms. In [HART91] an object-instancing graph was used for the ray tracing of
linear fractals defined by Iterated Function Systems (IFS). All these techniques are restricted to a
specific class of objects, namely stochastic and linear fractals. With PL-Systems we can generate
objects of these classes as well as plants and other objects with a repetitive structure. Furthermore
we have a unique modelling tool that allows a mutual influence between objects of different classes
within the same scene.

In our previous work [GERV96] we introduced CSG-PL-Systems, an adaption to the CSG-concept,
and their representation as cyclic CSG-graphs. In the next chapter we summarize this idea in an
abstract way. The CSG paradigm has been droped, because we only use the union-operator. The
concepts of object-instancing and the procedural representation of primitives has been preserved.
Thus CSG-expressions are reduced to binary expressions and CSG-graphs have turned into cyclic
object-instancing graphs. In chapter 3 we describe how to use a hierarchy of bounding boxes for
these graphs. Chapter 4 shows how a 3d-grid yields an additional increase of efficiency. Finally we
present in chapter 5 how PL-Systems and their representation as cyclic graphs are used for complex
landscape modelling and rendering.

2. Ray Tracing with cyclic object-instancing graphs

To obtain a cyclic graph we have to represent each component of a PL-System by an appropriate
node. In accordance to the CSG-PL-Systems [GERV96], we use PL-Systems that generate binary
expressions as formal languages to describe a scene. Primitive objects or subexpressions enclosed in
brackets are combined by the binary operator ´+´. This operator is equivalent with the union-
operator of CSG. The other CSG-operators are not very meaningful within a feedback process and
have been omitted at all. In addition to that we incorporate transformations as unary operators,
which consist of a set of affine mappings. Global parameters are modified by a calculation
component, that consists of assignment statements and can be conceived as unary operator as well.
Within this kind of PL-System a distinction between grammar symbols and terminating symbols is
necessary. Productions can only be applied to grammar symbols. In addition to a couple of so called
generating productions, which specify the feedback system, terminating production must exist, that
replaces all remaining grammar symbols by a string of terminal symbols to form a valid binary
expression at the end of the derivation. The selection of a certain production for a grammar symbol
during the derivation is done by a specific selection statement. Thus the components of these PL-
Systems can be summarized to binary combination operators, primitive objects, transformations,
calculations and grammar symbols with their productions. There are no restrictions for these kind of
systems in contrast to the classical PL-Systems for turtle interpretation [PRUS90].

3

To translate a PL-System into a cyclic graph all components are represented by specific nodes.
Grammar symbols are represented by Selection-nodes (S-nodes), which join all productions for the
grammar symbol and are associated with their selection statement. Each right hand side of each
production can be translated into a binary tree and attached as successor to the corresonding S-node.
To form a cyclic graph, each occurence of a grammar symbol in the right hand side is finally
replaced by an edge to the corresponding S-node. Combination operators are represented by +-
nodes, which have two successors. Transformations and calculations are represented by
Transformation-nodes (T-nodes) and Calculation-nodes (C-nodes) respectively, which have only
one successor.

To visualize the object with ray tracing the cyclic graph has to be traversed by the rays. A selection
node evaluates its selection statement and passes the ray to the appropriate successor. T-nodes map
the rays from one coordinate frame into another. It is much more efficient to map the rays than
primitive objects. Thus the rays are mapped from the world coordinate system into the object
coordinate system by several intermediate steps during the recursive traversal. If the ray reaches a
C-node the assignment expressions are evaluated to modify the parameters, which affect flow
control and transformation arguments. A +-node simply passes the ray to both of its successors.
When the ray reaches a primitive object the intersection calculation is done. To map the normal
vector from an intersection with a primitive, T-nodes buildt up a transformation chain during the
traversal which is linked to the intersection points. This avoids matrix multiplication and guarantees
that only the normal vector of the foremost hit is transformed back to the world coordinate system.
A more detailed description on ray tracing with cyclic graphs is given in our previous paper
[GERV96].

We close this chapter with an example of a PL-System for binary expressions, that generates a
simple branching structure. For simplicity only an excerpt of the definitions of transformations and
calculations are printed in Figure 2.1. The object is created with a single grammar symbol and three
productions. The selection statement depends on two counter values. One generating production
builds up the trunk, whereas the other is responsible for the crown of the tree like object. Figure 2.2
shows the corresponding cyclic object-instancing graph and Figure 2.3 the rendered image.

4

Selection Tree // Specification of the PL-system
{

C_initialize Tree ; // Assignment to the C-node

if (cntTrunk > 0) // Generate trunk
Tree -> T_scaleCyl cylinder + C_Trunk T_shiftTrunk Tree ;

else if (cntTree > 0) // Generate rest of tree
Tree -> T_scaleCyl cylinder + C_Tree

(T_attach_Branch1 Tree + T_attach_Branch2 Tree);
else

Tree -> T_scaleCyl cylinder; // Terminating production
}

Calculation C_initialize // C-node for initialization
{

cntTree = 10; // age (order) of the plant
cntTrunk = 2; // length of trunk
betaBr = 60.0; // branching angle

}
Calculation C_Trunk // C-node for trunk recursion
{

--cntTrunk; // decrement counter for trunk generation
}
Calculation C_Tree // C-node for tree recursion
{

--cntTree; // decrement counter for crown generation
betaBr -= 4.0; // decrement branching angle

}
Transformation T_attach_Branch1 // T-node for 1st branche
{

trans 0.0 0.0 1.99;
roty betaBr;
scale 0.8 0.8 0.8;

}

Figure 2.1: A PL-system for a simple tree-like branching structure.

Tree

if(cntTrunk > 0)

if(cntTree > 0)

y

y

n

nC_Trunk

+ +

C_initialize

C_Tree

+

T_shift_Trunk

T_scale_Cyl T_scale_Cyl

T_scale_Cyl

T_attach_Branch1 T_attach_Branch2

Figure 2.2: The cyclic graph for the tree like structure Figure 2.3: The rendered image

5

3. Calculation of bounding boxes for cyclic graphs

A common method to accelerate ray tracing is to enclose the scene by a hierarchy of axis aligned
bounding boxes. The parts of the scene, which can be hit by a ray are determined fastly and the
traversal is terminated as soon as the ray misses a bounding box. The bounding box hierarchy can
easily be calculated for the binary tree representation in a preprocessing step but is more difficult
for cyclic graphs. For a binary tree the hierarchy is obtained in a bottom up manner. A bounding
box is created for each leaf node, which refer to properly transformed primitive objects. The
combining nodes combine the bounding boxes of their left and right successors and pass it to their
predecessors. If a cyclic graph is unfolded into a binary tree it is obvious that almost each node of
the graph corresponds to more than one node of the tree. Instances of these nodes represent different
parts of the scene and thus get different bounding boxes. Maintaining a list of bounding boxes needs
a vast amount of memory, comparable to the representation as huge binary tree and destroys the
advantage of a memory-efficient data structure. Therefore we only calculate the bounding boxes for
the root level instance of each node. As explained later this is sufficient and not a severe problem,
though they do not enclose the different parts of the scene very tightly in the most cases.

If all the transformations used in a cyclic graph are contractive then all bounding boxes are perfectly
tight and fit for each instance of the corresponding node. In this case they form an IFS and the
contraction mapping principle holds [BARN88]. Thus the combination of the bounding boxes in an
arbitrary recursion level perfectly fits into the hyper bounding box of a lower recursion level. This
is because the objects are assembled by smaller copies of themselves. For that case it is not
necessary to calculate the bounding boxes out of the geometry of the primitive objects and the
transformations applied to them. As explained by Hart and DeFanti [HART91] we can use the
Collage Theorem [BARN88] to calculate a tight bounding box for each node of the graph.
Unfortunately a restriction to contractive transformations destroys the generality of PL-Systems.
Their main purpose is to modell objects that evolve out of a growth process, which is contradictory
to contraction mappings. The most natural looking plant modells are obtained by simulating a
plant’s development, which demands growing structures [PRUS90, chapter 8.2].

Calculating tight bounding boxes for cyclic graphs
To obtain correct bounding boxes for a cyclic graph that is not equivalent to an IFS, the simple
passing of bounding boxes from a successor to a predecessor node must be avoided. The bounding
box for the root level instance of each node is directly calculated out of the geometry of the
primitive objects, whereby all transformations have to be taken into account, that are encountered
on the cyclic paths to the primitives. An instance of a T-node maps an object from a coordinate
frame Ck into another coordinate frame Ck+1. C0 is the object coordinate system of a certain
primitive object and Cn indicates the world coordinate system if n transformations are necessary to
map the primitive into it.

A cyclic object instancing graph defines a plenty of cyclic paths from the root to a primitive object.
Along these paths there are many instances of one or more T-nodes. Let us first ignore the binary
operators and extract such a path as transformation chain C0 → C1 → C2 →...→ Cn-1 → Cn. We
now have to calculate a bounding box for each occurring chain directly out of the geometry of the
primitive object defined in C0. The geometry of an object is defined by a set of points that
approximate its convex hull sufficiently. An axis aligned bounding box is simply derived by finding
the minimal and maximal coordinates of the point set. Let Ti denote the transformation of that T-
node instance, which defines the mapping from Ci-1 into Ci. To calculate a bounding volume for Cn

we just have to map the point set from C0 into Cn by applying the transformations Tn × Tn-1 ×...

× T1.

The graph is traversed and transformations are pushed onto a stack until a primitive object is
reached and a path is completed. Each instance of an +-node joins the bounding boxes originating
from its left and its right path. In this way all nodes of the graph obtain a root level bounding box.
The bounding box of the S-node encloses the whole object and the other nodes the corresponding
parts of the object. Figure.3.1 shows the root level bounding boxes for the simple branching
sructure in a 2d-projection. For very large scenes it is more efficient to estimate the bounding boxes
of some subgraphs from stochastic properties. These are subgraphs, which generate a huge number
of relatively tiny objects, like pins of a conifer tree for example. Furthermore the bounding box for

6

each subgraph should be calculated only once and not any time, when it is instanced by another
graph. A subgraph generating a twig of a conifer tree puts a lot of pins around the twig, but a
bounding box enclosing all possible sizes of pins is only calculated once for the corresponding
subgraph.

z

x

z

x

z

x

a b

c d

z

x

Figure 3.1: Some root level bounding boxes for the cyclic graph, that generates the branching structure: a) bounding
box of the S-node and the +-node in the cycle that builds up the trunk, b) bounding box of the T-node T_shift_Trunk, c)
bounding box of the first +-node in the cycle that builds up the crown, d) bounding boxes of the T-nodes
T_attach_Branch1 and T_attach_Branch2.

Analysing the optimization effect
The algorithm described in the last section calculates tight bounding boxes for the root level
instance of each node of a cyclic graph. For lower level instances they are too large in the most
cases. Fortunately this problem is diminished by an essential aspect of cyclic graphs, - the iterative
transformations. The rays are transformed from one coordinate frame into another. Thus the
geometric relation of a ray to one and the same bounding box changes with every mapping. Since
this relation is symmetric, we can also say, that constant rays are tested against iterativeley
transformed bounding boxes. If a ray hits the same bounding box in two succeeding coordinate
frames Ci and Ci+1, than we can view this as hits of two different bounding boxes Bi and Bi+1,
defined relatively to Ci and Ci+1. This means that the ray hits the intersection of both bounding
boxes Bi ∩ Bi+1. Thus the hit of a bbounding box at a certain recursion level k can be seen as the hit
of the intersection of all bounding boxes encountered on the path from the root level to that
recursion level, i.e. B0 ∩ B1 ∩ ... ∩ Bk-1 ∩ Bk. This intersection usually gets smaller with increasing
recursion depth, so that a ray has a new chance to miss one and the same bounding box after each
transformation into a new coordinate frame. In these cases the root level bounding boxes are usefull
for deeper levels of recursion as well. In the worst case the intersection scarcely shrinks, so that the
optimization factor decreases. The root level bounding box appears almost the same in each
coordinate frame and once the ray hits it, the traversal proceeds until the deepest level of recursion
is reached. This happens for example if objects are scattered randomly among the scene. Only
translations are used in such a graph and the intersection of the bounding boxes does not get
smaller.

Picture 1 shows the bounding box hierarchy of the simple branching structure. When the current ray
misses a bounding box the background is colored according to the recursion depth. The brighter the
color the deeper is the level of recursion at which the corresponding ray misses the bounding box.
The difference between red and blue has just the purpose to enhance the contrast. The picture shows
that there are rays which miss a bounding box at deeper recursion levels. Thus root level bounding
boxes are meaningful for deeper levels of recursion as well.

7

4. Using a regular grid as additional optimization

Preprocessing
An additional optimization technique that can be applied to cyclic graphs is a regular 3d-grid, as
described by Fujimoto et. al. [FUJI86]. The grid is filled in a top down manner by traversing the
graph with a copy of the root level bounding box of the S-node. T-nodes map the bounding box in a
local coordinate frame and +-nodes pass it to their left and right successors. The traversal is
terminated at the S-node if the bounding box is small enough with respect to the size of a voxel or if
a certain recursion depth is reached. It is also possible that the traversal stops at a primitive object.
In all cases the bounding box determines which voxels have to be occupied. The voxels are
associated with a state of the graph, which consists of a reference to a node of the graph, a
transformation matrix and a set of parameter values. A state represents a certain level of recursion,
which corresponds to a subset of the scene. The matrix is determined by the accumulation of all
transformations that have been applied to the bounding box on its cyclic way to this level of
recursion. The set of parameter values corresponds to the modifications of all instances of C-nodes
that occure on the path down to this recursion level.

If there are voxels that have been already filled during the traversal of other paths, the primitive is
inserted as second object indicating that this ambiguity has to be resolved by the proper instance of
an +-node. This instance is the junction of the paths on which both primitives can be reached. The
corresponding +-node now resolves the ambiguity by deleting both entries and inserts the
appropriate state, that refers to itself. If a primitive object is inserted afterwards as new second
object, that was reached during further traversal of a path originating from a higher level instance of
an +-node, then this ambiguity is again resolved by this node in the same way. Since only binary
combinations are admissible there are never more than two entries within one voxel. Figure 4.1
illustrates in 2d-space how the grid is used for the simple branching structure.

1

1 2

3 4 5 6 7

8 9 10

1

12

Tree

if(cntTrunk > 0)

if(cntTree > 0)

y

y

n

nC_Trunk

+ +

C_initialize

C_Tree

+

T_shift_Trunk

T_scale_Cyl T_scale_Cyl

T_scale_Cyl

T_attach_Branch1 T_attach_Branch2

12

4, 6, 9

8, 10 5 1, 2, 3, 7

11

Figure 4.1:Voxels that are occupied by the branching structure are numbered to indicate to which node of the cyclic
graph they point to.

Ray traversal
The voxels that are passed by the current ray are quickly determined with a 3d-DDA [FUJI86]. The
grid subdivides the scene into regions of spatial coherence and thereby reduces the number of ray-
objects intersection calculations. For a cyclic graph coherent regions are defined by a state of the
graph, which corresponds to a recursion level. All the cyclic traversals a ray has to perform to reach
this level are now avoided by setting the graph to the state, associated with the foremost voxel that
was intersected by the ray. This is done by transforming the ray into the coordinate frame defined
by the matrix of the state, setting the parameters to the values stored within the state and passing the
ray to the node the state referes to. In the simple case the ray is transformed into the local coordinate
frame of the primitive object and directly intersected with it. In all other cases the ray is passed to

8

an internal node and starts to traverse the few remaining levels of recursion until it reaches a
primitive.

Analyzation
Using a grid is a tradeoff between the compact representation of the scene by a cyclic graph and an
explicit representation as large binary tree. Thus the method can be adapted to the memory
resources of the user. If enough memory is available the resolution of the grid can be increased to a
number, where the most non empty voxels contain primitive objects. In this case the main
advantage of the cyclic graph is to efficiently fill up the grid in the preprocessing step and avoid to
build up the whole scene for that purpose. If the memory resources are low the main advantages of
the graph is the compact representation for ray tracing. But even a coarse resolution of the grid
yields a speedup for the most scenes. This speedup is especially significant if the primitive objects
are scattered over the scene. In all cases where the root level bounding box does not change much
along the hierarchy of coordinate frames, so that their intersection is large, the grid is a meaningfull
additional optimization. The bounding box of a T-node, that is responsible for two objects, which
are far away from each other, has to enclose both of them, whereas they belong to different voxels
of the grid. Another increase of efficiency can be observed for PL-Systems, where expensive
calculations and a lot of transformations are necessary, since the results of calculations and the
accumulated transformations are preprocessed and stored within the voxels.

In those cases where the primitives are combined to form a compact object, like linear fractals, the
grid can be omitted, because the root level bounding boxes are sufficient to discard non intersecting
rays. This applies to scenes that can be created with IFS as well. In this case the cyclic graphs works
very similar to the cyclic object-instancing di-graph presented by Hart and DeFanti [HART91]. For
complex natural scenes, where many plants are placed onto a terrain and expensive calculations are
necessary, the grid allows to scale ray tracing time with respect to memory resources.

5. Modelling and realistic rendering of large landscapes

The optimization techniques presented in the last two chapters allow the efficient rendering of
complex landscapes with ray tracing. The number of primitives for an explicit representation of
such scenes is huge, but the compact representation by cyclic object-instancing graphs relieves the
user from memory considerations. In this chapter we describe how these benefits can be facilitated
to modell and render large landscapes. An artificial landscape basically consists of a fractal terrain
and plants growing on it. So we combine a PL-System for terrains with those that generate plants.
In this way the terrain influences the appearance of each plant, and allows to fulfill natural
constraints. The decision whether a plant is generated on a certain location of the terrain or not can
depend on a variety of geometric aspects. In our scenes the height and the inclination of the location
are the most important factors. Plants do not grow in water or above the timber-line nor if the place
is too steep. An additional factor that can be used is the direction of the normal vector at the
location, to make the growth on south slopes more likely than on other places. These constraints are
checked by some simple conditions within the PL-System indicating whether a plant should be
generated at a certain subdivision step of the terrain or not.

Terrain generation
Our initial approach was to generate the terrain by midpoint displacement as described by Carpenter
[CARP80]. In our previous paper we described the implementation of Carpenter’s method as (CSG-
)PL-System in detail [GERV96]. Unfortunately the shape of the terrain is unpretictable and only
some properties, like its roughness can be controlled. To avoid this restriction and allow some
design of the landscape, we use a height field. It can originate from arbitrary data, like a stereo
satellite scan for example. In our scenes we used scattered data interpolation to design the landscape
by a couple of points, which indicate the location of valleys and peaks. We blended the resulting
smooth surface with a fractal terrain of high roughness by α-channeling to add a rock-like
microstructure to it. This method has also the advantage, that we can use the spectral synthesis
method to generate a fractal terrain as described by Saupe [SAUP88] which does not suffer from
artefacts like midpoint displacement. The height field is directly accessed by C-nodes to set the
height of each triangle vertex during the subdivision process. That means that the subdivison
schema of midpoint displacement is preserved but the calculation of the displacement values has
been replaced by a simple access to the height field.

9

Placing plants
At a certain subdivision level the PL-System checks for each triangle if one or more plants should
be placed onto it befor it is further subdivided. This level controlls the relative distance between
plants and their frequency, because the size of triangles decreases and their number increases with
each subdivision step. A random translation within the triangle avoids that the plants are arranged
like in a plantation. More irregularities are achieved by a probability for plant growth, so that for
some triangles no plants are created although all other conditions are valid. It is important that all
plants look different. Thus most parameters are initalized with random values, like branching
angles, scaling factors or the age of the plant.

An example
The productions of a PL-System, that generates an atoll with palms is printed in Figure 5.1. The PL-
System is specified in C-like style. To keep the example short all definitions of C- and T-nodes
have been omitted. The non-recursive production for Terrain joins two triangles to a rectangle and
scales it with the T-node T_mnt. The triangles are subdivided by the productions for Triangle1 and
Triangle2 respectively. The first production in the selection statement of Triangle1 is a kind of
loop, where a palm is generated. The level where plants can be generated is determined by the
parameter CONST_cpalm, which is compared with the counter cntTri. The probability for palm
growth should be 80%. This is achieved by comparing a random value from the interval [0.1] with
the parameter CONST_cpalm, which is initialized with 0,8. Finally palms should not grow too close
to the shore but in the middle of each island. Therefore the height h1 of the triangle under
consideration must be slightly above sea level. The inclination is not checked, because the entire
terrain is rather flat. The palms are generated by another PL-System, which is not printed in the
example. Its parameters are initalized with random values by the C-node C_initPalm, which also
calcualtes the position of the palm on the triangle. The T-node T_palm2beach moves the palm to
the precalculated location on the terrain and compensates the scaling along the x- and y-axis that
accumulates during preceding subdivisions. The triangle is further subdivided by the second
production as long as the counter is greater than zero. The height field is accessed by the C-nodes
C_T1_1 to C_T1_4. Finally the feedback process terminates with a properly transformed triangle.

Selection Terrain {
Terrain -> T_mnt (Triangle1 + C_init_Tri2 T_moveTri2 Triangle2);

}
Selection Triangle1 {

if((cntTri==level) && (rand(0)<=probability) && (h1>=sea_level + 0.24))
// put a palm onto the triangle

Triangle1 -> C_initPalm T_palm2beach Palm + Triangle1;
else if (cntTri>0) // subdivide triangle

Triangle1 -> C_T1_1 T_move1_1 Triangle1 + C_T1_2 T_move1_2 Triangle1 +
 C_T1_3 T_move1_3 Triangle1 + C_T1_4 T_move1_4 Triangle2;
else // terminating production

Triangle1 -> C_TRI1 T_triangle triangle;
}
// Selection Triangle2 is specified analogously

Figure 5.1: The productions that generates a terrain with plants

Results
Picture 3 shows the resulting image of the atoll. Picture 2 shows a Canadian National Park scene.
Conifer trees are spread among the designed landscape. A more accurate model demands expensive
calculations in the preprocessing step, a collision detection mechanism and last but not least an
interactive modelling tool. For both scenes we used a 16x16x8-grid. The average number of rays
per second for the scene with the atoll is 15,5 on a SGI-Indy with a R4400 processor and is 2,3
times faster than rendering without grid. More than 1 Mio. primitives would be necessary to build
up the scene explicitly. No statistics are available yet for the National Park scene except the number
of primitive needed for an explicit representation, which is greater than 100 Mio. Picture 4
illustrates that our method is also suitable for the modelling and ray tracing of linear fractals. The
picture is called “Fractals in the Hausdorff Room” and shows a couple of objects, that are usually
defined by IFS. Menger's Sponge, von Koch's Dodecahedron, and Sierpinski's Tetrahedron stand on

10

the table. The floor is paved with Menger's Carpet, which is also used for the relief on the walls and
the struts connecting the table legs. Outside in the desert we placed two Sierpinsky pyramids. The
vase in the right hand corner contains a PL-System version of Barnsley's Fern. This scene was
rendered without grid and the average number of rays are 212,4. About 1 Mio. primitives would be
necessary for an explicit representation. Antialiasing is achieved by adaptive oversampling for all
pictures.

Picture 1

Picture 2

11

Picture 3

Picture 4

12

6. Conclusion

PL-Systems and their representation as cyclic object-instancing graphs are a very powerful
technique for modelling and realistically rendering very complex scenes, like landscapes. They are
capable of generate other objects with a repetitive structure as well, like linear fractals or buildings.
The major aspect of our method is the consistent representation of all parts of the scene, which
allows mutual influences of their visual appearance and interdependencies of their geometry.
Furthermore this representation is very compact, so that the complexity of the scene and the
approximation accuracy of objects are not restricted. Since conventional optimization techniques,
namely the bounding box hierarchy and the 3d-grid have been adopted successfully to cyclic
graphs, this data structure is also efficient for ray tracing.

Acknowledgments

This work is supported by the “Fond zur Förderung der wissenschaftlichen Forschung (FWF)”, Austria, (project
number: P09818). We would like to thank Robert F. Tobler for reviewing this paper and Fritz Heigl for helping
converting this paper to PDF.

13

References

[BARN88] Barnsley M.F, Fractals Everywhere, Academic Press, Inc., 1988

[BOUV85] Bouville C, Bounding ellipsoids for ray-fractal intersection, ACM Computer
Graphics SIGGRAPH Proc., Vol. 19, No. 3, pp. 45, 1985

[CARP80] Carpenter L.C, Computer rendering of fractal curves and surfaces, ACM
Computer Graphics SIGGRAPH Proc. Suppl., 1980

[FUJI86] Fujimoto A, Tanaka T, Iwata K, ARTS: Accelerated ray-tracing system, IEEE
Computer Graphics & Applications, Vol. 6, No. 4, pp. 16, 1986

[GERV96] Gervautz M., Traxler C., Representation and realistic rendering of natural
phenomena with cyclic CSG graphs, The Visual Computer, Springer Verlag, Vol.
12, No. 2, pp. 62, 1996

[HART91] Hart J.C, DeFanti T.A, Efficient antialiased rendering of 3d linear fractals, ACM
Computer Graphics SIGGRAPH Proc., Vol. 25, No. 4, pp. 91, 1991

[KAJI83] Kajiya J.T, New techniques for ray tracing procedurally defined objects, ACM
Transaction on Graphics, Vol. 2, No. 3, pp. 161, 1983

[LIND68] Lindenmayr A., Mathematical models for cellular interaction in development,
Parts I and II, Journal of Theoretical Biology, Vol. 18, pp. 280, 1968

[PRUS90] Prusinkiewicz P., Lindenmayer A., The algorithmic beauty of plants, Springer
Verlag, New York, 1990

[PRUS94] Prusinkiewicz P., James M., Méch R., Synthetic Topiary, ACM Computer
Graphics SIGGRAPH Proc. 1994, pp. 351, 1994

[REEV85] Reeves W.T., Approximate and Probabilistic Algorithms for Shading and
Rendering Structured Particle Systems, ACM Computer Graphics SIGGRAPH
Proc. 1985, Vol. 19, No. 3, pp. 313, 1985

[SAUP88] Saupe D., Algorithms for random fractals, In Peitgen H.O. and Saupe D. ed.: The
Science of Fractal Images, Springer Verlag, pp. 71, 1988

[SMIT84] Smith A.R, Plants, fractals and formal languages, ACM Computer Graphics
SIGGRAPH Proc., Vol. 18, No. 3, pp. 1, 1984

[WERN94] Wernecke J., The Inventor Mentor, Addison Wesley Publishing Company, 1994

