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Kurzfassung

In dieser Arbeit vergleichen wir unterschiedliche Algorithmen zur Parameter-Optimierung
am Beispiel von Screened Poisson Surface Reconstruction. Um dies zu erreichen, im-
plementierten wir zuerst fünf aktuelle Algorithmen. GEIST ist ein Graphen-basierter
Algorithmus, der den Parameter-Raum in einen ‘optimalen’ und einen ‘nicht-optimalen’
Bereich aufteilt um die nächsten Konfigurationen auszuwählen. Iterated F-Race platziert
eine Normalverteilung für die Auswahl der nächsten Konfigurationen über die besten
Konfigurationen der letzten Iteration. ParamILS verwendet iterative lokale Suche um
einen besseren Nachbarn zu finden und damit schlussendlich ein Optimum. PostSelection
verwendet eine verkürzte Version eines Algorithmus um vielversprechende Kandidaten
zu finden, und eine detailliertere Version um diese auszuwerten. Als simplen Vergleich
implementierten wir außerdem eine Version von Brute-Force.
Für alle diese Algorithmen führen wir zuerst eine Reihe an Tests durch um eine gute
Konfiguration für deren Ausführung zu finden. Danach testen wir sie an Punktwolken
aus zwei Datensets. Jedes Datenset enthält alle Wolken in unterschiedlichen Qualitä-
ten, wir sind also in der Lage unterschiedliche Input Qualitäten als auch Typen zu
testen. Wir zeigen, dass jeder der implementierten Algorithmen in der Lage ist bessere
Parameter-Konfigurationen zu finden als den Screened Poisson Surface Reconstruction
Standard. In den meisten Fällen erreichen GEIST und PostSelection die besten Resultate,
brauchen dafür aber auch am längsten. ParamILS und Iterated F-Race führen zu guten
Resultaten in einer deutlich kürzeren Zeit. Brute-Force ist nicht konkurrenzfähig wenn es
um hochqualitative Konfigurationen geht, verbessert aber noch immer den Standard in
den meisten Fällen.
Um unsere Resultate über verschiedene Typen und Qualitäten zusammenzufassen kann
man sagen, dass die Standardkonfiguration akzeptable, aber nicht ideale, Ergebnisse für
Punktwolken von glatten Objekten mit wenigen Störungen erzielt. Wir schlagen eine
Alternative hierführ vor. Ist die Oberfläche rauer so muss idealerweise das Gewicht stärker
auf die Position der Punkte gelegt werden. Gibt es sehr viele Störungen in den Daten, so
muss dieses Gewicht und die Octree Tiefe reduziert werden.
Wir diskutieren die Vorteile und Nachteile von jedem implementierten Algorithmus
und vergleichen ihre Resultate um empfehlen zu können welchen man verwenden soll-
te. Wir beschreiben unsere Implementierung von jedem und beschreiben kurz was an
weiterer Arbeit verrichtet werden könnte um diese Arbeit zu erweitern. Zum Schluss
geben wir Empfehlungen ab, welche Konfiguration für welche Typen und Punktwolken
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verwendet werden sollten. Für sehr genaue Daten sollten depth und pointWeight höher
gewählt werden, als für ungenaue. Ist die Topologie des Objekts sehr komplex, dann
sollte pointWeight sehr hoch eingestellt werden. Wir kommen zu dem Schluss, dass
in den meisten Fällen IF-Race der beste Kompromiss zwischen Geschwindigkeit und
Rekonstruktionsqualität ist. Wenn die Laufzeit kein relevanter Faktor ist, dann stellt
GEIST eine Alternative dar, die sehr hoch qualitative Ergebnisse liefert.



Abstract

In this thesis, we compare different parameter-optimization algorithms on the example of
Screened Poisson Surface Reconstruction. To do this, we first implemented five state-of-
the-art algorithms. GEIST is a graph-based algorithm that splits the parameter space
into an ‘optimal’ and a ‘non-optimal’ set to select new configurations. Iterated F-Race
places a normal distribution of selection probabilities on the best configurations of the
last iteration and uses that to choose the next configurations. ParamILS uses iterative
local search to select a better neighbor and find an optimum this way. PostSelection uses
a shortened version of an algorithm to find promising candidates and a second, more
detailed one to evaluate these. As a simple baseline we also implemented Brute-Force.
For all of these algorithms, we first conduct several tests to find a good configuration
to run them with. After that, we test them on point clouds from two datasets. Each
dataset contains each cloud in different qualities, so we are able to test varying input
qualities as well as types. We show that each of the implemented algorithms is able to find
better parameter configurations than the default Screened Poisson Surface Reconstruction
configuration. In most cases, GEIST and PostSelection lead to the best results but also
have the longest run times, while ParamILS and Iterated F-Race lead to good results in
a far shorter time period. Brute-Force is not competitive when it comes to high-quality
configurations, but still leads to an improvement over the default in most cases.
To summarize the results over different types and qualities, the default configuration
yields acceptable but not ideal results for point clouds of smooth meshes with little noise
and we suggest an alternative. If the surface is rougher, the importance weight of the
points should ideally be set higher. If there is a lot of noise, this weight as well as the
Octree depth should be reduced.
We discuss the advantages and disadvantages of each implemented algorithm and compare
their results to recommend which one to use. We describe our implementations of each
and quickly mention what work could be done to expand on this thesis. Finally, we give
recommendations as to which configurations to use for different types of point clouds.
For data with higher accuracy, depth and pointWeight should be higher than for data
with lower accuracy. If the topology of the object is very complex, pointWeight is best
set very high in comparison to simpler point clouds. We find that for most cases, IF-Race
is the best compromise to use between speed and resulting quality of reconstruction. If
time is of no concern, GEIST is an alternative that yields high-quality results.
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CHAPTER 1
Introduction

Many operations in the field of computer science, or using a computer in general, require
the selection of parameters or configurations with which to run. The outcome of the
operation often heavily depends on the quality of the selected parameters. In this thesis,
we use Screened Poisson Surface Reconstruction (SPSR) [KH13], which is an algorithm
to generate 3D meshes from point clouds, to demonstrate the effectiveness of different
algorithms in optimizing these parameters. This is a necessary step in, for example,
generating 3D models from a series of images or 3D scanning an object.

1.1 Motivation
From the simplest command line functions to the most complex programs, nearly all
computer operations require a selection of parameters to run with. These parameters
can have various effects on the execution of the function or program. They might enable
different features, select targets for the operation or set other values that are necessary
in some way for the program to function.
Even simple commands, like the Unix ls (list) function, often require parameters to
run. The ls function, for example, expects a number of options as well as a number
of paths. The options alter the behavior of the function, for example printing out one
element per line instead of multiple per line, or sorting the output by different prop-
erties. The expected paths are the paths whose content should be listed. In the case
of a path pointing to a file, only that file is listed. Some examples can be seen in Figure 1.1.

Of course, the ls function can be called without any parameters. This is due to the fact
that it, as well as many other operations, has default parameters defined. In the case of
ls , there is a default value for each possible option, as well as ‘. ’ (current directory) as
the default for the paths. For this function, this is a completely adequate setup. Through
available documentation, the effects of each parameter are easy to understand, and users
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1. Introduction

Figure 1.1: Calling ls with different parameters. Top to Bottom: no parameters, sort by
creation time, print one per line, print one per line, and selecting both subdirectories.

can determine which options and paths they want to choose. The same is not true, if
the result of the operation can be of different quality and it is not straightforward to
determine what effect each parameter will have on the outcome.
An example of such an operation is SPRS, a complex surface reconstruction algorithm.
One of its parameters is pointWeight, which is the importance of interpolating point
values over gradients. This explanation might be useful for someone who knows how the
algorithm works, but even then, selecting the best value for the parameter is difficult.
Most users will not know what it does at all and will have no chance of setting it correctly.
Another of SPSR’s parameters is depth, which sets the maximal depth of the octree used
in the reconstruction. This is an easier concept to understand, a higher octree depth
leads to a finer reconstruction, but still, it is not easy to choose the appropriate value for
this parameter. Setting depth too high will lead to far higher runtimes without leading
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1.2. Screened Poisson Surface Reconstruction

to any significant improvement in the result.
In most cases, sensible default values still exist or can be selected by an expert, but finding
an optimum is difficult. For small parameter spaces or fast operations, it might be possible
to fully map all parameter combinations to their output, but more complex problems
and higher numbers of possible parameters make such an approach infeasible. In these
cases, optimization algorithms are necessary in order to find the parameter configurations
required to run the operation optimally. A large number of such optimization algorithms
exist, so one must decide on which one to use. To help with this step, in this thesis, we
test multiple different optimization algorithms on the example of SPSR. We evaluate
them against each other and give some information on which parameters to use for SPSR
for different inputs.

1.2 Screened Poisson Surface Reconstruction
Screened Poisson Surface Reconstruction (SPSR) by Kazhdan and Hoppe [KH13] is an
algorithm to construct 3D meshes from point clouds. This is a necessary step in most
recreations of physical objects as computer models. A typical 3D scanning workflow
often consists of a step that creates a point cloud of a physical model and a second
step that reconstructs a 3D model from that point cloud. The first step can be solved
by a number of different methods. The point cloud can be determined by using direct
measurements like from a laser distance scanner (Lidar), specialized hardware like a 3D
scanner or calculated from existing data. A prominent example of the latter would be
3D reconstructions from a collection of images. This is used to generate meshes from
small objects up to reconstructions of entire cities from satellite images. The second step
in this 3D scanning workflow is what SPSR can be used for, creating the actual mesh
from the extracted points.
3D scanning in general is an important tool for many different tasks. It is very useful if a
3D model should be as close as possible to reality. This can be the case for 3D animations
in movies or games, for example, to get a real actor into a virtual world. Another area
where an accurate representation of the physical world is important is navigation, where
a 3D model of the surroundings can be more helpful than a 2D map. Additionally, to
being very close to reality, a 3D scanned model can in many cases be created far faster
than if it were modeled manually. While there is still some work to be done on the
scanning result, this can help speed up the development of 3D scenes.
We chose SPSR as our test subject not only because it is the gold standard for mesh
reconstruction at the moment, but also because of the properties of its parameter. SPSR,
as implemented by Meshlab1, can use, among others, different depths, point weights, or
samples per node, which all heavily change the resulting mesh. A bad selection of these
parameters leads to a bad or failed reconstruction or can cause the process to take far
more time than for a similar result with different parameters. Additionally, there is a
good variety of parameter types to run SPSR with, numerical as well as categorical.

1http://www.meshlab.net/
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1.3 Contributions
For this thesis, we implemented five different parameter optimization algorithms and
tested them against each other on multiple point clouds from the ‘ABC’ and ‘famous’
datasets provided in [EGO+20]. The focus of these tests lies on SPSR because it has a
parameter space with desirable properties for our tests, further discussed in Section 3.2.
Other than SPSR, all algorithms can be applied to any other parameterized operation,
as we describe in Section 5.1.
One of the main contributions of this thesis is near optimal parameter configurations for
SPSR for different point clouds and point-cloud types. These have been determined by
optimizing the Chamfer Distance of the resulting reconstructed meshed to the ground
truths. We give parameter configurations for an ’average’ point cloud, as well as for
topologically difficult ones and different noise levels. We find that the main parameters
to adjust are depth and pointWeight, with both being required to be higher for more
accurate data and lower for noisier or more inaccurate point clouds. To fit the recon-
struction to holes or other more complex structures, pointWeight should be chosen very
high. For less complex clouds, this is not advisable, since it could lead to overfitting.
Another contribution of this thesis is a number of adjustments to the tested optimization
algorithms. These are mostly necessary for the algorithms to run on parameter spaces as
large as the one we use for SPSR, where some time optimizations are necessary. Another
case where we had to adjust the original algorithms is for them to run on a single point
cloud instead of requiring multiple tests to come to a result.
Like SPSR, the tested algorithms also require parameters to run. We test each algorithm
against different point clouds and present the optimal parameters.
Additionally, we provide a framework to run all the necessary optimizations. Our frame-
work can apply different optimization algorithms to operations that need good parameters
selected to run efficiently. It also includes several implemented visualizations to help
better understand each algorithm and evaluate the results (Section 3.3).

1.4 Structure
This thesis is structured into four main parts and a chapter containing all our results
in tabular form. The first chapter is Related Work (Section 2), which describes some
general parameter types and optimization algorithms (Sections 2.1-2.2), before looking
at several available algorithms sorted by their basic types (Sections 2.3-2.5).
The next chapter is Methodology (Section 3), where we go into detail on all implemented
parts of the framework. First, we present the five optimization algorithms we test (Section
3.1). For each algorithm we explain how it works and if there are any deviations from the
literature that we added for our own implementation. Next, we explain SPSR in Section
3.2, as well as its parameters (Section 3.2.1) and the Quality Metrics we use (Section
3.2.2). As the final part of the Methodology chapter we describe our three implemented
visualizations in Section 3.3.
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1.4. Structure

A big chapter is Experiments (Section 4), where we give an overview of all tests we
conducted and their results. The first tests were conducted on our test equation and are
described in Section 4.1. The next round of tests was to find good algorithm configurations
to run our optimization algorithms with. These are described in Section 4.2. With these
algorithm configurations established, the next Section (4.3) contains tests on the same
point cloud but with different data qualities. Finally, Section 4.4 contains descriptions
and results of our tests on different point clouds with the same data quality.
The last main section is Discussion and Future Work (Section 5). It is made up of smaller
chapters that each either summarize some aspect of our test results (Sections 5.1-5.3),
presents some findings that result from our work (Section 5.4), or discuss what further
work could be done on this topic (Sections 5.5-5.7).
At the end of this thesis, there is a chapter of tables containing all our test results in
detail (Section 6).
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CHAPTER 2
Related Work

There are many different optimization algorithms tuned to different problems. They differ
in the amount and type of parameters they can work with as well as in the underlying
principle. Some work on local data, such as ParamILS [HHLBS09], while others use
global data to find new candidates to test, such as GEIST [TJA+18] or IF-Race [BBS07].
In this chapter, we will first look at some general optimization algorithms that are used
in Parameter-Space Optimization, then some specialized techniques will be discussed.
Huang et al. give a good overview of existing specialized Parameter-Space Optimization
techniques without evaluating their performance [HLY20]. They split the presented
algorithms into three categories, which will be presented in Sections 2.3-2.5.

2.1 Parameter Types
An important concept when talking about optimization algorithms is parameter types.
Not only can some algorithms just work with certain amounts of parameters, but also
only certain types of them. At a basic level, there are discrete and continuous parameters.
Discrete parameters can only take on certain fixed values (there can be an infinite number
of them), an example would be Integers. On the other hand, continuous parameters
might be restricted to a certain range, but they can take any value in that range and are
not restricted to a subset. Such a parameter would be represented by for example a float
value. An interesting subset of discrete parameters are categorical parameters, which
do not represent a number, but a selection from a number of possible values. The most
common example of these is boolean values, that are either true or false.

2.2 General Optimization Algorithms
An algorithm that is used often in Parameter-Space Optimization, whether as a tool or
to compare another system too, is Gaussian Processes (GP) [WR06]. GPs use multidi-
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2. Related Work

mensional normal-distributed variables to model unknown functions based on empirical
data. This can be used to predict the results of untested parameter configurations to
efficiently select promising candidates to evaluate.
Another widespread optimization technique is Gradient Descent (GD) and its variations.
Basic GD works by starting from a random point in the parameter space, computing
the gradient at that point, and moving in the resulting direction for the next sample.
In high-dimensional spaces this can lead to a lot of calculations that slow the process
down, so some simplifications have to be found. A possibility to speed the algorithm up
is Stochastic Gradient Descent (SGD), which only samples one dimension of the gradient
each step [Bot98]. Of course, any compromise between SGD and standard GD is possible,
considering just a subset of parameters in each iteration. The main disadvantage of GD
is that the function to be sampled has to be derivable.

2.3 Simple Generate-Evaluate Methods
The Simple Generate-Evaluate Methods are the simplest and most straightforward
methods. They first create a set of parameter configurations and then evaluate each of
them to find the best candidate. The simplest algorithm in this category is brute-force,
where candidates are chosen completely at random. For this to yield any good result, a
lot of samples have to be taken in the evaluation phase, and valuable computing power
gets wasted on unpromising candidates that could have been discarded using a more
intelligent approach.
A more refined approach is F-race [BSPV02]. The idea of this algorithm is to iteratively
test the generated candidates and exclude any future candidates where evidence can be
gathered from the previous results suggesting that they won’t be good solutions. This
way less computing power is wasted on unnecessary parameter configurations and the
algorithm can terminate sooner than a brute-force algorithm.

2.4 Iterative Generate-Evaluate Methods
Iterative Generate-Evaluate Methods repeat the two steps already present in Simple
Generate-Evaluate Methods. They generate a set of candidates and evaluate them. Other
than the simpler version, the results are used to again generate a new set of parameter
candidates. This way, more interesting regions of the parameter space can be identified
and the search conducted in a more controlled and directed fashion.
This category is the largest in Huang et al.’s overview [HLY20] and they split it up into
four subcategories.
The first subcategory is Experimental Design Based Tuning. In this category falls
for example CALIBRA by Adenso-Díaz and Laguna [ADL06]. CALIBRA iteratively
narrows down the search space for each parameter to generate new candidates. The two
major drawbacks of this approach are that it only works with up to 5 parameters and
that the correlation of parameters is not considered at all.
The second subcategory is Numerical Optimization Based Tuning. Algorithms
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from this category are only applicable to real or integer values, but not to categorical ones.
They use numerical optimization methods to generate new parameter configurations for
the next evaluation step.
The third subcategory is Heuristic Search Based Tuning and encompasses the most
solutions available at the moment. They use some heuristic rule to generate new can-
didates each increment. One possibility to do this is modifying F-race to be executed
iteratively. Balaprakash et al. present iterated F-race, which uses the surviving candi-
dates of the previous iteration to generate new configurations similar to them [BBS07].
One disadvantage of iterated F-race is that it was not primarily designed to reduce
computational cost and a large number of samples might be needed to reach acceptable
results.
A quite simple but promising algorithm is GEIST by Thiagarajan et al. [TJA+18]. They
build a graph of all possible parameter configurations and label each tested as optimal
or not. These labels are then propagated through the whole graph and a new test-set
is selected from the optimal-labeled nodes. This algorithm can deal with categorical
parameters but does not support real numbers without discretizing them.
Another group in this subcategory are Meta-Evolutionary Algorithms as introduced by
Mercer and Sampson [MS78]. There are many different approaches in this category, such
as CMA-ES by Hansen and Lozano [Han06]. Although these evolutionary algorithms
seem to reach very good solutions, they usually need a lot of iterations and evaluations to
get there. Another problem is that many of them do not work with categorical parameters.
Bäck et al. look back at 30 years of evolutionary algorithms for parameter optimization
[BKvS+23]. They discuss the development of the field, and its major changes, and try to
give a short outlook on what to expect in the future.
Hutter et al. introduced ParamILS [HHLBS09], an iterative generate-evaluate method
that uses Iterated Local Search (ILS) [LMS03] to find new candidates in the generate
step. Since ILS uses local neighborhoods, it requires the discretization of parameters and
can not be applied to real numbers.
The fourth subcategory is Model-Based Optimization Approaches. This category
encompasses algorithms that build a surrogate model of the problem to optimize, which
is refined with each new test and used to generate new test cases. An example for this
category is SMAC by Hutter et al. [HHLB11]. It uses a random forest model to fit even
categorical parameters.
Another approach that uses forests was presented by Balaprakash et al. [BGW13]. They
use dynamic trees that are iteratively updated with new experimental results and used
to generate new candidates at promising regions. Gramacy et al. use a similar approach
of Dynamic Gaussian Process Trees [GLM04], where they fit GP to the obtained results
to determine new promising candidates.
It is also possible, to train a neural network on parameter configurations and the resulting
performance [MAJ+17]. This neural network, again, can be used to find new candidates
of parameter configurations. This is especially prevalent for using Bayesian optimization
[SLA12], where a neural network learns a probability model of an objective function
that needs to be optimized. It is then possible to get an estimated value for any point
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in the parameter space, as well as its standard deviation. Recently, a lot of work has
been done using this in tuning parameters specifically for runtime performance in the
space of High-Performance Computing and AI. Wu et al. introduce ’ytopt’ [WKB+20],
an auto-tuning framework that uses Bayesian optimization to tune Polly [GGL12] LLVM
[Lat02] pragmas to achieve the fastest compiled code. Similarly using Bayesian optimiza-
tion, Menon et al. introduce ’HiPerBOt’ [MBG20] to tune platform and application level
parameters, like compiler flags or runtime settings.

2.5 High-Level Generate-Evaluate Methods
High-Level Generate-Evaluate Methods are similar to Simple Generate-Evaluate Methods
in that they only employ one generate and one evaluate step. Other than the simple
version, they use some pre-computation step to generate promising candidates that are
then evaluated as usual. This way, cheaper versions of some calculations can be used
to find a rough estimate of good solutions before finding the actual best candidate. An
example in this category is post-selection [YSMdO+13]. It uses a shorter version of
another algorithm to generate promising candidates before running the full algorithm.
This is done for example with ParamILS [HHLBS09], which is aborted after a set number
of iterations.

10



CHAPTER 3
Methodology

To create the optimization framework and find the best parameter configurations, we
implemented multiple state-of-the-art parameter-space optimization algorithms, which
will be described in Section 3.1. In the scope of our framework, we call these algorithms
strategies. A strategy’s task is to select parameter configurations for the target to test
next. This is usually done by an algorithm, but could in the scope of the framework also
be for example user input or read from any other source. A target is any parameterized
operation that should be optimized. In our case, this is mainly SPSR, but as an
additional aid in the development and debugging of the strategies, a simple test equation
(a − b + c − d + e) is available as a second target. To get better insight into the inner
workings of an algorithm, and to find any problems or weaknesses, we also implemented
the possibility to visualize the current state of the optimization using visualizations.
The different visualizations available can be found in Section 3.3. One target, one strategy,
and an arbitrary number of visualizations are required to start our framework.
Another important concept in the framework and the rest of this thesis is a parameter
configuration. A parameter configuration is a specific selection of parameters to run
a target with, so it is one single point of the parameter space. As will be described
in the following section, not only targets but also strategies can require a selection of
parameters to run. To avoid confusion between the two, we will call these algorithm
configurations.
For each algorithm, we first ran a number of tests, manually looking for the best
algorithm configuration to start it with if targeting SPSR. It would be interesting to run
the algorithms recursively on themselves to find the optimal algorithm configurations,
using the whole framework call as a new target and the algorithm configurations as
parameter configurations. This, however, would be far too resource-intensive, as will
be further discussed in Section 3.1. Instead, promising algorithm configurations were
selected and tested against each other. After finding a good algorithm configuration for
each algorithm, we tested them against each other on SPSR for different point clouds
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3. Methodology

and compared the results to find out which one yields the best results for this scenario.
To do this, we looked at both the runtime of the optimization as well as the quality of
the resulting reconstruction, indicated by the calculated Chamfer Distances described in
Section 3.2.2.

3.1 Optimization Algorithms

In the following sections, we describe all five algorithms we implemented in detail. First,
we discuss their original paper, as well as how exactly the algorithm works. Secondly,
we describe any changes or additions we had to make for our implementation and any
noteworthy uniqueness in our version. These changes are mostly due to the much larger
parameter space we have to work with over what most authors tested with. Furthermore,
some algorithms had to be adjusted for the framework or the target they were applied to.
SPSR requires some discrete parameters and our framework only runs one test for each
parameter configuration.

3.1.1 Brute-Force

Brute-Force is a well-known principle for algorithms in most fields of computer science.
It works by solving a problem not by some sophisticated strategy, but by using more
resources, such as computing power. The main advantage of this approach is that it is
usually very easy to implement and can be used when the achieved improvement by an
algorithm is not greater than the cost of implementing the algorithm in the first place.

Implementation

In our case, Brute-Force works by randomly selecting new parameter configurations to
test until either a certain value has been reached, or for a set number of iterations. The
number of tested configurations in each iteration can be set and should normally be equal
to the number of CPU cores available. Fewer tests would waste processing time and
more tests would lead to the possibility of reaching a termination criterion after the first
batch of tests and doing unnecessary work. This separation into batches is not ideal and
will lead to longer run times, but it fits better with the rest of the framework, making it
possible to use all the visualizations without modifications.

3.1.2 GEIST

The first more complex algorithm we implemented is Good Enough Iterative Sampling
for Tuning (GEIST) by Thiagarajan et al. [TJA+18]. It is a Heuristic Search Based
Tuning algorithm (Section 2.4) that uses a graph of the parameter space that is split
into an optimal and a non-optimal region to select parameter configurations for the next
iteration.

12



3.1. Optimization Algorithms

Figure 3.1: Visual representation of the GEIST algorithm. Reprinted from [TJA+18]

Algorithm

GEIST works by first creating a graph of the entire parameter space. This means
that this algorithm only works for discrete data and continuous parameters have to be
separated into intervals to create discrete data. To initialize GEIST, a number of random
parameter configurations are selected and tested. In the graph, these configurations are
then labeled as ’optimal’ or ‘non-optimal’ depending on some heuristic. The heuristic we
selected, as well as any other implementation-specific details, can be found in the next
Section. These few node labels are now propagated through the graph, creating a not
necessarily connected ‘optimal’ as well as a ‘non-optimal’ section. For each following
iteration, random parameter configurations from the ‘optimal’ section are selected, and
their results as well as the previous results used to initialize the label propagation. This
is done until some termination criteria is met. A visualization of the whole algorithm can
be found in Figure 3.1. GEIST is described in pseudo-code in Algorithm 3.1 as published
by Thiagarajan et al. [TJA+18].

Implementation

Our implementation follows the paper by Thiagarajan et al. in most points. One
difference is the strategy of propagating labels in the graph after testing each set of
parameter configurations. In the original paper, the authors use Confidence Aware
Modulated Label Propagation (CAMLP) [YFK16], which assigns a probability for each
possible label to each node, in the case of GEIST that is optimal or non-optimal. To do
this, Equation 3.1 is evaluated repeatedly, until it converges to a stable assignment.

pik = 1
Zi

bik + β
�

j∈N(i)
Wijpjk

 (3.1)

In this equation, bik is the prior probability of label k for node i. N(i) denotes the set
of neighbors of node i, pjk is the probability of node j having label k. Wij refers to the
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Algorithm 3.1: GEIST, adapted from [TJA+18]
Input: Parameter space S, initial sample size N0, theshold Δl, number of

iterations T , size of sample added in each iteration N+.
1 Initialize bootstrap set B = {}.
2 Initialize unseen test set U = S.
3 Generate a uniform random sample S0 of size N0 from S.
4 Update B = B ∪ S0.
5 Construct neighbourhood graph G for S.
6 loop for T iterations:
7 Run experiments for samples in B and build {(ci, yi)}i∈B.
8 Update U = U\B.
9 Compute categorical label L(xi), ∀i ∈ B.

10 Predict the labels for all configurations in U using Equation 3.1.
11 Randomly select N+optimal cases from U to build S+.
12 Update B = B ∪ S+.

edge strength between nodes i and j, β controls the influence of neighboring nodes. As a
normalization constant, Zi scales the sum of all pik for a node to 1.0.
For our implementation, we realized that label propagation needs to be simplified to
accommodate larger parameter spaces. While the largest number of nodes the original
authors tested GEIST with is 25,920 [TJA+18], for SPSR we get parameter spaces
with multiple millions of nodes, depending on the configuration. This leads to label
propagation taking several minutes to complete even with our simplified implementation,
which is a simple nearest-neighbor algorithm.
To determine the label of a tested parameter configuration, we use an ‘optimal threshold’,
where any node with a value over that threshold is classified as optimal, while the rest
are not optimal.
Instead of the fixed number of iterations that Thiagarajan et al. use, we developed a
more dynamic termination criteria. We chose to lower the threshold dividing optimal and
non-optimal nodes each turn by a static amount, as well as additionally if the number of
optimal nodes does not decrease between iterations. If the threshold reaches zero percent,
the algorithm terminates. This way the number of iterations that will be necessary does
not have to be defined prior to the optimization run and we get the effect of simulated
annealing.

3.1.3 Iterative F-Race
Algorithm

Iterative F-Race, as described by Balaprakash et al. [BBS07], improves on F-Race
[BSPV02] and is also a Heuristic Search algorithm. The basic F-Race algorithm works
similarly to Brute-Force (Section 3.1.1) in that it first selects a number of parameter
configurations and then tests them. Different to Brute-Force, F-Race gathers evidence

14



3.1. Optimization Algorithms

against configurations while testing them and skips them if enough evidence against them
can be found. Iterated F-Race expands upon this idea by repeating this process multiple
times. In each iteration, a number of elite configurations from the previous iteration
are used to generate a probability value for each possible parameter configuration to be
selected. Using these values, the configurations for the next iteration are selected.

Implementation

There is one big difference between the version of the algorithm described in the paper
[BBS07] and our implementation. To gather evidence against certain parameter configu-
rations, without prior knowledge of the parameter space, it would be necessary to test
each of them against multiple point clouds. This way, if the first results are worse than
any other configuration, the current one could be skipped. While this would be possible,
this work aims to find an algorithm that works on a single point cloud. Additionally,
during testing we found out that small numbers of parameter configurations per iteration
lead to better results, meaning that with a CPU with 16 cores, all configurations can be
tested in parallel, and skipping any would not lead to an increase in performance.
While the I/F-Race algorithm would work with continuous data, SPSR requires some
discrete parameters, so our implementation uses a graph of the parameter space and
calculates the probability of each node at each iteration. For continuous parameters, the
interval between nodes can be selected arbitrarily small, mimicking continuous data at
the expense of processing time.

3.1.4 ParamILS
ParamILS (Parameter Iterative Local Search) by Hutter et al. [HHLBS09] is an iterative
generate-evaluate method for finding an optimum in a discrete parameter space.

Algorithm

ParamILS is based on an iterative first improvement procedure, where for each step single
parameters are altered by one unit and then tested. If the result is an improvement, this
changed configuration is taken as the new current configuration. Once no more better
neighbors can be found, a local optimum has been reached and the algorithm moves in a
random direction and repeats the process. The full process, as described by Hutter et al.
can be found in Algorithm 3.2.

In this algorithm, Θ denotes the full parameter space, with θ being a single configuration
from that space. r is the size of the random set of parameter configurations that is taken to
initialize the algorithm, prestart the probability of restarting the whole search from a new
random parameter configuration. The distance of movement in each perturbation step is
determined by s. As the neighborhood Nbh(θ) we use the Manhattan neighborhood, so
it is the set of configurations θi that differ in exactly one parameter to θ. The function
better(θi, θj) is a simple comparison of the estimated values resulting from the evaluations
of θi and θj .
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Algorithm 3.2: ParamILS, taken from [HHLBS09]
Input: Initial configuration θ0 ∈ Θ, algorithm parameters r, prestart, and s.
Output: Best parameter configuration θ found.

1 for i = 1, ..., r do
2 θ ← random θ ∈ Θ;
3 if better(θ, θ0) then θ0 ← θ;
4 end
5 θils ← IterativeF irstImprovement(θ0);
6 while not TerminationCriterion() do
7 θ ← θils;

// ===== Perturbation
8 for i = 1, ..., s do θ ← random θ� ∈ Nbh(θ);

// ===== Basic local search
9 θ ← IterativeF irstImprovement(θ);

// ===== AcceptanceCriterion
10 if better(θ, θils) then θils ← θ;
11 with probability prestart do θils ← random θ ∈ Θ;
12 end
13 return overall best θinc found;
14 Procedure IterativeF irstImprovement(θ)
15 repeat
16 θ� ← θ;
17 foreach θ�� ∈ Nbh(θ�) in randomized order do
18 if better(θ��, θ�) then θ ← θ��;break;
19 end
20 until θ� = θ;
21 return θ;

Implementation

For our implementation, we chose a fixed number, max_repetition, of times the same
local optimum can be reached as the TerminationCriterion(). After reaching the same
local optimum max_repetition times, it is returned as the final result. While many
members of the neighborhood of a parameter configuration can be evaluated at the same
time, we still chose a random configuration with a better value instead of selecting the
best one. This has led to better results in some tests. We do not use prestart (prestart = 0)
in our implementation.
A larger difference between our implementation and the one by Hutter et al. [HHLBS09] is
the perturbation step. In the original paper, a random neighbor of the current parameter
configuration is selected s times. In larger parameter spaces this value s has to be too
high for this strategy to work effectively. After many perturbation steps, their directions
even out, leading to no significant change. To avoid this problem, for each parameter,
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we select a random number m of steps to move from the interval [−mmax, mmax]. mmax

is determined by multiplying the number of possible values of the parameter with the
perturbation_distance parameter described in Section 4.2.3. This results in a move with
a maximum length of perturbation_distance times the size of the parameter space in a
random direction.

3.1.5 Post-Selection

Algorithm

The idea of the post-selection algorithm is to generate a set of high-quality candidate
parameter configurations in a first step, and then determine the best of these configurations
in a second step [YSMdO+13]. For the generation step, any number of strategies can be
used, as long as they lead to good solutions quickly. To achieve this, it is possible to use
faster convergences, limit the number of iterations the algorithm can run for, or accept
solutions earlier in another way. The evaluation step’s job is to determine which of the
previously selected candidates is the best solution overall. This is achieved by running a
more accurate strategy, either by choosing a different one than in the generation step
or by tweaking its algorithm configuration. The amount of resources spent on each
parameter configuration is usually much larger than in the first step.

Implementation

For our implementation, we use the other four implemented algorithms both as generation
and evaluation algorithms. Since we want the results for one single point cloud, the values
for each candidate parameter configuration are already known after the generate step.
Because of this, and because some of the algorithms would not work on a disconnected
set of candidates, we do not limit the evaluation step strictly to the generated candidates.
They are used to initialize the evaluation algorithms, which then find the optimal
parameter configuration from this initial selection.
Each evaluated algorithm receives the full set of tested parameter configurations to
initialize, but they use different amounts of them. GEIST uses all previous results to
initialize its optimal/non-optimal graph and starts selecting new configurations from
there. Iterative F-Race uses the nr_good_results best configurations from the generate
step and calculates the next probabilities from them. ParamILS starts from the best
parameter configuration of the generate step and moves on from there. Brute-Force, as
expected, ignores any previous results and was therefore not used in the evaluation step.
To achieve a broader spread of possible candidates, it is possible to run the generate
step multiple times and pool all results together. This is useful to start an algorithm
configured to be very fast, but not very accurate, multiple times and get the best results,
as opposed to relying on it getting the correct solution on the first try.
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3.2 Screened Poisson Surface Reconstruction
Screened Poisson Surface Reconstruction (SPSR) by Kazhdan and Hoppe is an algorithm
to construct watertight surfaces out of oriented point clouds [KH13]. It expands on Poisson
Surface Reconstruction (PSR) [KBH06] by adding the points explicitly as interpolation
constraints. Both algorithms assume an indicator function that is positive inside the
model and zero (PSR) or negative (SPSR) outside. They start by converting the oriented
point cloud into a vector field that should be equal to the indicator function’s gradient
∇X . This is achieved by minimizing the error function:

E(X ) =
�

�∇X (p) − /V(p)�2dp (3.2)

In this equation, X is the indicator function and V is the vector describing point p.
This minimization can be solved using Poisson equations. In practice, this is done using
an octree and fitting a B-spline function into each node of the tree. After combining
these B-splines, the resulting function’s zero set should be close to the model’s surface,
although there can be some errors due to noisy data and some approximations in the
calculation. To reduce this problem, PSR subtracts the average value of the function at
the input samples. This is only a global offset, so the average error at all points is zero,
but there are potentially errors that cannot be fixed by this process.
SPSR improves on PSR in this regard by explicitly interpolating the points. Kazhdan
and Hoppe do this by extending Equation 3.2 with a term that discourages a deviation
from zero at the samples, resulting in Equation 3.3.

E(X ) =
�

�∇X (p) − /V(p)�2dp + α ∗ Area(P)�
p∈P ω(p)

�
p∈P

ω(p)X 2(p) (3.3)

Here, P is the set of input points, and ω(p) is the weight of one such point. Area(P) is
the estimated area of the reconstructed surface and α is used to balance between fitting
the gradients and fitting the values.

We chose SPSR as the algorithm to test the optimization algorithms of this thesis
because it is the gold standard for mesh reconstruction from point clouds at the moment
and because there is a good variety of parameter types used for it. In particular, we use
the implementation by Meshlab 1, which can be configured using a number of parameters
and parameter types, continuous, discrete as well as categorical (True/False).

3.2.1 Parameters
Several parameters need to be set to run the Meshlab version of SPRS; these are:

• Merge all visible layers (visibleLayer): tells the program to use all visible
layers instead of just the current.

1http://www.meshlab.net/
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• Reconstruction Depth (depth): the maximum octree depth.

• Adaptive Octree Depth (fullDepth): specifies how far up the octree will be
adapted, at coarser depths it will hold all 2d ∗ 2d ∗ 2d nodes.

• Conjugate Gradients Depth (cgDepth): up to this depth a conjugate-gradients
solver will be used, further on Gauss-Seidel relaxation will be used.

• Scale Factor (scale): the ratio of the diameter of the octree cube to the bounding
cube of the point cloud.

• Minimum Number of Samples (samplesPerNode): the minimum number of
points that need to fall into an octree node.

• Interpolation Weight (pointWeight): the importance of interpolating point
values over gradients (α in Equation 3.3).

• Gauss-Seidel Relaxations (iters): the number of Gauss-Seidel iterations to be
performed at each level of the octree.

• Confidence Flag (confidence): whether the length of normal vectors should be
used as weights during the reconstruction.

• Pre-Clean (preClean): if enabled, a pre-clean step is run, removing all unrefer-
enced points as well as those without normals.

3.2.2 Quality Metrics
We implemented two quality metrics to evaluate the quality of SPSR. We chose Chamfer
Distance since it gives an idea about the general reconstruction quality, as well as
Hausdorff Distance, which gives an idea about a local worst case. For all optimizations,
we minimized the Chamfer Distance, but also give the Hausdorff Distances in the result
tables. All used point clouds are scaled to the unit cube, so the Chamfer Distance can
be used as a comparison between different clouds as well.

Chamfer Distance

For the first metric of the quality of a reconstruction, we chose the Chamfer Distance
[BTBW77]. The Chamfer Distance of a reconstructed model is defined as the sum of the
minimal distances of each reconstructed point to the nearest point on the original model.
Alternatively, the average of minimal distances can be used ([DDR16]). The Chamfer
Distance of a reconstruction R to the ground-truth G is given in Equation 3.4.

CD(R, G) =
�

ri∈R

min
gj∈G

|ri − gi| (3.4)
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Hausdorff Distance

A second value we calculate for each test is the Hausdorff Distance. It is a distance metric
between two sets of points that can be visualized as a ‘worst-case’ travel distance from
one set to the other. The Hausdorff Distance is defined as the maximal minimal distance
from any point on one set to any point on the other set, as expressed in Equation 3.5
[HKR93].

H(A, B) = max(h(A, B), h(B, A)) (3.5)
where

h(A, B) = max
a∈A

min
b∈B

||a − b|| (3.6)

3.3 Visualization
The goal of the visualization framework was to help with the understanding of the
selected strategies. Originally, this meant being able to find possible errors during the
implementation that might not be visible in the final result or any debugging output.
If the intermediate states of the strategy did not conform with what we expected, we
were able to check if there was something wrong in the code, or if we needed to adjust
our understanding of the algorithm. In the later stages, it was important to understand
how each algorithm worked in order to be able to select promising algorithm parameter
candidates for the first part of the testing process. Since we could not run the strategies
recursively, we needed to choose good candidates based on our understanding of the
individual algorithms.
We implemented three different visualizations that can be used independently of each
other and update during the optimization process.

3.3.1 Parameter Change Visualizer
The first visualization method is the Parameter Change Visualizer. It shows the
development of one specific parameter during the optimization process. For each iteration,
the average of the parameter across all tested parameter configurations, as well as the
average over the last iteration’s configurations, are plotted. Additionally, for each of these
values, the variance of the parameter in the respective time frame is shown to indicate
whether the algorithm is focusing on said parameter value, or if the parameter does not
have a lot of influence on the result. Lastly, the graph also shows the value the tracked
parameter has taken in the currently best found configuration. All this can be seen in
Figure 3.2. It can be seen here that the parameter ‘samplesPerNode’ focuses on a value
around 6 throughout the optimization.

3.3.2 Correlation Visualizer
The second implemented visualization is the Correlation visualization. It shows
the whole parameter space projected onto a two-dimensional grid spanned by two
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Figure 3.2: Parameter Change visualization of an IF-Race run on SPSR for the ‘original
- Armadillo’ point cloud showing the optimization of the parameter ‘samplesPerNode’.

selected parameters. At each point of the grid, a dot represents all tests done with
the representative parameter combination. The size of the dot specifies the number
of tests, and the color indicates the quality of the solution. One can select between
showing the average of all values achieved with the corresponding combination of the
two parameters, or the best result with said configuration. This means that a larger
dot is a parameter combination chosen by the strategy to be tested more often, and a
greener dot implies a better result. As an example, a large red dot in this view would
show that the strategy does not work correctly, or there is an error in the strategy’s logic
since it does not make sense to test a bad parameter configuration multiple times. It
is also possible in the Correlation Visualization to highlight some configurations with a
circle, depending on the strategy. This is done, for instance, for IF-Race (Section 3.1.3)
to show the parameter configurations that were selected to create the next probability
distribution from. An example of a Correlation Visualization can be found in Figure 3.3.
Here, we see the correlation between the parameters ‘depth’ and ‘samplesPerNode’ of
a GEIST run on SPSR for the ‘original - Armadillo’ point cloud. As can be seen here,
both parameters have a high impact on the quality of the result, with a high ‘depth’ and
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Figure 3.3: Correlation visualization of a GEIST run on SPSR for the ‘original - Armadillo’
point cloud showing the correlation between ‘depth’ and ‘samplesPerNode’.

low ‘samplesPerNode’ yielding the best results.

3.3.3 MDS Visualizer

The last visualization we implemented is the MDS Visualizer. MDS, or multidimen-
sional scaling, projects the parameter space onto a 2D plane. It does so in a way to have
similar points (parameter configurations with similar resulting values in our case) end up
close to each other. As for the Correlation Visualizer, we color all dots according to their
resulting value. For size, we use one selectable parameter. This way, it is very easy to see
how much influence a parameter has on the outcome of SPSR. If only dots with similar
sizes are within the green area of the plot, then it is important for the selected parameter
to be of that size. If sizes are spread around the whole plot and do not correlate with
color, then the parameter has no significant impact on the resulting value. As an example,
in Figure 3.4 we visualized the ‘samplesPerNode’ parameter of a GEIST run on SPSR
for the ‘original - Armadillo’ point cloud. As can be seen here, the color and the size of
the dots correlate, and only very small values of ‘samplesPerNode’ led to good results.

22



3.3. Visualization

Figure 3.4: MDS visualization of a GEIST run on SPSR for the ‘original - Armadillo’
point cloud. The parameter highlighted by the dot color is ‘samplesPerNode’. ‘Values’ is
the Chamfer Distance of the resulting construction.

On the other hand, in Figure 3.5 we have the same optimization run but visualized the
‘scale’ parameter. Here, there is no correlation between the size and color of the dots,
which means that the ’scale’ parameter has no strong impact on the resulting Chamfer
Distance. There is still a green cluster on the right side of the graph, which indicates
another parameter being influential on the value.
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Figure 3.5: MDS visualization of a GEIST run on SPSR for the ‘original - Armadillo’
point cloud. The parameter highlighted by the dot color is ‘scale’. ‘Values’ is the Chamfer
Distance of the resulting construction.
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CHAPTER 4
Experiments

To determine the best parameter-space optimization algorithm for use with SPSR, as well
as the optimal parameters for our test set, it was necessary to conduct a large number
of tests, some manual, some automated. All tests were run on the same computer, an
Ubuntu 20.04 machine with an AMD Ryzen 7 3700X CPU, to be able to fairly compare
run times. Only a few tests to generate output with specific parameters without the
need of timing an optimization process were conducted on a second computer, another
Ubuntu 20.04 machine with an Intel I7-9700K, 32GB memory, and a Nvidia GTX 970.
We used two different datasets in our tests. The first is the ‘famous’ dataset assembled
by Erler et al., the second one is an extract from the ‘ABC’ dataset [KMJ+19]. For
both, we used the preprocessed versions generated for Points2Surf [EGO+20]. Both
datasets contain point clouds of varying quality and ground-truth meshes to compare the
reconstruction to. For the famous dataset, each point cloud is available in its original,
noise-free, extra noisy, sparse, and dense version. The different qualities of the ‘Armadillo’
point cloud can be seen in Figure 4.1. In the ABC dataset, a default, noise-free, and extra
noisy version are available, they are visible in Figure 4.2. We tested the effects of these
different quality levels and the results can be found in Section 4.3. For the ABC dataset,
we use synonyms for the used point cloud since they do not have speaking names:

• cloud 1: 00010218_4769314c71814669ba5d3512_trimesh_013

• cloud 2: 00017012_cd8dbafbc2a3422eb55090d7_trimesh_000

• cloud 3: 00991549_ecacd48a6851e8a6a3f8e137_trimesh_001

• cloud 4: 00018869_72063a0c38b94f71a6524566_trimesh_000

We conducted tests in two phases. The goal of the first phase was to find good algorithm
configurations for each parameter-space optimization algorithm, as described in Section
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Figure 4.1: Different qualities of the ‘famous’ - ‘Armadillo’ point cloud. Image A shows
the ground-truth mesh. B-F show the point cloud in the following datasets: B: original,
C: sparse, D: noise-free, E: extra_noisy, F: dense

4.2. In the second phase, we tested the previously found algorithm configurations against
different point clouds (Section 4.4), as well as different qualities of the same point cloud
(Section 4.3).

4.1 Test Equation
To ensure our algorithms work, we first tested them on our test equation a − b + c − d + e
with all values being from the range [−5, 5]. The expected optimum for a minimization
would of course be a = −5, b = 5, c = −5, d = 5, e = −5.

4.1.1 GEIST
Our GEIST implementation found the absolute best solution. A correlation visualization
between a and b can be found in Figure 4.3. In this graph, it is very clear that the
algorithm focuses in on the optimal region and does not need to test a lot of parameter
configurations in the rest of the parameter space.

26



4.1. Test Equation

Figure 4.2: Different qualities of the ‘ABC’ - ‘cloud1’ point cloud. Image A shows the
ground-truth mesh. B: original, C: extra_noisy, D: noise-free

Figure 4.3: Correlation between parameters ‘a’ and ‘b’ of a GEIST run on our test
equation
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Figure 4.4: Correlation between parameters ‘a’ and ‘b’ of an IF-Race run on our test
equation

4.1.2 IF-Race

IF-Race did not find the perfect solution, the best one it reached is a = −5.0, b = 4.8, c =
−2.0, d = 5.0, e = −5.0. This it did after far fewer tests than GEIST, as can also be seen
in Figure 4.4. In this graph, far fewer points can be found than in the GEIST graph
(4.3), indicating that the algorithm took far fewer tests to terminate.

4.1.3 ParamILS

Like GEIST, ParamILS also found the optimal solution. The correlation visualization in
Figure 4.5 for ParamILS shows very clearly how the algorithm behaves. It first tested
some random parameter configurations and then started to move on from the best it
could find – in this run this was around a = −2.5, b = 4.8. From there it started to find
better neighbors and move to them. It is clearly visible how it had to check the area
around its initial optimum and optimize other dimensions, until finally moving towards
a = −5; even the single tests in the negative b direction when looking for better neighbors
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Figure 4.5: Correlation between parameters ‘a’ and ‘b’ of a ParamILS run on our test
equation

can be seen.

4.1.4 PostSelection
The best parameter configuration PostSelection could find was a = −3.4, b = 4.2, c =
−5.0, d = 5.0, e = −5.0. As can be seen in Figure 4.6, a lot of tests had to be conducted
to reach this result, but again not many of them are in the uninteresting regions of the
parameter space, indicating the algorithm works as expected. Still, for this rather small
example, PostSelection is probably a too complex algorithm and does a lot of unnecessary
work.

4.2 Algorithm Configuration
The first round of tests we conducted aimed to find desirable algorithm configurations
to start the different parameter-space optimization algorithms with. These desirable
configurations can either yield the best results or terminate the quickest. To find said
configurations, we used manually selected tests instead of any automation due to the
immense size of the parameter space. While it would be possible to apply any of the
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Figure 4.6: Correlation between parameters ‘a’ and ‘b’ of a PostSelection run on our test
equation

algorithms recursively to itself to find a good algorithm configuration, this is not feasible
due to the long run times. Each of the hundreds of necessary configurations for one
optimization would have to be tested multiple times, each test taking up to four hours
(in the case of GEIST and PostSelection).
The parameter space for these tests we selected as follows ([min, step, max]):

• cgDepth ∈ [0, 1, 1]

• depth ∈ [4, 1, 8]

• fullDepth ∈ [5, 1, 8]

• iters ∈ [6, 1, 10]

• pointWeight ∈ [2.0, 0.2, 8.0]

• preClean ∈ {True, False}
• samplesPerNode ∈ [1.0, 0.1, 9.0]

• scale ∈ [0.9, 0.1, 1.7]
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• visibleLayer ∈ {True, False}

The limits of this parameter space were heuristically determined by tests, leaving some
space around the expected optimum. cgDepth only ever took the value of 0 or 1, so no
more options were allowed. An exception is depth, which often improves the resulting
value the higher it is, but also increases the run time significantly. So while higher depth
could lead to even better results, the parameter was limited to 8 to enable more tests in
the same time. The confidence parameter we fixed to False for comparison sake, since
not all datasets contain weighted normals that would be needed for that feature. This
results in a 9-dimensional discrete parameter space with 18, 079, 200 possible parameter
configurations. Using our testing machine, each individual SPSR run takes three seconds
using a depth of 8, including calculating Chamfer and Hausdorff Distance. This means
that testing the whole parameter space would take roughly one and a half years.

4.2.1 GEIST
There are several parameters that can be tweaked when starting our version of the
GEIST algorithm. To control the optimal threshold, its starting value can be set via
optimal_threshold, the fixed change each iteration with fixed_threshold_change, and
the additional change to speed up convergence using threshold_change. Additionally,
the number of starting parameter configurations as well as the number of configurations
to test per iteration can be set using start_size and run_size.
The algorithm configurations we chose to test based on previous experience while im-
plementing GEIST as well as their corresponding results can be found in Table 6.1. A
visualization of the results can be seen in Figure 4.7 on the example of the ‘famous_original
/ Armadillo‘ dataset using SPSR. This graphic shows that GEIST leads to consistently
good results, with the Chamfer Distance ranging from 117.3 to 119.8. Unfortunately, the
run time is far higher than that of most other algorithms. Depending on the algorithm
configuration, it can take from one up to five hours on our testing machine. As expected,
the best results are achieved by a slow convergence with large iteration sizes. When
trying to achieve good results in a reasonable time, the results suggest it would be best
to choose large initial and iteration sizes but limit the number of iterations by selecting
bigger threshold changes. Configurations 2 and 4 were run more often than the rest since
they showed a very high standard deviation after the first 4 tests.

All results of our tests with different GEIST configurations can be found in Table 6.1.
This table shows the eight algorithm configurations we selected with their individual
results of at least three test runs. Additionally, an average and the standard deviation are
given for easier comparison between the configurations. While there are configurations
that might lead to better results, only these eight were chosen due to constraints on the
run time. Not only is GEIST already one of the slower algorithms and an even slower
version would not be recommendable, but we also had to consider the additional tests
we were conducting with the selected algorithm configuration on different datasets and
qualities.

31



4. Experiments

Figure 4.7: visualization of the results of the manual tests to find a good parameter
configuration to run GEIST with. The left graph shows the resulting Chamfer Distance in
comparison to the default parameters, the right graph shows the needed time in minutes.
The grey lines on the bars show the standard deviation. Each bar corresponds to one
configuration in Table 6.1 as specified by the configuration number.

The version we selected for testing on different point clouds and datasets in the next
sections is config 8. This configuration takes an average of 173 minutes, being around
average over all configuration, but achieves the best result of 117.6. Config 8 consists of
the following parameters:

• start_size = 1500

• run_size = 150

• optimal_threshold = 0.3

• fixed_threshold_change = 0.02

• threshold_change = 0.04

4.2.2 IF-Race
Our version of the Iterated F-Race algorithm has multiple algorithm parameters needed
to start it. start_size and iteration_size determine how many parameter configurations
will be tested for the initial set of parameter configurations, or each iteration respectively.
To decide how many of the best-known parameter configurations should be used to
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Figure 4.8: visualization of the results of the manual tests to find a good algorithm
configuration to run IF-Race with. The left graph shows the resulting Chamfer Distance
in comparison to the default parameters, the right graph shows the needed time in
minutes. The grey lines on the bars show the standard deviation. Each bar corresponds
to one configuration in Table 6.2 as specified by the configuration number.

calculate the next iteration’s probabilities, nr_good_results can be used. For controlling
the algorithm’s termination behavior, on the one hand, there is a hard set maximum
of iterations, max_iterations. On the other hand, annealing_factor controls how fast
the standard deviation of the used normal distributions shrinks per iteration, according
to Equation 4.1.

stddevi = stddevi−1 ∗ annealing_factor (4.1)

The standard deviation is multiplied with the annealing_factor each iteration, so to
switch annealing off, one can simply set annealing_factor to 1.0.
Figure 4.8 shows the effects of different algorithm parameters on the run time and
resulting Chamfer Distance of SPSR on the ‘famous_original / Armadillo‘ point cloud.
As can be seen, a higher annealing_factor generally leads to a better result but causes a
longer run time. While an annealing_factor of 0.9 results in a very consistent Chamfer
Distance of under 118, it also takes around three hours to terminate. The fastest algorithm
configuration, finishing in around 25 minutes, still reaches results of under 120. An
iteration_size of 30 or 45 looks to be preferable over 15, causing a small increase in run
time, but also a noticeable improvement in the result. For nr_good_results, again, a
medium value of 10 seems to reach a good balance between speed and accuracy. All
results of our manual tests can be found in Table 6.2. The algorithm configuration we
chose for the next round of tests is number 14:
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• start_size = 30

• iteration_size = 45

• nr_good_results = 10

• max_iterations = 20

• annealing_factor = 0.6

4.2.3 ParamILS
There are only three parameters relevant to starting our implementation of ParamILS.
Firstly, there is the starting_sample to set the number of parameter configurations
to randomly select for initializing the algorithm. This value is called r in the original
algorithm, which can be seen in Algorithm 3.2. Secondly, to adjust the distance to move
after finding a local optimum, perturbation_distance can be used. It denotes the maximal
fraction of the parameter range to move for each parameter, so it is not equal to Hutter
et al.’s s. The last parameter is max_repetition, which is the number of times the same
local optimum can be reached before the algorithm terminates. While not having a direct
equivalent in the original algorithm, this value controls the TerminationCriterion()
function of Algorithm 3.2.
As can be seen in Figure 4.9, the results for the ParamILS algorithm on the ‘Armadillo’
dataset are very inconsistent. For each algorithm configuration, 5 runs were performed
and their value and run time average and standard deviation were visualized in the
graphic. While the run time could be as low as under 2 minutes, it could also reach
over 100 minutes at certain times, both with the same perturbation_distance of 0.6
and a starting_sample of 15, just allowing for 5 or 6 repetitions of the same optimum
respectively.
The resulting values are just as inconsistent as the run times. They contain good results
of 117.4, but also far worse values as high as 122.9. Due to the high standard deviation
in both value and run time, no clear best configuration can be determined. All test
results can be found in Table 6.3. In the end, we settled on the following parameter
configuration to use in the second round of tests:

• starting_sample = 150

• perturbation_distance = 0.6

• max_repetitions = 5

4.2.4 PostSelection
Our implementation of PostSelection needs four parameters to run. Firstly, there are
strategy_generate and strategy_evaluate, which are of course the algorithms to be used
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Figure 4.9: Visualization of the results of the manual tests to find a good algorithm
configuration to run ParamILS with. The left graph shows the resulting Chamfer Distance
in comparison to the default parameters, the right graph shows the needed time in minutes.
The grey lines on the bars show the standard deviation. Each bar corresponds to one
configuration in Table 6.3 as specified by the configuration number.

for the generate and the evaluate step respectively. These algorithms have themselves
to be configured according to the algorithm parameters described in their sections. To
control the execution of the generate step, it is possible to set the number of times the
generate step is run via generate_repetitions. Using max_generate_iterations, we can
limit how many iterations each generate step is allowed to take before it is terminated.
Figure 4.10 shows the Chamfer Distance and run time of different PostSelection config-
urations. As can be seen here, the results vary greatly depending on the selection of
generate- and evaluate-strategy. The results of these tests can be found in Table 6.4,
and the algorithm configurations of the used generate and evaluate strategies are listed
in Table 6.5. In general, PostSelection can achieve very good results, with the worst
still being just over 118, but takes a very long time to run, the worst being around 6.5
hours. The algorithm configuration we chose consists of a slower IF-Race run as generate
strategy and a short GEIST as evaluate step:

• strategy_generate = IF − Race

– start_size = 30
– iteration_size = 15
– nr_good_results = 10
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Figure 4.10: Visualization of the results of the manual tests to find a good algorithm
configuration to run PostSelection with. The left graph shows the resulting Chamfer
Distance in comparison to the default parameters, the right graph shows the needed
time in minutes. The gray lines on the bars show the standard deviation. Each bar
corresponds to one configuration in Table 6.4 as specified by the configuration number.

– max_iterations = 20
– annealing_factor = 0.9

• strategy_evaluate = GEIST

– start_size = 150
– run_size = 150
– optimal_threshold = 0.1
– fixed_threshold_change = 0.02
– threshold_change = 0.04

• max_generate_iterations = 10

• generate_repetitions = 5

4.2.5 Brute-Force
Our Brute-Force algorithm simply selects random parameter configurations from the
parameter space equal in number to the available processing cores. Selecting the same
configuration multiple times is possible, but due to the size of the parameter space highly
unlikely. There are two parameters relevant to our implementation of a Brute-Force
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Figure 4.11: Visualization of the results of the manual tests to find a good threshold to
run Brute-force with. The grey lines on the bars show the standard deviation.

algorithm. The first one is threshold, which is the value to reach as a termination
criterion. The second one is max_iterations, which is a hard maximum after which the
algorithm terminates. The effects of different thresholds can be seen in Figure 4.11. All
results of these tests can be found in Table 6.6. As can be seen here, due to the random
nature of the Brute-Force algorithm, it is not possible to predict how long the run time
will be. One would expect to get a lower run time when choosing a higher threshold,
but this assumption does not hold when looking at a statistically insignificant sample
size, which is the intended use case of the developed framework.

4.3 Data Quality
After finding good algorithm configurations for each algorithm in Section 4.2, we tested
these algorithms on different qualities of the same point cloud. We continued to use
the ‘Armadillo’ cloud from the ‘famous’ dataset and selected all five available qualities
for tests. For the ABC dataset, we used ‘cloud 1’ and tested it on the three available
qualities, ‘original’, ‘noisefree’, and ‘extra_noisy’.
For this round of tests, we dropped the parameters preClean and visibleLayer since
they are just used for Meshlab itself and don’t influence the algorithms. This means that
for the following tests the parameter space encompasses only 4,519,800 nodes:

• cgDepth ∈ [0, 1, 1]

• depth ∈ [4, 1, 8]

• fullDepth ∈ [5, 1, 8]

• iters ∈ [6, 1, 10]
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Figure 4.12: Comparing different algorithms on the ‘famous_original’ - ’Armadillo’
dataset. The left graph shows the average achieved Chamfer Distance and the right
graph the required average run time. Standard deviations for both values are shown as
grey lines.

• pointWeight ∈ [2.0, 0.2, 8.0]

• samplesPerNode ∈ [1.0, 0.1, 9.0]

• scale ∈ [0.9, 0.1, 1.7]

4.3.1 original
If we look at the results using the original_famous dataset in Table 6.7, we can see that
all tested algorithms improve on the default parameter configuration significantly. The
best results are reached using GEIST with a Chamfer Distance of only 117.3 on average.
The worst result was achieved by ParamILS with 118.1, but this is still lower than the
default result of 120.5. These values as well as the run time of each algorithm are also
visualized in Figure 4.12. Here we can see that while GEIST and PostSelection achieve
the best results, they also take the longest to run, taking nearly two or three hours
respectively. In comparison, ParamILS was finished after just 20 minutes on average.

For the ABC dataset, the results can be found in Figure 4.28 and Table 6.18. As can
be seen there, the run time looks very similar to the famous dataset, with PostSelection
taking the longest and ParamILS the shortest. Again, GEIST leads to the lowest Chamfer
Distance, but all results are very close together. Interestingly, here the improvement
over the default solution is far higher than for the famous dataset. This suggests, that
the default configuration is not very well suited for artificial geometric point clouds like
‘cloud 1’.
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Figure 4.13: Comparing different algorithms on the ‘famous_dense’ - ‘Armadillo’ dataset.
The left graph shows the average achieved Chamfer Distance and the right graph the
required average run time. Standard deviations for both values are shown as grey lines.

4.3.2 dense
The results for the dense dataset look very similar to the original one. GEIST again
reaches the best result with 112.4 against the default 115.6. The run time differences
are even more pronounced than for the original dataset, with PostSelection taking over
three hours and ParamILS not even nine minutes. All of these results can be found in
Table 6.8 and Figure 4.13. The SPSR parameters calculated also look very similar to
the original dataset. iters (the number of Gauss-Seidel iterations to be performed at
each level of the octree) tends to be lower for the dense dataset and pointWeight (the
importance of interpolating point values over gradients) seems to be lower, but more
tests would be needed for a definitive answer here.

4.3.3 extra noisy
For the famous_extra_noisy dataset, the order of performance is the same again as for
the two previous datasets, but the improvement over the default configuration is much
higher. GEIST reaches an average Chamfer Distance of 166.6, and even ParamILS still
results in only 169.5, compared to the default 239.7. The biggest difference in calculated
SPSR configuration is that the depth is only at five or six, while it usually reached eight in
the famous_original dataset. When it comes to run time, the differences are substantial
again, PostSelection takes over three hours on average, while ParamILS terminates after
under nine minutes. All these results can be found in Table 6.9 and are visualized in
Figure 4.14.

In the ABC_extra_noisy dataset, we get similar results to the famous dataset, a large
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Figure 4.14: Comparing different algorithms on the ‘famous_extra_noisy’ - ‘Armadillo’
dataset. The left graph shows the average achieved Chamfer Distance and the right
graph the required average run time. Standard deviations for both values are shown as
grey lines.

improvement over the default solution, but not a huge variety between the algorithms. A
big difference can be found in the run time again. PostSelection takes on average nearly
three hours, while ParamILS is finished after around ten minutes. All results can be
found in Table 6.10 and are visualized in Figure 4.15.

4.3.4 noisefree
For the famous_noisefree dataset, the achieved improvement was the lowest. Compared
to the default 112.2, GEIST only reached a Chamfer Distance of 110.5 and was even
surpassed by IF-Race with 110.4. For this small of an improvement, GEIST still took
98.2 minutes on average. The slightly better IF-Race terminated after 38 minutes and
the slowest PostSelection took 165.1 minutes. The full results can be found in Table 6.11
and in Figure 4.16. From these results, we can tell that for a noisefree point cloud, a
high depth is beneficial for SPSR, and values over eight might have yielded even better
results. In addition to that, the pointWeight (the importance of interpolating point
values over gradients) calculated by all optimization algorithms is higher than for the
famous_original dataset, circling around seven instead of three.

The ABC_noisefree results look similar to the famous_noisefree ones. Again, IF-Race
reaches better results than GEIST. Only here, PostSelection results in an even lower
Chamfer Distance of 194.2 compared to the default 198.5. As for the famous_noisefree
dataset, depth is calculated at eight across the board, and pointWeight is higher than
before. The run time looks like with most tests, with ParamILS being the fastest and
PostSelection taking over three hours.
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Figure 4.15: Comparing different algorithms on the ‘ABC_extra_noisy’ - ‘cloud1’ dataset.
The left graph shows the average achieved Chamfer Distance and the right graph the
required average run time. Standard deviations for both values are shown as grey lines.

Figure 4.16: Comparing different algorithms on the ‘famous_noisefree’ - ‘Armadillo’
dataset. The left graph shows the average achieved Chamfer Distance and the right
graph the required average run time. Standard deviations for both values are shown as
gray lines.
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Figure 4.17: Comparing different algorithms on the ‘ABC_noisefree’ - ‘cloud1’ dataset.
The left graph shows the average achieved Chamfer Distance and the right graph the
required average run time. Standard deviations for both values are shown as gray lines.

4.3.5 sparse
For the famous_sparse dataset, all algorithms reach very similar results. Their averages
lie between 141 and 142, with ParamILS achieving the lowest and IF-Race the highest.
Compared to that, the default parameter configuration results in a Chamfer Distance of
149.1. For these results, ParamILS only takes 33 minutes, while the slowest, PostSelection,
takes 169 minutes on average. The results of all these tests can be found in Table 6.13
and Figure 4.18. Similar to the famous_noisefree dataset, all tests resulted in a depth
of eight, so an even higher depth might yield even better results. The pointWeight is
also significantly higher than for the famous_original dataset, but not as high as for the
famous_noisefree dataset.

4.4 Mesh Differences
The third round of tests looks at various point clouds from the same dataset and aims
to find differences in which algorithm is better suited to which point cloud, as well as if
other parameters are ideal for SPSR applied to these point clouds.

4.4.1 Dragon
The first point cloud we looked at is the Dragon point cloud (‘xyzrgb_dragon_clean’)
from the ‘famous_original’ dataset. As can be seen in Table 6.14 as well as Figure
4.19, all algorithms achieve a reduction of the Chamfer distance compared to the default
configuration by about three. While the resulting Chamfer Distances are very close,
the run times of the algorithms differ greatly. While IF-Race only takes an average of
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Figure 4.18: Comparing different algorithms on the ‘famous_sparse’ - ‘Armadillo’ dataset.
The left graph shows the average achieved Chamfer Distance and the right graph the
required average run time. Standard deviations for both values are shown as gray lines.

50 minutes, GEIST took nearly four hours to complete. It is noteworthy that for this
test run, GEIST took longer to complete than PostSelection, while it was the other way
around for most others. Looking at the low difference in achieved quality, it seems it
would not make sense to run this optimization for each new point cloud. The resulting
mesh does, however, show visual improvements over the default parameters. The model
is far smoother, especially on the tail and on the side of the body. A comparison can be
seen in Figure 4.20.

4.4.2 Yoda
The second point cloud we used for this set of tests is the ‘yoda’ point cloud, also from
the ‘famous_original’ dataset. This is a far more difficult mesh to reconstruct since it
is topographically very complex and has a lot of holes. The original mesh, as well as
the solution using default SPSR parameters and our best calculated solution, can be
seen in Figure 4.23. As can be seen here, many of the holes cannot be reconstructed
successfully no matter which parameters are used, the result is however much better with
our calculated configuration. On this mesh, the right one in the Figure, far more holes
were detected correctly and the surface itself is smoother than on the default solution.
This can also be seen when looking at the Chamfer Distances of both solutions. The
key to getting better results for this mesh is setting the pointWeight higher than usual,
forcing the reconstruction to stick closer to the actual points. This is supported by
Figure 4.21, which shows the Correlation Visualization of the best IF-Race run focused
on pointWeight and depth. As can be seen here, while a high depth is necessary for
good results, only those parameter configurations with a high pointWeight reach the
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Figure 4.19: Comparing different algorithms on the ‘famous_original’ -
‘xyzrgb_dragon_clean’ dataset. The left graph shows the average achieved Chamfer
Distance and the right graph the required average run time. Standard deviations for
both values are shown as gray lines.

lowest Chamfer Distances.

While the default parameters yield a value of 333, our best found solution only results
in a Chamfer Distance of 298, which is an improvement of over 10%. These and all
other results can be found in Table 6.15 and in Figure 4.22. Another thing visible from
this graph is that all tested algorithms achieve a very similar result, with the worst one,
ParamILS, being only at 303. The run time graph looks similar to most instances, with
GEIST and PostSelection taking far longer (100 and 160 minutes) than IF-Race and
ParamILS (35 and 27 minutes).

4.4.3 Bunny
The ‘bunny’ point cloud from the ‘famous_original’ dataset is a very well-known mesh,
which does not offer anything out of the ordinary the SPSR parameters could be tuned
to. As such, the achieved Chamfer Distances are not as much an improvement over
the default as the previous point clouds. As can be seen in Figure 4.24, all algorithms
are very close together, with IF-Race resulting in the lowest Chamfer Distance of 141
compared to the worst average value of 142 of ParamILS and 143 of the default. This
small difference also results in only a very small difference in the resulting mesh. Figure
4.25 shows the original mesh, the default result, and our best calculated result. As can
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Figure 4.20: Comparison of reconstructions of the ‘famous_original’ /
‘xyzrgb_dragon_clean’ point cloud. Left: ground-truth, Middle: default param-
eters, Right: best optimization result

be seen here our solution achieves slightly sharper features, for example on the ears, but
results in a rougher surface on the body. The accurate numbers of all tests on the ‘bunny’
point cloud can be found in Table 6.16.

4.4.4 Flower
As a last point cloud from the ‘famous_original’ dataset, the ‘flower’ is a more geometric
and artificial mesh. The original, as well as the result of the default SPSR parameters
and our best result, can be seen in Figure 4.27. As is already visible here, our result looks
much smoother than the default one. This is also supported by the numerical results in
Table 6.17 and in the graph in Figure 4.24. Here one can see, that the best result was
achieved using GEIST, resulting in a Chamfer Distance of 119. The worst strategy we got
was with ParamILS at 120, compared to the default of 122. These improvements come
at the cost of on average 124 minutes using GEIST or just 17 minutes using ParamILS.

4.4.5 Cloud 1
The first cloud from the ABC dataset, ‘cloud 1’, shows a big improvement over the default
solution. The resulting meshes can be seen in Figure 4.29. It is visible that all surfaces
are far smoother and the edges more pronounced, leading to a clearer shape. This is
also supported by the values derived from the tests found in Table 6.18 and visualized in
Figure 4.28. All algorithms reached a big improvement over the default configuration
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Figure 4.21: Correlation between depth and pointWeight of a IF-Race optimizatiion run
on SPSR for the ‘famous_original’ - ‘yoda’ point cloud.

with a Chamfer Distance of 229.5. The lowest value was achieved by GEIST with an
average of only 182.4, but even the worst, ParamILS, with 183.5 was still far below the
average. Similar to most other tests, PostSelection was the slowest with a run time of
nearly three hours, and ParamILS the fastest with an average of under ten minutes.
Interestingly, the resulting configurations all have lower depths than what would be
expected from the famous dataset, only being six or seven instead of the usual eight.
This might be due to the ABC dataset consisting of more geometrical shapes with little
to no detail in the surfaces themselves.

4.4.6 Cloud 2
‘Cloud 2’ from the ABC dataset is four girder-like objects next to each other and poses
a challenge to SPSR due to its thin walls. The ground-truth as well as the default
and our best reconstruction can be found in Figure 4.31. As can be seen here, SPSR
does not manage to reconstruct each wall correctly, failing for the biggest girder in the
middle with its small perpendicular walls. Our best solution is more accurate than the
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Figure 4.22: Comparing different algorithms on the ‘famous_original’ - ‘yoda’ dataset.
The left graph shows the average achieved Chamfer Distance and the right graph the
required average run time. Standard deviations for both values are shown as gray lines.

Figure 4.23: Comparison of reconstructions of the ‘famous_original’ / ‘yoda’ point cloud.
Left: ground-truth, Middle: default parameters, Right: best optimization result
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Figure 4.24: Comparing different algorithms on the ‘famous_original’ - ‘bunny’ dataset.
The left graph shows the average achieved Chamfer Distance and the right graph the
required average run time. Standard deviations for both values are shown as gray lines.

Figure 4.25: Comparison of reconstructions of the ‘famous_original’ / ‘bunny’ point
cloud. Left: ground-truth, Middle: default parameters, Right: best optimization result

48



4.4. Mesh Differences

Figure 4.26: Comparing different algorithms on the ‘famous_original’ - ‘flower’ dataset.
The left graph shows the average achieved Chamfer Distance and the right graph the
required average run time. Standard deviations for both values are shown as gray lines.

Figure 4.27: Comparison of reconstructions of the ‘famous_original’ / ‘flower’ point
cloud. Left: ground-truth, Middle: default parameters, Right: best optimization result
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Figure 4.28: Comparing different algorithms on the ‘famous_original’ - ‘cloud 1’ dataset.
The left graph shows the average achieved Chamfer Distance and the right graph the
required average run time. Standard deviations for both values are shown as gray lines.

Figure 4.29: Comparison of reconstructions of the ‘ABC_original’ / ‘cloud1’ point cloud.
Left: ground-truth, Middle: default parameters, Right: best optimization result
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Figure 4.30: Comparing different algorithms on the ‘famous_original’ - ‘cloud 2’ dataset.
The left graph shows the average achieved Chamfer Distance and the right graph the
required average run time. Standard deviations for both values are shown as gray lines.

default, but it still does not manage to get all of these correct. The numbers support this
observation, with all algorithms improving on the default. IF-Race reaches the lowest
Chamfer Distance for this case with an average of 259.7 compared to the default of 279.7.
IF-Race is also faster than ParamILS for cloud 2, taking only 36.3 minutes on average.
For the fine details on this point cloud, the resulting depth is higher again, as well as the
pointWeight, which is around seven in most configurations. All of these results can be
found in Table 6.19 and in Figure 4.30.

4.4.7 Cloud 3

The third point cloud we selected from the ABC dataset is a large pipe with a small
hole in it. SPSR had some trouble finding the correct interior wall of the pipe, both in
the default and in our best solution. The resulting meshes can be found in Figure 4.33.
Our solution has a rougher surface, but the erroneous region inside the pipe is smaller
than the default. The resulting configurations look similar to the ones of cloud 2, with
high depth and pointWeight, and there is an improvement over the default, but it is
not as significant as for some of the other tests. As can be found in Table 6.20 and in
Figure 4.32, the Chamfer Distance could only be improved to 561.6 from 600.7, again by
IF-Race. The fastest algorithm was ParamILS with 28.7 minutes, and the slowest again
PostSelection with over three hours.
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Figure 4.31: Comparison of reconstructions of the ‘ABC_original’ / ‘cloud2’ point cloud.
Left: ground-truth, Middle: default parameters, Right: best optimization result

Figure 4.32: Comparing different algorithms on the ‘famous_original’ - ‘cloud 3’ dataset.
The left graph shows the average achieved Chamfer Distance and the right graph the
required average run time. Standard deviations for both values are shown as gray lines.
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Figure 4.33: Comparison of reconstructions of the ‘ABC_original’ / ‘cloud3’ point cloud.
Left: ground-truth, Middle: default parameters, Right: best optimization result

4.4.8 Cloud 4
The last point cloud from the ABC dataset seems to be close to the ideal point cloud for
the default parameter configuration. In the comparison, visible in Figure 4.35, differences
are visible between the default reconstruction and our best version, but it is not clear
which one is the better mesh. There are some differences around the holes in the corner,
but the surface looks to be of the same roughness. A similar low improvement over
the default can be found in the data presented in Table 6.21 and the visualization in
Figure 4.34. While all algorithms achieved lower Chamfer Distances than the default, it
is only by about seven. The lowest values were achieved by PostSelection with a value
of 227.1 compared to the highs of 227.6 by GEIST and 235 by the default parameter
configuration. The parameter values are similar to the previous two clouds, with high
depth and pointWeight. In terms of run time, ParamILS performs the best with an
average of 32 minutes. PostSelection was the slowest with three and a half hours again.
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Figure 4.34: Comparing different algorithms on the ‘famous_original’ - ‘cloud 4’ dataset.
The left graph shows the average achieved Chamfer Distance and the right graph the
required average run time. Standard deviations for both values are shown as gray lines.

Figure 4.35: Comparison of reconstructions of the ‘ABC_original’ / ‘cloud4’ point cloud.
Left: ground-truth, Middle: default parameters, Right: best optimization result
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CHAPTER 5
Discussion and Future Work

In this chapter, we will discuss what we have achieved in this work, how well our
approaches worked, as well as any future work that could be done to extend it.

5.1 Implementation
We have implemented a framework for optimizing different targets by the usage of various
strategies. Both targets and strategies are easy to implement by inheriting from a
super-class. An optimization or a single run of a target can be started easily by just
defining a target and a strategy or a target and a single algorithm configuration. Our
implementation also supports visualizations that can be updated after each iteration as
well as after the whole run is finished. Currently, three are implemented, as described in
Section 3.3, but more are implementable as easily as new targets or strategies.
The framework works very well, provides verbose output of its current state, and can be
used as is, but there are a few improvements that could be made in the future. First of
all, there are currently only two targets, SPSR and a test equation for easy debugging of
strategies. This could be extended to include a general command line target, which calls
a command line command with defined parameters. This would make our framework
much more universally usable. A larger task would be to add a GUI to make usage of
the system more user-friendly and get away from defining each test run in code.

5.2 Best SPSR configuration
We have consistently managed to improve on the standard SPSR parameter configuration,
so there is definitely an improvement to be achieved. The difficult question is which
configuration is the best overall. The answer is not straightforward since each point
cloud has its own optimum depending on geometric features, noise, and density. For a
relatively smooth and topologically simple mesh as the ‘famous_original’ / ‘bunny’, the
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default parameter configuration is already very good, but can still be improved. In this
case, a near-optimal solution is:

• cgDepth = 1

• depth = 8

• fullDepth = 7

• iters = 9

• pointWeight = 3.2

• samplesPerNode = 1.3

• scale = 1.2

On the other extreme, the ‘yoda’ mesh or some of the geometric ABC clouds are very
difficult to reconstruct in general for SPSR since they consist of many holes and fine
details that cannot always be reconstructed correctly. In this case, the pointWeight (α
in Equation 3.3) needs to be much higher, putting more emphasis on the position of the
points than on the surface gradient. A good parameter configuration for this case might
look like this:

• cgDepth = 0

• depth = 8

• fullDepth = 6

• iters = 8

• pointWeight = 8.0

• samplesPerNode = 1.0

• scale = 0.9

Another problem that might occur is the quality of the point cloud. If there is a lot of
noise, the position of the individual point is less important and a too deep octree can be
detrimental to the reconstruction result. Another use case for this kind of configuration
is simple geometric objects without holes that feature mainly flat surfaces. For the
‘famous_extra_noisy’ / ‘Armadillo’ point cloud, the following configuration has proven
to be the best:

• cgDepth = 1
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• depth = 6

• fullDepth = 5

• iters = 9

• pointWeight = 2.2

• samplesPerNode = 1.0

• scale = 1.5

To conclude, it is always important to know the properties of the point cloud that needs
to be reconstructed. For most objects, the first mentioned parameter configuration will
work well. If the data is very accurate, depth and pointWeight can be increased. If there
is a lot of noise or the points are less accurate, those values should be reduced. Should
the point cloud describe a topologically difficult object, that cannot be reconstructed
with this parameter configuration, it can be beneficial to set the pointWeight very high
to get a higher-quality reconstruction. This might, however, lead to overfitting if there is
too much noise or outliers.

5.3 Best Algorithm to optimize SPSR
Choosing the best algorithm to optimize SPSR with is not easy, since there are different
criteria to look at. We will therefore discuss each of them separately. An overview of all
qualities and algorithms on the example of the ‘Armadillo’ point cloud can be found in
Figure 5.1.
The first one is GEIST by Thiagarajan et al. [TJA+18]. It is a very robust algorithm that
achieved very low, if not the lowest, Chamfer distances throughout our tests. GEIST is
highly configurable, making it easy to adjust to any specific needs. It is possible to have
it terminate faster with a less accurate result or take longer and be more thorough. With
different thresholds and iteration sizes, it can take more global data into consideration
or focus more on the currently best area of the parameter space. There is, however, a
big downside to GEIST, which is its run time. This algorithm took multiple hours to
terminate across all tests on our system. While the selected algorithm configuration was
aimed at optimizing the result and not the run time, this is still far above the two faster
algorithms IF-Race and ParamILS. Only PostSelection, which runs multiple smaller
algorithms, took even longer in most cases.
The second algorithm that is outstanding in a category is ParamILS by Hutter et al.
[HHLBS09]. While this algorithm did not yield as much of an improvement over the
default parameter configuration, it is still close to GEIST in most cases. The biggest
advantage of ParamILS is its speed, taking only minutes instead of hours. This is achieved
while still being tuned to yield good results and not to terminate quickly. Next to the
slightly worse reconstruction quality, ParamILS also has the disadvantage of only taking
local data into consideration. This means that even though some steps of the algorithm
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Figure 5.1: Reconstruction of the ‘Armadillo’ point cloud from different qualities using
different algorithms.
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are aimed to avoid this, it is far more likely to get stuck in a local optimum. This does
not seem to be as much of a problem with SPSR due to how the target function behaves.
Thirdly, IF-Race by Balaprakash et al. [BBS07] is a good compromise between the two
previously mentioned algorithms. It reaches results comparable to GEIST, sometimes even
beating it and still terminates in under one hour in all cases. Similar to GEIST, IF-Race
takes global data into consideration. Our implementation is highly configurable, therefore
giving the ability to tweak it depending on time constraints or quality requirements.
The last algorithm to mention is PostSelection by Yuan et al. [YSMdO+13]. Its
biggest advantage in our algorithm configuration is its consistency, having the lowest
standard deviation in most cases. While not yielding exceptional results, the run time for
PostSelection is, except for one test, significantly higher than for any other algorithm.
In general, if time is not a concern, GEIST will be the best solution to optimize SPSR.
Otherwise, a good solution can be gotten far quicker by using ParamILS or IF-Race.
Since IF-Race usually leads to better results, it should be used as long as time is not the
primary concern. Another possibility in that case would be to use Brute-Force, which
will be discussed in Section 5.4

5.4 SPSR Target Function

In this section, we gather some remarks on the properties of the target function for
which we are trying to optimize the parameter input. This is the function that takes a
parameter configuration as input and outputs the reconstruction’s Chamfer Distance.
The target function behaves very differently for each parameter. Not only are parameters
of different importance, they also have a different kind of impact on the resulting values.
Some parameters change the Chamfer Distance linearly like pointWeight, while others
do so exponentially. The main example for this is depth, which can lead to extremely bad
results when configured wrongly, but does not improve the resulting Chamfer Distance
that much anymore closer to the optimum. An example of this behavior can be found in
Figure 5.2, which shows the resulting Chamfer Distance average over all tests in a GEIST
run on the ‘famous_original’ - ‘Armadillo’ dataset for each value depth took in that run.
This leads to the fact that there are some parameter configurations that yield extremely
bad results, but even a very short run of any algorithm can find some decent ones quickly.
Closer to the optimum, any change in the configuration only affects the result minimally
and it takes very long to find a better solution, so there is a very diminished return to
any additional time spent optimizing. This also leads to the interesting possibility to
use Brute-Force for optimizing SPSR in very time-constrained situations. While it will
probably not find anything near the quality of ParamILS in the same time, it will yield
a decent solution very quickly. This could be used for point clouds where the default
configuration fails, like very noisy data or topologically difficult objects.
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Figure 5.2: Chamfer Distance average for each depth value taken from the results of a
‘famous_original’ - ‘Armadillo’ run.

5.5 Recursive Optimization

One big problem during this work was to find optimal algorithm configurations to run
each algorithm with. This task required manual testing and assumptions on what would
work and what would not and probably did not find the actual best possible solutions.
Another constraint was time, the algorithm configurations should not only perform well
but also terminate in a reasonable time frame. Without any time constraints, it would
have been possible to recursively optimize the optimization algorithm with another
instance of itself, using a strategy algorithm as a target in the framework, seeing its
algorithm configurations as parameter configurations. This leads to a hen-egg problem.
So why stop there? While even one recursion layer is impossible with the hardware
we have available, we might find a better algorithm configuration with an optimization
algorithm that was found by an optimized optimization algorithm. This idea can of
course be repeated indefinitely, so it would be an interesting thought experiment to see
how far a recursion might make sense. In the near future, it might be possible to add
one layer of optimization and see how that affects the resulting reconstructions.
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5.6 Machine Learning
Two big problems of optimizing SPSR for point clouds is that it takes a long time for
each object and that there is not one solution that fits all point clouds. A possibility
to alleviate these problems would be to use a neural network to predict optimal SPSR
parameter configurations. A training set of point clouds and their optimized SPSR
configurations could be created using the presented framework. This training set would
have to include as many different types of objects and qualities of point clouds as possible.
Alternatively, Reinforcement Learning could be used to avoid that task, since we already
have a framework for calculating the quality of a reconstruction. A common problem
would be how to supply the neural network with some representation of the point cloud
as a feature vector. A possibility might be to use PointNet or PointNet++ by Qi et al.
[QSKG17][QYSG17] or Poco by Boulch and Renaud [BM22] for this task. If successful,
it should then be possible to get an optimal SPSR parameter configuration for any point
cloud nearly instantly.

5.7 Other Targets
It would be interesting to apply the used algorithms to different targets to see if the
conclusions we reached also hold on those. This could include similar ones, for example,
Points2Surf by Erler et al. [EGO+20], which could also use the Chamfer Distance as a
quality metric, or completely different ones that might be more suited to other algorithms
than GEIST and ParamILS. It would also be interesting to construct target functions
specifically to better understand certain algorithms. For example, a function with many
local optima could be used to test the avoidance of those present in ParamILS.
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CHAPTER 6
Tables

Table 6.1: Test Results of different GEIST algorithm configurations. Optimizing SPSR
for the ‘Armadillo’ point cloud from the ‘famous_original’ dataset.

threshold size evaluation
config start change fixed start iter chamfer time
1 0.4 0.04 0.02 150 15 117.393 177.47
1 0.4 0.04 0.02 150 15 118.433 179.63
1 0.4 0.04 0.02 150 15 117.785 193.45
avg 0.4 0.04 0.02 150 15 117.870 183.52
stddev 0.525 8.67
2 0.3 0.02 0.01 150 15 117.817 145.58
2 0.3 0.02 0.01 150 15 118.096 154.14
2 0.3 0.02 0.01 150 15 117.552 146.61
2 0.3 0.02 0.01 150 15 118.860 130.17
2 0.3 0.02 0.01 150 15 117.836 151.14
2 0.3 0.02 0.01 150 15 117.785 186.37
avg 0.3 0.02 0.01 150 15 117.991 152.34
stddev 0.460 18.61
3 0.2 0.01 0.005 150 15 117.925 158.19
3 0.2 0.01 0.005 150 15 117.585 176.19
3 0.2 0.01 0.005 150 15 117.693 188.17
avg 0.2 0.01 0.005 150 15 117.735 174.18
stddev 0.174 15.09
4 0.3 0.04 0.02 150 15 119.438 66.16
4 0.3 0.04 0.02 150 15 117.959 82.73
4 0.3 0.04 0.02 150 15 118.406 108.97
4 0.3 0.04 0.02 150 15 117.432 112.64
4 0.3 0.04 0.02 150 15 117.605 101.22
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Table 6.1 – Continued from previous page
threshold size evaluation

config start change fixed start iter chamfer time
4 0.3 0.04 0.02 150 15 118.363 106.41
4 0.3 0.04 0.02 150 15 118.876 122.07
4 0.3 0.04 0.02 150 15 117.753 95.22
4 0.3 0.04 0.02 150 15 118.543 101.22
avg 0.3 0.04 0.02 150 15 118.264 99.63
stddev 0.646 16.72
5 0.3 0.01 0.005 150 15 117.809 272.80
5 0.3 0.01 0.005 150 15 117.459 267.81
5 0.3 0.01 0.005 150 15 118.342 243.30
avg 0.3 0.01 0.005 150 15 117.870 261.30
stddev 0.445 15.79
6 0.3 0.04 0.02 15 15 119.745 300.53
6 0.3 0.04 0.02 15 15 119.292 184.54
6 0.3 0.04 0.02 15 15 118.207 198.27
avg 0.3 0.04 0.02 15 15 119.081 227.78
stddev 0.790 63.38
7 0.3 0.04 0.02 1500 15 117.684 156.16
7 0.3 0.04 0.02 1500 15 118.012 174.93
7 0.3 0.04 0.02 1500 15 118.221 151.10
avg 0.3 0.04 0.02 1500 15 117.972 160.73
stddev 0.270 12.55
8 0.3 0.04 0.02 1500 150 117.626 220.38
8 0.3 0.04 0.02 1500 150 117.756 105.02
8 0.3 0.04 0.02 1500 150 117.296 192.55
avg 0.3 0.04 0.02 1500 150 117.559 172.65
stddev 0.237 60.20

Table 6.2: Test Results of different IF-Race algorithm configurations. Optimizing SPSR
for the ´Armadillo’ point cloud from the ´famous_original’ dataset.

parameters evaluation
config start iters nr_good maxIter anneal chamfer time
1 30 15 10 20 0.3 119.221 22.35
1 30 15 10 20 0.3 119.520 18.80
1 30 15 10 20 0.3 119.272 24.48
1 30 15 10 20 0.3 119.227 25.57
1 30 15 10 20 0.3 118.621 23.61
avg 30 15 10 20 0.3 119.172 22.96
stddev 0.332 2.61
2 30 30 10 20 0.3 118.050 26.53
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config start iters nr_good maxIter anneal chamfer time
2 30 30 10 20 0.3 117.437 25.51
2 30 30 10 20 0.3 118.259 27.72
2 30 30 10 20 0.3 118.485 30.62
2 30 30 10 20 0.3 118.786 23.68
2 30 30 10 20 0.3 119.501 33.10
2 30 30 10 20 0.3 118.524 33.53
2 30 30 10 20 0.3 117.784 32.15
2 30 30 10 20 0.3 118.018 32.80
2 30 30 10 20 0.3 118.924 32.13
avg 30 30 10 20 0.3 118.377 29.78
stddev 0.601 3.59
3 30 45 10 20 0.3 118.620 41.61
3 30 45 10 20 0.3 118.667 42.85
3 30 45 10 20 0.3 118.072 47.35
3 30 45 10 20 0.3 118.143 51.97
3 30 45 10 20 0.3 119.757 50.54
avg 30 45 10 20 0.3 118.652 46.86
stddev 0.674 4.57
4 30 30 10 20 0.4 117.826 38.63
4 30 30 10 20 0.4 118.769 43.59
4 30 30 10 20 0.4 118.362 42.44
4 30 30 10 20 0.4 118.635 47.17
4 30 30 10 20 0.4 118.933 47.77
4 30 30 10 20 0.4 117.838 32.13
4 30 30 10 20 0.4 118.406 37.60
4 30 30 10 20 0.4 118.864 41.56
4 30 30 10 20 0.4 118.249 41.21
4 30 30 10 20 0.4 118.865 42.51
avg 30 30 10 20 0.4 118.475 41.46
stddev 0.411 4.58
5 30 15 10 20 0.4 118.577 42.89
5 30 15 10 20 0.4 118.930 39.50
5 30 15 10 20 0.4 118.892 43.71
5 30 15 10 20 0.4 119.383 26.81
5 30 15 10 20 0.4 119.267 30.97
avg 30 15 10 20 0.4 119.010 36.78
stddev 0.321 7.51
6 30 45 10 20 0.4 118.620 52.02
6 30 45 10 20 0.4 118.313 52.59
6 30 45 10 20 0.4 117.770 55.70
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parameters evaluation

config start iters nr_good maxIter anneal chamfer time
6 30 45 10 20 0.4 118.603 55.53
6 30 45 10 20 0.4 118.107 66.18
avg 30 45 10 20 0.4 118.283 56.40
stddev 0.357 5.71
7 30 15 10 20 0.5 118.323 46.71
7 30 15 10 20 0.5 118.282 52.35
7 30 15 10 20 0.5 117.766 54.16
7 30 15 10 20 0.5 118.034 52.79
7 30 15 10 20 0.5 118.472 50.53
avg 30 15 10 20 0.5 118.175 51.31
stddev 0.278 2.88
8 30 30 10 20 0.5 118.116 59.39
8 30 30 10 20 0.5 117.805 61.04
8 30 30 10 20 0.5 117.461 60.98
8 30 30 10 20 0.5 118.410 64.13
8 30 30 10 20 0.5 118.448 65.06
8 30 30 10 20 0.5 118.382 40.47
8 30 30 10 20 0.5 117.659 38.34
8 30 30 10 20 0.5 117.744 39.62
8 30 30 10 20 0.5 117.506 46.55
8 30 30 10 20 0.5 119.012 41.23
avg 30 30 10 20 0.5 118.054 51.68
stddev 0.503 11.31
9 30 45 10 20 0.5 117.703 56.20
9 30 45 10 20 0.5 117.537 55.11
9 30 45 10 20 0.5 118.183 61.29
9 30 45 10 20 0.5 118.215 62.83
9 30 45 10 20 0.5 117.495 60.97
avg 30 45 10 20 0.5 117.826 59.28
stddev 0.349 3.41
10 30 15 10 20 0.6 117.825 53.21
10 30 15 10 20 0.6 117.858 45.17
10 30 15 10 20 0.6 118.027 55.00
10 30 15 10 20 0.6 119.102 48.49
10 30 15 10 20 0.6 118.256 46.75
10 30 15 10 20 0.6 118.377 43.29
10 30 15 10 20 0.6 117.708 53.84
10 30 15 10 20 0.6 117.433 50.19
10 30 15 10 20 0.6 117.979 49.12
10 30 15 10 20 0.6 118.266 43.63
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config start iters nr_good maxIter anneal chamfer time
avg 30 15 10 20 0.6 118.083 48.87
stddev 0.457 4.21
11 30 15 5 20 0.6 117.463 38.33
11 30 15 5 20 0.6 118.229 37.77
11 30 15 5 20 0.6 118.008 50.49
11 30 15 5 20 0.6 121.675 46.30
11 30 15 5 20 0.6 117.267 49.04
avg 30 15 5 20 0.6 118.528 44.39
stddev 1.802 5.98
12 30 15 15 20 0.6 117.511 73.86
12 30 15 15 20 0.6 118.321 78.64
12 30 15 15 20 0.6 118.691 82.79
12 30 15 15 20 0.6 118.465 77.89
12 30 15 15 20 0.6 118.234 77.37
avg 30 15 15 20 0.6 118.245 78.11
stddev 0.445 3.20
13 30 30 10 20 0.6 117.591 91.13
13 30 30 10 20 0.6 117.519 65.74
13 30 30 10 20 0.6 117.719 73.38
13 30 30 10 20 0.6 117.446 67.40
13 30 30 10 20 0.6 118.042 77.02
13 30 30 10 20 0.6 117.447 76.02
13 30 30 10 20 0.6 117.943 50.06
13 30 30 10 20 0.6 118.024 52.85
13 30 30 10 20 0.6 118.169 60.60
13 30 30 10 20 0.6 117.725 62.71
avg 30 30 10 20 0.6 117.763 67.69
stddev 0.266 12.24
14 30 45 10 20 0.6 117.507 93.65
14 30 45 10 20 0.6 117.346 97.64
14 30 45 10 20 0.6 117.214 97.23
14 30 45 10 20 0.6 117.561 103.77
14 30 45 10 20 0.6 117.764 61.09
avg 30 45 10 20 0.6 117.478 90.67
stddev 0.210 16.93
15 30 30 10 20 0.7 117.475 96.07
15 30 30 10 20 0.7 117.401 88.32
15 30 30 10 20 0.7 117.558 106.09
15 30 30 10 20 0.7 117.325 104.92
15 30 30 10 20 0.7 117.868 107.88
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config start iters nr_good maxIter anneal chamfer time
avg 30 30 10 20 0.7 117.525 100.66
stddev 0.210 8.26
16 30 30 10 20 0.8 117.753 158.23
16 30 30 10 20 0.8 117.169 163.89
16 30 30 10 20 0.8 117.565 163.00
16 30 30 10 20 0.8 117.521 167.27
16 30 30 10 20 0.8 117.401 179.51
avg 30 30 10 20 0.8 117.482 166.38
stddev 0.216 8.02
17 30 30 10 20 0.9 117.481 220.50
17 30 30 10 20 0.9 117.817 222.80
17 30 30 10 20 0.9 117.540 163.17
17 30 30 10 20 0.9 117.142 140.18
17 30 30 10 20 0.9 117.460 144.65
avg 30 30 10 20 0.9 117.488 178.26
stddev 0.240 40.54

Table 6.3: Test Results of different ParamILS algorithm configurations. Optimizing
SPSR for the ´Armadillo’ point cloud from the ´famous_original’ dataset.

parameters evaluation
config start perturbation repetitions chamfer time
1 15 0.1 5 121.701 1.89
1 15 0.1 5 119.236 4.00
1 15 0.1 5 118.367 39.35
1 15 0.1 5 118.543 15.86
1 15 0.1 5 118.967 36.56
1 15 0.1 5 118.228 58.82
avg 15 0.1 5 119.174 26.08
stddev 1.294 22.52
2 15 0.2 5 119.853 4.87
2 15 0.2 5 121.320 9.71
2 15 0.2 5 121.405 4.53
2 15 0.2 5 117.941 42.16
2 15 0.2 5 118.831 7.90
2 15 0.2 5 119.683 1.71
avg 15 0.2 5 119.839 11.81
stddev 1.363 15.12
3 15 0.3 5 118.258 4.83
3 15 0.3 5 118.680 11.61
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config start perturbation repetitions chamfer time
3 15 0.3 5 119.548 22.37
3 15 0.3 5 119.891 9.50
3 15 0.3 5 119.673 16.16
3 15 0.3 5 119.895 57.26
avg 15 0.3 5 119.324 20.29
stddev 0.688 19.07
4 15 0.4 5 119.551 54.25
4 15 0.4 5 118.766 9.93
4 15 0.4 5 121.998 7.19
4 15 0.4 5 119.557 1.91
4 15 0.4 5 119.860 15.76
4 15 0.4 5 119.379 16.76
avg 15 0.4 5 119.852 17.63
stddev 1.112 18.76
5 15 0.5 5 120.189 5.90
5 15 0.5 5 117.610 49.41
5 15 0.5 5 119.512 73.62
5 15 0.5 5 117.418 36.95
5 15 0.5 5 118.267 42.84
5 15 0.5 5 119.693 7.09
avg 15 0.5 5 118.782 35.97
stddev 1.170 26.02
6 15 0.6 3 119.358 57.49
6 15 0.6 3 117.724 67.02
6 15 0.6 3 118.129 44.86
6 15 0.6 3 118.608 79.14
6 15 0.6 3 119.357 5.48
avg 15 0.6 3 118.635 50.80
stddev 0.730 28.29
7 15 0.6 4 118.131 5.60
7 15 0.6 4 121.891 7.47
7 15 0.6 4 118.347 39.80
7 15 0.6 4 118.233 50.89
7 15 0.6 4 121.060 7.49
avg 15 0.6 4 119.533 22.25
stddev 1.799 21.46
8 15 0.6 5 119.484 5.01
8 15 0.6 5 117.982 6.60
8 15 0.6 5 120.506 23.99
8 15 0.6 5 120.175 5.11
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config start perturbation repetitions chamfer time
8 15 0.6 5 120.321 11.52
8 15 0.6 5 120.695 8.04
8 15 0.6 5 117.644 61.26
8 15 0.6 5 119.957 11.44
8 15 0.6 5 118.456 116.61
8 15 0.6 5 118.213 5.27
8 15 0.6 5 118.181 75.12
avg 15 0.6 5 119.238 30.00
stddev 1.151 37.58
9 30 0.6 5 118.435 96.46
9 30 0.6 5 118.095 8.24
9 30 0.6 5 119.053 53.08
9 30 0.6 5 121.475 32.86
9 30 0.6 5 119.961 49.51
avg 30 0.6 5 119.404 48.03
stddev 1.358 32.35
10 75 0.6 5 117.757 5.19
10 75 0.6 5 118.189 9.64
10 75 0.6 5 120.922 7.29
10 75 0.6 5 118.628 12.17
10 75 0.6 5 118.499 69.21
avg 75 0.6 5 118.799 20.70
stddev 1.233 27.24
11 150 0.6 5 118.744 11.80
11 150 0.6 5 118.232 36.81
11 150 0.6 5 118.399 51.18
11 150 0.6 5 117.953 61.44
11 150 0.6 5 118.110 8.80
avg 150 0.6 5 118.288 34.01
stddev 0.303 23.37
12 15 0.6 6 118.116 1.22
12 15 0.6 6 119.886 5.21
12 15 0.6 6 121.505 3.92
12 15 0.6 6 118.313 9.02
12 15 0.6 6 117.777 2.34
avg 15 0.6 6 119.119 4.34
stddev 1.560 3.03
13 15 0.6 7 119.712 7.83
13 15 0.6 7 119.022 69.99
13 15 0.6 7 118.309 59.70
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config start perturbation repetitions chamfer time
13 15 0.6 7 119.318 4.32
13 15 0.6 7 119.969 3.16
avg 15 0.6 7 119.266 29.00
stddev 0.647 32.97
14 15 0.7 5 119.262 57.56
14 15 0.7 5 118.774 34.11
14 15 0.7 5 118.956 6.62
14 15 0.7 5 118.880 7.34
14 15 0.7 5 118.697 7.45
14 15 0.7 5 122.167 5.25
avg 15 0.7 5 119.456 19.72
stddev 1.342 21.56
15 15 0.8 5 119.141 4.56
15 15 0.8 5 119.174 8.90
15 15 0.8 5 117.758 89.35
15 15 0.8 5 119.351 2.47
15 15 0.8 5 120.247 23.03
15 15 0.8 5 119.554 3.25
avg 15 0.8 5 119.204 21.93
stddev 0.816 33.90
16 15 0.9 5 121.272 47.54
16 15 0.9 5 122.933 48.51
16 15 0.9 5 119.330 5.36
16 15 0.9 5 121.881 3.76
16 15 0.9 5 118.385 17.28
16 15 0.9 5 117.543 43.90
avg 15 0.9 5 120.224 27.72
stddev 2.124 21.31
17 15 1 5 119.043 90.00
17 15 1 5 119.083 68.66
17 15 1 5 122.449 30.80
17 15 1 5 119.486 72.88
17 15 1 5 117.661 25.18
17 15 1 5 118.739 2.00
avg 15 1 5 119.410 48.25
stddev 1.612 33.89
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Table 6.4: Test Results of different PostSelection algorithm configurations. Optimizing
SPSR for the ´Armadillo’ point cloud from the ´famous_original’ dataset.

strategies parameters evaluation
config generate evaluate gen_it gen_rep chamfer time
1 Fast-IFRace Fast-GEIST 10 5 117.378 199.14
1 Fast-IFRace Fast-GEIST 10 5 118.380 174.49
1 Fast-IFRace Fast-GEIST 10 5 117.882 198.77
avg Fast-IFRace Fast-GEIST 10 5 117.880 190.80
stddev 0.501 14.13
2 Fast-paramILS Fast-GEIST 10 5 117.998 120.43
2 Fast-paramILS Fast-GEIST 10 5 118.464 117.78
2 Fast-paramILS Fast-GEIST 10 5 117.974 154.03
avg Fast-paramILS Fast-GEIST 10 5 118.145 130.75
stddev 0.276 20.21
3 Fast-IFRace Fast-paramILS 10 5 117.996 114.47
3 Fast-IFRace Fast-paramILS 10 5 118.077 111.54
3 Fast-IFRace Fast-paramILS 10 5 118.171 112.54
avg Fast-IFRace Fast-paramILS 10 5 118.081 112.85
stddev 0.088 1.49
4 Fast-GEIST Fast-paramILS 10 5 117.693 238.04
4 Fast-GEIST Fast-paramILS 10 5 117.711 161.16
4 Fast-GEIST Fast-paramILS 10 5 117.425 143.31
4 Fast-GEIST Fast-paramILS 10 5 117.680 153.55
4 Fast-GEIST Fast-paramILS 10 5 117.965 155.70
4 Fast-GEIST Fast-paramILS 10 5 117.902 188.09
avg Fast-GEIST Fast-paramILS 10 5 117.729 173.31
stddev 0.191 35.09
5 Good-IFRace Fast-paramILS 10 5 117.601 333.29
5 Good-IFRace Fast-paramILS 10 5 117.717 374.84
5 Good-IFRace Fast-paramILS 10 5 117.345 353.79
avg Good-IFRace Fast-paramILS 10 5 117.554 353.97
stddev 0.190 20.77
6 Good-IFRace Fast-GEIST 10 5 118.231 383.08
6 Good-IFRace Fast-GEIST 10 5 117.446 389.86
6 Good-IFRace Fast-GEIST 10 5 118.058 370.76
avg Good-IFRace Fast-GEIST 10 5 117.912 381.23
stddev 0.412 9.68
7 Good-IFRace Short-GEIST 10 5 117.177 387.72
7 Good-IFRace Short-GEIST 10 5 117.296 385.34
7 Good-IFRace Short-GEIST 10 5 116.781 446.55
avg Good-IFRace Short-GEIST 10 5 117.085 406.54
stddev 0.270 34.67
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Table 6.5: Different algorithm configurations used in our PostSelection tests.

config parameters
IFRace start iters nr_good maxIter anneal
Fast-IFRace 30 15 10 20 0.3
Good-IFRace 30 15 10 20 0.9
paramILS start perturbation repetitions
Fast-paramILS 15 0.6 6
GEIST threshold size

optimal change fixed start iter
Fast-GEIST 0.3 0.04 0.02 150 15
Short-GEIST 0.1 0.04 0.02 150 15
Thorough-GEIST 0.1 0.04 0.02 150 150

Table 6.4 – Continued from previous page
strategies parameters evaluation

config generate evaluate gen_it gen_rep chamfer time
8 Thorough-GEIST Fast-paramILS 10 1 117.455 149.61
8 Thorough-GEIST Fast-paramILS 10 1 117.663 192.58
8 Thorough-GEIST Fast-paramILS 10 1 117.155 182.54
avg Thorough-GEIST Fast-paramILS 10 1 117.425 174.91
stddev 0.255 22.48

Table 6.6: Test Results of different Brute-Force algorithm configurations. Optimizing
SPSR for the ´Armadillo’ point cloud from the ´famous_original’ dataset.

Theshold Chamfer Distance run time
117.9 117.78 176.3
117.9 117.87 35.1
117.9 117.83 610.2
117.9 117.66 396.3
117.9 117.89 163.7
avg 117.81 276.3
stddev 0.09 227.3
118 117.54 3.9
118 118.00 627.0
118 117.94 666.4
118 117.99 402.7
118 117.34 24.6
avg 117.76 344.9
stddev 0.30 318.3
118.1 117.96 31.4
118.1 118.00 6.4
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Table 6.6 – Continued from previous page
Theshold Chamfer Distance run time
118.1 118.08 57.5
118.1 117.79 82.3
118.1 118.06 154.7
avg 117.98 66.5
stddev 0.12 56.9
118.2 118.05 103.8
118.2 118.13 60.0
118.2 118.01 158.1
118.2 118.16 7.8
118.2 118.00 114.3
avg 118.07 88.8
stddev 0.07 57.2
118.3 118.19 43.6
118.3 118.13 307.4
118.3 118.25 88.4
118.3 118.14 27.7
118.3 118.21 282.8
avg 118.18 150.0
stddev 0.05 134.6

Table 6.7: Test Results of optimizing SPSR for the ´Armadillo’ point cloud from the
´famous_original’ dataset using different algorithms.

run cgD D fD it w Sa Sc Hausdorff Chamfer run time
default 0 8 5 8 4 1.5 1.1 0.0183 120.50
GEIST
1 0 7 8 10 3.2 1 1.5 0.0205 117.53 91.9
2 0 7 7 10 2.2 1 1 0.0179 117.41 128.9
3 1 7 7 9 2 1 1.1 0.0185 117.09 122.9
average 0.0190 117.34 114.6
stddev 0.0014 0.23 19.8
IFRace
1 1 7 6 9 4.6 1.3 1.5 0.0249 118.51 41.0
2 1 7 7 9 2.2 1.1 1.1 0.0181 117.50 36.7
3 0 7 5 10 2.4 1 1.2 0.0176 117.28 31.7
average 0.0202 117.76 36.5
stddev 0.0041 0.66 4.6
ParamILS
1 1 8 8 6 3.6 1.2 1.2 0.0179 117.89 38.2
2 0 7 7 8 3.4 1.2 1.2 0.0182 117.97 10.7
3 0 7 7 6 3 1.5 1.1 0.0204 118.56 11.1
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Table 6.7 – Continued from previous page
run cgD D fD it w Sa Sc Hausdorff Chamfer run time
average 0.0188 118.14 20.0
stddev 0.0014 0.36 15.8
PostSelection
1 0 7 8 9 2.8 1.1 1.4 0.0182 117.36 185.7
2 1 8 8 8 3.6 1.2 1 0.0186 117.96 164.6
3 0 8 8 8 2.2 1.1 1.1 0.0173 117.33 173.6
average 0.0181 117.55 174.6
stddev 0.0007 0.35 10.6

Table 6.8: Test Results of optimizing SPSR for the ´Armadillo’ point cloud from the
´famous_dense’ dataset using different algorithms.

run cgD D fD it w Sa Sc Hausdorff Chamfer run time
default 0 8 5 8 4 1.5 1.1 0.0176 115.56
GEIST
1 1 7 5 6 2 1.2 1.1 0.0164 111.90 126.4
2 1 7 7 6 2 1.1 1 0.0171 112.62 117.3
3 1 7 6 7 2 1.8 1.1 0.0180 112.64 170.6
average 0.0171 112.39 138.1
stddev 0.0008 0.42 28.5
IFRace
1 0 7 8 8 2.8 1.4 1.2 0.0187 112.76 35.0
2 0 7 5 8 2.8 1 1.2 0.0172 112.81 28.6
3 1 7 6 7 3.8 1.9 1.4 0.0173 113.19 27.7
average 0.0177 112.92 30.4
stddev 0.0009 0.24 4.0
ParamILS
1 1 7 5 7 2.2 1 1.2 0.0160 112.48 6.8
2 0 7 7 7 3.8 1.1 1.2 0.0180 113.02 11.9
3 0 8 5 9 2 1.9 1.3 0.0175 113.24 7.5
average 0.0172 112.91 8.8
stddev 0.0011 0.39 2.7
PostSelection
1 1 7 7 7 4 1 1.1 0.0171 112.80 208.1
2 0 7 5 10 2 1 1.1 0.0185 112.45 182.4
3 1 7 5 9 2.6 1.2 1 0.0171 112.90 174.8
average 0.0176 112.71 188.5
stddev 0.0008 0.23 17.5
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Table 6.9: Test Results of optimizing SPSR for the ´Armadillo’ point cloud from the
´famous_extra_noisy’ dataset using different algorithms.

run cgD D fD it w Sa Sc Hausdorff Chamfer run time
default 0 8 5 8 4 1.5 1.1 0.0584 239.7
GEIST
1 0 6 8 7 2.4 1.4 1.7 0.0407 167.58 108.3
2 0 6 6 6 2 1.2 1.6 0.0399 166.41 125.9
3 1 6 5 9 2.2 1 1.5 0.0405 165.82 118.8
average 0.0404 166.60 117.7
stddev 0.0004 0.90 8.8
IFRace
1 0 5 6 9 3.4 1.1 0.9 0.0465 167.54 21.8
2 1 5 7 10 2.2 3 0.9 0.0467 170.47 22.6
3 0 6 7 6 2.2 1.2 1.5 0.0383 167.00 26.6
average 0.0438 168.34 23.7
stddev 0.0048 1.87 2.5
ParamILS
1 1 5 7 10 3.8 1.9 0.9 0.0436 171.05 8.5
2 0 5 8 7 4.2 1.6 0.9 0.0437 170.78 6.7
3 1 6 8 9 2.4 1.3 1.6 0.0347 166.73 10.8
average 0.0407 169.52 8.6
stddev 0.0052 2.42 2.1
PostSelection
1 1 6 6 8 2.8 1.1 1.7 0.0371 166.06 180.1
2 1 5 8 9 2.2 1.6 0.9 0.0486 168.48 195.4
3 0 6 8 6 3.4 1 1.7 0.0357 167.40 181.2
average 0.0405 167.32 185.6
stddev 0.0071 1.21 8.5

Table 6.10: Test Results of optimizing SPSR for the ´cloud 1’ point cloud from the
´ABC_extra_noisy’ dataset using different algorithms.

run cgD D fD it w Sa Sc Hausdorff Chamfer run time
default 0 8 5 8 4 1.5 1.1 0.0519 251.70
GEIST
1 0 6 8 7 4 1.6 0.9 0.0707 197.39 92.9
2 0 6 6 10 5.6 1.2 0.9 0.0621 196.20 155.9
3 0 6 8 9 4 1.7 0.9 0.0621 196.69 149.3
average 0.0650 196.76 132.7
stddev 0.0049 0.60 34.6
IFRace
1 0 6 8 9 2.4 4.1 0.9 0.0502 195.74 30.4
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run cgD D fD it w Sa Sc Hausdorff Chamfer run time
2 0 6 7 10 3.4 3.6 1 0.0523 198.36 31.0
3 0 6 7 10 5.8 2.1 1 0.0545 199.06 34.2
average 0.0524 197.72 31.9
stddev 0.0021 1.75 2.0
ParamILS
1 1 7 7 10 2.6 1.2 1.5 0.0671 196.27 16.2
2 0 6 6 7 3 2.6 0.9 0.0578 197.03 7.6
3 1 6 6 8 2.6 2.8 0.9 0.0633 196.75 7.6
average 0.0627 196.68 10.5
stddev 0.0047 0.39 4.9
PostSelection
1 1 6 7 10 2.4 2.7 0.9 0.0647 196.55 208.1
2 1 7 7 9 2.8 2 1.7 0.0621 198.24 162.3
3 1 6 8 9 2.2 3 0.9 0.0683 196.54 165.1
average 0.0650 197.11 178.5
stddev 0.0031 0.98 25.7

Table 6.11: Test Results of optimizing SPSR for the ´Armadillo’ point cloud from the
´famous_noisefree’ dataset using different algorithms.

run cgD D fD it w Sa Sc Hausdorff Chamfer run time
default 0 8 5 8 4 1.5 1.1 0.0185 112.15
GEIST
1 0 8 8 10 7.8 1.1 1.3 0.0191 110.57 58.9
2 0 8 7 7 7.4 1 1.2 0.0185 110.50 122.4
3 0 8 5 7 6.8 1 1 0.0189 110.39 113.1
average 0.0188 110.49 98.2
stddev 0.0003 0.09 34.3
IFRace
1 0 8 8 6 6.4 1.1 1.1 0.0181 110.58 35.8
2 1 8 8 9 7 1 1.4 0.0200 110.18 40.1
3 0 8 8 8 7.6 1 1.6 0.0160 110.32 38.2
average 0.0180 110.36 38.0
stddev 0.0020 0.20 2.2
ParamILS
1 0 8 6 6 7.4 1.4 1.1 0.0194 111.09 11.0
2 0 8 8 8 2.4 1.2 1.2 0.0178 111.40 35.5
3 1 8 5 9 5.2 1.2 1.2 0.0172 111.18 7.5
average 0.0181 111.22 18.0
stddev 0.0011 0.16 15.3
PostSelection
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run cgD D fD it w Sa Sc Hausdorff Chamfer run time
1 1 8 6 6 4.4 1.1 1 0.0185 110.62 181.7
2 1 8 8 8 7.6 1.1 1.2 0.0163 110.77 156.7
3 0 8 5 8 5.6 1 1 0.0176 110.79 157.0
average 0.0174 110.73 165.1
stddev 0.0011 0.09 14.4

Table 6.12: Test Results of optimizing SPSR for the ´cloud 1’ point cloud from the
´abc_noisefree’ dataset using different algorithms.

run cgD D fD it w Sa Sc Hausdorff Chamfer run time
default 0 8 5 8 4 1.5 1.1 0.0843 198.51
GEIST
1 1 8 5 8 7.8 1 1.1 0.0855 197.20 87.9
2 0 8 8 6 4.2 1 1 0.0852 196.13 86.3
3 1 8 8 6 2.2 1 1 0.0860 196.82 104.8
average 0.0856 196.72 93.0
stddev 0.0004 0.54 10.3
IFRace
1 0 8 5 8 4.4 1 1 0.0829 195.04 37.2
2 0 8 7 6 6.4 1.1 1.5 0.0835 194.95 34.2
3 1 8 7 9 7.8 1 1.1 0.0843 195.28 34.0
average 0.0836 195.09 35.2
stddev 0.0007 0.17 1.8
ParamILS
1 1 8 8 8 8 1.2 1.4 0.0841 195.74 45.8
2 1 8 6 9 4.4 1 1.2 0.0847 196.06 11.9
3 0 8 5 10 6.2 1 1.4 0.0853 196.45 6.7
average 0.0847 196.09 21.5
stddev 0.0006 0.35 21.3
PostSelection
1 0 8 8 7 6.6 1 1 0.0837 194.27 210.2
2 1 8 7 6 6.4 1 1 0.0842 193.21 204.5
3 0 8 8 6 3.4 1 1.4 0.0850 195.22 235.9
average 0.0843 194.23 216.8
stddev 0.0007 1.00 16.7
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Table 6.13: Test Results of optimizing SPSR for the ´Armadillo’ point cloud from the
´famous_sparse’ dataset using different algorithms.

run cgD D fD it w Sa Sc Hausdorff Chamfer run time
default 0 8 5 8 4 1.5 1.1 0.0643 149.13
GEIST
1 0 8 8 8 5.8 1.2 1.1 0.0531 141.70 103.8
2 1 8 6 9 7.2 1.2 1.3 0.0509 141.72 57.9
3 0 8 6 10 5.8 1.1 1.3 0.0504 141.34 118.0
average 0.0515 141.58 93.3
stddev 0.0015 0.22 31.4
IFRace
1 0 8 7 9 4.8 4.8 1.5 0.0571 144.41 41.4
2 1 8 7 10 5.2 5.2 1 0.0506 139.64 43.8
3 0 8 7 10 4 4 1 0.0505 141.57 39.0
average 0.0527 141.87 41.4
stddev 0.0038 2.40 2.4
ParamILS
1 1 8 8 10 5.6 1.4 1.3 0.0507 142.17 64.0
2 0 8 6 10 5.4 1.3 1.1 0.0506 141.04 25.1
3 1 8 6 10 6 1.3 1.3 0.0506 140.04 11.3
average 0.0506 141.08 33.4
stddev 0.0001 1.06 27.3
PostSelection
1 0 8 8 8 5.6 1.1 1.2 0.0520 140.68 181.7
2 1 8 7 10 4.6 1 1.3 0.0555 142.02 153.6
3 1 8 7 10 4.8 1 1.4 0.0531 141.97 172.5
average 0.0535 141.56 169.3
stddev 0.0018 0.76 14.3

Table 6.14: Test Results of different algorithms optimizing SPSR for the ´famous_original’
- ´xyzrgb_dragon_clean’ point cloud.

Cloud Algorithm cgD D fD it w Sa Sc Hausdorff Chamfer time
dragon default 0 8 5 8 4 1.5 1.1 0.02808 104.357
dragon GEIST 1 8 7 8 2 1 1.1 0.02633 101.329 293.25
dragon GEIST 0 8 8 6 2.6 1 1 0.02703 101.915 231.20
dragon GEIST 0 8 8 10 2.2 1 1.2 0.02684 101.881 265.08

avg 0.02673 101.709 263.18
stddev 0.00036 0.329 31.07

dragon IF-Race 0 8 8 9 3.6 1 1 0.02694 101.838 51.65
dragon IF-Race 0 8 6 9 4.6 1 1 0.02637 102.286 46.89
dragon IF-Race 1 8 8 7 6 1 1.2 0.02690 102.078 52.09
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Table 6.14 – Continued from previous page
Cloud Algorithm cgD D fD it w Sa Sc Hausdorff Chamfer time

avg 0.02674 102.067 50.21
stddev 0.00032 0.224 2.88

dragon ParamILS 0 8 8 8 6.4 1 1.1 0.02689 101.379 119.46
dragon ParamILS 1 8 8 9 3.2 1.1 1.3 0.02613 102.086 50.56
dragon ParamILS 1 8 8 6 6.2 1 1 0.02675 101.351 41.80

avg 0.02659 101.605 70.61
stddev 0.00041 0.416 42.54

dragon PostSelection 0 8 8 8 4.2 1 1.1 0.02702 101.806 224.55
dragon PostSelection 0 8 5 10 2.8 1 1.1 0.02674 102.108 231.98
dragon PostSelection 1 8 8 9 2.8 1 1.2 0.02679 101.854 225.62

avg 0.02685 101.923 227.39
stddev 0.00015 0.162 4.02

Table 6.15: Test Results of different algorithms optimizing SPSR for the ´famous_original’
- ´yoda’ point cloud.

Cloud Algorithm cgD D fD it w Sa Sc Hausdorff Chamfer time
dragon default 0 8 5 8 4 1.5 1.1 0.12694 332.823
yoda GEIST 1 8 6 7 7.8 1.1 1 0.11925 302.931 119.79
yoda GEIST 0 8 7 6 8 1 1.2 0.11706 298.987 131.23
yoda GEIST 0 7 7 10 7.8 1 1.1 0.11749 302.200 53.09

avg 0.11793 301.373 101.37
stddev 0.00116 2.098 42.20

yoda IF-Race 1 8 7 9 7.6 1 1.2 0.12141 300.113 34.24
yoda IF-Race 0 7 7 6 7.8 1 1.2 0.12028 301.591 34.71
yoda IF-Race 1 7 8 10 7.6 1 1.3 0.12457 299.202 36.86

avg 0.12209 300.302 35.27
stddev 0.00223 1.206 1.40

yoda ParamILS 0 8 7 6 7 1.1 1.5 0.12277 304.270 9.63
yoda ParamILS 0 8 6 9 6 1 1 0.12674 304.461 13.47
yoda ParamILS 1 8 7 6 8 1 1.6 0.11789 299.839 57.18

avg 0.12247 302.857 26.76
stddev 0.00444 2.615 26.42

yoda PostSelection 1 8 7 7 8 1 1.3 0.11836 300.129 174.86
yoda PostSelection 0 8 6 8 8 1 0.9 0.12069 297.888 166.29
yoda PostSelection 0 8 6 6 7.8 1 1.1 0.12187 301.259 149.39

avg 0.12031 299.759 163.51
stddev 0.00179 1.716 12.96
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Table 6.16: Test Results of different algorithms optimizing SPSR for the ´famous_original’
- ´bunny’ point cloud.

Cloud Algorithm cgD D fD it w Sa Sc Hausdorff Chamfer time
dragon default 0 8 5 8 4 1.5 1.1 0.03078 142.631
bunny GEIST 1 7 7 6 5.4 1 1.2 0.03187 141.377 89.27
bunny GEIST 1 8 7 9 2.4 1.1 1.2 0.03105 141.418 86.68
bunny GEIST 0 7 8 8 6.6 1 1.3 0.03049 141.091 150.30

avg 0.03114 141.295 108.75
stddev 0.00069 0.178 36.01

bunny IF-Race 0 8 8 8 6.4 1.5 1 0.03105 141.240 40.91
bunny IF-Race 1 8 7 9 3.2 1.3 1.2 0.02944 141.035 43.29
bunny IF-Race 0 7 7 8 7 1.7 1.6 0.03063 141.175 32.41

avg 0.03037 141.150 38.87
stddev 0.00083 0.105 5.72

bunny ParamILS 1 7 8 10 4.2 1 1.4 0.03230 141.229 34.65
bunny ParamILS 1 7 8 10 5.4 1 1.6 0.03138 142.039 27.68
bunny ParamILS 0 8 8 10 3.4 2.2 1.4 0.03060 142.635 34.78

avg 0.03143 141.968 32.37
stddev 0.00085 0.706 4.06

bunny PostSelection 0 7 7 9 5.2 1.1 1.3 0.03139 141.659 178.01
bunny PostSelection 1 7 7 8 7.2 1.1 1.6 0.03095 141.525 179.18
bunny PostSelection 1 7 8 10 5.2 1.6 1.5 0.03238 141.486 184.66

avg 0.03157 141.557 180.62
stddev 0.00073 0.090 3.55

Table 6.17: Test Results of different algorithms optimizing SPSR for the ´famous_original’
- ´flower’ point cloud.

Cloud Algorithm cgD D fD it w Sa Sc Hausdorff Chamfer time
dragon default 0 8 5 8 4 1.5 1.1 0.02378 121.978
flower GEIST 1 7 5 10 2.4 1 1.2 0.01937 119.015 76.89
flower GEIST 1 7 7 10 2.4 1 1.1 0.01848 119.715 142.06
flower GEIST 0 8 8 6 2.4 1.1 1.3 0.01943 119.417 152.77

avg 0.01909 119.383 123.91
stddev 0.00053 0.351 41.07

flower IF-Race 0 7 7 6 2.6 1 1.3 0.01830 119.473 32.30
flower IF-Race 1 8 7 10 2.4 1 1 0.01757 119.622 36.10
flower IF-Race 1 8 5 8 2 1.1 1.2 0.01985 119.836 31.72

avg 0.01857 119.644 33.38
stddev 0.00116 0.182 2.38

flower ParamILS 0 8 8 6 3.6 1.3 1.6 0.01856 120.786 35.58
flower ParamILS 1 7 5 9 4.2 1.2 1.6 0.01949 120.535 9.48
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Cloud Algorithm cgD D fD it w Sa Sc Hausdorff Chamfer time
flower ParamILS 1 7 5 8 3 1 1.5 0.01914 119.974 7.28

avg 0.01907 120.432 17.45
stddev 0.00047 0.416 15.74

flower PostSelection 1 8 6 8 2 1 1.5 0.02012 119.608 158.84
flower PostSelection 1 7 7 6 2.6 1.2 1 0.02254 119.531 175.40
flower PostSelection 1 8 7 7 2 1.1 1.6 0.01941 119.458 200.38

avg 0.02069 119.532 178.21
stddev 0.00164 0.075 20.91

Table 6.18: Test Results of different algorithms optimizing SPSR for the ´abc’ - ´Cloud
1’ point cloud.

Cloud Algorithm cgD D fD it w Sa Sc Hausdorff Chamfer time
1 default 0 8 5 8 4 1.5 1.1 0.04527 229.563
1 GEIST 0 6 7 8 2 4.7 0.9 0.04191 181.993 100.65
1 GEIST 0 6 8 10 2 4.6 0.9 0.03904 182.070 111.94
1 GEIST 0 6 6 6 7.2 1 0.9 0.04117 183.221 146.06

avg 0.04071 182.428 119.55
stddev 0.00149 0.688 23.64

1 IF-Race 1 6 6 9 3 6.3 1 0.03864 184.881 28.27
1 IF-Race 1 6 7 9 2.2 4.2 0.9 0.03622 182.033 25.60
1 IF-Race 1 6 8 8 2.4 3.4 0.9 0.03569 182.309 33.17

avg 0.03685 183.074 29.01
stddev 0.00157 1.571 3.84

1 ParamILS 0 6 8 9 2.2 3.2 0.9 0.04314 182.357 9.78
1 ParamILS 1 6 6 8 6 2.2 1 0.04034 184.859 6.96
1 ParamILS 1 7 7 9 2 2.5 1.6 0.03773 183.151 11.57

avg 0.04041 183.456 9.44
stddev 0.00271 1.278 2.32

1 PostSelection 0 7 7 6 3.6 1 1.5 0.04731 182.947 179.46
1 PostSelection 1 6 6 10 5.2 2.2 1 0.04301 184.520 173.81
1 PostSelection 1 6 6 9 2.2 3.7 0.9 0.04013 182.182 172.02

avg 0.04348 183.216 175.10
stddev 0.00361 1.192 3.88
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Table 6.19: Test Results of different algorithms optimizing SPSR for the ´abc’ - ´Cloud
2’ point cloud.

Cloud Algorithm cgD D fD it w Sa Sc Hausdorff Chamfer time
2 default 0 8 5 8 4 1.5 1.1 0.09171 279.736
2 GEIST 1 8 7 8 3.4 1 1 0.07925 262.779 102.69
2 GEIST 1 7 8 6 7.4 1 1 0.07458 261.385 94.75
2 GEIST 0 7 8 10 7.8 1 1 0.07360 258.549 122.79

avg 0.07581 260.904 106.74
stddev 0.00302 2.156 14.45

2 IF-Race 1 8 7 9 7 1 1 0.08123 258.566 38.46
2 IF-Race 0 8 7 7 7 1 1 0.08411 260.129 34.28
2 IF-Race 0 8 6 10 7.6 1 1 0.07072 260.280 36.12

avg 0.07869 259.658 36.29
stddev 0.00705 0.949 2.09

2 ParamILS 1 8 7 8 6.6 1 1 0.07054 258.155 33.15
2 ParamILS 0 8 7 7 6.6 1 0.9 0.08934 260.203 49.35
2 ParamILS 1 8 8 10 5.4 1 1.6 0.07535 261.950 53.24

avg 0.07841 260.103 45.25
stddev 0.00977 1.900 10.66

2 PostSelection 1 7 8 8 8 1 1.1 0.07214 261.996 191.20
2 PostSelection 1 8 5 7 7.6 1 1 0.07412 262.959 168.75
2 PostSelection 0 7 8 10 6.2 1.1 1 0.07930 264.277 167.44

avg 0.07519 263.077 175.80
stddev 0.00370 1.145 13.35

Table 6.20: Test Results of different algorithms optimizing SPSR for the ´abc’ - ´Cloud
3’ point cloud.

Cloud Algorithm cgD D fD it w Sa Sc Hausdorff Chamfer time
3 default 0 8 5 8 4 1.5 1.1 0.37586 600.651
3 GEIST 0 8 8 10 7.2 1.6 1.4 0.35730 569.413 104.17
3 GEIST 1 8 7 9 3.8 1.3 1.3 0.35768 572.401 119.71
3 GEIST 0 8 7 9 7.4 1.2 1.3 0.35161 565.893 89.03

avg 0.35553 569.236 104.30
stddev 0.00340 3.258 15.34

3 IF-Race 1 8 7 10 7.4 1 1.1 0.34640 564.078 37.97
3 IF-Race 1 8 8 10 5.2 1 1.1 0.34719 560.830 46.63
3 IF-Race 1 8 8 10 6.6 1 1.3 0.34440 559.892 36.04

avg 0.34600 561.600 40.21
stddev 0.00144 2.197 5.64

3 ParamILS 1 8 7 9 3 1.8 1.3 0.36789 583.338 19.63
3 ParamILS 1 8 6 10 5.8 1.4 1.1 0.35788 572.220 16.33
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Cloud Algorithm cgD D fD it w Sa Sc Hausdorff Chamfer time
3 ParamILS 0 8 8 9 2 1.4 1.6 0.37348 590.087 50.20

avg 0.36642 581.882 28.72
stddev 0.00790 9.022 18.68

3 PostSelection 0 8 6 10 6.6 1.2 1.3 0.35141 567.463 206.74
3 PostSelection 0 8 8 10 3.6 1.2 1.5 0.36005 573.227 186.98
3 PostSelection 1 8 8 10 8 1 1.6 0.35790 565.467 204.20

avg 0.35645 568.719 199.31
stddev 0.00450 4.029 10.75

Table 6.21: Test Results of different algorithms optimizing SPSR for the ´abc’ - ´Cloud
4’ point cloud.

Cloud Algorithm cgD D fD it w Sa Sc Hausdorff Chamfer time
4 default 0 8 5 8 4 1.5 1.1 0.08055 234.982
4 GEIST 1 8 7 7 6.8 1 1.3 0.08040 226.770 124.01
4 GEIST 0 8 7 6 7 1 1 0.08002 227.139 97.43
4 GEIST 1 8 7 10 7.8 1.4 1.4 0.07871 228.744 91.63

avg 0.07971 227.551 104.35
stddev 0.00089 1.049 17.27

4 IF-Race 1 8 7 7 6 1.2 1.4 0.08105 228.762 40.58
4 IF-Race 0 8 6 8 8 1.2 1 0.07519 226.234 39.39
4 IF-Race 0 8 7 9 7.8 1.2 1.4 0.07987 227.537 43.28

avg 0.07870 227.511 41.08
stddev 0.00310 1.264 1.99

4 ParamILS 0 8 7 10 8 1 1.1 0.08043 226.108 44.99
4 ParamILS 1 8 7 10 5.8 1.2 1.3 0.08164 227.559 44.40
4 ParamILS 0 8 5 6 7.8 1.4 1.1 0.08173 228.140 6.73

avg 0.08127 227.269 32.04
stddev 0.00073 1.047 21.92

4 PostSelection 0 8 7 8 7 1 1 0.08006 226.541 209.44
4 PostSelection 0 8 6 6 8 1 1 0.08119 226.606 207.63
4 PostSelection 1 8 7 7 8 1.1 1 0.07717 228.104 229.56

avg 0.07947 227.084 215.54
stddev 0.00208 0.884 12.18
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