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Abstract

This thesis introduces a noise-aware, GPU-accelerated framework for 3D change detection
with interactive performance that leverages a specialized voxel-tower scene representation.
To handle noise inherent in measurements from depth-sensors such as the Kinect v2,
we propose uncertainty-aware ellipsoids derived from empirical sensor noise models. A
highly parallel, multi-stage CUDA pipeline is presented, implementing an efficient binning
algorithm to rasterize these ellipsoids into the voxel-tower structure on the GPU. This
approach achieves significant speedups and better scalability compared to prior CPU-
based approaches. We evaluate the framework on both synthetic and real-world data,
measuring runtime performance and robustness to sensor noise. The complete system is
shown to convert depth images to the voxel-tower representation and detect changes in
real time. By explicitly modeling sensor uncertainty and utilizing GPU parallelism, the
proposed approach delivers a significantly more robust and scalable foundation for future
real-time 3D change detection systems.
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CHAPTER 1
Introduction

The detection of geometric changes in three-dimensional environments constitutes a
central challenge in the fields of computer vision and robotics. As 3D sensor technology
such as LiDAR has become increasingly accessible, widely used and precise, the need for
reliable, real-time change detection has grown. The ability to identify and quantify spatial
changes over time is fundamental to a wide range of modern applications—ranging from
autonomous navigation and robotic manipulation to augmented reality and infrastructure
monitoring.

Despite substantial progress in 3D sensing and reconstruction, real-time 3D change
detection remains a difficult problem. The primary challenges arise from the massive
volume of 3D data, the inherent noise and uncertainty in depth sensor measurements, and
the high computational cost of spatial comparisons. Traditional geometric representations
such as point clouds or polygonal meshes, while widely used, often suffer from high
memory consumption and limited scalability for large-scale or high-frequency comparisons.
Efficient change detection therefore requires both a compact spatial representation and a
computational framework capable of exploiting modern parallel hardware.

This thesis builds upon the work of Oliver Kubicek [1], who proposed a solution to the
problem of spatial representation by introducing a voxel-based scene representation for
3D change detection from depth images. In his approach, the 3D scene is discretized into
a two-dimensional grid of vertical voxel towers. Each grid cell maintains a skip-list of
depth intervals representing either regions that are empty but seen by the camera (“seen
intervals”) or surface geometry (“surface intervals”). The remaining regions are "unseen
intervals", which are implicitly given and not explicitly stored. This representation
enables efficient comparison between two scene states by directly analyzing differences
in the z-axis intervals of corresponding voxel towers. While Kubicek’s implementation
demonstrated the conceptual validity of this method, its sequential rasterization and
interval generation on the CPU are computationally limited. Moreover, the system’s
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1. Introduction

performance is affected by the presence of depth sensor noise, making it challenging to
differentiate between real and spurious changes caused by noise.

The primary objective of this thesis is to address these limitations by re-implementing and
extending the system with a focus on computational efficiency, robustness to noise, and
scalability. The implementation provided in this thesis is a fully parallelized rasterization
pipeline implemented in CUDA, which transforms depth images into the voxel tower
representation through a sequence of optimized GPU kernels. This parallel architecture
enables the processing of millions of geometric primitives in parallel, significantly reducing
execution time compared to a CPU-based implementation.

In addition to the performance improvements, this work introduces several methods to
improve the robustness against measurement noise and uncertainty inherent to depth
sensors. Most notably, the rasterization process has been generalized from quads to
ellipsoid primitives for the surface representation. Each ellipsoid encodes the uncertainty
distribution of a depth measurement, with its radii being derived from the expected noise
characteristics of the sensor. This modification enhances the resilience to noise in the
surface rasterization process.

Together, these contributions result in a system that combines the compactness of interval-
based voxel representations, the throughput of massively parallel GPU computation, and
the robustness of uncertainty-aware surface modeling. The resulting system not only
demonstrates a significant speedup over prior CPU implementations but also achieves
improved resilience to noise and more consistent detection of genuine geometric changes.
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CHAPTER 2
Related Work

This chapter reviews the foundational work this thesis, covering three primary areas:
change detection in 3D scans, noise modeling in depth sensors, and GPU-accelerated
computation using CUDA. First, we summarize the data structure and voxel tower
framework introduced, which provides the structural basis for efficiently representing
and comparing 3D scenes, used in this paper. Then, several papers are described that
address the problem of 3D change detection and how their methods compare to the
approach taken in this thesis. Next, we discuss Köppel’s empirical noise models for
depth sensors, which are used in this thesis to model the noise in the data that was
captured using a Kinect v2 sensor. Finally, we outline key CUDA concepts relevant to
the design of the GPU-based rasterization pipeline developed in this thesis. Together,
these components form the context for the enhancements and contributions presented in
subsequent chapters.

2.1 Change Detection in 3D Scans

Kubicek [1] introduces the voxel-based framework for real-time change detection in 3D
scenes captured via depth images which this paper is based on. The core contributions
from Kubicek are a sparse voxel grid aligned with the x-y plane, where each grid cell,
termed a voxel tower, stores a skip list of non-overlapping intervals along the z-axis. This
voxel tower representation draws from the Discrete Depth Structure (DDS) proposed by
Radwan et al. [2], which discretizes a projection plane into a 2D grid with each cell storing
sorted bounding depth intervals that encapsulate surfaces from projected point splats
as cylinders, processed through an efficient GPU pipeline involving fragment counting,
projection, sorting, and blending for near-linear construction time. These intervals
are labeled as either Surface (representing observed geometry) or Seen (representing
camera-visible space), with Unseen regions implicitly defined by the absence of intervals.
The pipeline begins by generating quads from the depth image in camera space, back-
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2. Related Work

projecting them to world coordinates via camera parameters, and rasterizing them into
the voxel towers: Surface intervals from quad projections onto towers, and Seen intervals
from four quads making up a pyramidal frustum for each pixel, connecting that pixel to
the camera origin. Change detection compares two voxel grids by identifying Added and
Removed surfaces. This is achieved by direct comparison of voxel towers of the two voxel
grids. For each interval in the voxel tower, a matching interval in the voxel tower at the
same position in the other voxel grid is sought. The work from Kubicek provides the
foundational voxel tower structure and rasterization backbone. This paper enhances it
with noise-aware primitives to mitigate the impact of noise in real-world scenes, enabling
more robust interval matching across misaligned grids due to sensor variance. In addition,
an efficient binning algorithm on the GPU is implemented to speed up the rasterization
of the primitives.

2.2 Change Detection
While voxel-based representations are common in change detection due to their ability to
discretize captured 3D data, the exact approach varies based on scale and environment.
For example, Aljumaily et al. [3] proposed a two stage change detection algorithm in
urban environments. The first stage processes point clouds and assigns each point to the
1m3 cubes, or voxels. Then, these cubes are classified into different classes, such as ground
or vegetation. The second stage, the change detection, compares these classification of
voxels across time and categorizes them into no-change, added objects, removed objects or
noise.

Schachtschneider [4] et al. introduce a method for change detection in urban environments
involving multiple steps. Firstly, multiple scans from different epochs are aligned to achieve
sub-centimeter accuracy. Secondly, the points in the point cloud are segmented into
objects using a region growing algorithm. Thirdly, a 3D occupancy grids is constructed
by tracing each LiDAR ray to classify voxels as free, occupied, or unseen across all
measurements. Changes are detected by tracking and comparing theses three states for
each voxel over multiple epochs. Additionally, the changes are categorized as permanent
or temporary.

Another voxel-based approach is taken by Gehrung [5] et al. They propose an Octree,
where the distribution of points in each voxel is modeled using Gaussian kernels. Changes
are detected by calculating the intersection between two Gaussian kernels of corresponding
voxels in different epochs. The result is a Delta Octree, that encodes added and removed
geometry.

Aijazi et al. [6] propose a method for detecting and updating changes in LiDAR point
clouds for automatic 3D urban cartography. The approach begins by classifying the point
cloud into permanent and temporary objects, removing the temporary ones. The point
cloud is then mapped onto a 3D evidence grid, where each cell’s score is computed based
on attributes such as occupancy volume, surface normals, laser reflectance intensity and
RGB values. Changes are detected by comparing successive grids using custom similarity
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functions, allowing categorization into additions (e.g., new constructions), removals (e.g.,
demolitions), or modifications.

These approaches are all using some form of voxel-based representation but the data
structure they use are fundamentally different to the one described in the previous section
and used in this thesis.

2.3 Noise Modeling in Depth Sensors
Köppel [7] developed empirical noise models for the KinectV2 and Phab2Pro depth sensors,
characterizing both lateral (X and Y) and axial (Z) noise. The models predict noise as a
function of pixel position (x, y), depth z, and sensor rotation. Lateral noise is captured by
separate cubic polynomials σx(z) and σy(z) in depth, while axial noise employs a quadratic
form σz(x, y, z). The combined model ensures 90% of real measurements fall within
predicted bounds. This thesis adopts Köppel’s KinectV2 coefficients to parameterize
ellipsoid primitives that represent surface geometry in the voxel grid construction pipeline.
By modeling measurement uncertainty as ellipsoids with semi-axes derived from these
noise estimates, the approach accounts for sensor inaccuracies during rasterization, leading
to increased robustness to noise for the Surface intervals.

2.4 CUDA Programming
NVIDIA’s CUDA [8] is a parallel computing API that allows developers to utilize the
computational power of GPUs for general-purpose processing. CUDA exposes a threading
model, where the user writes functions called kernels, which are then automatically
executed by thousands of threads on the GPU, organized into blocks and grids. CUDA
provides synchronization primitives like atomics and barriers, and access to the different
memories on the GPU, like global, shared, texture, and constant memory. This facilitates
massive parallelism with good performance for general-purpose tasks. The introduction
of CUDA has revolutionized high-performance computing in multiple domains, such as
scientific simulation, image processing and machine learning. This thesis leverages CUDA
to implement an efficient, six-stage pipeline for real-time voxel grid construction from
depth images, replacing CPU-bound rasterization with GPU parallelism.
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CHAPTER 3
Method

This chapter presents the methodology developed to construct noise-aware voxel grids
from depth images and to perform robust change detection between 3D scans. It begins
by describing the scene-generation process, introducing the voxel tower data structure and
detailing the transition from quad-based to ellipsoid-based rasterization to incorporate
sensor noise. Next, the chapter outlines the rasterization of Seen intervals via triangle
processing. Then, we introduce a six-stage GPU-accelerated pipeline for efficient voxel
grid construction, using a parallel binning algorithm. Finally, the chapter explains the
change detection algorithm, which compares two voxel grids while accounting for spatial
misalignments caused by sensor noise. Together, these methods form the complete
pipeline enabling interactive, noise-resilient change detection in 3D environments. The
code for the full implementation is available on GitLab.

3.1 Scene Generation from Depth Image

The major part of the change detection process is the conversion from the depth image
of the scanned scene into a special data structure introduced by Kubicek [1]. The two
inputs required for the conversion are the depth image and the camera parameters of the
camera that was used to record the scene.

3.1.1 Voxel Grid Data Structure

As a first step in the change detection pipeline, the depth image is converted to a special
voxel-based representation introduced in the work of Kubicek [1]. This data structure
allows for efficient storage, querying, and comparison of the 3D scene data. The voxel
grid is stored as a two-dimensional grid aligned with the x-y plane. Each cell in this
grid, also called a Voxel Tower, is a square with a fixed side length s and maintains a
list of intervals, which represent the space along the z-axis of that cell, as illustrated in
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3. Method

Figure 3.1: Illustration of the data structure: a 2D voxel grid storing a depth interval.

Figure 3.1. The alignment of the grid with the ground plane is chosen because scenes are
usually less complex along the z-axis (vertical axis). The voxel grid allows for precise
representation along the z while having a coarser representation along the x and y axes,
allowing for more efficient storage. There are two types of intervals, which are stored as
follows:

1. Surface intervals represent the physical surfaces of objects derived from the depth
image.

2. Seen intervals define all regions that were visible to the camera.

The remaining 3D space, which is not covered by either interval type, is considered
Unseen, which is implicitly given by the Surface and Seen intervals, and therefore not
explicitly stored.

A key benefit of this data structure, compared to simply comparing two raw depth images,
is its ability to represent a combined scene from multiple depth images. To achieve this,
each new depth image is rasterized into the same voxel grid. Depth intervals generated
from subsequent depth images are merged with the existing intervals in the grid. The
resulting structure thus captures the combined representation of the full scene.

3.1.2 Rasterization of Ellipsoids

For the conversion of the depth image to the voxel grid data structure, Kubicek [1]
generates a list of quads from the depth image, which is then rasterized into the voxel
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grid data structure. A quad is defined by four vertices corresponding to the four corners.
To get from the 2D depth image to the world coordinates, the quad is first constructed in
image space and then consequently back-projected into world space using the camera’s
extrinsic parameters. The quads are tested for where they intersect the voxel towers and
appropriate Surface and Seen intervals are inserted.

In this thesis, we replace quads as the primary primitive for the rasterization of surface
intervals with ellipsoids. The main motivation for introducing ellipsoids as the primary
primitive for surface intervals is to provide a representation of the uncertainty inherent
in depth measurements. Rather than treating each depth value as a single, precise point,
the ellipsoid representation captures the spatial extent of possible real-world positions,
given the measurement uncertainty.

Each ellipsoid is defined by its center position (ex, ey, ez) and semi-axis lengths (ea, eb, ec),
which are orthogonal and aligned with the camera coordinate axes (Figure 3.2). The
ellipsoid equation in standard form is given by:

(x − ex)2

e2
a

+ (y − ey)2

e2
b

+ (z − ez)2

e2
c

= 1 (3.1)

The semi-axis lengths of each ellipsoid are derived from a sensor-specific noise model. In
this implementation, data from a Kinect v2 camera are used, and the noise characteristics
are modeled following Köppel [7]. The model expresses lateral (x, y) and axial (z) noise
based on the pixel position and depth value.

Figure 3.2: Illustration of the ellipsoid construction: Depth image pixel to ellipsoid.

The lateral noise components are modeled as follows:

σx(z) = a1z3 + a2z2 + a3z + a4

σy(z) = b1z3 + b2z2 + b3z + b4

9



3. Method

, where z is the measured depth and ai and bi are empirically fitted coefficients determined
by Köppel [7].

The axial noise, in contrast, depends not only on depth, but also on lateral position:

σz(x, y, z) = c1x2 + c2y2 + c3z2 + c4xy + c5yz + c6xz + c7x + c8y + c9z + c10

, where x and y are the pixel position, z is the depth to the object, and ci are, again,
empirically determined coefficients [7].

The semi-axes are set as

ea = σx(zp),
eb = σy(zp),
ec = σz(xp, yp, zp)

, where zp is the depth value at the pixel position (xp, yp).

Additionally, we need to project the ellipsoid’s position into world space. Given the pixel
coordinates (xp, yp) and the depth value at that pixel (zp), we can use the camera’s
intrinsic and extrinsic parameters to back-project into the world’s coordinate system.
First, the pixel is transformed into the camera coordinate system using the camera’s
intrinsic parameters:

xc = zp(xp − cx)
fx

, yc = zp(yp − cy)
fy

, zc = zp

, where xc, yc and zc are the positions in camera space, fx and fy are the focal lengths
and cx and cy are the optical center of the camera.

Then, the ellipsoid center position (ex, ey, ez) in world space is calculated as follows:⎡⎢⎣ex

ey

ez

⎤⎥⎦ = R

⎡⎢⎣xc

yc

zc

⎤⎥⎦+ t (3.2)

, where R is the rotation matrix representing the camera’s orientation, and t is the
translation vector, which corresponds to the camera’s position.

With position and semi-axes determined, each ellipsoid can now be rasterized. The
essential problem of rasterization is identifying which voxel towers intersect the ellipsoid
volume and to solve for the depth intervals (z-values) of those intersections (Figure 3.3).
For an ellipsoid centered at (ex, ey, ez) with semi-axes (ea, eb, ec), we check whether any
of the voxel tower’s corners intersect the ellipsoid.

Let A, B, C be the camera’s basis vectors in world space. For a voxel tower corner
tx, ty, we search for the distance dz from the ellipsoid center, such that the point
p = (tx, ty, ez + dz) lies on the ellipsoid’s surface. We form the vector from the center to
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3.1. Scene Generation from Depth Image

Figure 3.3: Illustration of the ellipsoid rasterization: intersection test.

this point v = [tx − ex, ty − ey, dz]T . Then, this vector is projected onto the camera’s
local axes so that we obtain the local coordinates:

⎡⎢⎣xlocal

ylocal

zlocal

⎤⎥⎦ =

⎡⎢⎣A
B
C

⎤⎥⎦v =

⎡⎢⎣Ax(tx − ex) + Ay(ty − ey) + Azdz

Bx(tx − ex) + By(ty − ey) + Bzdz

Cx(tx − ex) + Cy(ty − ey) + Czdz

⎤⎥⎦

For the A axis, let U0 denote the constant part Ax(tx − ex) + Ay(ty − ey) and U1 = Az

be the coefficient for dz.

Similarly, we define V0, V1 for axis B and W0, W1 for axis C.

Therefore,

A · v = U0 + U1dz

B · v = V0 + V1dz

C · v = W0 + W1dz

.

Substituting these into the ellipsoid equation (Equation 3.1) we get

(U0 + U1dz)2

e2
a

+ (V0 + V1dz)2

e2
b

+ (W0 + W1dz)2

e2
c
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To get the standard quadratic form Kad2
z + Kbdz + Kc, we first expand the quadratic

terms and then sum up terms, which yields the coefficients:

Ka = U2
1

e2
a

+ V 2
1

e2
b

+ W 2
1

e2
c

Kb = 2
(︄

U0U1
e2

a

+ V0V1
e2

b

+ W0W1
e2

c

)︄

Kc = U2
0

e2
a

+ V 2
0

e2
b

+ W 2
0

e2
c

− 1

The discriminant D = K2
b − 4KaKc determines the number of intersections. If D ≥ 0,

the tower corner intersects the ellipsoid at:

dzmin = −Kb −
√

D

2Ka

dzmax = −Kb +
√

D

2Ka

Otherwise, the corner does not intersect the ellipsoid.

If none of the tower corners intersect the ellipse, the ellipse might be entirely contained
in the tower. Thus, an additional containment test is performed to cover this case. To
do this, the semi-axes of the ellipsoid are projected into world space, which yields the
semi-axes proja, projb.

Then, we check if the bounding box defined by

[ex − proja, ex + proja] × [ey − projb, ey + projb]

is fully contained inside the voxel tower’s bounding box. In that case, the full z-range of
the ellipsoid is added as a depth interval to the tower.

This approach produces reliable intersection detection while being computationally
efficient, but may miss overlaps in a few special cases. This is a trade-off between speed
and accuracy and is a deliberate choice, which could be adapted. To achieve maximal
accuracy, a mathematically exact intersection test for tower area and ellipsoid would be
required, which would increase the computational cost.

3.1.3 Rasterization of Triangles

To rasterize the Seen intervals, which represent all regions visible to the camera, this
implementation uses triangles. The approach is the same as the one introduced by
Kubicek [1], but instead of rasterizing quads, triangles are rasterized. In Kubicek’s
implementation, two of the quads’ vertices used for the rasterization of Surface are
the camera position, meaning, the quads are actually triangles. Because Kubicek used
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quads for the rasterization of Surface, the same code was reused for rasterizing the Seen
intervals, even though the quads are triangles in this case. In this implementation, the
quads for the Surface are replaced with ellipsoids, so the code reuse does not apply
anymore. Thus, dedicated triangle rasterization is implemented for the Seen intervals,
which is very efficient and simple due to the planar nature of the triangles.

For each pixel in the depth image, a quad is generated and back-projected into world
space. The back-projection follows the same process as for ellipsoids: pixel coordinates
are first transformed to camera space using intrinsics, then rotated and translated to
world space (3.2). Using the four vertices of that back-projected quad, the following four
triangles are created: (v0, v1, c), (v1, v2, c), (v2, v3, c), and (v3, v0, c), where v0, v1, v2, v3
are the back-projected quad vertices and c is the camera position. Together, these four
triangles form a pyramidal frustum, representing the visible space for that pixel.

During rasterization, each assigned triangle is processed for each voxel tower. For each
voxel tower, we test whether any triangle intersects this tower. First, each corner of the
tower tx, ty is checked for overlap with the triangle’s projection onto the x-y plane using
a barycentric coordinate test.

Let the triangle vertices without the z component be p0, p1, p2 ∈ R2, and define the
following vectors:

u = p1 − p2, v = p0 − p2, w = [tx − p2x, ty − p2y]T

We can then calculate the determinant, which yields twice the signed area of the triangle:

det = uyvx − uxvy

Now, the weights of the barycentric coordinates are

w0 = uywx − uxwy

det
w1 = vxwy − vywx

det
w2 = 1 − w0 − w1

, where w0 + w1 + w2 = 1.

The point is inside the triangle if all three weights are non-negative. Having the weights,
the z value can be determined using barycentric interpolation:

z = w0z0 + w1z1 + w2z2,

where zi is the z value of the ith triangle vertex.

Using this z value, the Seen interval is inserted into the corresponding voxel tower.

13
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If none of the tower corners lie inside the triangle, the rasterizer performs a fallback
check, considering whether all triangle vertices lie inside the voxel tower’s bounding box,
meaning the triangle is fully contained in the tower.

For all triangle vertices vi, i ∈ 0, 1, 2, and tower side length of s, we check if

tx − s ≤ vix ≤ tx + s

and
ty − s ≤ viy ≤ ty + s

. If the conditions are true for all three vertices, the triangle is within the voxel tower.
The depth interval is then given by

[zmin, zmax] = [min(z0, z1, z2), max(z0, z1, z2)]

.

3.2 GPU-Accelerated Voxel Grid Construction Pipeline
To achieve interactive performance in processing depth images and constructing voxel
grids, the implementation uses GPU acceleration. The pipeline consists of six different
stages, each implemented as a CUDA kernel. In combination, the kernels implement a
parallel binning algorithm designed to maximize parallelism and minimize synchronization
overhead. Each voxel tower corresponds to one bin in this implementation.

CPU Setup

Before GPU execution, the CPU prepares the necessary data structures and transforms
the primitives from pixel space to world coordinates. The CPU setup includes the
allocation of required GPU buffers, the conversion from the depth image to primitives
and a one-time initialization of the CUDA framework. Each pixel in the depth image
is converted into two types of primitives: the ellipsoid that represents surface geometry
and models the uncertainty of measurements, and triangles, which are used for the
rasterization of the Seen intervals. Both primitives are transformed from camera to world
coordinates using the camera’s intrinsic and extrinsic parameters. Simultaneously, the
minimum and maximum x and y coordinates across all generated primitives are tracked
to define voxel grid bounds and memory allocation sizes. The setup is done on the CPU
because the computational cost is negligible in comparison to the rest of the processing
pipeline.

Stage 1: Range Precomputation

The first stage determines the spatial bounds of each geometric primitive and identifies
which voxel towers it might intersect. Each primitive is handled by one CUDA thread in
parallel, computing its axis-aligned bounding box (AABB) and projecting that box onto
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3.2. GPU-Accelerated Voxel Grid Construction Pipeline

the voxel grid. For ellipsoids, the bounding box is computed using the center position and
semi-axis lengths projected into world space, similar to how it is done in the containment
check described in Section 3.1.2. For triangles, the AABB is derived from the minimum
and maximum coordinates across all three vertices. The resulting bounding boxes are
mapped to integer index ranges of voxel grid indices, expressing the range of voxel towers
that the bounding box covers.

Stage 2: Primitive Counting

In the second stage, the algorithm counts how many primitives overlap each voxel tower.
Using the precomputed ranges, each thread increments an atomic counter corresponding
to the towers within the primitive’s bounds. The result is a one-dimensional array,
bin_counts, stored in a row-major order, where the number of intersecting primitives for
a voxel tower at position x, y, is stored at y × wgrid + x, where wgrid is the number of
columns or the width of the voxel grid.

Stage 3: Prefix Scan and Memory Allocation

In the third stage, a parallel prefix-scan computes the cumulative offsets for each voxel
tower’s interval storage. This stage is implemented using the Thrust library’s optimized
scan operations, which leverage GPU-specific optimizations for maximum performance.
The prefix-scan yields, again, a one-dimensional array, bin_offsets, with the same ordering
and indexing, but the value stored is the offset into the global interval storage for that
voxel tower.

The final prefix scan results are used to calculate the total number of primitive-voxel
intersections, which is used to allocate the buffers that hold the interval data and the
primitive index buffer. This has the benefit of requiring only a one-time allocation for all
of the interval data, which is more efficient than alternatives such as dynamic memory
allocations, which can be challenging on GPUs.

Each interval comprises two floating-point values: depth start and depth end. The
interval type is encoded in the sign bit of the end value, where a positive end value maps
to Surface intervals and a negative value to Seen intervals. The intervals are stored in
an structure of arrays (SOA) approach, with three arrays holding the begin, end and
type values, respectively. The SOA layout was chosen because the interval storage was
by far the largest memory consumer, and it turned out to be a bottleneck on the tested
hardware. The SOA approach allows for tight packing of the 8 bit integer types, which
leads to a strongly reduced memory footprint and also improved runtime performance on
the tested hardware.

Stage 4: Primitive Index Assignment

The fourth stage populates the primitive index buffer with the actual primitive indices
that intersect each voxel tower. This stage uses the same binning approach as the counting
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stage, but instead of just incrementing counters, it writes the primitive indices to the
appropriate slots in the global primitive index buffer. The kernel assigns one thread to
each primitive, which iterates through the voxel range that was computed in stage 1.
For each voxel tower in the primitive’s range, it atomically increments a fill counter to
obtain a unique slot index, then writes the primitive index to that slot in the global
primitive index buffer. The slot address is computed as bin_offsets[vid] + slot, where
vid is the voxel tower index, bin_offsets[vid] is the starting offset for that voxel tower’s
section of the global buffer, and slot is the atomic counter value. This creates a compact,
contiguous list of primitive indices for each voxel tower, enabling efficient access during
the subsequent rasterization stage. The atomic operations ensure thread safety when
multiple primitives are being assigned to the same voxel tower simultaneously.

Stage 5: Parallel Rasterization

The fifth stage performs the actual rasterization, converting primitives into depth intervals
for each voxel tower. The kernel launches one block per voxel tower, with each block
processing all primitives assigned to that tower. Each block uses shared memory to
store intermediate interval results for efficient, local memory accesses. The kernel first
initializes buffers in shared memory for storing interval data (begin, end, and type values)
and a counter for the number of intervals generated. For each primitive assigned to the
voxel tower, the kernel calls either the rasterization algorithm for triangles or for ellipsoids
depending on the primitive’s type. The aforementioned counter stored in shared memory
is atomically incremented to safely append the generated intervals to the shared memory
buffer. After all primitives have been processed, the intervals are copied from shared
memory to the global interval storage arrays, and the final interval count is stored with
the voxel tower.

Stage 6: Merging

The final stage merges overlapping and adjacent intervals within each voxel tower to
create a compact, non-redundant representation. This stage is crucial for reducing
memory usage and improving query performance, as the raw rasterization output often
contains many overlapping intervals that can be combined. The kernel processes each
voxel tower independently, using a two-phase approach. First, it copies all intervals
from the global storage into shared memory and sorts them by their begin values using
a parallel in-place bitonic sorting algorithm [9]. The bitonic sorting algorithm was
chosen because of its relatively simple implementation, while meeting the performance
requirements for this use case. After sorting, the kernel performs a sequential merge pass
that combines overlapping intervals of the same type. The final result is a compact array
of non-overlapping intervals for each voxel tower.
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3.3. Change Detection

3.3 Change Detection
The change detection algorithm works by comparing two voxel grids generated from
depth images captured at different time points. The core principle is to identify intervals
that exist in one voxel grid but not in the other, which indicates changes in the scene
geometry. The comparison is performed on a per voxel tower basis. The output of the
change detection is another voxel grid, but instead of the Surface and Seen intervals, this
voxel grid stores intervals that are either:

1. Added intervals, which represent surfaces present in the new scene but missing in
the old scene.

2. Removed intervals, which represent surfaces present in the old scene but missing in
the new scene.

Due to noise in the measurements of the camera, the two compared voxel grids often differ
slightly in dimensions, and the same physical surface might end up rasterized in different
voxel tower positions. These minor spatial misalignments prohibit straightforward per
voxel tower comparison. To combat this issue, the comparison algorithm not only checks
the corresponding voxel tower at the exact same position in the other voxel grid, but
also checks neighboring voxel towers for trying to find the matching depth interval. The
radius of voxel towers, in which the comparison algorithm searches for the matching
depth interval, is a tunable parameter.
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CHAPTER 4
Results

The results presented in this chapter evaluate the proposed voxel grid construction
pipeline from depth images and the change detection algorithm. The pipeline was tested
on both artificial and real-world data. The artificial data consists of noise-free depth
images, serving the purpose of validating the conversion from depth images to the voxel
grid data structure; in particular, the ellipsoid and triangle rasterization processes as well
as the parallel binning algorithm. The real-world data, captured using a Kinect v2 sensor,
is used to assess the robustness of the pipeline to sensor noise and inaccuracies during
voxel grid construction and evaluate the change detection strategy. All experiments were
conducted on an NVIDIA RTX 3070 GPU with 8 GB VRAM and an Intel Core i7-12700
CPU.

4.1 Artificial Data

The artificial data was generated to simulate scenes without noise to validate the con-
version of the depth image to the voxel grid, in particular, the ellipsoid and triangle
rasterization, as well as the general binning algorithm. Two models were used for the
artificial data: an airplane and an angel statue. To get depth images from the 3D models,
the tool virtual-3d-scanner [10] was used to simulate scanning a scene with a camera
such as the Kinect v2.

4.1.1 Airplane Scene

Figure 4.1 depicts a modified depth image of the artificial airplane scene, output by the
virtual-3d-scanner tool [10] and serving as input to the change detection algorithm. In
the unmodified depth image, all values are close to black (0), resulting in the airplane
being nearly invisible in the depth image. For the visualization, the values were scaled to
enhance visibility. Also, the displayed image uses 8-bit color channels; the actual image
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uses 16-bit color channels and contains finely varying depths. Pixels with infinite depth
(black regions) are excluded from the primitive generation. The algorithm expects black
to be infinite depth and white to be zero depth. Because some sensors might produce
depth images where this spectrum is inverted, the implementation provides an option to
invert the depth values when loading the depth image.

Figure 4.1: Depth image of the artificial airplane scene.

Figure 4.2 shows the 3D visualization of the voxel towers after rasterizing ellipsoids and
triangles, showing the Surface intervals (red) and Seen intervals (blue), representing the
airplane’s surface and seen space, respectively. In the background, the x-y voxel grid
aligned with the ground plane is rendered in gray. For each voxel tower in the voxel grid,
the list of intervals for that voxel is rendered as cuboids with width and height matching
those of the grid, and the depth corresponding to the interval’s z-coordinates.

Figure 4.2: 3D visualization of voxel towers after rasterizing ellipsoids and triangles,
showing the Surface intervals (red) and Seen intervals (blue), representing the airplane’s
surface and seen space, respectively.
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Table 4.1 summarizes the runtime configuration for the airplane scene. The 320×240
depth image yields 35912 triangles and 8978 ellipsoids, totaling 44890 primitives.

Table 4.1: Runtime configuration of the airplane scene.

Depth Image 320x240
Side Length 1.000000
Voxel Grid 601 × 707 (424907 total voxels)
No. of Triangles 35912
No. of Ellipsoids 8978
Total Primitives Processed 44890
Maximum Intervals in a Tower 5
Average Intervals per Tower 0.45

As indicated in Table 4.1, the depth image has dimensions of 320x240. The conversion
from depth image to primitives, the GPU initialization, and the data transfer each take
just a few milliseconds (Table 4.2). The subsequent GPU pipeline takes a total of 107.98
ms to complete the rasterization of the primitives into the voxel grid and intervals. The
dominant part of the rasterization runtime is the allocation of the buffers to store the
intervals, which occurs because the system must first read back the results from the
prefix scan to calculate the required buffer sizes and then allocates rather large buffers.
In total, the entire process takes 120.49 ms, which is within the requirement of interactive
performance.

Table 4.2: Chronological CPU and GPU timings for the airplane scene.

Phase Time

1. Ellipsoid Construction 1.89 ms
2. GPU Initialization 4.29 ms
3. CPU → GPU Transfer 6.32 ms
4. GPU Pipeline (Total) 107.98 ms

Stage 1: Precompute Ranges 0.15 ms
Stage 2: Count Primitives 8.17 ms
Stage 3: Prefix Scan & Allocation 69.25 ms
Stage 4: Fill Bins 16.89 ms
Stage 5: Rasterize Bins 7.73 ms
Stage 6: Merge Intervals 5.79 ms

Total E2E (CPU + GPU) 120.49 ms

The memory usage turns out to be the greater bottleneck compared to runtime perfor-
mance. The voxel grid and intervals together require 1759 MB of GPU memory (Table
4.3), while the primitive index buffer requires 872 MB. Together with the storage needed
to store the primitives and buffers required by the binning algorithm, the total memory
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usage accumulates to around 2838 MB. This is a substantial portion of the 8 GB of
VRAM available on the NVIDIA RTX 3070. Increasing the voxel grid side density or
increasing the size of the depth image quickly leads to out-of-memory errors, while the
runtime performance scales well and would allow for processing depth images of larger
size in interactive time constraints. Possible ways to reduce the memory usage and
further improve the runtime performance are discussed in Section 4.2.1.

Table 4.3: GPU memory usage of the airplane scene.

Input Primitives (Triangles + Ellipsoids) 1.44 MB
Voxel Grid (Towers + Intervals) 1760 MB
Binning Buffers (counts, offsets etc) 4.86 MB
Primitive Index Buffer 872 MB
Total GPU memory allocated 2638 MB

4.1.2 Angel Statue Scene

The angel statue scene serves a similar purpose to that of the airplane scene. However, it
contains more depth variation and structural detail compared to the simple airplane scene.
Therefore, it was chosen as an additional test to validate the rasterization pipeline. Again,
the model was generated using the virtual-3d-scanner [10] tool. The following image (4.3)
shows the depth image of the angel statue scene produced by the virtual-3d-scanner. The
depth image are, again, modified to show the model more visibly.

Figure 4.3: Depth image of the artificial angel scene.

Figure 4.4 shows the result of the rasterization pipeline, visualized in the same way as
the airplane scene in Figure 4.2. The main difference between the angel statue scene and
the airplane scenes is the chosen ellipsoid semi-axes lengths. Normally, the semi-axes
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lengths are determined through the noise model of the sensor, as described in section
3.1.2. Naturally, for the artificial data, however, there is no noise in the data and thus no
noise model to apply. Therefore, the semi-axes lengths were chosen arbitrarily. To test
different ellipsoid sizes, the semi-axes lengths for the angel statue scene were chosen to
be 1.0, while for the airplane scene they were chosen to be 3.0. The different ellipsoid
sizes can be seen in the Figures 4.2 and 4.4, and explain the clearly different looking
surface representation.

Figure 4.4: 3D visualization of voxel towers after rasterizing ellipsoids and triangles
showing the Surface intervals (red) and Seen intervals (blue), representing the angel’s
surface and seen space, respectively.

The 320×240 depth image yields 32040 triangles and 8021 ellipsoids, totaling 40061
primitives (Table 4.4). This makes the angel scene similar in complexity to the airplane
scene, when it comes to raw processing of primitives. The voxel grid size of 292 ×
481 is determined from the bounding box of all back-projected ellipsoids in the scene.
The minx, maxx, miny, and maxy values are computed during scene construction by
taking the minimum and maximum x/y coordinates across all triangle vertices and
ellipsoid extents. Then the grid dimensions are calculated as width = ⌈maxx−minx

side_length ⌉ and
height = ⌈maxy−miny

side_length ⌉, where side_length denotes the side length of the voxel towers and
is an adjustable parameter.

For the angel statue scene, the GPU pipeline consumes 97.54 ms for the rasterization.
With the ellipsoid construction, GPU initialization and data transfer, the total runtime
accumulates to 107.92 ms. The performance profile closely resembles that of the airplane
scene, notably, also with regards to how much each phase of the pipeline contributes to
the total runtime.

The memory usage of the angel scene matches that of the airplane scene closely. The two
highest memory consumers are, again, the voxel grid containing the intervals data, and
the primitive index buffer. The total memory usage for this scene amounts to around
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Table 4.4: Runtime configuration of the angel statue scene.

Depth Image 320x240
Side Length 1.000000
Voxel Grid 292 × 481 (140452 total voxels)
No. of Triangles 32040
No. of Ellipsoids 8021
Total Primitives Processed 40061
Maximum Intervals in a Tower 8
Average Intervals per Tower 0.69

Table 4.5: Chronological CPU and GPU timings for the angel statue scene.

Phase Time

1. Ellipsoid Construction 1.69 ms
2. GPU Initialization 1.88 ms
3. CPU → GPU Transfer 6.82 ms
4. GPU Pipeline (Total) 97.54 ms

Stage 1: Precompute Ranges 0.08 ms
Stage 2: Count Primitives 10.79 ms
Stage 3: Prefix Scan & Allocation 58.52 ms
Stage 4: Fill Bins 19.41 ms
Stage 5: Rasterize Bins 5.23 ms
Stage 6: Merge Intervals 3.50 ms

Total E2E (CPU + GPU) 107.92 ms

2203 MB (Table 4.6). Potential ways to reduce the memory usage are discussed in Section
4.2.1.

Table 4.6: GPU memory usage of the angel statue scene.

Input Primitives (Triangles + Ellipsoids) 1.28 MB
Voxel Grid (Towers + Intervals) 1468 MB
Binning Buffers (counts, offsets etc) 1.61 MB
Primitive Index Buffer 731 MB
Total GPU memory allocated 2203 MB

4.1.3 Change Detection With Synthetic Data

In order to test the change detection, a synthetic scene is used, which consists of two
objects. First, the angel statue from Section 4.1.2, and secondly the Suzanne ape head.
Figure 4.5 shows the before state: the head is in front of the angel, which means the
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angel is partially occluded from the perspective of the viewer. For the after state of
the scene, the head is removed, revealing the angel in its entirety again. The goal is for
the change detection algorithm to correctly recognize and categorize these changes into
Added and Removed intervals.

Figure 4.5: Depth image of the synthetic change detection test scene.

Figure 4.6 shows the rasterized version of the before scene on the left, and the after image
on the right. In the before picture, it is clear to see that the part of the angel covered by
the head is missing.

Figure 4.6: Rasterization before and after removing the occluding object.

Figure 4.7 depicts the resulting voxel grid after running the change detection algorithm. It
displays Added intervals in red, while showing the Removed intervals in blue. The change
detection algorithm appears to have correctly identified the ape head being removed,
while also correctly identifying the part of the angel, which was previously covered, as
added geometry.
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Figure 4.7: 3D Visualization of voxel towers after change detection, showing the Added
intervals (red) and the Removed intervals (blue) representing the changes between the
two scenes.

The runtime for the change detection follows similar patterns than the ones for the plane
and angel scenes. The rasterizations of the before and after scenes take 120.84 ms and
99.08 ms, respectively (Table 4.7). After both scenes have been rasterized, the change
detection algorithm takes 59.47 ms to find the changes. All in all, the entire process from
the two depth images to the changes takes 279.39 ms.

Table 4.7: Chronological CPU and GPU timings for the synthetic change detection scene.

Phase With Occluder Without Occluder

1. Ellipsoid Construction 2.81 ms 1.95 ms
2. GPU Initialization 1.69 ms 1.53 ms
3. CPU → GPU Transfer 6.47 ms 0.19 ms
4. GPU Pipeline (Total) 109.87 95.42 ms

Stage 1: Precompute Ranges 0.07 ms 0.01 ms
Stage 2: Count Primitives 12.42 ms 10.91 ms
Stage 3: Prefix Scan & Allocation 66.54 ms 57.86 ms
Stage 4: Fill Bins 21.29 ms 19.29 ms
Stage 5: Rasterize Bins 6.03 ms 5.40 ms
Stage 6: Merge Intervals 3.53 ms 1.94 ms

5. Change Detection 59.47 ms
6. GPU → CPU Transfer (Readback) 0.43 ms
Total E2E (CPU + GPU) 120.84 ms 99.08 ms

4.2 Real-World Data

To evaluate the pipeline on real-world data, depth images were captured using a Kinect v2
sensor. This section presents results for two scenarios: a single depth image for validating
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the voxel grid construction in the presence of sensor noise and inaccuracies, and a pair of
depth images to test the full change detection capability by introducing a change in the
scene (adding a chair).

The following two images (Figure 4.8) show the scene that was recorded by Kubicek [1]
with a Kinect v2 sensor. The image on the left shows the scene without a chair, while
the image on the right shows the scene after adding a chair. The objective is for the
pipeline to detect that the chair was added to the scene and not detect spurious changes
due to noise.

Figure 4.8: Depth images of the real-world scene without and with a chair.

The following visualization (4.9) shows the voxel towers after rasterizing ellipsoids,
showing the Surface intervals representing the scene with the chair. The visualization
here uses a gray-scale color map to show the depth values of the intervals, instead of the
usual red color, to enhance the differentiability of the objects in the room.

The change detection, as per section 3.3, identifies the chair as added geometry (Figure
4.10), with Added intervals in red.

As described in the section 3.3, the change detection algorithm works by comparing two
voxel grids pairwise on the voxel tower level. This real-world example underlines the
issue mentioned in the change detection section regarding the use of two voxel grids of
different dimensions. Even though the camera position and resolution are the same for
both depth images, the resulting voxel grid for the scene without the chair measures
420x455, while the scene with the chair measures 420x437. The difference arises from the
fact that the depth values at the border of the depth image are slightly different, which
propagates through the noise-model to different ellipsoid semi-axes lengths and, in turn,
different voxel grid sizes.

According to the Table 4.9, the performance characteristics of the real-world data closely
align with the ones from the artificial data. The main observation for this example is
the 197.73 ms runtime required for the voxel grid comparison. This computational cost
arises from the need to check neighboring voxel towers for interval matches. The runtime
scales with the radius of neighboring voxel towers to check. Choosing the radius is a
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Figure 4.9: 3D Visualization of voxel towers after rasterizing ellipsoids, showing the
Surface intervals representing the chair room scene’s surface.

Table 4.8: Runtime configuration of the chair scene.

Parameter Without Chair With Chair

Depth image 100x82 100x82
Side length 1.000000 1.000000
Voxel Grid 420 × 455 420 × 437
No. of triangles 31720 31732
No. of ellipsoids 8111 8114
Total Primitives 39831 39846
Maximum Intervals in a Tower 22 22
Average Intervals per Tower 1.68 1.72

trade-off of speed versus the likelihood of having spurious, alone standing intervals in the
resulting grid.

Even though the original depth image for the real-world data is just 100x82 compared
to the 320x240 for the artificial data, the memory consumption is quite similar. This
is because in the artificial depth images, a major part of the image was just black
background, which is interpreted as no surface. Therefore, no primitives are generated
for most of the images pixels. In comparison, the real data set, captures an indoor
scene and all of the pixels turn out to be representing surface. This leads to a similar
number of primitives for the artificial and real data. Another reason for why the memory
consumption for the real-data are relatively larger is that the semi-axes lengths of the
ellipsoids provided by the noise model are substantially bigger than the arbitrary ones
used in the artificial data. Bigger ellipsoids lead to more voxel tower intersections, which,
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Figure 4.10: 3D Visualization of voxel towers after change detection, showing the Added
intervals representing the changes between the two scenes.

in turn, lead to more intervals that need to be stored.

4.2.1 Potential Performance and Memory Usage Improvements

Given that the runtime performance and definitely memory usage could become a limiting
factor in more complex and bigger scenes, the following outlines a few possible ways to
improve the pipeline in that regard. As discussed in the previous sections covering the
memory usage of the pipeline in the context of the different scenes, the biggest memory
usage bottlenecks are the interval storage and the primitive index buffer storing 32 bit
integers. The index buffer could in theory use less bits for the indices, depending on the
number of primitives generated from the depth image. In the test cases presented in this
chapter, 32 bit indices are required.

If it is possible to coarsen the spatial resolution in the x and y dimensions, the single
biggest improvement to memory usage is to increase the side-length of the voxel towers.
For example, the airplane scene requires 2838 MB of GPU memory with a side-length
of 1.0 (Table 4.3); A doubling of the side-length to 2.0 drops the memory usage to 750
MB. Increasing it further to 4.0, the required memory amounts to 207 MB. This means
that with each doubling of the side-length, the memory usage is reduced by a factor of
approximately 3.7.
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Figure 4.11: Voxel grid of containing changes overlapped with the original depth image.

Table 4.9: Chronological CPU and GPU timings for the chair scene.

Phase Without Chair With Chair

1. Ellipsoid Construction 1.72 ms 1.71 ms
2. GPU Initialization 2.23 ms 1.90 ms
3. CPU → GPU Transfer 6.24 ms 0.31 ms
4. GPU Pipeline (Total) 123.35 111.88 ms

Stage 1: Precompute Ranges 0.06 ms 0.03 ms
Stage 2: Count Primitives 9.80 ms 9.19 ms
Stage 3: Prefix Scan & Allocation 72.39 ms 66.37 ms
Stage 4: Fill Bins 20.94 ms 19.21 ms
Stage 5: Rasterize Bins 9.87 ms 8.88 ms
Stage 6: Merge Intervals 10.28 ms 8.20 ms

5. Change Detection 197.73 ms
6. GPU → CPU Transfer (Readback) 0.43 ms
Total E2E (CPU + GPU) 133.55 ms 115.80 ms

Alternatively, if increasing the side-length is not an option, the next best option is to
reduce the precision of the interval positions. Right now, the positions are stored as
32 bit floats. Reducing these to 16 bit would reduce the memory usage of the interval
storage, which makes up the largest part of the memory requirement, by a factor of 1.8.

A possible optimization to avoid the memory usage bottleneck with no loss of precision
is streaming the memory from the CPU to the GPU as needed. This would allow for
processing larger scenes that don’t fit into the GPU memory at once. But it may come
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Table 4.10: GPU memory usage of the chair scene.

Memory Component Without Chair With Chair Comparison Result

Triangles + Ellipsoids 1.27 MB 1.28 MB -
Towers + Intervals 1845.47 MB 1703.02 MB 0.08 MB
Binning Buffers 2.19 MB 2.19 MB 1.46 MB
Primitive Index Buffer 919.68 MB 848.45 MB -
Total 2768.62 MB 2554.94 MB 1.54 MB

at the cost of increased runtime.

The biggest runtime consumer appears then to be the allocation of GPU buffers, which is
done after the prefix scan. The performance bottleneck caused by the buffer allocations
arises primarily from the high-latency synchronization required by the memory copy
operations. The prefix scan by itself takes around 1 ms on all tested scenes, while the
entire stage takes around 60-80 ms. After the prefix scan is done, the result is read back
from the GPU. This information is required to allocate buffers of the proper size. The
performance of this stage could be improved by avoiding the read back from the GPU
and using persistently allocated buffers.

The second biggest performance consumer is the filling of the bins. This refers to the
stage in which primitives are assigned to the voxel towers. The bottleneck here is the
usage of global atomic operations. This could be reduced by using atomic operations in
shared-memory instead, or utilizing warp-level synchronization.
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CHAPTER 5
Conclusion

This thesis has addressed the critical challenges in 3D change detection with interactive
performance by extending and optimizing a voxel-based scene representation originally
proposed by Kubicek [1]. By introducing a fully parallelized GPU-accelerated pipeline
implemented in CUDA, replacing quad-based surface primitives with uncertainty-aware
ellipsoids, the proposed system achieves significant advancements in computational
efficiency, noise robustness, and scalability. These contributions enable the reliable
processing of large-scale depth images from commodity sensors like the Kinect v2,
transforming raw 2D depth data into compact 3D voxel towers that allow precise spatial
comparisons.

The experimental evaluation on both artificial and real-world datasets validates the
efficacy of these enhancements. On noise-free artificial scenes, such as the planar surface
and angel statue models, the pipeline demonstrates accurate rasterization of Surface and
Seen intervals, with end-to-end processing times under 500 ms, well within interactive
constraints. Memory consumption, peaking at approximately 2.8 GB on an NVIDIA
RTX 3070, highlights scalability limits for more complex, highly detailed scenes. A
more coarse voxel grid, by increasing the side lengths, reduces the memory consumption
substantially.

In real-world scenarios, the ellipsoid representation effectively models sensor-specific noise
characteristics to mitigate spurious interval generation. The addition of a chair to an
indoor scene was detected as added geometry with minimal false positives, demonstrating
the system’s resilience to depth inaccuracies and minor misalignments between voxel
grids.

Despite the successful improvements, there remain multiple opportunities for further, big
improvements. For instance, performance and memory consumption can be improved
further. In particular, the current synchronous GPU-CPU transfers, CPU-based primitive
generation as well as the CPU comparison represent leave a lot of room for optimization.
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Memory efficiency might also be improved by halfing the precision of interval storage or
on-demand streaming of memory.
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Overview of Generative AI Tools
Used

To improve the correctness and clarity of the writing in this thesis, I used Gemini 2.5
Flash for text refinement. The prompt I used was "Review the following text and look
for spelling and grammar errors. Also, suggest alternative words and phrases to improve
clarity. Ensure that the original meaning is not altered."
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