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Kurzfassung

Das Untersuchen und Verstehen von Daten sind alltäglicher Bestandteil der Arbeit vieler
Fachläute. Das kann ein schwieriges Unterfangen sein, wenn die Menge an Daten so
groß ist, dass sie schwer zu überschauen sind. Eine sehr effektive Methode, um einen
schnellen Überblick über die Strukturen und Zusammenhänge in einem Datensatz zu
bekommen, is diesen visuell darzustellen. Oft ist dies aber aufgrund der Größe und hoch-
dimensionalen Charakteristik des Datensatzes nicht so leicht möglich. Machine Learning
Modelle können zwar mit der Organisation und Klassifizierung der Daten helfen, jedoch
benötigen diese oft Unmengen an beschrifteten Trainingsdaten, welche oft kostspielig
und umständlich zu beschaffen sind. Deshalb sind Modelle besonders interessant, welche
Daten zuverlässig auf Basis von nur wenigen Beispieldaten klassifizieren können. Eine
solche Art von Modellen sind sogenannte prototypische Netzwerke. Diese sind in der Lage,
Daten so in einen niedrigdimensionalen Raum einzubetten, dass sich ähnliche Daten um
einen klassenspezifischen Prototypen scharen.

Im Rahmen dieser Arbeit untersuchen wir, ob der Einbettungsraum eines prototypi-
schen Netzwerks eine brauchbare Methode darstellt, um hoch-dimensionale Daten in
einem zwei-dimensionalen Scatter Plot zu visualisieren. Das Ziel ist es, die Dimensio-
nalität von Daten mit Hilfe eines prototyischen Netzwerks so zu reduzieren, dass die
hoch-dimensionalen Strukturen und Relationen erhalten bleiben. Daraus soll eine zwei-
dimensionale Repräsentation der Daten entstehen, in welcher ähnliche Datenpunkte
zusammenhängende Gruppierungen bilden. Diesen Ansatz vergleichen wir mit anderen
überwachten und unüberwachten Methoden zur Reduzierung der Datendimensionalität.
Mit Hilfe quantitativer Experimente, in denen wir die Separierung verschiedener Klassen
von Daten anhand statistischer Größen bemessen, sowie qualitativer Untersuchung unserer
Ergebnisse, kommen wir zu dem Schluss, dass unser ProtoNet Ansatz eine genau so gute,
wenn nicht bessere, Separierung der Daten erzeugen kann wie die anderen untersuchten
Methoden.
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Abstract

Making sense of data is something that many professionals are required to do on a daily
basis. This can be a difficult task if the amount of data is so large that it can not be
easily examined. One effective method of quickly getting an overview of data structure is
visualization, but this is not always a feasible solution with large data due to the sheer
amount of data and also the potentially high dimensionality. Machine learning models
can help with with the organization and classification of data, but they often require
large quantities of labeled training data, which is frequently not readily available. This is
why models that can reliably classify data based on only few examples for each class are
an interesting topic of research. One such kind of model are prototypical networks. They
utilizes few samples to create an embedding space in fewer dimensions, in which similar
data points cluster around a single class prototype.

In this thesis, we investigate if the embedding space of a prototypical network makes
for a good approach for the purpose of visualizing high-dimensional, unstructured data.
The goal is to reduce the dimensionality of the data in such a way that the high-
dimensional relations and structures between data points are preserved, resulting in 2D
representations of the data that form coherent class clusters in a scatter plot visualization.
This approach is compared with, and evaluated against, other well known supervised and
unsupervised dimensionality reduction techniques. Through quantitative experiments
relying on statistical measures, as well as a qualitative evaluation of our results, we
find that our ProtoNet is capable of producing point embeddings in which the spatial
separation of classes is as good or better than the other methods.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
In many fields of science, data analysts have to make sense of huge amounts of unstructured
data. This can be an incredibly difficult task when they do not even know what exactly
they are looking for. Oftentimes, the most interesting parts of the data are patterns
that were not previously expected. Humans can best detect patterns through visual
representations, but visualizing enormous sets of high-dimensional data can quickly
become unclear and confusing, both because high-dimensional data cannot be directly
visualized and the more data we try to visualize at once, the harder it gets to read. That
is why the data needs to be selectively sampled and visualized in a fashion that makes it
clear for the user without jeopardizing the original structure of the data.

One very common way to visualize high-dimensional data is to embed the data in a
low-dimensional space. To achieve this, the data is projected on a lower-dimensional
manifold where the goal is to preserve the high-dimensional structures and relations
after the transformation of the data. Most commonly, a distance function is used to
determine similarity between data points. This, in turn, determines the positioning of
the data points in the new data space. There are both linear and non-linear variations
of dimensionality reduction (DR) algorithms. These categories refer to the underlying
topologies that the algorithms can learn. A linear dimension reduction (e.g. Principle
Component Analysis) can only learn a linear representation of the data, meaning that the
output axes of the reduced data space will be linear combinations of the original features,
while non-linear algorithms are capable of learning more complex structures. While linear
reduction is oftentimes faster, the limitations it poses on the data transformation can
lead to a lack in outcome quality. This is particularly true when the data lies on a lower-
dimensional non-linear manifold (“Swiss Roll” [RS00]). DR exceeds other visualizations
of high-dimensional data, such as parallel coordinate plots, in terms of scalability, but
suffers from a certain degree of information loss due to the data transformation.
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1. Introduction

One key aspect of the data that should be preserved even through data transformation
is class structure, i.e., clustering of similar data points. By plotting data points on
a scatter plot, where between-point similarities are preserved, users can gain a quick
understanding of the observed data. This allows to make visible both relationships that
the user would expect in the data and also such structures that are maybe entirely new to
the user’s understanding and therefore unexpected and beneficial for deepening the user’s
understanding. But problems arise when the data is completely unknown. Traditional
machine learning classifiers only provide limited generalization ability, meaning they need
large amounts of labeled ground truth data for training and they falter when it comes to
identifying classes where no, or only few, examples were present in the training data.

Now what if the entire dataset is completely unlabeled? The concept of few-shot learning
describes a number of machine learning algorithms that aim to confidently classify items
even when there are only a few selected examples available for training, or even when
there are classes without any training samples to begin with (zero-shot learning). One
example that has been shown to be reliable for these kinds of tasks are prototypical
networks (PN). A PN will learn an embedding space with the goal to minimize the
distance between the few available samples with the same label and an artificial class
prototype. Unknown data items should then cluster around the prototype they are most
similar to. In the scope of this thesis, we are dealing with image datasets containing large
amounts of unlabeled data that are challenging to reasonably visualize with a traditional
scatter plot projection. We want to investigate to what extent we can use the class
prototypes produced by PN to improve the layout of scatter plots. We want to see if they
can be used as meaningful samples of the original data and whether the layout produced
by PN displays distinguishable clusters that represent the actual class structure within
the data.

1.2 Aim of the Work

The problem we are dealing with is large amounts of unlabeled image data that we want
to visualize so that a human user can easily detect cluster structures and determine
whether the data structure resembles what they would have expected from the data and
whether there are other unexpected classes. Since this problem is very akin to few shot
learning problems, we propose to use a prototypical network as our data transformation
method, as these networks have been shown to produce state-of-the-art results for such
problems. The hypothesis is that prototypical networks are a useful tool for generating
scatter plot visualizations from large datasets where the goal is to show class structures
according to the user’s preconceived mental model of the data, i.e., what classes they
expect to find in the data. This is implied by the labeled samples that are selected for the
PN. The goal of this thesis is to explore how well PNs are suited to tackle this problem
compared to other, more traditional DR methods like Uniform Manifold Approximation
and Projection (UMAP), semi-supervised UMAP, or Linear Discriminant Analysis (LDA).
To work towards this goal, this thesis aims to answer the following four research questions:
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1.3. Methods Overview

R1) How does the interpretation of unstructured data differ between projections based
on prototypical networks and traditional unsupervised or supervised dimensionality
reduction methods?

R2) How does the computational performance differ between these methods?

R3) How can we effectively visualize prototypes and other data items, especially for
very large datasets?

R4) How well can prototypical network-based data visualization be integrated into
interactive visual analysis of large, unstructured data?

1.3 Methods Overview
Answering these questions is done using two separate methodological approaches. R1)
and R2) are explored through exhaustive quantitative experiments on a variety of
datasets. Applying the different dimensionality reduction methods and visualizing the
resulting output allows us to directly measure the computational performance. At the
same time we can apply state-of-the-art metrics to evaluate the visual separation quality
of the scatter plots. We use metrics that have been proven to score scatter plot layouts in
a way that coincides with human’s interpretation of what a well separated cluster layout
is. Using these metrics, we can find which of our methods produce plots that are easiest
to interpret thanks to the clearest separation of ground truth classes.

For the investigation of R3) and R4) we create an interactive visualization interface,
where users can explore different datasets. Using this visualization, we can learn how
to best represent the available data in a way that is comprehensive to the user. The
suitability for interactive visual analysis can be assessed by investigating how well the
visualization can deal with edge cases, where, for instance, classes in the dataset had
no labeled samples at all and were therefore completely disregarded in the training
of the prototypical network. A qualitative inspection based on selected use cases will
demonstrate the strengths and limitations of our chosen methods. We can call our
method a success if these disregarded classes are nonetheless discernible in the resulting
scatter plot.

1.4 Contribution
In the scope of this thesis, we introduce a novel use for prototypical networks. To
the best of our knowledge, prototypical networks have never been investigated in the
context of high-dimensional data visualization or comprehensive sampling. Through
rigorous experiments, we can show that this technique can add valuable benefits to
the similarity-preserving quality of the dimensionality reduction step in comparison to
other semi- and unsupervised techniques. We furthermore present the prototype of
a visualization interface, allowing users to explore the class structure of datasets and
investigate representative samples and outliers.
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1.5 Outline
The structure of this thesis will be as follows: In Chapter 2, we introduce the underlying
basic concepts and technologies that are the building blocks of this thesis. This includes the
visualization of high-dimensional data and dimensionality reduction, prototypical networks
and their intended use, and traditional sampling techniques. Chapter 3 introduces the
basic steps of an interactive machine learning visualization and how we execute these
steps. We explain our design choices and showcase the functionality of our prototype
implementation. In Chapter 4, we then go into more detail on the technical aspects
of our implementation. We highlight the necessary pre-processing steps, our version of
the prototypical network, as well as the algorithms used to pick representative samples.
The outcome of our experiments will be reported in detail in Chapter 5, as well as a
qualitative walkthrough of our application. The evaluation of the reported results will
be discussed in Chapter 6. Finally, Chapter 7 brings the thesis to a close with a final
summary of the contents of this thesis, the limitations of this work an outlook on future
work.
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CHAPTER 2
Background & Related Work

In this chapter, we introduce the concepts and technologies that make up the underlying
principles and basis for our work. We take a look at what these concepts are, how they
have been applied by others, and how they tie into our work.

2.1 High-Dimensional Data
Visualizing high-dimensional data in a comprehensive manner has been a well studied
topic for a long time. Many different techniques have been developed for a myriad of use
cases. Liu et al. [LMW+16] have summarized many of these techniques and provided a
comprehensive survey of advances in high-dimensional data visualization. They group
visualization techniques into three different categories based on where in the visualization
pipeline these techniques are applied. These three categories are data transformation,
visual mapping, and view transformation.

The most relevant category for this thesis are techniques that are used during data trans-
formation. This includes dimensionality reduction techniques which we will investigate,
such as PCA [JC16] or LDA [BG98]. But there are also other approaches like subspace
clustering [TFH11][CFZ99][Vid11], where multiple embeddings of the data are identified
to capture different aspects of the data, or topological data analysis [HLH+16], where
mathematical disciplines are combined with computer science to describe the shape of
the data.

For techniques that are used during the visual mapping, Liu et al. [LMW+16] give exam-
ples such as axis-based methods. This includes well known visualizations like scatter plot
matrices and parallel coordinate plots [HW13], where different dimensions of the data are
directly mapped to axes of the visualization plot. These techniques are less relevant for un-
structured data, as the axes carry little meaning for that kind of data. It also includes other
approaches like encoding dimensions in glyphs [Che73][CHUW08][CGSQ11], using sepa-
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2. Background & Related Work

rate displays for dimensions where information is encoded in each pixel [KK94][YPH+04],
or animations [HR07].

The third category of techniques that apply during view transformation includes examples
such as illustrative rendering [SW09][JLJC05], which is the use of artistic rendering
techniques to highlight certain parts of a visualization, using color blending, or utilising
image space metrics [DK10][WAG05], all to accentuate different aspects of the data.

As stated, the most relevant family of methods for working with high-dimensional data
for this thesis is dimensionality reduction (DR). The goal of DR is to find an optimal
representation of the data within a space of fewer dimensions (ideally two or three for
visualization), where local and global structures within the data are preserved. Methods
for DR can be roughly grouped into two categories: linear and nonlinear. Linear methods
mostly use statistical analysis methods to find linear combinations of the original features
that make up the axes of a lower dimensional space. This makes them often easier
to calculate and require less computational power, but also restricts their flexibility in
terms of data mapping. Some prominent examples of linear DR are Principle Component
Analysis (PCA) [JC16], Linear Discriminant Analysis [BG98], or Independent Component
Analysis (ICA) [WC06]. Nonlinear methods, on the other hand, are computationally
more expensive, as they have to learn embedding functions that transform the data to a
new space of fewer dimensions. Nonlinear methods include, e.g., Self Organizing Maps
(SOM) [Koh90], t-Distributed Stochastic Neighbor Embedding (t-SNE) [VdMH08], or
Uniform Manifold Approximation and Projection (UMAP) [MHM18].

One obvious drawback of reducing the dimensions of the data is the inevitable loss
of information. In order to map the data into fewer dimensions, much information
needs to be condensed, converted, or removed. This loss tends to grow the higher the
dimensionality of the original data is. Since we start out with image data, and our
visualization space is two-dimensional, we can potentially lose a lot of information when
applying DR methods. To minimize this information loss, Choo et al. [CBP09] proposed
a two-stage framework for the visualization of clustered high-dimensional data. They
argue that a single DR method can only achieve a certain optimal reduced dimension,
which is often larger than two. Therefore, they apply one DR method to reduce the
dimensionality of data to a certain optimal target dimension based on some optimization
criteria, and then further reduce the data to a two-dimensional space with another
DR method. In their experiments, the best results could be achieved when using LDA
followed by PCA. They were, however, only investigating linear DR methods. For this
thesis, we also adopt a multi-stage framework to find two-dimensional embeddings for
images, so that their cluster structure can be visualized. The first stage can rather be
viewed as a data preparation step, as it is preemptively performed on all the datasets. It
is comprised of a feature extraction method called DINO (more detail in 3.1), while the
later stage is made up of the different DR methods that we want to compare.
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2.2. Interactive Machine Learning

2.2 Interactive Machine Learning
Machine Learning (ML), in it’s basic sense, is an automatic process, where data and
algorithms are used to imitate the way humans learn. The actual inner workings of such
ML processes are often obscure and hidden like in a ”black box“. We know what data
we put into the model, and we know what outcome is produced. In between there is no
interaction by a user. Fully automatic ML technologies have been very successful, e.g,
voice recognition or self-driving cars, but for highly complex domains, like biomedicine,
to forgo human domain knowledge can be a disadvantage.

Interactive Machine Learning (IML), on the other hand, is a combination of human
expertise and computational power. There is still an algorithm that learns to produce a
certain output from input data, but now human reasoning is introduced into the mix.
The idea of IML is based on three approaches. First, Reinforcement Learning (RL)
is a method where an artificial intelligence is trained to act in a way that maximizes
some kind of reward. This training involves not correct input-output pairs, but rather a
trial-and-error approach to find the best outcome [NiA24]. Second, Preference Learning
is a specialization of RL and describes systems, where the ranking of the predicted output
is important [FH10]. And third, Active Learning describes systems, where the algorithm
is allowed to ask for a human annotator to label select data instances during training
[Set09]. The key aspect of all these approaches is that the learning part is not based
solely on the computer, but done in cooperation with a human expert.

IML can be used in all sorts of domains and applications. Berg et al. [BKK+19] describe
an IML system for (bio)image analysis, where users can influence the decision making of
the ML classifier by annotating images. Choo et al. introduce UTOPIAN [CLRP13], a
visual analytics system for topic modeling used in the analysis of text document collections,
where users are able to steer the results. Morpheus by Müller et al. [MAK+08] is a
visualization tool that enables users to explore subspace clusters of high-dimensional data
where they can see the effects of different parameter settings and can provide feedback
to the system to improve the subspace clustering.

This is already very akin to the approach we investigate in this thesis. We want a user to
be able to explore the class structure of image data in a low-dimensional subspace where
the user can iteratively provide samples to train and refine the embedding methods.

2.3 Prototypical Networks
Prototypical networks come from the classification domain and have first been introduced
by Snell et al. in 2017 [SSZ17b]. They are a type of machine learning classifier that aims
to address few-shot classification problems. In their survey on few-shot learning, Wang
et al. [WYKN20] define few-shot learning as a type of machine learning problem where
the experience of the program, i.e., the training data consists of only a limited number of
examples for which supervised information is available. The core idea of prototypical
networks is that an embedding space exists, where all points of a certain class cluster
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2. Background & Related Work

around a class prototype. A neural network is used to create such an embedding, where
these class prototypes are generated by averaging the positions of the respective (few)
training samples in the embedding space. Unknown data is then classified by computing
the distance in the metric space of the items to the prototype representations of each
class. The nearest prototype decides the classification result.

The creators of prototypical networks have used them for image classification benchmark
tests, but prototypical networks like this have also been used and adapted for various
tasks in different domains. They have, e.g., been applied for Named Entity Recognition
[FLK19], Event Detection [DZK+20], or Relation Classification [FBSL19] [GHLS19] in
the field of natural language processing. Extensions are, e.g., Gaussian Prototypical
Networks [For17], where a confidence region and uncertainties are introduced, or Improved
Prototypical Networks [JCY+20], where weighted prototypes are generated by weighting
samples based on their class representativeness.

All these applications and variations of prototypical networks aim to solve classification
problems, but for this thesis, we are only marginally interested in the classification of
the data. We want to find low-dimensional representations of image data that can be
visualized while maintaining the high-dimensional structure inherent to the data. We
believe that the metric space learned by prototypical networks can be a useful step to
achieve this goal, which is why we try to re-imagine prototypical networks as a form of
dimensionality reduction for the visualization of large, unstructured image data.

Besides prototypical networks, other approaches have been developed to address few-shot
learning in various domains. A prominent use for few-shot learning are classification
tasks. Similar to prototypical networks, Vinyals et al. [VBL+16] describe matching
networks for image classification. Yu et al. [YGY+18] classify text based on sentiment
from short examples, and Fei-Fei et al. [FFFP06] use few-shot learning to perform object
recognition. Few-shot learning can also be utilized for regression problems. For example
Finn et al. [FAL17] and Yoon et al. [YKD+18] both use few samples of input and output
pairs of a function to estimate the regression function itself.

2.4 Scatter Plot Visualization
Scatter plots are one of the most versatile and commonly used methods to visualize data
in a two-dimensional space. They are defined as a plot of two typically orthogonal axes
on which an item is displayed as a single point or other mark positioned according to
two variables along the two axes [FD05]. The aim is to display the relation of the two
variables. Today, scatter plots have long outgrown the simple display of two variables
against each other. There are many techniques that enhance the capabilities of the
scatter plot by, e.g., including more than two dimensions through shape, size, or color of
the marks used to display individual items, or utilizing multiple plots in a scatter plot
matrix. With the growing size of data, traditional scatter plots can struggle to effectively
display all the relevant information due to overlapping marks. To combat this, numerous
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adaptations like collecting items in bins [CLNL87] or abstracting the information by
blending densely packed areas of the plot into contiguous blobs [MG13].

In this thesis, we choose the scatter plot as our method of visualization, because we are
interested in the spacial proximity of individual data items in a two-dimensional space
and their class membership. We can use the two-dimensional coordinates we calculate
through dimensionality reduction to position these data items on the plot and the color
to portray class membership. By aggregating points into density based contour lines, we
address the issue of overplotting.

2.5 Representative Sampling
When dealing with very large amounts of data, it is often not easily possible to reasonably
present it all. Big data can lead to crowded, uninformative displays where the sheer
number of things to display can outnumber the resolution of the screen [LJH13]. This is
especially true for our scatter plot visualizations, where the screen space is limited and
potentially thousands of marks need to be placed. A straight forward solution to this
problem would be to simply not display all of the data at once. But then we need to
make the decision of what data to keep and what data to omit. When analyzing a subset
of the data, we want it to be representative of the whole data, but random sampling,
where every point of data has the same probability of being chosen, may fail to capture
key structures and outliers in the data. More informed probabilistic sampling methods
like sorting the data and selecting points at regular intervals or sampling from disjoint
subgroups of the data can mitigate this effect, but they need prior knowledge of the
data. A different strategy is the aggregation of data into predefined bins. Here, data
is represented on a plot based on how many data points fall into a certain area. Such
binning strategies have the advantage that they account for all the data and can be
applied in different resolutions depending on the available visualization space [EF09]. A
kind of aggregation strategy that we use in this thesis is when we display the points in
our scatter plot as density based contour lines.

One interesting sampling strategy for our thesis is introduced in the paper ”Examples
are not Enough, Learn to Criticize¡‘ by Kim et al. [KKK16]. In this paper, they
describe a framework they call ”MMD-critic“, where they (1) calculate a number of
prototype samples based on the distribution of all data points and (2) also find additional
points in the data space that are not well represented by the chosen samples. These
underrepresented samples they call criticism points. The MMD in MMD-critic stands for
the statistical measure of maximum mean discrepancy, which measures the similarity
between points and potential new samples which are selected to maximize the statistic.
To find criticism points they employ a witness function that compares the distribution of
the data itself and the chosen samples. Where these distributions least align, a criticism
point is identified. We make use of the MMD-critic framework both for finding prototypes
in our unsupervised DR method and also for data exploration purposes when identifying
areas in our visualizations that are underrepresented by the given prototypes.
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CHAPTER 3
Methodology

3.1 Interactive Machine Learning Visualization
Based on typical components from ML and VA pipelines, Sacha et al. [SSZ+17a] have
conceived a framework that functions as a basis to describe the steps that are typically
taken during the design of a visual IML interface (Figure 3.1). We will follow this
framework to explain our approach, and describe what actions we have taken at all of
these steps to create an effective IML process.

Edits & Enrichment (A). This first part of the framework is mostly dominated by
actions that are directly controlled by the human user. The user is choosing what data to
insert into the pipeline and what aspects of the data to consider. Depending on the task,
a domain expert may need to sort through the data, group it into classes, assign labels,

Figure 3.1: A framework describing an interactive VA/ML pipeline [SSZ+17a].
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3. Methodology

and create test and training splits for the system to be trained on. This can also include
various other actions that directly manipulate the contents of the dataset, like filtering
the available data for certain relevant aspects, detecting missing or invalid values and
substituting them with valid replacements. As part of an interactive system, the data
analyst might want to perform these actions repeatedly over the course of their analysis
task. This can be useful when trying to get a new perspective on the data or exploring
what-if scenarios.

We have performed similar actions at the start of our visualization process. We have
chosen and prepared various datasets of images on the basis that they contain a decently
large number of images that are fully labeled with each one belonging to a single ground
truth classes. For the purpose of our experiments, labeled training data and unlabeled
test data is automatically selected from these datasets. In an actual IML-scenario, the
test data would most likely span the entire dataset and the few labeled training samples
would be handpicked by the data analyst.

Preparation (B) . The preparation part, according to Sacha et al., includes operations
that are universally applied to all items across the dataset. This is in contrast to edits
and enrichment activities, where changes can be selectively made only to certain parts of
the data. Typical preparation operations that are performed on data before introducing
it to a ML model include standardization, scaling, Fourier or wavelet transformation, or
weighting of data features.

For our pipeline, we perform only one major transformation of our image data. After
initially working with raw image data, i.e. pixel values, we decided to apply a feature
extraction algorithm to our data to gain uniform feature vectors. This decision was to
the benefit of both quality of output and computational performance. The method we
chose to extract representative feature vectors from our images is DINO, a self-supervised
approach introduced by Caron et al.[CTM+21] at Facebook AI research. DINO is a
self-supervised approach which stands for knowledge distillation with no labels. DINO
works by feeding input to two identical networks with different parameters, one serving
as a teacher and the other as a student network. Both these networks receive different
transformations of the same input image and the goal is for the student to predict the
output of the teacher. The similarity of the outputs is measured with cross-entropy
loss and the teacher parameters are updated with an exponential moving average of the
student parameters. The DINO architecture works for both Vision Transformer and
Convolutional Nets. Since the student network is trained to predict the teacher’s output
based on different views of the same images, and the teacher is updated based on the
student parameters, both networks learn to make representations that focus on the parts
of the images that make up the prevalent objects in the image. This produces vectors of
uniform length that represent attention maps that depict the most prominent features in
an image. Since the images in our datasets are fixed and will not be modified throughout
all our experiments, we performed this transformation of the images only once in advance
for all the datasets and saved the resulting representations to be used as the input for
our system.

12



3.1. Interactive Machine Learning Visualization

Model Selection & Building (C). In a typical IML setup, domain experts would at
this point be able to interact with the core aspects of the model that they use. This
ranges from choosing different algorithms to process the data, to directly manipulating
model (hyper-)parameters. For the process followed in this thesis, there is no direct
interaction with the ML algorithms. The available models and algorithms are, however,
thoroughly tested with a variety of parameterizations throughout all our experiments in
order to find configurations that produce the best results on our datasets. We explore
prototypical networks as the main target for our research and compare them to both
unsupervised and semi-supervised UMAP [MHM18] and LDA [BG98]. We also briefly
experiment with PCA [JC16]. These are all methods for computing a 2D representation
of high-dimensional data with the aim of preserving neighborhood structures. We chose
UMAP because it is de facto the state-of-the-art when it comes to DR. It uses similar
techniques to previous well-performing algorithms like t-distributed stochastic neighbor
embedding (t-SNE) [VdMH08]. They both compute a graph in high-dimensional space
and optimize a low-dimensional layout that is as structurally similar as possible. The
main advantage that UMAP presents over t-SNE is computation time, as well as a
stronger emphasis on separating global structures. The unsupervised version of this
algorithm operates on completely unlabeled data, whereas the semi-supervised version
allows for some part of the data to be labeled while the rest remains unlabeled. This
also resembles few-shot learning, the task that we use prototypical networks for, where
we operate on few labeled examples to obtain an embedding that groups similar data.
The other algorithm that has been more closely investigated is LDA, a technique that is
designed to maximize the ratio of between-class variance to the within-class variance,
resulting in maximal separability [BG98]. Since this is not a graph based technique, but
one that operates on matrices, it is expected to run much faster, but our experiments
will show that the outcome will show significantly worse separability.

Exploration & Direct Manipulation (D). At this point in the pipeline, the ML
systems have performed their tasks and the results need to be displayed to the user. For
this, there are numerous known visualization techniques for any sort of data format. The
aim is to allow the user to explore the data with various interaction techniques, such as
selecting, zooming, panning, or changing views. But the transformed data is far from
the only interesting thing that can be visualized. Depending on their expertise, the user
might be interested to see the inner workings of the ML pipeline. In an interactive system,
where model characteristics can be iteratively changed, visualizing model parameters and
structures can help identify points where promising changes could be made.

In our visualization, we focus primarily on the aspects that convey information about
the data. As we are mostly interested in the separation of classes, the main body of our
interface is the area for displaying the color-coded data points. Users have the choice
between two types of visualization: Either a scatter plot, where all data points are
rendered in their class-specific color (Figure 3.2a), or a representation of the data using
colored contour lines that show the distribution and density of the data (Figure 3.2b). In
both cases, the class prototypes that were calculated are highlighted. Users can hover
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prototypes to view the images that lie closest to these prototypes. In addition, users
are able to request any number of so-called criticism points. These are data points that
are poorly represented by the distribution of class prototypes and therefore most likely
candidates for misclassified outliers or probable locations for additional classes that were
not initially considered. Changes the user can make to influence the next iteration of the
system are as follows: Choose the dataset to analyse, select the method with which to
calculate the data distribution (options are ProtoNet or unsupervised UMAP), pick the
number of classes that the dataset should be separated into, and select the number of
labeled samples that are available during training.

(a) (b)

Figure 3.2: Visualization of PACS Photo dataset [LYSH17], using (a) all data points and
(b) contour lines.

Execution & Evaluation (E). This stage of the pipeline is somewhat separated from
the rest. It describes the overarching engagement of the user with the rest of the pipeline.
The user is now able to observe and interpret the results, evaluate their findings, and
execute interactions. What happens at this stage is very dependent on the task the
user intends to achieve. In the case of our system, this is the point where we interpret
the quality of the created visualizations by comparing the metrics we calculate for the
different dimensionality reduction techniques. Over the course of our experiments, we
repeatedly execute and adjust the steps in our pipeline, measure results, and interpret
the findings in order to answer our research questions.

3.2 Measurements
To be able to evaluate the quality of the scatter plot layouts produced by the different
methods we applied, we need to calculate some metrics to describe the differences and
argue why one method might produce better results than the others. The main quality
that we are looking for is the clean spatial separability of clusters containing items
belonging to the same ground truth class. We also want visualizations that intuitively

14



3.2. Measurements

highlight links and correlations between classes, as well as class outliers. The less
the clusters overlap and the less items from different classes are mixed, the more the
visualization represents the actual differences that can be observed in the data. All
these factors coalesce in our first research question (R1), which aims to find out how
the interpretation of unstructured data differs between projections based on different
dimensionality reduction techniques.

3.2.1 Distance Consistency
One very popular measure to quantify separability in a 2D scatter plot is distance
consistency (DSC) introduced by Sips et al. [SNLH09]. They initially conceived this
measure to rate and compare different 2D views of high-dimensional data where they
would calculate this measure for visualizations of pairs of attributes. They describe such
a view as consistent with the structure of the data if the m classes in the data are mapped
to regions in the scatter plot that are visually separable. To measure this separability,
they calculate Centroid Distance (CD). This denotes, whether the distance of each data
point to the centroid of all data points belonging to the same class is minimal compared
to all other class centroids. DSC is then defined as the classification error across all
data points, meaning the percentage of all data points for which CD is not true. Sips et
al. normalize their scores across all combinations of attributes to a scale of 0 to 100 to
reach better interpretability. In a similar fashion, we calculate DSC for our single 2D
representation of the data but use the inverse score, i.e. the percentage of data points
that are closest to their own cluster center, to reach a score where 100 means perfect
separability and 0 is no separability at all. Through experiments of their own, Sips et
al. were able to show that scatter plots that were rated high by DSC were the same plots
that human observers picked to be well separated. Since DSC can achieve this good
correlation with human interpretation, we use it to identify the differences in human
interpretability between the different techniques we are investigating.

3.2.2 Gamma Observable Neighborhood
With the explicit goal to build better visual separation measures that better resemble
the human perception of color-coded scatter plots, Aupetit and Sedlmair [AS16] have
systematically generated 2002 new separation measures by varying and parameterizing
(1) neighborhood definitions and (2) class-purity functions. They reach the large number
of 2002 new measures by combining a total of 17 different types of neighborhood graphs
(increased to 143 through parameterization) and 14 class-purity functions. All these
measures were quantitatively evaluated using a previously proposed Machine Learning
framework [SA15] that can quantify how well a measure predicts human judgement of
class separability. Out of all their new proposed measures, they found that 1170 (58.4%)
outperformed DSC in their evaluation framework. The one that performed the best
overall is GONG 0.35 DIR CPT being rated 11.7% better than DSC. This code name
breaks down to a directed (DIR) Gamma-Observable Neighborhood Graph (GONG)
where γ is 0.35 as the neighborhood definition and the average Class-Proportion in the
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Figure 3.3: (a) GON and DSC scores for all pairs of Wisconsin Cancer data scatter plots.
Scatter plots with DSC fixed and low (b) and high (c) GON values (magenta circles in
(a)). Scatter plots with GON fixed and low (d) and high (e) DSC values (black circles in
(a)) [AS16].

Target class (CPT) as the class-purity function. That is, what proportion of neighbors
to any one data point belong to the same class as the point itself. Aupetit and Sedlmair
showed in their evaluation that GONG 0.35 DIR CPT (short GON) scores mostly
correlate with DSC. But they can also show cases where the scores deviate significantly
(Figure 3.3). These cases show that GON tends to better represent a good separability to
the human eye. We decided to calculate both DSC and GON scores in our experiments
to gain a secondary judgement on all our results. When both scores closely resemble each
other, then the separability measure should be quite accurate. But when they noticeably
deviate, then one may be a misguided outlier.

3.2.3 Computation Time

The final performance indicator that we use to evaluate the different methods of producing
scatter plots is the time expended to compute the 2D embeddings of the high-dimensional
data (R2). While this does not say anything about the quality of the resulting scatter
plots, it is arguably of greater importance in regard to the practical usability of these
methods. Since the eventual goal of this research is to evaluate whether these methods
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are suitable for an interactive data exploration process (R4), a minimal computation
cost is integral to their success. It has long been established that any application should
take at most one second for user input to produce visible change [Nie93] in order to feel
interactive and not disrupt the user’s flow of thought. This means we want to achieve a
minimal delay between the user’s request to re-train the model and the change of the
visual output.

3.3 Datasets
Over the course of our experiments, we use several different datasets to test our methods
on. We perform the same experiments on different datasets, because we need to show
that any particularly good or bad results can actually be attributed to the methods used,
and are not just products of surprisingly well fitting input data. The datasets used in
our experiments are as follows:

PACS. This dataset was originally designed for domain generalization problems [LYSH17].
It contains images of seven different classes, each spread across four domains, i.e. different
styles of images. These domains are real photos, art paintings, cartoons, and sketches.
The seven classes in this dataset are dogs, elephants, giraffes, guitars, horses, houses,
and persons. In total, the PACS dataset contains 9,991 images and the class and style
distributions can be seen in Figure 3.4. Due to the variety of styles in this dataset, we
can use it in several different ways throughout our experiments to create challenges of
varied difficulty for the different embedding methods. For some experiments we use only
certain subsets of the data, like the real photos or only the cartoons. We also perform
experiments on the whole dataset where we either try to separate the images by domain,
leading to a four class problem, or as the most challenging test separating the whole
dataset into its seven classes while all four domains are included.

Imagenette. This is a rather small subset of the usually enormous ImageNet dataset
[DDS+09]. Imagenette was constructed by Jeremy Howard [H+20] for the purpose of
quickly testing algorithm ideas without the usually long computation time when running
them on the whole ImageNet. It consists of 10 easily classified classes from ImageNet
and contains a total of 9,469 images. The classes include tench, English springer, cassette
player, chain saw, church, french horn, garbage truck, gas pump, golf ball, and parachute
(Figure 3.5). Among all our datasets, this is the one with the most even class balance.

CelebHair. CelebHair is a subset of the much larger CelebA dataset [LLWT15]. This
is a large-scale dataset with over 200 thousand images of celebrity faces, each with 40
attribute annotations. For the CelebHair subset, we only picked images that had the
attributes for either black hair, brown hair, blond hair, or gray hair. For the sake of
computation time when loading the dataset during our experiments, and because we
always picked a uniform set of test data (size 1,000) for our experiments, we decided to
further reduce the dataset size by using only 10% of the available data. This results in a
dataset of 9848 unique images, each belonging to one of four classes. We decided to keep
the original class proportions, leading to the gray hair class having notably less members
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Color Name #
■ Dog 1729
■ Elephant 1654
■ Giraffe 1566
■ Horse 1113
■ Guitar 1540
■ House 943
■ Person 1446

(a) (b)

Color Name #
■ Art 2048
■ Cartoon 2344
■ Photo 1670
■ Sketch 3929

(c) (d)

Figure 3.4: Ground truth class distribution of the PACS dataset by classes (top) and
styles (bottom).

compared to the other three (Figure 3.6). Due to the high similarity of all images in this
dataset, even between classes (all show human faces), it poses a much more challenging
problem for all the embedding methods.
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Color Name #
■ Tench 963
■ English

Springer
993

■ Cassette
Player

858

■ Chainsaw 941
■ Church 955
■ French

Horn
951

■ Garbage
Truck

956

■ Gas
Pump

960

■ Golf Ball 931
■ Parachute 961

(a) (b)

Figure 3.5: Ground truth class distribution of the Imagenette dataset.

Color Name #
■ Black 3829
■ Blond 2285
■ Brown 3138
■ Grey 596

(a) (b)

Figure 3.6: Ground truth class distribution of the CelebHair dataset.
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CHAPTER 4
Implementation

The prototype application we designed to present and explore the findings of this thesis
is a simple Flask application written in Python 3.10. It exposes a REST API where
requests from the frontend user interface are received and processed before returning
the relevant data for the visualization. In this chapter, we describe the technical details
on how we process our data, how the different embedding methods work, and how the
results are presented in the user interface.

4.1 Dataset Preparation
As our experiments will show, using actual image data is not a feasible way to implement
any of our methods. Before everything else, we need to apply one step of pre-processing
to all the images in all our datasets. We convert them from image files to a much smaller
representation of themselves, a vector of values that describes the scene layout and objects
contained in the image. To do this, we use the DINO method described in Section 3.1.
We make use of a pre-trained model available on the Pytorch Hub model repository. This
model applies DINO on a Resnet-50 architecture and we let it process all the images in a
dataset. The resulting vectors are converted to numpy arrays and directly saved into a
npz file along with the target label and the filepath to the respective images.

4.2 Loading Datasets
Upon receiving a load request for one of the available datasets, our backend application
will use the numpy load method to load the npz files containing the arrays for feature
vectors, labels, and image paths from the data folder. Afterwards, a sample of 1,000
data points is picked from the dataset to serve as the unlabeled test data. This test
data is picked at random, ideally containing data from all ground truth classes and
representing the class balance of the dataset. Since this application imitates IML for
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controlled experiments, labeled training data is automatically selected for a given number
of test classes. The number of test classes and the number of samples per class that will
be picked is included in the dataset request received from the user interface. In a real
data exploration scenario, labeled training data would be manually selected (Figure 4.1).
For each class, up the the requested number, the right amount of data points is picked
from the dataset at random. If there are fewer test classes than there are ground truth
classes, we pick the first m classes as test classes from the set of n ground truth classes,
resulting in classes in the test data that are not represented in training. If there are more
test classes requested than there are ground truth classes (m > n), classes that already
have training samples picked will be picked again to create new training classes. This
results in multiple artificial classes during training that are actually a single class in the
test data. The influence of both these scenarios will be investigated in our experiments.
In the end, the training and test data is stored in an internal data storage, from where it
can be used to calculate both supervised and unsupervised embeddings without the need
to reload the data with every embedding request.

Figure 4.1: Actual IML workflow compared to our simulated one with regard to sample
picking.

4.3 ProtoNet
The core technology applied in this thesis is the ProtoNet neural network used to calculate
low-dimensional embeddings of high-dimensional feature vectors representing images.
Most parts of the ProtoNet architecture, such as the training process and especially the
loss function, are directly inspired by the original prototypical network implementation
by Snell et al. [SSZ17b]. The model itself, however, needed to be adjusted to handle
the new type of input. Where prototypical networks use a number of convolutional
layers to reduce square images to a single vector of feature values, we feed ProtoNet with
already one dimensional vectors of size 2048. Instead of using four convolution blocks,
each consisting of 2D convolution, batch normalization, an activation function, and
max pooling, our ProtoNet architecture consists of three blocks of linear transformation
(Figure 4.2). These three blocks gradually reduce the size of our input vectors from 2048
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to 512, 256, and finally 64, which is the same size of output that Snell et al. produced in
their paper. We use ReLU as our activation function after each linear transformation.
All ProtoNet operations are performed on a graphics card using CUDA.

Figure 4.2: Architecture of a prototypical network by Snell et al. [SSZ17b] (top) and our
ProtoNet method (bottom).

Training the Model

For the training progression of our model, we use the Adam optimizer with an initial
learning rate of 0.001. We run five epochs of training, decreasing the learning rate
after each one. Each training epoch consists of ten episodes, where we first shuffle the
training data and then perform a loss calculation. At the end of each episode, the loss
is propagated backwards and the optimizer takes a step forward. For each new loss
calculation, the available training samples per class are shuffled and then split into two
sets. 40% of samples serve as the support set for this training iteration and the remaining
60% make up what is called the query set. After all training samples, support and
query sets, are embedded in the 64-dimensional space by the model, the samples in the
support set are used to generate a prototype for each class by calculating the mean over
all support samples belonging to that class. We then calculate the Euclidean distance
between the samples in the query set and the prototypes. The loss for this training
iteration is calculated by applying a logarithmic softmax over these distances.

Embedding the data

After the training of the model is complete, we use it to generate vectors of length 64 for
all the available data, both labeled and unlabeled. The means of those data points that
were labeled training samples represent the “prototype” of each class. Labels for the
large amount of previously unlabeled data are predicted by assigning them the label of
the closest prototype. For the final step of the ProtoNet pipeline, we have to migrate the
data from the GPU back to the CPU to use unsupervised UMAP to reduce the dimension
of all the prototypes and data points from 64 to 2 so that they can be visualized in a 2D
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scatter plot. While there are GPU based versions of UMAP, they are only available for
Linux systems which clashes with the rest of our Windows-based application.

4.4 Unsupervised Embedding

When using our unsupervised method to create 2D embeddings for the chosen dataset, we
use unsupervised UMAP to reduce each DINO feature representation of the images from
2,048 dimensions to only 2. Since UMAP only embeds the data points in two dimensions
without classifying them, we use a k nearest neighbor classifier, trained on the training
samples that were automatically chosen (See Section 4.2), to predict labels for all data
points so that we can observe a predicted class structure in the visualization.

To be able to determine class prototypes in an unsupervised fashion, we take inspiration
from the MMD-critic framework [KKK16], which allows us to pick representative samples
from each class based on the point distribution. They use squared maximum mean
discrepancy to determine which points in the data best represent the data distribution.
We use this to determine a single prototype for each class by comparing the average
proximity of all data points in that class to the average proximity of each individual
point to all the others. The point where these two distributions are closest together is
chosen as the class prototype.

4.5 Other Semi-Supervised Embeddings

Semi-supervised embedding methods that are examined over the course of our experiments
are semi-supervised UMAP and LDA. Semi-supervised UMAP, much like the unsupervised
variant, tries to learn a low-dimensional manifold of the data based on topological structure.
But this time, we provide the algorithm with target labels for the chosen training data.
Combined with the unlabeled rest of the test data, UMAP then performs its embedding
task with regard to the known class information of the provided samples. This expectedly
takes more time than using UMAP with no supervision, but as our experiments will
show, we find little to no improvement in terms of class separability of the output with
the few samples we provide.

When creating 2D embeddings of the data using LDA, we use the scikit-learn implemen-
tation of the algorithm. We fit the model on the labeled training samples before using it
to transform the unlabeled test data. Since we operate on vectors of size 2,048, we use
the “svd” (single value decomposition) solver of the algorithm, which is recommended
for data with a large number of features. Both LDA and semi-supervised UMAP are
only used during the experiments and are not available in the simulated IML application
because of poor performance shown in the experiments.
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4.6 Visualization

We visualize the calculated 2D embeddings via the frontend part of our Flask application.
This is a simple HTML page where parameters and datasets can be selected, requests
are sent to the backend, and the received data is presented using the JavaScript library
d3. Users can select one of the available datasets from a dropdown menu, which sends a
request to the backend to load the respective dataset into memory. Since this application
is a an experimental platform and not a fully functional IML framework, the labeled
training samples are not manually picked but rather automatically picked at random.
The number of test classes to pick from and the number of training samples per class can
be specified in input fields. The number of test classes can match the number of ground
truth classes in the selected dataset, but training can also be run with fewer or more test
classes than ground truth classes actually present in the dataset. Choosing more test
classes than the dataset contains leads to two or more sets of samples from the same class
being presented to the ProtoNet as belonging to different ones, resulting in split classes.

Two buttons allow the user to choose the DR method to apply, with the choice being
between ProtoNet or unsupervised. Other semi-supervised methods are not included in
the final visualization because of their inferior performance in the experiments (Chapter
5). Regardless of which, clicking these buttons triggers the backend request for the
embedded data points. Upon completion of this request, there are three arrays received
in JSON notation: 1) the 2D positions and lables of the prototypes, 2) the 2D positions
and labels of all other data points, and 3) filepaths to the images of those points closest to
each prototype. We choose to use these images of closest points, because the prototypes
generated through ProtoNet are artificial points in the embedding space that are the result
of averaging the training data. There are no actual images in the dataset that exactly
match with the them, so showing a number of closest images is a good approximation.

The actual visualization of the dataset is then performed in the form of a scatter plot,
where each data point and prototype is positioned using its 2D coordinates. We use
the d3.js framework to manipulate SVG elements into the required shape. There are
several options available for this visualization: Two regarding the form in which the data
is presented and two regarding the labels of the data points. The visualization can either
be viewed as a scatter plot of points, where each data point is printed in the color of its
label, or the clusters can be shown through contour lines that indicate cluster densities.
The color of the data in the plot is controlled by the label that is assigned to each point.
We can either show the labels of the test classes predicted by the algorithms, or – for
validation purposes – the ground truth labels. Regardless of the type of visualization, the
class prototypes are always rendered as larger points with black borders. Hovering the
cursor over one such prototype will load the images from the filepaths that were received
from the backend request and display those images representing the data points closest
to the respective prototype next to the plot.
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4.7 Sampling for Data Exploration
For the purpose of data exploration, we investigate three different methods to identify
criticism points. By calculating any number of criticism points (freely selectable via
numeric input) we aim to find areas in the data, where possibly interesting new discoveries
might be found. The first and simplest method is plain random sampling. This marks
criticism points with no reasonable decision making involved. The points can fall anywhere
on the scatter plot. We can also calculate criticisms based on the largest absolute distance
in the 2D embedding space of the data points to all the available class prototypes. This
makes it so that criticism points are chosen to be the furthest away from the prototypes,
which could mean an area between prototypes where another class could be hidden, but
also might hit far outliers. And finally, we make use of the second part of the MMD-critic
framework. This is done by comparing the distribution of prototypes to the distribution
of the rest of the data. More precisely, the average proximity of each point to all other
points in the data is compared with its average proximity to all of the prototypes. The
point with the largest absolute difference between these two proximity measures is chosen
as a criticism point, meaning that it lies in an area that is not well covered by the
distribution of prototypes. Compared the the distance based method, this is more likely
to place criticism points in more densely populated areas of the scatter plot. When
generating more than one criticism point, we apply a regularizer term to the calculation
that takes previously selected criticism points into consideration in order to avoid all the
criticism point falling into the same underrepresented area. Criticism points are shown
as black dots in the visualization. These can be hovered with the cursor to show the
corresponding image besides the scatter plot. By choosing a large number of criticism
points, the whole data space gets evenly sampled, making a well represented overview of
the data possible.

4.8 Evaluation Metrics
In order to evaluate the separation quality of the plots produced by the different methods,
we make use of two separation metrics: DSC and GON. As described previously in Chapter
3.2, DSC is calculated as the percentage of data points where the closest prototype is of
the same class as the data point itself. All that needs to be computed is the distance
between each data point and all projected prototypes. We then evaluate whether the
prototype with the minimal distance is of the data point’s class.

GON on the other hand does not compare data points and prototypes, but data points
among each other in much more localized neighborhoods. We first need to generate a
graph that determines which points in the data are neighboring each other. The Gamma
Observable Neighborhood graph is constructed by connecting each point x to any other
point p if an intermediary point pi positioned at the γ (0.35) mark between them has p
as its closest neighbor. We then look at all the neighbors of each point and determine the
percentage of neighbors that belong to the same class as the observed point. Averaging
over all points in the dataset results in the GON score for the dataset.
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CHAPTER 5
Experiments and Results

In this chapter, we describe the various experiments that we conducted to determine how
well ProtoNet works in comparison to the other methods. We show the advantage of
using feature representations instead of actual images, determine the best parameters for
our pipeline, and assess the quality of the outputs that the different methods produce.
All these results come from experiments performed in a Jupyter notebook.

5.1 Images vs. Feature Representation
The original implementation of prototypical networks by Snell et al. [SSZ17b] makes
use of a convolutional neural network (CNN) to embed images in a lower dimensional
embedding space. They managed to achieve great results for tests on the Omniglot
dataset [LSGT11], where similar images would cluster around the class prototype that
was calculated during training. This dataset, however, consists of only small grayscale
images of hand-drawn characters measuring 28 × 28 pixel. Where the prototypical
network classifier achieved a classification accuracy of 98.8% on a 5-class problem on
the Omniglot dataset, a similar experiment on the miniImageNet dataset (84 × 84 color
images) [VBL+16] yielded only 68.2% accuracy.

In the beginning, we performed our experiments with the same kind of simple images,
using both the Omniglot dataset and the MNIST dataset of handwritten digits [LBBH98].
Our goal, however, was to use prototypical networks to create embedding spaces for
real-world image data; this means embedding larger, more complex, colored images. Since
we could observe similar drops in performance to the ones observed by Snell et al. when
training our ProtoNet on the CelebHair dataset, we decided to try a different approach
of presenting our images to the network.

Preprocessing all the images in our datasets using the self-supervised DINO method
[CTM+21], we gain a feature vector of length 2048 for each image that encodes the scene

27



5. Experiments and Results

layout and object boundaries. Using these feature vectors as input for the prototypical
network (now using linear transformation instead of convolution), results vary from only
slightly improving our measuring scores, to making a difference of almost 60 points in
DSC depending on the dataset.

The least improvement could be measured on the CelebHair dataset. There, the convo-
lution based ProtoNet and the variant using DINO features scored almost equally well.
Much bigger improvements were measured on the PACS photo dataset. There, DSC and
GON both reached average scores above 90 with DINO features, while image convolution
only measured results around 50. The biggest overall improvement could be observed
on the Imagenette dataset. Image convolution was not able to produce any sensible
separation, while using DINO features led to decent results scoring around 80 points in
both DSC and GON metrics. This stark difference can be seen in Figure 5.1. All average
measurements are depicted in Figure 5.2.

(a) (b)

Figure 5.1: Comparison of ProtoNet + UMAP embedding of Imagenette dataset using
(a) image convolution and (b) DINO feature vectors.

Figure 5.2: Average DSC and GON scores on different datasets when ProtoNet input is
Images vs. DINO feature vectors.
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One way we test to improve the performance of the image convolution method is artificially
increasing the variation in labeled training samples by randomly applying some new
image augmentation to the training samples each iteration of the training. These
augmentations include horizontally flipping the images, slightly changing brightness,
contrast, or saturation, and converting the image to grayscale. This, however, does not
noticeably alter the outcome. Separation metrics, as well as the visual output are similar
to runs of the image convolution ProtoNet without data augmentation. All that can be
measured is that it takes almost triple the time to train the model.

5.2 UMAP Parameter Variation
Uniform Manifold Approximation and Projection is used both as a control method and
as a key element of our ProtoNet pipeline. This dimension reduction technique presents
a handful of hyperparameters that can slightly influence the outcome of our tests. In
order to achieve the best possible results and to create an environment of fair comparison
conditions, we experiment with variations of these parameters, namely the number of
neighbors and the minimum distance. The number of neighbors has influence over how
much emphasis UMAP places on local versus global structures in the data. Using very
small values narrows the view UMAP has on the data which can result in smaller chains
of points and disconnected components, while using very large values leads to global
structures being well captured. There is a trade-off between accurate local proximity of
similar data points and the display of overarching structure contained in the data. The
minimum distance parameter imposes a limitation on how tightly UMAP is allowed to
pack data points. We do not touch the number of components, as this is the number of
dimensions the final embedding should have, which in our case is always two. We also
always use the ‘Euclidean’ metric, as Euclidean distance is also the metric that ProtoNet
uses in its training. For this set of experiments, we use the PACS Photo and Imagenette
datasets. We first test the variation in number of neighbors while keeping the minimum
distance at UMAP’s devault value of 0.1. We embed three different sets of 1,000 test data
points with the number of neighbors parameter taking the values of 5, 15, 50, and 200.
Because UMAP is nondeterministic, we run each set of test data three times, resulting in
a total of nine measurements for each configuration of which the resulting averages can
be seen in Table 5.1. For any further experiments we use a value of 25 for this parameter.
This is higher than UMAP’s default of 15, but not so large as to include too big a portion
of our dataset.
Similarly, we test the influence of the minimum distance parameter. For this set of tests,
we fix the number of neighbors to 25, since the previous tests suggest that the optimal
number for these two datasets lies somewhere between 15 and 50. The minimum distance
is then varied between the values 0.1, 0.3, and 0.5. We once again run three different
sets of 1,000 data points three times each to take into account the nondeterministic
nature of UMAP. The average scores of the nine test runs can be seen in table 5.2. These
tests show that the minimum distance parameter has little to no influence on the cluster
separation in terms of metrics. The DSC scores for both datasets lie within a range of
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Testing no. neighbors
PACS Photo 5 15 50 200
DSC 91.15 92.35 93.56 93.13
GON 92.62 93.17 93.51 92.50
Imagenette 5 15 50 200
DSC 73.60 80.14 83.42 79.76
GON 84.52 84.02 83.75 80.33

Table 5.1: Influence of number of neighbors in UMAP.

variation of only 0.65 which can easily be due to natural fluctuation. The reason why the
GON score might be higher with a lower minimum distance, like with the Imagenette
dataset in this test, is that more points are included as immediate neighbors of points in
the neighborhood graph when they are closer together. This can lead to higher scores
when there are only few impurities in the class cluster. Since the metrics show little
difference, we use visual comparison to determine a good value for further experiments.
When comparing the scatter plots, we can see that 0.1 places points too close together,
resulting in over-plotting, while 0.5 spreads them farther apart than they need to be. We
choose to set the minimum distance to 0.3, as this value lies in between and shows the
best results.

Testing minimum distance
PACS Photo 0.1 0.3 0.5
DSC 93.93 93.46 93.97
GON 93.24 93.48 93.03
Imagenette 0.1 0.3 0.5
DSC 78.98 79.01 78.36
GON 84.56 82.55 80.81

Table 5.2: Influence of minimum distance in UMAP.

5.3 Number of Training Samples
One of the main aspirations of this thesis is to find a system that is able to accurately
cluster large amounts of data without the need to provide exorbitant amounts of labeled
training samples. Therefore, it is crucial to explore how much labeled data is actually
required to produce results with decently high separability scores. We have created
ProtoNet embeddings for each of our three main datasets while using either around five,
fifteen, or thirty labeled training samples per class. We introduce slight variation by
fluctuating the actual number of samples between -1 and +2 of the given base amount
for each class. For each of these base values, the ProtoNet model is trained ten different
times in order to gain average scores that show the changes in separation quality that
come with the increase of training samples. Table 5.3 shows the results of these test,
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where we can see that, for all datasets, increasing the number of labeled training data
leads to better separation metrics. This comes at no surprise, as more training data
should always result in a more accurate model.

Testing number of labeled samples
CelebHair 5 15 30
DSC 46.59 57.86 64.90
GON 47.03 57.04 64.07
PACS Photo 5 15 30
DSC 84.78 92.68 95.39
GON 86.67 92.47 94.38
Imagenette 5 15 30
DSC 67.16 79.68 85.73
GON 69.81 78.97 83.19

Table 5.3: Influence of the number of training samples on the separation quality metrics
for ProtoNet.

In order to assess whether the number of training samples can lead to a noticeable
performance vs. quality trade-off we also look at how much an increase in training
samples affects the computation time of methods that involve any degree of training.
Here, we investigate ProtoNet training, semi-supervised UMAP, and LDA. Since the
visual separation quality of the result is of no consequence in this case, we can perform
all tests using a single dataset. We describe our observations based on a test set of
1,000 images from the Imagenette dataset with ten classes and varying sizes of training
data. The resulting computation times are tabulated in Table 5.4 and also illustrated
in Figure 5.3. The values depicted are averages measured across ten different runs on
the same dataset. Tests across 5, 15, 30, 50, 75 and 100 labeled samples per class show
that ProtoNet training has a constant computation time of around 1,000 ms regardless
of the number of training samples. In comparison, the time needed to calculate a semi-
supervised UMAP embedding grows considerably. We can see the actual influence the
labeled samples have on the UMAP algorithm by comparing these measurements to
unsupervised UMAP, which takes around 4,450 ms to embed this set of test data. With
LDA, we can observe a linear scaling relating number of training samples to an increasing
computation time. From five to one hundred samples per class, the time LDA needs to
calculate the embedding increases from around 15 ms to almost 400 ms.

Since ProtoNet shows to have no real cost relating to the number of labeled samples and
the quality of the output will inevitably increase with regards to it, we choose to use
25 labeled samples per class for all further tests, as this seems to be a reasonably large
number that could still be selected in an IML workflow.
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Computation Times in ms
Samples per class 5 15 30 50 75 100
ProtoNet training 942 1,059 1,131 1,098 1,052 1,137
unsup. UMAP 4,416 4,457 4,562 4,413 4,436 4,451
semi-sup. UMAP 5,026 5,271 6,294 6,846 7,806 8,785
LDA 15.2 48.5 115.5 197.6 306.4 389.8

Table 5.4: Influence of number of training samples for ten classes on computation time.

Figure 5.3: Average computation time with varying numbers of labeled training samples
based on 1,000 data points from the Imagenette dataset.

5.4 Embedding Methods

After disregarding the method of using image convolution in the ProtoNet approach,
we settled on mainly comparing ProtoNet to two other standard methods of dimension
reduction. These methods are UMAP and LDA. With UMAP, we tested the fully
unsupervised method as a base line and investigated how the results were influenced
when a number of samples were provided with their respective labels in a semi-supervised
fashion. We found that introducing a small number of labeled samples to UMAP
(always the same samples that were given during ProtoNet training) makes little to no
difference compared to the unsupervised method. Any variations in DSC and GON
scores between the two methods can be attributed to the natural variance that comes
with the nondeterministic nature of UMAP. LDA, on the other hand, is an interesting
case. For the most part, it behaved as would be expected, with its main advantage being
much faster computation time with a trade-off in terms of separation quality. LDA was
only able to produce results that came somewhat near the metrics that were produced
by ProtoNet on one of the evaluated datasets. That dataset is the CelebHair dataset,
which proved to be one with which UMAP especially struggled. This fact also impacted
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the performance of ProtoNet on this dataset, as the last step in the Protonet pipeline
utilizes UMAP. The final dimension reduction using UMAP is also the main bottleneck
for ProtoNet when it comes to computational performance. For this reason, we tried to
substitute this UMAP reduction with PCA in the ProtoNet pipeline. What we found
is that PCA is significantly faster than UMAP. However, the resulting class separation
ranged from being quite similar in terms of separation metrics to being noticeably worse
compared to a ProtoNet that uses UMAP. Figures 5.4 and 5.5 illustrate this difference.

(a) (b)

Figure 5.4: PACS Styles: Comparison between ProtoNet with (a) PCA and (b) UMAP
as final reduction method. They have similar separation metrics.

(a) (b)

Figure 5.5: Imagenette comparison between ProtoNet with (a) PCA and (b) UMAP as
final reduction method. The score for PCA is significantly worse.

The overall best results were recorded on the PACS Photo and the PACS Styles datasets
with scores above 90 for both ProtoNet and UMAP. On the Imagenette dataset, while
they showed similar layouts, training the ProtoNet lead to slightly more compact clusters
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compared to unsupervised UMAP, leading to slightly better DSC scores. Examples for
this are shown in Figure 5.6.

(a) PACS Photo ProtoNet (b) PACS Photo unsupervised

(c) Imagenette ProtoNet (d) Imagenette unsupervised

Figure 5.6: Comparison of ProtoNet and unsupervised UMAP output on the PACS Photo
and Imagenette datasets. ProtoNet and unsupervised UMAP produce similar results.

CelebHair and PACS Cartoon are datasets where we could only achieve middling success
across all methods, never exceeding a score of 70. On both these datasets, using
methods involving training lead to noticeably better results over the unsupervised
method. ProtoNet outperformed unsupervised UMAP by over 20 points in terms of DSC
in both cases. Looking at the PACS All dataset, this is arguably the most challenging
dataset in our selection. Here, images belonging to seven classes are represented in
different styles. We can see that the pure UMAP methods perform noticeably worse
than their trained counterparts. The unsupervised embedding of all PACS data results
in a clustering that is influenced more by the style of the images, rather than the actual
content depicted in them. In contrast to that, a trained method like ProtoNet or LDA
tries to create clusters according to the seven training classes, leading to better results.
The difference can be seen in Figure 5.7.
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(a) (b)

Figure 5.7: PACS All: Comparison between unsupervised UMAP (a) and ProtoNet +
UMAP (b). ProtoNet separates clusters by semantic class, while unsupervised UMAP
groups by style.

A comparison of the DSC and GON scores that all the methods achieved on the different
datasets can be seen in Table 5.5. The scores reported in this table are the averages
across twenty-five runs with the respective method and dataset. The full range of all
these runs can be seen in Figure 5.8.

Computation Times

Computation time required for embedding the data is independent of the images that
are in the dataset, but it does scale with the size of the dataset. For the experiments
evaluated here, we chose to embed each type of dataset with test data containing 1000
data points, as well as training data of around 25 labeled samples per class, again varying
from -1 to +2 labeled samples. Here, the number of classes in the dataset does slightly
influence computation time, as more training data needs to be processed with more
classes in the dataset, but overall, comparisons between the methods stay similar. An
example of computation times for each method on the Imagenette dataset can be seen in
Table 5.6.

5.5 A Qualitative Walkthrough

To evaluate the functionality of the implemented interface, and to look at some interesting
cases a data analyst might encounter when using our visualization methods, we will
now perform a qualitative walkthrough, where we showcase the different versions of the
scatter plot visualization. We also explore different methods to suggest possible points
of interest in the data visualization. The interesting cases for the data analyst’s work
are such where we purposefully introduce mistakes in the data we use for training the
ProtoNet model. This means we cannot use the metrics DSC and GON we used before
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Different methods of data embedding

CelebHair ProtoNet
UMAP

ProtoNet
PCA

unsup.
UMAP

semi-sup
UMAP LDA

DSC 61.51 63.60 35.85 34.82 55.56
GON 60.54 60.06 49.51 49.41 52.63

PACS Photo ProtoNet
UMAP

ProtoNet
PCA

unsup.
UMAP

semi-sup
UMAP LDA

DSC 94.68 85.63 93.37 93.51 70.65
GON 93.46 83.81 92.91 93.36 65.75

PACS Cartoon ProtoNet
UMAP

ProtoNet
PCA

unsup.
UMAP

semi-sup
UMAP LDA

DSC 66.40 61.16 45.86 44.56 44.50
GON 59.72 52.47 51.48 51.74 38.14

PACS All ProtoNet
UMAP

ProtoNet
PCA

unsup.
UMAP

semi-sup
UMAP LDA

DSC 58.42 55.00 30.62 30.83 44.08
GON 52.69 45.87 50.32 50.28 36.04

PACS Styles ProtoNet
UMAP

ProtoNet
PCA

unsup.
UMAP

semi-sup
UMAP LDA

DSC 93.44 92.64 85.15 82.09 83.64
GON 93.65 91.60 91.79 91.48 80.86

Imagenette ProtoNet
UMAP

ProtoNet
PCA

unsup.
UMAP

semi-sup
UMAP LDA

DSC 84.44 64.97 81.21 80.67 53.69
GON 82.37 58.49 83.02 83.32 46.58

Table 5.5: Comparison of the DSC and GON scores of the different embedding methods.

Computation time for x points 500 1000 1500
ProtoNet training & embedding 1,092 1,102 1,276 ms
UMAP 3,200 4,450 5,540 ms
PCA 3.38 5.48 5.89 ms
unsup. UMAP 3,440 4,480 7,100 ms
semi-sup UMAP 4,550 6,260 8,540 ms
LDA 71.8 78.9 87.9 ms

Table 5.6: Computation times on Imagenette with 500, 1000, and 1500 points.

to make reliable judgments, since these are built to score separability bases on ground
truth labels and class prototypes, which may or may not be present in these scenarios.
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(a) CelebHair (b) Imagenette

(c) PACS All (d) PACS Styles

(e) PACS Photo (f) PACS Cartoon

Figure 5.8: Distribution of DSC (blue) and GON (orange) scores for each dataset and
method across 25 different runs.

5.5.1 The Interface

When using the application, the user is first presented with the choice of dataset. They
can select this from a drop-down menu of all the available options. The second step is to
select the data that should serve as training data for the ProtoNet model. If this were an
actual application, the user would pick samples from a display of some sorts, but since
this is only an imitation for validation purposes, we only require the user to select the
number of classes the dataset should be split into and the number of training samples
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per class. The test and training data is then automatically extracted from the dataset as
described in Section 4.2.

Figure 5.9: Interface of the Visualization Application.

Clicking either the button labeled ”ProtoNet“ or ”Unsupervised“, the user can choose
which embedding method to use. As stated before, the only options here are ProtoNet
and unsupervised UMAP. This is (1) because ProtoNet has shown throughout the
other experiments to be the best semi-supervised method, and (2) to compare it to an
unsupervised method to see if it would work just as fine without any training. Either of
these buttons will result in a data embedding being calculated and the resulting scatter
plot being displayed in the empty space beneath the parameter choice. The full interface
can be seen in Figure 5.9.

Once a visualization is displayed, the user may switch between using individual dots for
each data point or density based contour blobs. The color assigned to each point in the
plot is defined by the class label given to it. Normally, this label is predicted by the
embedding algorithm (as described in Chapter 4), but we also have the option to display
the ground truth labels for validation purposes. We can see in Figure 5.10 that using
contour lines makes cleaner clusters and the class overlap is easier to discern compared
to the point visualization in cases where the classes are coherent. However, the Figure
also shows that once there is no clean separation between classes, the visualization with
contour lines becomes very hard to interpret.

Now that we have a color-coded scatter plot, we need to start making sense of what it is
displaying. Hovering the mouse cursor over a class prototype will display the six images
that lie closest to the respective class prototype to the right beside the plot (Figure
5.11). That way, we can identify what kind of image this class is meant to contain. To
explore the space further, we can automatically detect areas in the visualization that are
under-represented by the prototypes. For this, there are the final remaining input fields
and button on the interface. The user is able to declare any number of criticism points to
be calculated using one of three available methods. We can use ’dist’, a method returning
the point with the maximum distance to all prototypes, ’mmd’, which uses the squared
maximum mean discrepancy to find the most under-represented points based on point
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(a) (b)

Figure 5.10: Contour lines with good (a) and bad separability (b).

density, and finally we can also use plain random sampling. Hovering such a criticism
point will also display the corresponding image to the right of the plot. The usefulness
and accuracy of these criticism points will play a bigger role in the following section.

Figure 5.11: Actual images located closest to the prototype are displayed besides the
plot on hovering a prototype.

5.5.2 Missing and Duplicate Classes
In an interactive data exploration scenario, where a user can select a few samples per
class with which to train the embedding methods, they may not account for every class
that is actually in the data. This is moreover a plausible case, because the data for which
we want to apply these methods is largely unknown. There are three possible outcomes
when it comes to the selection of training samples by the user. They could miss a class
of data, meaning that it is not represented in the training (missing classes). They could
also mistakenly match samples to two different classes that would in actuality be the
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same class (duplicate classes). And in the ideal case, they would provide samples for
every class that is contained in the ground truth. When there are classes of images in
the dataset which were not available during training, we would expect a good embedding
method to place the data points of such classes in otherwise unoccupied parts of the
embedding space. Similarly, we would expect a good embedding method to recognize
the similarity in the two training classes that were split from one ground truth class and
create an embedding where these two classes lie close together.

The case where there is exact training data for every class has been thoroughly evaluated
throughout the previous experiments. We can now explore the suitability of ProtoNet as
a method for interactive data exploration based on how well it manages to separate the
class structure when there are missing and duplicate classes. The first example in Figure
5.12 shows a layout of the PACS Photo dataset where the class containing images of
people was not included in the training process. This class is usually very well separated
with full training. Figure 5.12a shows the layout with predicted labels based on the
closest prototype. We can see that there is a distinctive area separate from other clusters,
where the colors of different classes overlap. When looking at the same layout coded
with ground truth labels in Figure 5.12b, we can see that this area consists of almost
exclusively items that belong to the missing brown class.

What is also shown in this Figure are examples of the different criticism methods. The
criticism point (single black point) in Figure 5.12a is calculated with the distribution
based method, while the point in Figure 5.12b is based on maximum distance.

(a) (b)

Figure 5.12: PACS Photo: One class (brown) is missing during training. Predicted labels
(a) and ground truth (b) show that the missing class is well separated.

We also use the PACS Photo dataset to showcase a good example for how duplicate classes
should be handled. For the layout shown in Figure 5.13, samples from the images of
horses (colored red) were introduced as two separate classes for the training of ProtoNet.
We imagined this to be the most challenging in this dataset, as this is usually the least
well separated class. Figure Table 5.13a is again coded with the predicted labels, where
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the two classes (red and pink) occupy the same space. Figure 5.13b also shows that the
combination of these two clusters exactly makes up the area where the actual red cluster
should be.

(a) (b)

Figure 5.13: PACS Photo: The red class is split in two during training. Predicted labels
(a) and ground truth (b) show that these classes are placed close together.

What we can see from these examples is that ProtoNet is able to handle cases of missing
and duplicate training classes fairly well when the underlying data is very well separable.
But we will also look at another example where this is not so much the case. Figures 5.14
and 5.15 show the same examples but with the PACS Cartoon dataset. Once again, no
images of people were available when training. Unlike the previous example, there is now
no discernible ”extra cluster“ in Figure 5.14a and Figure 5.14b, showing the true labels,
makes it clear that the brown points are scattered throughout the plot. We choose to
display the images as points over contour lines this time, because the busy nature of this
layout makes it even harder to interpret the position of the missing class.

When duplicating the horse class with the PACS Cartoon dataset, we can see that the
results are still fairly good. We can see in Figure 5.15a that the main body of the
predicted pink and red classes are rather close together and Figure 5.15b confirms that
they in fact share an area where actual red data items lie.

Although we have already ruled out LDA as a suitable DR method, we still performed
some experiments to see how it would handle missing and duplicate classes. We can now
say that LDA, across all datasets, proved to be very unreliable when it comes to missing
training classes. Points of the missing classes are mostly scattered across other classes
with rarely a coherent cluster to be found. When introducing samples of the same class
as separate classes, LDA most of the times forces the two resulting prototypes far apart,
resulting in a wide band of data points with a prototype at either end. Examples of this
are shown in Figure 5.16.
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(a) (b)

Figure 5.14: PACS Cartoon: The brown class is missing during training. Predicted labels
(a) and ground truth (b) show that test data of that class is not grouped together.

(a) (b)

Figure 5.15: PACS Cartoon: The red class is split in two during training. Predicted
labels (a) and ground truth (b) show that these classes are still placed in the same area.
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(a) (b)

Figure 5.16: Examples of how LDA deals with missing and duplicate classes. (a) ground
truth labels with the purple class being split in training. The purple and pink prototype
are not close together. (b) ground truth labels with the brown class missing during
training. The usually well separated class is overlapping other classes.
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CHAPTER 6
Discussion

Our first research questions asks how the interpretation of unstructured data differs
between projections based on prototypical networks and other dimensionality reduction
methods. We argue that this interpretation of the data is based on how well the data
is clustered according to the class membership of its items. First, depending on the
dataset, results can vary by large margins. Especially the results of the unsupervised
UMAP method vary greatly when compared across datasets. Since there is no supervision
involved in this method, this reflects the inherent separability of these datasets. This is
even more apparent when looking at the datasets themselves. It is easy to understand
that differentiating between pictures of faces with black, blond, or brown hair like in
the CelebHair dataset (one where unsupervised UMAP performed fairly poorly) is a
lot harder than to distinguish a photo of a person from a house or an elephant (PACS
Photo).

We found that whenever an unsupervised approach managed to produce good results,
ProtoNet still managed to slightly improve these good results (See Figure 5.6 and Table
5.5). We have not encountered any cases where the unsupervised method exceeded the
ProtoNet embeddings in terms of separation metrics. But we can also say that in these
cases of datasets with high inherent separability ( i.e., PACS Photo and Imagenette),
ProtoNet does not provide any noticeable advantage over the purely unsupervised method.
An interesting exception to this are the observations made on the PACS Styles dataset.
This dataset, too, has high inherent separability, being divided in four groups of different
art styles, but embedding them with no supervision leads to photos of persons being
separated far from all other images (Figure 6.1). This results in a photo class that is
separated from itself, distorting the position of the class center, and decreasing the DSC
score, all while keeping a GON score that is on par with ProtoNet. This tells us that the
class may be disconnected (lower DSC), but similar items are still grouped together into
pure clusters (high GON).
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Figure 6.1: PACS Styles: No supervision leads to a disconnected class.

Where the advantages of ProtoNet become apparent are the datasets where the inherent
separability is a lot lower. On these datasets, unsupervised embeddings with UMAP
largely fail to produce well separated clusters with only about one third (CelebHair) or
45% (PACS Cartoon) of points being closest to their own cluster center. Here, the little
training that is introduced with ProtoNet manages to improve the clustering of points
by a fair margin, although the results are still far from perfect with scores of around 60
(DSC and GON CelebHair, GON PACS Cartoon) and 67 (DSC PACS Cartoon). The
dataset that best shows the usefulness of training ProtoNet over using unsupervised
embedding is PACS All. Like PACS Styles, this includes all the images of the PACS
dataset, but they are not labeled by their art style, but by the objects they depict. The
unsupervised method, as expected, embedded all points in the same way as it did with
the PACS Styles dataset (Figure 5.7a), since without supervision, they are both the same.
Naturally, this does not reflect the intended target classes at all, leading to a low DSC
score of around 30. Using ProtoNet on the same data (Figure 5.7b), with some samples
per class, we manage to create embeddings that reach scores that are much closer to
what we achieved on other datasets, separating some classes rather well, while others
remain fairly mixed.

Creating two-dimensional embeddings of our DINO feature vectors using only LDA
always resulted in projections that were worse than what ProtoNet could produce. This is
reflected in both the scores we measured and also qualitative observation of the resulting
plots. LDA barely exceeded scores of 50 on four of the six tested datasets. And even
on the two datasets where it separated the classes a bit better (PACS Photo and PACS
Styles) it still trailed behind ProtoNet by large margins of more than 20 (Photo) and
10 (Styles) DSC points, respectively. Overall, LDA never managed to create compact
clusters, always leaving low-density blotches with frizzy edges (Figure 6.2).
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(a) (b)

Figure 6.2: LDA produces less dense clusters with frizzy edges (a) compared to ProtoNet
(b) on the PACS Photo dataset.

In a similar fashion, using PCA as the final step in the ProtoNet pipeline instead of
UMAP almost always resulted in clusters that were less compact. Although the separation
metrics score this method almost always only closely behind ProtoNet with UMAP (with
the exception of the Imagenette dataset), looking at the results clearly shows more
compact and better separated clusters with the UMAP variant (Figure 6.3).

(a) (b)

Figure 6.3: ProtoNet + PCA (a) produces only slightly worse scores compared to
ProtoNet + UMAP (b), but visually they are quite different.

The second research question asks how the computational performance differs between
all these methods. Looking at the table of computation times (Table 5.6), we can
immediately see that our methods fall into two categories. The faster ones, using linear
DR techniques like PCA and LDA, and the much slower ones, utilizing UMAP. This
almost directly correlates with the output quality of the embedding spaces. While PCA
and LDA are very fast, they are not capable of producing such compact clusters as the
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6. Discussion

much slower methods using UMAP. As Table 5.6 shows, computation time increases
with the number of data points in the dataset for all methods. This is almost negligible
for the faster methods, as they operate in a matter of milliseconds, but for methods
using UMAP, computation time is an issue we need to concern ourselves with. Taking
multiple seconds to calculate a new embedding can already interrupt the workflow of
a data analyst. UMAP is a method whose computation time not only grows with an
increasing numbers of data points, but also with the number of features that need to
be reduced. While ProtoNet training initially adds an overhead of about one second to
the UMAP embedding, using ProtoNet also decreases the dimensions UMAP needs to
reduce from the initial 2,048 of the DINO feature vectors to only 64. Additionally, as
Table 5.4 has shown, training the ProtoNet and embedding the data with it operates on
constant time. With an increasing dataset size, this overhead is quickly compensated by
the reduced workload UMAP has to perform. Figure 6.4 shows that unsupervised UMAP
already exceeds ProtoNet + UMAP in computation time at a dataset size below 1,500.

500 1,000 1,500

2,000

3,000

4,000

5,000

6,000

7,000

8,000
ProtoNet + UMAP

unsup. UMAP

Figure 6.4: Computation time scaling with increased dataset size in milliseconds.

Our third research question asks how we can effectively visualize prototypes and other data
items, especially for very large datasets. While implementing our prototype visualization
interface, we found that marking all individual data points in a scatter plot only works
well up to a certain amount of data before we run into the problems of over-plotting
and visual clutter. We therefore made the decision to display the vast majority of data
points as contour lines that represent the density of the depicted clusters. This not only
reduced the number of elements on the screen, but also proved to better indicate cluster
overlap compared to individual points that are intermixed. However, this only produces
appealing results when the used embedding method created a point layout with good
cluster separation. When a very poor separation result is created, using contour lines
arguably introduces more confusion by creating a very busy plot (Figure 6.5).

By displaying the class prototypes as marked dots, as well as their closest neighbors, we
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(a) (b)

Figure 6.5: Bad separability (a) of PACS All and good separability (b) of PACS Photo
visualized with contour lines.

create a detectable area of interest within the contour lines, where a user can access the
actual images behind those data points to identify the class identity. For possible new
points of interest, we found that generating criticism points with the distribution based
approach of the MMD-critic framework performed better at locating the center point of
underrepresented areas in the plot compared to points that are found via the maximum
distance between prototypes. These often lie somewhere on the edge of the potential
area of interest. These new criticism points, which we paint in solid black, contrast with
the otherwise colorful plot and allow the user to investigate new areas of the data that
were previously underrepresented by the class prototypes.

The fourth research question asks how the ProtoNet based data visualization can be
integrated into interactive visual analysis of large, unstructured data. We argue that our
ProtoNet approach does a good job in creating similarity preserving scatter plots for
large amounts of unstructured data. The main point of an interactive visual analysis task
is to examine previously unknown data. ProtoNet allows the user to select few examples
of any amount of classes that the user thinks there are in the data. Based on these few
examples, it generates prototypes and creates an embedding space where all of the data
is laid out according to the provided samples. We have shown that ProtoNet can match
or exceed the embedding quality of other supervised or unsupervised methods and even
performs well in the very plausible case that the user declared too many classes or missed
out on others. Especially when images depicting the same object are put in different
training classes, ProtoNet managed to mitigate these errors quite well and produced
accurate layouts. Classes missing from training can still be somewhat compact, if not
always as well separated as others. In the best cases, these unidentified areas of the plot
are still visually discernible and most of the time the first target for criticism points (e.g.
Figure 6.6), indicating to the user that these areas are underrepresented by the generated
class prototypes and may hide other classes of data points that the user did not include
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6. Discussion

in the training.

Figure 6.6: Class missing in training is clearly distinguishable and criticism point suggests
area is of interest.

This combination of creating good layouts and being resistant to user inflicted training
errors, as well as the ability to indicate new interesting areas of the data based on
prototype and data density makes ProtoNet well suited for interactive visual analysis.
Unfortunately, the use of UMAP in our ProtoNet DR pipeline requires quite a large
amount of computation time, resulting in noticeable delays in response time and somewhat
diminishing the usability in an interactive setting.
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CHAPTER 7
Conclusion

In conclusion, this thesis proposed the novel use of a prototypical network based approach
for the visualization of high-dimensional, unstructured data. We discovered that applying
some sort of feature extraction on real image data is a necessary condition for the success
of this approach, as both ProtoNet and all the other investigated methods performed very
poorly on raw pixel information. Through systematic experiments, we first determined the
best parameterization of our methods and then compared the outputs of those methods
based on various different datasets. The outputs were assessed both qualitatively and
quantitatively through the calculation of metrics that measure the visual separability of
ground truth classes in the resulting two-dimensional visualizations. Regarding RQ1, we
determined that the most successful method we investigated was a ProtoNet embedding in
combination with a final 2D reduction using UMAP. While this method produced similar
results to a fully unsupervised UMAP on some datasets, it clearly showed its advantages
on “hard cases”, where unsupervised UMAP was not able to produce favourable results.
The much faster methods LDA and ProtoNet in combination with PCA may have excelled
in terms of computation time, but the quality of the output was decidedly worse.

This already ties into RQ2, the question of computational performance. PCA and LDA
are extremely fast, but fail to produce satisfying results. On the other hand, UMAP is
the major bottleneck that dampens the usability of our DR pipeline. The time needed to
produce results is slightly too long to be considered for an interactive environment.

Concerning RQ3, we implemented and described a prototype visualization interface,
where we present different methods of displaying the data on a 2D scatter plot, either as
individual data points or density based contour lines. Class prototypes and candidates
for undiscovered aspects of the data are also present. A qualitative walkthrough of this
application showed that displaying the embedded data as density based contour lines
leads to a more visually appealing and easier to interpret outcome, so long as the data
could be separated into coherent class clusters.
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7. Conclusion

Finally, we address RQ4 by evaluating the usefulness of our ProtoNet approach for
interactive visual analysis. We found that ProtoNet is quite robust when it comes to
dealing duplicated classes in the training data. When images that are actually very similar
are labeled as different classes for the training, then ProtoNet will place these classes
close together regardless. Regarding classes omitted from training, our observations have
shown that ProtoNet can produce decent results when the omitted class is somewhat
distinctive from the rest and the overall separability of classes is high. In ”hard cases“
the detection of untrained classes is difficult. Also, the distribution based detection of
underrepresented areas in the data showed to be more beneficial compared to the distance
based approach and random sampling. Criticism points calculated based on distribution
tend to lie in the center of undiscovered clusters, while points based on distance can quite
often fall on the outer edges of data clusters.

7.1 Limitations & Future Work
This work performed very basic experiments to evaluate the separating capabilities of
different DR approaches. Our whole setup is simulating a data analysis task without
the involvement of actual human agents. We also rely on quantitative measures to score
the visual separation of our scatter plots. Although these measures have been shown to
closely resemble human judgment, a more detailed study with human participants might
uncover different preferences in terms of the visual appearance of the separated clusters
that the different methods produce.

With our automatic process of selecting training samples, we assume that the samples
that are randomly picked from each class are representative of that class. A real user
most likely would not pick samples at random, but choose to pick samples that are very
prototypical of the type of image they want to group. They might also deliberately
choose such samples that depict edge cases that should be included in the grouping of
that class. Future research could try to evaluate if samples hand-picked with human
reasoning would further improve the quality of the output, maybe even with less samples
required.

Throughout our research, we have shown that some form of feature extraction is necessary
for a good result. Working with raw images led to no proper class separation at all. For
this thesis, we relied on but one feature extraction method. Using the feature vectors
we got from DINO, we were able to create 2D embeddings that resulted in both easily
separable datasets and also datasets where separation did not work quite as well. Future
research could try to extract feature representations from these same datasets by methods
other than DINO to see if ProtoNet is able to produce better results if the input were
different.

The major bottleneck that hampers the usefulness of our ProtoNet method is the use of
UMAP as a final reduction method in the pipeline. This method takes too much time to
calculate the data embeddings for it to be used in an actual interactive environment. One
reason for this is that, while the ProtoNet embedding is performed on a GPU, UMAP
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7.1. Limitations & Future Work

is only able to operate on the much slower CPU. There are implementations of UMAP
that run on a GPU, however, these are only available for Linux, which clashes with the
Windows based implementation of the rest of our application. Very rudimentary tests
with such a UMAP implementation for GPU have also shown that this scales poorly with
the size of the data. Further experiments and evaluations of the real-time usability of
our ProtoNet approach could be conducted if a GPU version of UMAP were available on
Windows, or another method were to produce comparably good results to UMAP. We
have, of course, only evaluated a handful of well known DR techniques that we deemed
promising. There are a numerous other methods that could be built on top of a ProtoNet
instead of UMAP that could potentially achieve better results while saving computation
time.
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