
1

Calculation of Tight Bounding Volumes for Cyclic CSG-
Graphs*

Christoph Traxler Michael Gervautz

Institute of Computer Graphics
Technical University of Vienna

Karlsplatz 13/186-2
1040 WIEN
AUSTRIA

email: traxler@cg.tuwien.ac.at gervautz@cg.tuwien.ac.at

Abstract

Cyclic CSG graphs are a memory safe representation of objects with a very complex, recursive
structure. This class of objects are defined by CSG-PL-Systems, an adaption of the well known
Parametric Lindenmayer Systems (PL-Systems) to the CSG concept. They are a powerful tool to
model natural phenomena like plants, clouds or fractal terrain but also linear fractals or any objects
with a repetitive structure. CSG-PL-Systems are directly translated into CSG graphs, which are a
proper object representation for ray tracing. A derivation and geometric interpretation of strings is
no longer necessary. Because CSG graphs are as compact as the CSG-PL-Systems the memory
usage is low, so that restrictions of the complexity of the scene are avoided. To be efficient as well
it is very important to adapt conventional optimization techniques to CSG graphs. For CSG trees a
hierarchy of bounding volumes is buildt up by a simple recursive algorithm. A straight forward
transition of this algorithm to CSG graphs yields to very huge and thus useless bounding volumes.
In this paper we introduce an algorithm which calculates tight bounding volumes for the nodes of
cyclic CSG graphs. This method can also be applied to CSG trees with explicit transformation
nodes or CSG dags.

Key Words: CSG Graphs, Bounding Volumes, Ray Tracing

* This project is supported by the “Fond zur Förderung der wissenschaftlichen Forschung (FWF)”, Austria,

(project number: P09818)

2

1 Introduction

Cyclic CSG graphs are a memory safe representation of recursive objects, which are defined by
parallel rewriting systems. They are an extention to conventional CSG trees and thus can directly be
used for ray tracing. CSG graphs emerge from CSG-PL-Systems, which are an adaption of the well
known Parametric Lindenmayer-Systems (briefly PL-Systems). The main difference between PL-
Systems, which are fully described in [LIND90], and CSG-PL-Systems are their formal languages.
While the derived strings of the first are command sequences for a virtual construction tool called
turtle, the derived strings of the last are a subset of the infinite set of all valid CSG expressions.
Instead of running a derivation process and building up a large CSG tree out of the resulting string,
the rules of the grammar are directly transformed into a cyclic CSG-graph, which is traversed by the
rays to visualize the object.

For that purpose, we extended the CSG concept to three new nodes. Selection nodes, briefly S-
nodes, join all the rules for one grammar symbol and are associated with a selection function. This
function controls the flow by selecting a proper rule and passing the rays to it. The rules themselves
are translated into CSG trees and attached as successors to the S-Node. For each occurrence of a
grammar symbol in the right hand side of a rule an edge is spanned to the corresponding S-node.
This yields to a graph with cycles, wherby S-nodes are the only targets of cyclic edges.

Like with conventional CSG trees, the rays are mapped from the world coordinate frame into the
object coordinate frame, because this is much more efficient than mapping the primitive objects. In
CSG graphs this is done by special nodes, called Transformation nodes or briefly T-nodes. They can
be seen as unary operators and thus have only one successor. The same is true for Calculation
nodes, briefly C-nodes, which evaluate a finite set of arithmetic expressions to modify global
parameters. Their values effect flow control, i.e. the selection of rules, and transformations. All
other nodes, i.e. CSG operators and primitive objects are handled as in CSG trees. The CSG graphs
introduced so far are as compact as the describing data set. An explicit representation of the scene
(like with CSG trees) is avoided and therefore no restrictions of the complexity of the scene or the
approximation accuracy of objects must be considerated. A related method was introduced in
[KAJI83] for the ray tracing of fractal terrains and in [HART91] for the ray tracing of objects
defined by Iterated Function Systems (IFS). Fig.1.1a shows a CSG-PL-System, that generates a
simple sympodial branching structure and Fig.1.1b the corresponding CSG graph. A full description
of this approach we gave in [GERV95].

Initialization of the parameters

{ cnt = 8; // order of the branching structure
trunk = 2, // number of trunk segments (cycles of rule with index 2)
fTR = 0.96; // scaling factor for trunk segments
gamma = -72.0; // divergence angle
alpha1= -60.0; // branching angles
alpha2 = 20.0;
fBR1 = 0.73; // scaling factors for left and right branches
fBR2 = 0.67;
noleaves = 3; // if cnt is less than noleaves the limbs bear leaves
segments = 2; // number of segments for a limb with leaves
fxSG = 1/7; // scaling factors for segment cylinders
fySG = 1/7;
dSG = 1/segments; // height of a segment cylinder
fLV = 0.6; // scaling factor for leaves

} TR // the start node

3

The rules for TR and SG

TR if(trunk > 0, 2, if(cnt > 0, 3, 1)) // module for the tree

1: TR → SG // terminating rule

2: TR → SG ∪ {trunk=trunk-1} move(0,0,1) uscale(fTR) TR // rule for the generation of the trunk
// rule for the generation of the branching

structure

3: TR → SG ∪ move(0,0,1) rotz(gamma)({cnt=cnt-1} rotx(alpha1) uscale(fBR1) TR ∪
{cnt=cnt-1} rotx(alpha2) uscale(fBR2) TR)

SG if(cnt < noleave, if(segments > 0, 3, 2), 1) // module for segments

1: SG → scale(fxSG,fySG,1) cylinder // this rule is selected for limbs without
leaves
2: SG → segment // terminating rule for limbs with leaves

3: SG → segment ∪ {segments=segments-1} move(0,0,dSG) rotz(-90) SG // generating rule for limbs with leaves
// CSG expression for segments with

leaves
segment = scale(fxSG,fySG,dSG) cylinder ∪ move(0,0,dSG) (uscale(fLV) leaf ∪ flipxz uscale(fLV) leaf)

Fig. 1.1a : A PCSG-system for a simple sympodial branching structure. (Taken from [GERV95])

TR if(trunk>0,2,
if(cnt>0,3,1))

1 2 3

SG if(cnt>noleaves,
if(segments>0,3,2),1)

1 2 3

∪ ∪

cnt=cnt-1 cnt=cnt-1

∪

trunk=trunk-1

move

uscale

rotz

move

rotx rotx

uscale uscale

segments=segments-1

scale

move

rotz

∪

init

Fig. 1.1b : The CSG graph that generates the sympodial branching structure. (Taken from [GERV95])

4

To make the method not only memory safe but also efficient, it is very important and essential to
optimize ray tracing. Bounding volumes are used for conventional CSG trees to enclose parts of the
scene and to test the rays against them. They are calculated for each node to obtain a bounding
volume hierarchy. The traversal of a ray is terminated as soon as it misses a bounding volume.
While the calculation of bounding volumes in a preprocessing step is a quite simple task for CSG
trees, it is not trivial for cyclic CSG graphs. The purpose of this paper is to describe a method for
the calculation of tight bounding volumes for CSG graphs. This method can also be applied to CSG
trees with internal T-nodes or CSG dags. We first explain why the conventional algorithm fails to
produce tight bounding volumes for CSG graphs. After that we introduce and analyze our approach.

2 Problems with the calculation of bounding volumes for CSG graphs

The most common type of bounding volumes are axis aligned boxes. The effort to combine two
boxes and to intersect a box with a ray is quite low. In the remainder of this paper we focus on that
kind of bounding volumes without loss of generality. The CSG tree is recursively traversed from
left to right, to obtain a bounding box for each node. A leaf node consists of a primitive object and
an affine transformation, whereas an internal node is associated with one of the three Boolean
operators ∪, ∩, and \. When the recursion terminates at a leaf node, a bounding box is calculated
that encloses the transformed primitive object. An internal node combines the bounding boxes of its
left and right successor according to its Boolean operator. In this simple way a hierarchy of tight
bounding boxes emerges. Nevertheless the bounding boxes for CSG graphs obtained in this fashion
are very huge, so that their aim completely gets lost.

If a CSG graph is unfolded into a CSG tree it is obvious that almost each node of the graph
corresponds to more than one node of the tree. That means that these nodes represent different parts
of the scene. Moreover a particular part of the scene is iteratively mapped into different coordinate
frames by T-nodes and iteratively combined with other parts by CSG-operator nodes. From an
algorithmical point of view, each node of the CSG graph gets a couple of different bounding boxes
during the recursive traversal.

A bounding box of a node representing different parts of the scene must enclose all of them. There
are at least two possible solutions. The first way is to use an array to store all the bounding boxes
for the different parts of the scene. The second way is to join all of them to a single bounding box.
The first solution needs a vast amount of memory, comparable to the unfolding of the CSG graph
into a huge CSG tree. Thus the advantage of a memory safe data structure would get lost, so that
only the second solution remains. We call the union of all bounding boxes for a node its hyper
bounding box. With this notation we can now describe how the algorithm for CSG trees is adapted
to the internal nodes of a CSG graph (there are no changes for primitive objects):

• Wait for the bounding box(es) of the successor(s). It is important to note that the hyper bounding
boxes are not passed back to the predecessor but those which is joined with it. An operator node
combines the bounding boxes of its successors according to its Boolean operator and calculates a
new one that encloses the result. A T-node has to map the bounding box of its successor and
calculates a new one, that encloses the transformed box. This is necessary because the
transformation usually destroys the geometric properties of an axis aligned box. C- and S-nodes
simply take over the bounding box of the sucessor without any changes. (For S-nodes this is the
currently selected successor).

• Join this bounding volumes with the hyper-bounding volume to generate a new one.

As we will see later the hyper bounding boxes are not the severe problem of this algorithm. The
major problem, which demands a special algorithm for CSG graphs evolves out of both, the simple
geometry of the bounding boxes and the iterative transformations. The rotation of an axis aligned

5

box by a T-node violates its geometric properties, because its edges are no longer parallel to the
world coordinate system. As briefly stated above the T-node has to calculate a new axis aligned
bounding box, that encloses the rotated one. Since transformations are applied iteratively the T-
nodes have to calculate new boxes with the required properties several times. This yields to a
sequence of rapidly growing bounding boxes as shown in Fig.2.1. The resulting bounding box is
huge and completely useless.

Fig. 2.1 : Growing bounding boxes during 2 successive rotations about 45°. This angle has the highest
growth rate for axis aligned bounding boxes. (Taken from [GERV95])

The use of other bounding volumes than axis aligned boxes can scarcely temper the growth effect.
Even parallel planes with fixed orientations as introduced in [KAY86], which allow very tight
enclosures, would grow too much during successive rotations that violate the orientation
constraints. Bounding spheres are invariant under rotation, but a similar growing effect can be
achieved by successive nonuniform scalings. Beside that spheres are unsuitable to join them to a
hyper bounding sphere, because the union of two spheres can be quite large.

None of the mentioned problems occure if all the transformations used in a CSG graph are
contractive. In this case they form an IFS and the combination of the bounding boxes in an arbitrary
recursion depth perfectly fits into the bounding box of a lower recursion depth. This becomes clear
when looking at the Sierpinski-tetrahedron, which consists of smaller copies of itself. Fig.2.2 shows
the CSG graph that generates this classical fractal. Imagine a recursion depth where each of the four
T-nodes gets the bounding box of an approximated Sierpinski-tetrahedron. Each T-node creates a
box of halve the size and moves it to the proper subpart of the tetrahedron. The final combination of
these boxes by the ∪-nodes results in a box of exactly the same size as that, which was passed to the
T-nodes before.

6

c=c-1

∪

∪

∪

move
uscale

move
uscale

c=6

S
if(c>0,2,1)
1 2

move
uscale

move
uscale

S-node

C-node

T-node

Fig. 2.2: A CSG graph representing the Sierpinski tetrahedron (taken from [GERV95]).

Modeling with PL-Systems is a non trivial task. It usually takes a lot of time to specify a PL-System
that generates the desired object. A restriction to contractive transformations makes this task
unacceptable complex. The automatically translation of an arbitrary PL-System into an equivalent
one with contractive transformations or into an IFS, is still an unsolved problem. It is discussed in
chapter 8.2 of [LIND90].

3 An algorithm for tight bounding volumes for CSG graphs

The key idea behind the new algorithm is to avoid the simple passing of bounding boxes from a
successor to a predecessor node. Especially T-nodes have to calculate their bounding boxes directly
out of the geometry of the primitive objects, whereby succeeding transformations have to be taken
into account. Since CSG graphs have cyclic edges a T-node can be instanced several times. An
instance of a T-node maps an object from a coordinate frame Ck into another coordinate frame
Ck+1. C0 is the object coordinate system of a certain primitive object. Thus C1 is the local
coordinate frame defined by the instance of that T-node, which transforms the object first. Cn
indicates the world coordinate system if n transformations are necessary to map the object into it.

A CSG graph defines a plenty of cyclic paths from the root to a primitive object. Along these paths
there are many instances of one or more T-nodes. Let us first ignore the binary CSG-operators and
extract such a path as transformation chain C0 → C1 → C2 →...→ Cn-1 → Cn. We now have to
calculate a bounding box for each coordinate frame Ci directly out of the geometry of the primitive
object defined in C0. The geometry of an object is defined by a set of points that approximate its
convex hull sufficiently. An axis aligned bounding box is simply derived by finding the minimal
and maximal coordinates of the point set. Let Ti denote the transformation of that T-node instance,
which performs the mapping from Ci-1 to Ci. To calculate a bounding volume for Ck we just have to
map the point set from C0 into Ck by applying the transformations Tk × Tk-1 ×... × T1. This
bounding box is joined with the corresponding T-node’s hyper bounding box, because there is a 1:n
relation between T-nodes and coordinate frames.

7

The algorithm works with a stack, which is flexible enough to contain both, transformations and
bounding boxes. Now a T-node has to perform the following steps:

1) Push the transformation onto the stack

2) Recursive call for the successor

3) Pop the bounding box from the stack

4) Join it with the hyper bounding box and pass it back to the predecessor

When the recursion terminates at a primitive object, all the bounding boxes for the different
coordinate frames defined by the transformations in the stack are calculated as described above and
pushed onto the stack. To avoid a great number of matrix multiplications we use a class hierarchy
for affine transformations, so that they can be handled like functions. To pass a point P through a
transformation chain T3 × T2 ×.T1, we simply evaluate T3 (T2(T1(P))). Step 4 is necessary to deliver
the actual bounding box to predecessor nodes, which are not T-nodes. All the instances of C-, S- or
CSG-operator nodes on the path back to the next instance of a T-node belong to the same coordinate
frame.

What remains to complete the algorithm is the consideration of the binary CSG operator nodes. In
conventional CSG trees these nodes combine the bounding boxes delivered from their successors
according to their Boolean operator. The only difference in our algorithm is, that CSG-operator
nodes have to combine two stacks of bounding boxes. Instead of a transformation chain we now
have to deal with a binary tree of transformations. That means that the bounding boxes for all
coordinate frames on the path to a branching point are the combined bounding boxes of the stacks
from the left and right path. Finally CSG-operator nodes calculate the combination of the boxes
delivered by their successors to get their own actual bounding box, and join it with their hyper
bounding box.

4 Results

The algorithm described in the last chapter calculates tight bounding boxes for each coordinate
frame. In CSG trees with internal T-nodes or in CSG dags they enclose perfectly the corresponding
parts of the scene. There is an 1:1 relation between T-nodes and coordinate frames, so that exactly
one bounding box is relevant for each T-node. For CSG graphs however this is not true. Here we
have an 1:n relation, which demands that n bounding boxes have to be joined to a single hyper
bounding box for the most T-nodes. Hyper-bounding boxes only fit to zero level instances of the
nodes, for instances of deeper recursion depth they are too large. Fortunately this problem is
diminished by an essential aspect of CSG graphs, - the iterative transformations.

The rays are transformed from one coordinate frame into another. Thus the geometric relation of a
ray to one and the same hyper bounding box changes with every mapping. Since this relation is
symmetric, we can also say, that constant rays are tested against iterativeley transformed boxes. If a
ray hits the same hyper bounding box in two succeeding coordinate frames Ci and Ci+1, than we can
conceive that as hits of two different boxes Bi and Bi+1, defined relatively to Ci and Ci+1. This
means that the ray hits the intersection of both boxes Bi ∩ Bi+1. Thus the hit of a hyper bounding
box at a certain recursion level k can be seen as the hit of the intersection of all boxes encountered
on the path from the zero level to that recursion level, i.e. B0 ∩ B1 ∩ ... ∩ Bk-1 ∩ Bk. This
intersection gets smaller with increasing recursion depth, so that a ray has a new chance to miss one
and the same hyper bounding box after each transformation into a new coordinate frame. Therefore
hyper bounding boxes are usefull for deeper levels of recursion as well.

8

The color plate shows the bounding box hierarchy of three different objects. When the current ray
misses a bounding box the background is colored according to the recursion depth. The brighter the
color the deeper is the level of recursion at which the corresponding ray misses the bounding box.
The difference between red and blue has just the purpose to enhance the contrast. The pictures show
that there are rays which miss a hyper bounding box at deeper recursion levels.

4 Conclusion and future work

The calculation of tight bounding boxes for CSG-graphs makes this data structure not only memory
safe but also efficient. Thus very complex scenes consisting of recursive objects can be rendered
with ray tracing in a reasonable time. The class of recursive objects includes natural phenomena like
plants or fractal terrain, as well as the whole set of linear and stochastic fractals. The algorithm
generates bounding boxes which can be iteratively used to terminate the recursive traversal of rays,
which reduces the computation time drastically. The necessary hyper bounding boxes are not a
severe problem. When a ray is mapped into another coordinate frame by a T-node, it has a new
chance to miss the same hyper bounding box it hit in the last cycle. Beside that the algorithm can
easily be adapted to calculate other kinds of bounding volumes out of the transformed point sets.

Currently we investigate the use of a 3d-grid as additional optimization technique. Non empty
voxels represent a state of a CSG graph, which is defined by a transformation matrix, a set of
parameter values and a reference to a node of the graph. The foremost, non empty voxel is
determined by using 3DDDA as described in [FUJI86]. Now a ray can entry the CSG graph to an
advanced sate, which prevents it to run through all the cycles that are necessary to reach this state.
In the best case the ray is directly passed to a primitive object, i.e. a terminal node of the graph. In
the most cases the entry point will be an intermediate state, so that further cycles are necessary. The
grid is filled during the preprocessing step using the bounding box stack.

9

Color plate: the cone tower (left) is a very simple repetitive structure. It shows the increasing level
of recursion and that in each level rays are discarded because they miss the hyper bounding box in
that coordinate frame. The same can be observed for the simple sympodial tree structure (top right)
and the Sierpinski-tetrahedron (bottom right).

10

References

[FUJI86] Fujimoto A, Tanaka T, Iwata K

ARTS: Accelerated ray-tracing system.

IEEE Computer Graphics & Applications, Vol. 6(4), pp. 16-26, 1986

[GERV95] Gervautz M., Traxler C.

Representation and Realistic Rendering of Natural Scenes with Cyclic CSG
graphs

accepted for publication in Visual Computer, 1995

[HART91] Hart J.C, DeFanti T.A

Efficient antialiased rendering of 3d linear fractals.

ACM Computer Graphics SIGGRAPH Proc., Vol. 25(4), pp. 91-100, 1991

[KAJI83] Kajiya J.T

New techniques for ray tracing procedurally defined objects.

ACM Transaction on Graphics, Vol. 2(3), pp. 161-181, 1983

[KAY86] Kay T.L, Kajiya J.T

Ray tracing complex scenes.

ACM Computer Graphics SIGGRAPH Proc., Vol. 20(4), pp. 269-278, 1986

[LIND90] Prusinkiewicz P, Lindenmayer A

The algorithmic beauty of plants.

Springer Verlag, New York, 1990

