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Kurzfassung

In den letzten Jahren sind unbemannte Luftfahrzeuge (UAVs) unter anderem aufgrund
sinkender Herstellungskosten immer populédrer geworden. Sie finden sowohl im Unterhal-
tungsbereich als auch in Einsatzszenarien Anwendung. Die meisten fiir den Aufleneinsatz
konzipierten Drohnen nutzen typischerweise eine GPS-gestiitzte Positionsbestimmung,
die jedoch in Innenrdumen oder Umgebungen mit Hindernissen unzuverléssig ist. In dieser
Arbeit wird die Herausforderung der autonomen Indoor-Navigation und Kartierung durch
das Design, der Bau und die Evaluierung einer kompakten, modularen Drohnenplattform
mit 3D-Scanning-Hardware und integriertem Computer zur Echtzeit-Kartenerstellung
und autonomen Navigation behandelt.

Die entwickelte Plattform integriert Visual-Inertial-Odometrie und Tiefenbilder in eine
ROS-Noetic-Softwarearchitektur. Die Auswahl der Komponenten, die Sensorkalibrierung,
das Energiemanagement und die Softwareintegration wurden systematisch behandelt,
um der Plattform kurzzeitige autonome Einsétze zu ermdglichen. Aufgrund einiger
Herausforderungen beziiglich der Stabilitat der Lokalisierung und der Sensorintegration
konnten jedoch keine vollautonomen Fliige abgeschlossen werden.
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Abstract

Over the past decade, unmanned aerial vehicles (UAVs) have grown in popularity,
primarily due to reduced manufacturing costs. They have a wide range of applications,
from entertainment to critical emergency services. However, most drones designed for
outdoor navigation rely on GPS-based positioning, which can be unreliable in indoor or
obstructed environments. This thesis addresses this challenge by proposing the design,
implementation, and evaluation of a compact, modular drone platform equipped with 3D
scanning hardware and an onboard computer for real-time mapping and autonomous
navigation.

The developed platform integrates visual-inertial odometry and depth imaging within
an ROS-Noetic software architecture. The selection of components, sensor calibration,
power management, and software integration were all systematically addressed in order
to enable short-duration autonomous operations. However, due to challenges regarding
localisation stability and sensor integration, fully autonomous missions could not be
completed.
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CHAPTER

Introduction

1.1 Motivation

Over the past decade, unmanned aerial vehicles, better known as drones, have seen
a rapid increase in both affordability and capability. Advances in manufacturing and
electronics have reduced the costs, while a wave of innovative applications has emerged.
Now, drones are used for entertainment purposes where hundreds of drones perform
choreographed light shows [EHal, for life-saving services, such as rapid delivery of medical
supplies to remote regions, [CBH'24|, and even for firefighting where UAVs are designed
to detect and extinguish fires in hazardous environments|JNS™24].

Many of these UAVs are quite large and designed to fly outside autonomously, supported
by satellite positioning systems and waypoint navigation. While this approach excels
in open skies and over long distances, it breaks down in GPS-denied environments like
indoor spaces or urban environments in which walls and obstacles obstruct satellite
signals and demand alternative localization and control strategies. So platforms designed
to operate indoors or in confined urban settings still often rely on human pilots, who
must steer the drone manually through tight passages and avoid obstacles.

Fully autonomously navigating and mapping UAVs could help in many different situations.
They could, for example, swiftly generate accurate floor plans of an entire house to
streamline renovation projects, thereby eliminating the need for manual measurements.
In emergency scenarios, such as a collapsed building or an area with unreliable radio
links, these UAVs could independently explore hazardous or RF-blocked environments
and provide up-to-date 3D maps to rescue teams.
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1.2 Objective

This thesis aims to take a small step in this direction by designing, implementing, and
evaluating a compact, modular drone platform that is capable of carrying 3D-scanning
equipment and a computer for mapping and autonomous navigation. Acknowledging
that realizing every aspect exceeds the scope of this work, we here focus on designing
and building the platform, while leaving room for future development and improvements.

The following part of the thesis is structured as follows: Chapter 2 reviews the state
of the art in indoor positioning, calibration techniques, middleware frameworks, flight
controllers, and autonomous drone scanning. Chapter 3 details our system’s design
and implementation, from hardware selection and mechanical integration to software
architecture and ROS node organization. Chapter 4 presents an evaluation of the
platform, examining flight performance, scanning quality, and some practical challenges
we encountered. Finally, Chapter 5 summarizes the findings and outlines directions for
future work.
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Related Work

This chapter gives an overview of the relevant related work used in this thesis.

2.1 Non-GPS Positioning Systems

Robots out in the open sky or roaming a field can lean on satellite-based systems like GPS
or Galileo to collect highly accurate position data. This can be problematic in indoor
environments because walls can decrease the reliability of the signal. To address this
challenge, a variety of alternative localization methods have emerged, including visual-
inertial odometry, ultra-wide-band ranging, and LiDAR-based SLAM, which fuse data
from onboard sensors to maintain precise position estimates in GPS-denied environments.

2.1.1 ToF based Systems

Time-of-flight (ToF) based positioning systems mirror GPS by measuring signal travel
times between fixed anchors and the tracked object. They use multiple stationary anchor
stations to triangulate the position. Their coverage is inherently limited by the number
and distribution of anchors and the frequencies used. Ultrasonic ToF-solutions often
use 40kHz carrier waves and can, in theory, achieve sub-centimeter accuracy over a few
meters. Their performance suffers from reflections and ambient noise. Ultra-wide-band
applications (UWB) use frequencies from 0.5-10GHz to send short pulses for triangulation.
They can provide sub-centimeter accuracy over multiple meters and are more robust
than ultrasonic systems.

However, in real-world and Non-Visual-Line-of-Sight (NVLos) conditions, these systems
can have high error rates and an accuracy of 1-2m |[CSSCT22].
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2.1.2 Visual based Systems

Visual-based positioning systems use one or multiple image streams to track the camera’s
position. They begin by detecting distinctive visual features such as corners, edges,
or textured patches in each frame using algorithms like ORB ([RRKB11]) or SIFT
([Low99]), followed by matching those features across successive images (and between
multiple cameras, in stereo setups). By tracking the movement of these features over
time and using geometric relationships (e.g., triangulation in stereo or motion-based
re-projection), the system computes the change of the camera’s position and orientation.

Visual-Inertial Odometry (VIO) refers to software systems that fuse high-frequency IMU
measurements with images from a monocular or stereo camera to continuously estimate
a platform’s position, orientation, and velocity. By feeding both visual feature tracks
and inertial readings into an Extended Kalman Filter (EKF), VIO-Systems achieves
robust, real-time pose estimation with reduced drift compared to purely visual or inertial
methods. Extended Kalman Filters were first introduced in 1962 [MG62] based on the
Kalman Filter [Kal60], first published by Imre Kalman in 1960.

2.2 Camera IMU Calibration

Reliable VIO requires precise alignment between the camera and IMU sensors’ data. Early
methods treated spatial and temporal calibration separately, using checkerboard patterns
for camera intrinsics and manual synchronization procedures for IMU timing [Zha00].
More recent approaches, most notably the Kalibr toolbox, involve jointly optimizing
camera intrinsics, stereo extrinsics, IMU-to-camera rigid transforms, and inter-sensor
time offsets. This is achieved by observing a calibration board (for example, one with an
AprilTag grid) undergoing various motions [FRST3, RNST16|. These Unified calibration
frameworks have been shown to reduce reprojection errors to below 0.2px, reducing
timestamp misalignment to under a few milliseconds and significantly improving filter
consistency and reducing drift in VIO systems.

2.3 ROS

Robotic platforms typically follow a modular, decentralized approach that integrates a
variety of sensors and specialized software to perform perception, planning, and control
tasks. To route each data stream reliably to its intended component, these systems rely
on so-called middleware frameworks. The Robot Operating System (ROS) [QCG™09),
along with its predecessor ROS 2 [MFG™22|, has become a widely adopted solution for
managing inter-module communication and orchestration in both research and industry.
ROS is built around the following core components:

e Nodes. Individual pieces of software that perform computation. Each node
registers with the ROS Master and can publish or subscribe to data streams (called
topics), call services, or provide services of its own.
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o Topics. Publish/subscribe buses over which nodes exchange strongly-typed mes-
sages. Publishers push data out on a topic; subscribers receive each message as it
arrives, decoupling producers from consumers.

¢ Services. Synchronous, RPC-style communication channels. A node advertises
a service name and message schema (request + response); clients send a request
and block until the server returns a reply, useful for parameter lookups or one-off
commands.

2.4 Flight Controller Systems

This section provides an overview of some of the most common flight-control systems
used for Unmanned Aerial Vehicles (UAVs).

2.4.1 Ardupilot

ArduPilot is an open-source autopilot software suite designed to control a wide variety of
unmanned vehicles, including multicopters, rovers, and boats. Since its first release in
2009 [Com09], it has undergone continuous development driven by a global community
of contributors.

It supports a wide variety of sensors and processing algorithms, including inertial measure-
ment units (which combine accelerometers, gyroscopes and magnetometers) for attitude
and motion estimation, barometric pressure sensors for altitude hold, GNSS receivers
(GPS, GLONASS and BeiDou) for global positioning, and distance sensors such as
LiDAR, sonar and ultrasonic rangefinders for obstacle detection, terrain following and
advanced obstacle avoidance. It also supports optical-flow or vision-based systems for
motion tracking, position hold, and advanced obstacle avoidance. These inputs are fed
into modular control loops and navigation stacks, mixed and subsequently used by various
unmanned vehicle applications.

2.4.2 Betaflight

Betaflight [B] is an open-source flight-controller firmware specifically engineered for
multi-rotor platforms, particularly for first-person view (FPV), racing, and freestyle
applications. It is designed to run on 32-bit micro-controllers and emphasizes low-latency
control loops.

By limiting its supported sensors to inertial measurement units (IMUs) (i.e., accelerome-
ters and gyroscopes), as well as to other basic sensors, such as barometers and compasses,
Betaflight minimizes computational overhead to achieve short control response times.
Unlike full-featured autopilot stacks, such as Ardupilot, it omits global navigation al-
gorithms and waypoint trajectory planning, instead relying on human pilot inputs to
control the flight path directly.
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2.4.3 INav

INav [C] is an open-source flight controller firmware that is a derivative of Cleanflight
and Betaflight. It has a stronger focus on autonomous navigation and multi-copter /fixed-
wing applications. Like Betaflight, it runs on 32-bit micro-controllers and supports a
broader range of sensors, such as GPS and optical flow. Integrating these additional
sensors enables advanced autonomous flight capabilities, particularly position hold and
waypoint-based navigation.

2.5 Autonomous Drone Scanning Research

In this section, we review previous research employing similar indoor-scanning approaches.

Zhang et al. [Z2YZ24] presented the ICON drone, an autonomous indoor UAV system.
The drone captures RGB-D imagery and reconstructs accurate 3D geometry, semantically
labeling building components and materials, thereby automating BIM creation. It uses
visual-inertial odometry (VIO) and frontier-based planning to explore spaces quickly.
Furthermore, the drone employs both classical photogrammetry and a vision transformer
model for reconstruction, and back-projects Swin-Transformer segmentation onto the
point cloud. In tests by the research team, it achieved sub-10 cm reconstruction accuracy
and over 80% segmentation accuracy.

In 2018, Dowling et al. [DPHT'18| introduced URSA, a tethered indoor UAV system
that combines off-board 2D LiDAR SLAM and a fixed base station for mapping and
planning. URSA also features an onboard PX4 flight controller, which is fused with IMU
and ultrasonic height data, to achieve autonomous navigation and live mapping with
an accuracy of +£2 cm. In real-world tests, URSA reliably avoided static and dynamic
obstacles, managed corners and entered narrow doorways, producing 2D maps that
were within £2 cm of ground-truth tape measurements. While the authors report that
performance is solid at low speeds, higher-speed flights reveal overshoot and stability issues.
This motivates future work on trajectory simulation with inertia, tighter SLAM-controller
integration, and moving towards full 3D mapping.

Most recently, Tukan et al. |[TFEGT23] presented a real-time autonomous indoor ex-
ploration system for toy drones equipped with only a monocular RGB camera. This
system leverages ORB-SLAMS3 for sparse mapping and localization. They developed
a provable submodular outlier removal algorithm to clean the point cloud and a novel
360° ’exit detection” method to guide continuous exploration. The cleaned sparse map
was transformed into a LiDAR-like 2D representation using clustering and convex hull
construction. This enabled RRT-based path planning with post-hoc path smoothing.
Experiments conducted with DJI Tello drones in environments where GPS was unavail-
able demonstrated reliable map cleaning, effective exit-point selection, and successful
navigation through unknown spaces.
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This chapter outlines the construction process of the drone, including the selection of
components and why they were chosen. The aim was to create a modular platform that
scans autonomously and reconstructs indoor environments. The platform was intended
to be easily updated with new software or upgraded hardware in the future.

3.1 Requirements

As the drone will be flying in tight indoor spaces, it needs to be able to tolerate minor
bumps and be quick and inexpensive to repair. At the same time, it must be as compact
and lightweight as possible, while being able to carry a payload for 4-8 minutes of flight
time. It must be capable of fully autonomous indoor flight and navigation using only its
onboard sensors, without depending on external positioning systems (e.g., OptiTrack).
It should also offer an instant manual override option, enabling a pilot to take control
whenever necessary to enhance safety and minimize potential damage. Scanning should
happen on the drone itself to reduce computational cost, without live-streaming the data
to a server.

3.2 Hardware

As shown in Figure [3.1, the drone architecture comprises two independent subsystems.
The flight system, which is powered by its own battery, is responsible for all real-time
stabilization and propulsion. It can fly either via the autopilot of the flight controller or
manually via remote control. Likewise, the companion computer, which is powered by a
separate battery, handles the scanning payload and calculates the next best scanning
position. By isolating their power supplies, we ensure that voltage dips, most likely
caused by flight maneuvers, do not affect the companion computer. Communication

7
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between the two subsystems is maintained via a single dedicated data link using the
MAVLink protocol.

4s
3300mAh

Step Down
Converter

Power
out

Realsense
D435i

Mission Planner| WLAN | =
' Raspberry Pi 5 Flightcontroller
' 16GB Micoair 743 Rangefinder
Rviz WLANJ - o VL53LXX
SBUS |ELRS Receiver| ELRS } - 1 ELRS |Remote Controller
Companion Computer Flight System

Figure 3.1: Cabling of the drone

3.2.1 Flight System

The first thing we considered was the drone’s overall size, which is largely determined by
the diameter of the propellers. While large props usually increase payload capacity and
stability, they require larger motors and batteries and, due to their size, are more difficult
to maneuver in confined spaces. We decided on 3-inch propellers as these allowed us to
build a relatively small drone with enough headroom to carry the scanning hardware and
achieve a thrust-to-weight ratio of at least 2:1. The chosen motors generate a
maximum thrust of 845 g each when used with the recommended 3-inch propeller and
4S battery. To prevent overheating and burning out, we calculated with 80% of that,
resulting in a maximum take-off weight of:

845g x 80% x 4Motors
2

= 1352g

We chose ArduPilot as our autopilot platform because of its flexibility and broad sensor
support, as well as its ability to connect to a companion computer for more advanced
in-flight control. As shown in Figure 3.1, we mounted an optical flow sensor on the
underside of the drone. This detects apparent movement of the ground below, enabling the
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drone to hold its position in environments where GPS is unavailable. The rangefinder is
mounted on top of the frame and points upwards to detect the ceiling, thereby preventing
accidental crashes and ensuring a safe distance is maintained. Additionally, we have
equipped the drone with an ExpressLRS (ELRS) receiver to provide a robust, low-latency
radio link, ensuring that the pilot can take over instantly if necessary.

3.2.2 Companion Computer

The onboard computer is a Raspberry Pi 5 with 16 GB of RAM. Weighing just 46 g and
with a small form factor, it can be fitted in the middle of the frame without interfering
with the propeller. We CNC-milled a custom connector plate from PVC to mount it,
which also houses the step-down converter and allows the Pi to be powered directly
from a LiPo battery. This was essential, as insufficient power causes the Raspberry
Pi 5 to reduce both its CPU performance and USB output. The Raspberry Pi can
connect to a Wi-Fi network to monitor the scanning process and the flight controller. For
odometry and real-time 3D mapping, we selected the Intel RealSense D435i camera, as
it performed well in the aforementioned paper [ZYZ24]. It combines two global-shutter
infrared sensors to ensure accurate depth measurements during fast motion, with a
rolling-shutter RGB sensor to capture color imagery and an integrated IMU to provide
high-frequency accelerometer and gyro data. It uses an infrared projector that beams a
semi-random dot pattern onto the environment to increase depth accuracy. The Camera
has an optimal operating area of 0.3m - 3.0m [Int].

Flightcomputer
Raspberry Pi 5

Realsense D435i

Periphirals
Battery 2s
720mAh

Rangefinder

Micoair MFTO1
Optical Flow +
Lidar

Flight Controller
Micoair 743 Propeller
+ ESC Micoair Gemfan D76-5
50A BLS Ducted

Figure 3.2: Drone fully built
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3.2.3 Hardware List

A complete List of all Hardware used to build the drone

Description Component
Motor Foxeer Datura 2105.5 3650Kv
Propeller Gemfan D76-5 Ducted
Frame Rotorama Bouncer
Drone Battery GNB 3300mAh 4S 100C
Flight Control Unit (FCU) MicoAir H743
Electronic Speed Controller (ESC) MicoAir 50A BLS
ELRS Radiomaster RP1 2.4GHz
Capacitor 680 nF 50V
Optical Flow + ToF sensor MicoAir MFTO01
ToF sensor VL53L0X
Remote Controller Radiomaster Pocket ELRS
Companion Computer Raspberry Pib
Computer Battery GNB 720mAh 2S 100C HV
Step Down Converter APKLVSR DC-DC 24V/12V to 5V 5A
Stereo Camera Realsense D435i

Table 3.1: Component List

3.3 Software

We chose ROS Noetic as our main framework for orchestrating all sensor data and control
nodes. Due to compatibility issues, it runs on the Raspberry Pi inside a Docker container.
Figure 3.3 illustrates the workspace, showing how the nodes are organized and how data
flows between them.

\\> Depth Waypoints
Image

FUEL

—»|Odometry Pointcloud

Figure 3.3: ROS Workspace
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3.3.1 ROS Workspace

As the drone’s main purpose is to 3D scan indoor environments autonomously, we needed

a suitable framework to enable communication between the drone platform components.

The initial idea was to use a SLAM (Simultaneous Localization and Mapping) system
and add a Next Best View algorithm to suggest subsequent scanning locations. However,
in practice, this modular approach still required a separate obstacle-free path planner
between viewpoints, which added unnecessary complexity. Inspired by the work in
[ZYZ24], which uses the FUEL framework to integrate mapping and view planning into a
single process [ZZCS21], we therefore adopted FUEL for its 3D scanning capabilities and
trajectory planning for the Next Best View. Due to compatibility issues when running
the FUEL framework on newer, unsupported ROS and Ubuntu versions, we stuck to
older ROS Noetic and Ubuntu 20.04.

Since FUEL relies on accurate external odometry, we integrated the Open VINS system
IGEL™20] into our system. When running in a stereo-inertial configuration with the
RealSense D435i, Open VINS continuously outputs odometry data to FUEL and the
Ardupilot flight controller. To increase accuracy, we calibrated the stereo camera and
the IMU using Kalibr [FRS13| [FBS12, MFS13|. During testing, we discovered that the
light pattern cast by the RealSense infrared projector (IR projector) was disturbing the
visual-inertial odometry and causing Open VINS to calculate incorrect motion estimates
even when the drone did not move. Disabling the IR projector reduced these errors
and stabilized the pose estimates. Without the IR projector, the resulting depth images
suffered from increased noise and decreased accuracy. An Interlaced Approach where the
projector gets activated every second Frame was not possible with the provided driver of
the manufacturer.

To enhance flight safety and proactively prevent collisions, we additionally implemented
a ’virtual’ rangefinder in the form of a Python node in ROS 3.1. The node continuously
analyses the depth image stream from the RealSense camera and extracts the closest
distance of the centered image segment. This proximity value is then sent to the flight
controller to prevent collisions.

Listing 3.1: Min distance node

depth_array = np.frombuffer (nput_topic.data,dtype=np.uintl6) .reshape
((input_topic.height, input_topic.width))
depth = depth_array.astype (np.float32) / 1000.0

crop_size = 100
cx, cy = input_topic.width // 2, input_topic.height // 2
half_crop = crop_size // 2

center_crop = depth[cy - half_crop:cy + half_crop, cx - half_crop:cx
+ half_crop]

valid = center_crop|[ (center_crop > 0.1) & (center_crop < 10.0)]
if valid.size > O0:

11
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minDistance = float (np.min(valid))
msg = Range ()

msg.radiation_type = Range.INFRARED
msg.field of_view = 0.5
msg.min_range = 0.1

msg.max_range = 5.0

msg.range = minDistance
msg.header.stamp = rospy.Time.now ()
pub.publish (msqg)

3.3.2 Converter Node

As ArduPilot cannot process Open VINS’ odometry messages directly, we developed
a dedicated ROS node that translates the data into the format required by ArduPilot.
This node also reduces the update rate from approximately 200 Hz to 20 Hz, ensuring
that the telemetry link remains within its available bandwidth and avoiding packet loss.

Listing 3.2: Part of the node to send odometry to the flight controller

class OdomConverter:
def _ init__ (self):
rospy.init_node ("odometry_converter")
self.pub = rospy.Publisher ("/mavros/vision_pose/pose",
PoseStamped, queue_size=1)
self.last_odom = None
rospy.Subscriber ("/ov_msckf/odomimu", Odometry, self.
odom_callback)
self.timer = rospy.Timer (rospy.Duration(1.0/20.0),
self.timer_callback)

rospy.loginfo ("Odometry, converter_running at_20_Hz")
rospy.spin()

def odom_callback (self, odom: Odometry) :
# store the most recent odom, don’t publish here
self.last_odom = odom

def timer_callback (self, event):
if not self.last_odom:

return
ps = PoseStamped()
ps.header.stamp = self.last_odom.header.stamp
ps.header.frame_id = "map"
pPs.pose = self.last_odom.pose.pose

self.pub.publish (ps)
rospy.logdebug (f"Published pose_at_{ps.header.stamp.to_sec()
:.3f1M)
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3.3.3 Waypoint publisher

In order to control the drone’s trajectory, we needed to feed in the next scan position

published by Ardupilot. Ardupilot can operate in two autonomous flight modes.

The first mode requires a list of waypoints. When the mission starts, the drone flies to
each waypoint in the respective order. When we operated the drone in this mode, we
recognized that the waypoints could not be updated during the mission when FUEL
recalculated the trajectory.
As continuous updates are necessary, we tested the second mode, which only accepts one
point at a time but ensures continuous updates. In order to control the flight trajectory,
we wrote a Python ROS node to convert the FUEL position commands into Ardupilot
waypoints.3.3

Listing 3.3: Part of the node that controls the drone by managing the waypoints

class TrajBridge:

def

def

__init__ (self):

# parameters

in_topic = rospy.get_param("~in_topic", "/planning/
pos_cmd")

out_topic = rospy.get_param("~out_topic", "/mavros/
setpoint_raw/local")

self.rate_hz = rospy.get_param("~pub_rate", 15.0)

self.min_dt = 1.0 / self.rate_hz

self.last_pub = rospy.Time (0)

# pub/sub

self.pub = rospy.Publisher (out_topic, PositionTarget,
queue_size=1)

rospy.Subscriber (in_topic, PositionCommand, self.cb)

cb(self, msqg):

now = rospy.Time.now ()

# throttle to ~15 Hz

if (now - self.last_pub).to_sec() < self.min_dt:
return

self.last_pub = now

pt = PositionTarget ()
pt.header = Header (stamp=now, frame_id="map")
pt.coordinate_frame = PositionTarget.FRAME_LOCAL_NED
# ignore accelerations
pt.type_mask = (
PositionTarget.IGNORE_AFX |
PositionTarget.IGNORE_AFY |
PositionTarget.IGNORE_AFZ

# fill in position
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pt.position.x msg.position.x
pt.position.y = msg.position.y
pt.position.z = msg.position.z

# and velocity

pt.velocity.x = msg.velocity.x
pt.velocity.y = msg.velocity.y
pt.velocity.z = msg.velocity.z

# yvaw control
pt.yaw = msg.yaw
pt.yaw_rate = msg.yaw_dot

3.3.4 Monitoring

We use Mission Planner [Obol0] on a Windows laptop to monitor the drone’s health and
flight telemetry. The connected laptop is on the same network as the companion computer.
The companion computer forwards MAVLink messages from the flight controller to the
ground control station (GCS). Simultaneously, A second laptop running Ubuntu 20.04 and
ROS Noetic subscribes to FUEL’s mapping and planning topics, visualising the scanning
progress in RViz over Wi-Fi and providing us with real-time feedback on navigation and
reconstruction. This is not crucial for the intended use case, but it is very helpful as it
enables efficient troubleshooting.

3.3.5 Gyroscope Noise Filtering

Vibrations transmitted from the spinning motors and propellers cause significant noise
in the gyroscope readings on the flight controller. This noise can be problematic as
the controller relies on the gyroscope data for stabilization. As these oscillations vary
in frequency depending on rotor speed and blade count, they cannot be filtered by a
simple fixed notch filter. Instead, the Electronic Speed Controller (ESC) continuously
reports the current RPM data of every motor to the Flight Controller. By analyzing
these RPM measurements, we can compute the fundamental vibration frequency and
its harmonics, then apply notch filters to filter those frequencies out. The harmonics of
the base frequency are needed due to the blade count of the propellers. The filtering
process can be seen in Figure 3.4. Figure (a) shows the gyroscope noise during a flight
without filtering. Figure (b) shows the applied filters that change with the RPM rate of
the motors, and Figure (c) shows the filtered gyroscope data with reduced noise.
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CHAPTER

Results

In this chapter, we review the objectives and the challenges we faced when developing
our drone platform. We first examine the design and performance of the flight hardware,
and then the autopilot architecture and its integration.

4.1 Hardware

4.1.1 Companion Computer

We powered the Raspberry Pi 5 with a dedicated step-down converter that delivers 5 V
at up to 5 A. Without this regulator, the Pi’s peripherals would draw too much current,
causing signal dropouts. Our initial approach, running both the flight system and the
Pi off a single 4S LiPo pack, performed well at rest but suffered voltage sags during
takeoff and aggressive maneuvers, which forced the Pi into a shutdown. To eliminate
power interruptions, we equipped the Raspberry Pi with its own 2S 720mAh LiPo battery.
In practice, this setup delivered about 10-15 minutes of continuous operation with
all peripherals and the mapping software running. Unfortunately, there is no battery
management for the 2s battery. Therefore, we regularly measured the voltage by hand to
avoid damage to the battery cells. When we tested a runtime of 15 minutes per battery,
we had no issue with undervoltage.

We used Inkscape [Ink] and a X-Carve 1000 CNC machine [XCal, available to me through
my workplace, to design a custom connector plate through several iterative prototypes to
securely mount the Raspberry Pi, the step-down converter, and the battery. The plate
aligns with the existing frame holes and the Pi’s pre-drilled holes to ensure a flexible and
lightweight mount.
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(a) v1 without stepdown con-  (b) v2 with step-down con-  (¢) v3 with space for extra
verter verter battery

Figure 4.1: Raspberry Pi mount versions

Figure 4.2: Mount fitting on the drone

4.1.2 Calibration

We performed a full visual-inertial calibration of our stereo camera and IMU using the

Kalibr framework ([FRS13|, [EBS12], [MFS13]), employing a 6x6 AprilTag board as our
target. To collect data, we recorded the infrared camera and the IMU data streams while

rotating and moving the drone in front of the board. During optimization, Kalibr fitted
the camera intrinsics, the stereo extrinsic transform, and the time-offset between camera
and IMU, all while minimizing reprojection and inertial residuals.

Our initial attempt used an AprilTag board printed at DIN A4 size on a small desktop

18
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printer. However, the low printing resolution and size led to calibration artifacts and a
reprojection error exceeding 2 pixels. To address this, we reprinted the AprilTag grid at
DIN A3 size on a professional printer, which produced a higher-quality board. Re-running
the same set of calibration trajectories with this improved target reduced the median
reprojection error to below 0.2 pixels, as illustrated in Figure 4.3.
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Figure 4.3: Calibration comparison

In addition to spatial calibration, it is essential to characterize the stochastic behavior of
the IMU. To this end, we collected 14 hours of stationary IMU data, rigidly mounting
the sensor and leaving it motionless in a controlled environment, then processed this
log-file with the Allan Variance ROS package [Buc21]. From the resulting Allan variance
curves, we extracted key noise parameters for both accelerometer and gyroscope: the
noise density /random walk and the bias instability. These values were then incorporated
into our EKF settings in Open VINS, ensuring that the inertial data is neither over- nor
under-trusted when fusing it with visual measurements.
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4.1.3 Weight

Excluding the companion computer and camera, the bare airframe and flight electronics
weigh approximately 530 g, leaving headroom for additional hardware. Our chosen
scanning payload, a Raspberry Pi 5 paired with an Intel RealSense D435i plus power
supply, adds around 230 g, bringing the drone’s total takeoff mass to roughly 760 g (Table
4.1)).

Component Weight (g)
Sensors + ELRS-Receiver 8
Flight Stack (Flight controller + ESC) 23
720mAh Battery 36
Realsense d435i Camera + cable 77
Motors + Propeller 94
Frame 110
Raspberry Pi 5 + stepdown module 120
3300mAh Battery 292
Total 760

Table 4.1: Weight breakdown of the components of the drone.

4.1.4 Flight Time

Before construction, we ran a hover-endurance estimate in Ecalc [M104], which predicted
6.7 minutes with our scanning payload. In practice, our real-world hover tests matched
this prediction exactly (see Table |4.2). As a separate battery powers the companion
computer, its runtime of 10-15 minutes does not limit the drone’s flight time.

Setup Flight-time (min)
Basic Flight System 8.5
with Scanning Hardware 6.7

Table 4.2: Flight Time test

4.2 Sensor Integration

We had planned to equip the drone with a number of sensors to increase overall flight
safety and stability. Thus, we mounted 2 rangefinders and an optical flow sensor to the
drone and used the stereo camera in combination with a small script as a virtual distance
sensor. The integration in Ardupilot as proximity sensors was tricky. The upward-facing
rangefinder reported 0.0 m whenever it saw no obstacle within its detection range, tricking
the controller into thinking the drone was about to collide and causing it to descend or
even refuse to lift off in taller rooms, so we ultimately disabled that sensor. In contrast,
our downward-facing combo of optical flow and LIDAR improved the hover precision,



4.3. Odometry

reliably holding position within about a 0.5 m radius. Because we did not think of the
electrical conductivity of carbon fiber, we smoked one sensor by not isolating it properly.

4.3 Odometry

Our initial odometry pipeline relied on RTAB-Map [LM17], which primarily uses the
camera’s point-cloud data to estimate the location. In practice, however, fast maneuvers
often broke the visual tracking and required manual re-initialization, making it unsuitable
for our application.

We thus switched to Open VINS [GELT20], which fuses stereo imagery with high-
frequency IMU readings. This change markedly improved robustness during rapid
movements, but we observed occasional “flyaways” where the calculated position some-
times randomly moved with high velocity in one direction. Although our Kalibr-based
calibration substantially reduced these errors, they could not be eliminated entirely. This
can be seen in Figure 4.4, where in (a) the drone is moved inside a 2m radius,and in (b)
the calculated position rapidly moves multiple kilometers away. One reason could be a
remaining miscalibration of the camera or, more likely, the IMU. Notably, these errors
happened when the drone was in a relatively stationary position.

The Flyaway error led to some major crashes, one of them breaking both rangefinders
and the Optical Flow sensor 4.5/

Figure 4.5: Damaged Frame and sensors
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(a) odometry working as expected

(b) flyaway error

Figure 4.4: Odometry flyaway

4.4 Mission Planner

Because ELRS supports bidirectional MAVLink since version 3.50, we wanted to use it
for monitoring the status of the drone using Mission-Planner |[Obol0]. This provides
an advantage of a separate data link to monitor the drone, eliminating the need for a
companion computer. Unfortunately, when we connected via Mission-Planner to the
flight controller with mavros running on the Companion Computer, we experienced
slower drone response times, eventually requiring a hard reset of the drone. We suspected
loopbacks to be the cause of this slowdown and decreased the risk for such loopbacks by
routing the Mavlink messages via the Companion Computer and the already existing
Wi-Fi connection to Mission-Planner.



4.5. Scanning

4.5 Scanning

Because we were unable to fully resolve the odometry inconsistencies within the scope
of this work, we were unable to execute fully autonomous scanning missions with the
drone. Instead, we performed several manual scans with the intended software to test
the performance of the Hardware.

4.5.1 FUEL

Our first choice for a mapping and navigation framework was FUEL [ZZCS21]. FUEL
seamlessly combines 3D-mapping with Next-Best-View (NBV) planning, building a
volumetric occupancy map and computing safe exploration trajectories in one package.
Within our ROS Noetic/Ubuntu 20.04 environment, we fed FUEL the real-time odometry
from Open VINS and depth measurements from the RealSense D435i. FUEL then
published waypoint sequences and flight trajectories over ROS topics. We aimed to
manually follow these waypoints to test the mapping and navigation capabilities of the
system.

Figure 4.6: The point cloud captured with FUEL
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4.5.2 Realityscan

To improve the scan quality of our FUEL-based mapping, we recorded the stereo and
the RGB feed during each scanning flight into a rosbag. After the flight, we imported
these datasets into Realityscan [Epi]. This handled image alignment, control-point
optimization, dense depth-map generation, and mesh reconstruction—streamlining our
photogrammetry workflow and delivering detailed, ready-to-use indoor scans without
manual intervention. The processing took about 20 min on a dedicated gaming laptop.

Figure 4.7: The mesh generated with Realityscan

4.5.3 Scan Evaluation

As shown in Figures 4.6/ and 4.7, FUEL’s real-time scan captures only the room’s basic
outline with minimal detail, whereas the RealityCapture reconstruction can deliver much
finer surface detail, with a few remaining gaps in the mesh. The reason for the low-quality
FUEL-scan could be odometry inconsistencies from OpenVINS or the limited computing
power of the Raspberry Pi.



CHAPTER

Conclusion

With this thesis, we have presented the design, implementation, and evaluation of a
compact, flexible drone platform tailored for autonomous indoor 3D scanning. We
successfully built the drone platform and were able to fly the drone and 3D scan indoor
environments. Given the challenges with odometry stability and system integration,
future adaptations are needed for fully autonomous flights. The biggest issue is the
occasional “flyaway” in our visual-inertial odometry pipeline. Despite careful calibration
and noise characterization, flight maneuvers can still induce spurious jumps in the
estimated pose. Resolving this will likely require tighter hardware timestamps, more
sophisticated outlier rejection in the EKF, or the addition of an overall more capable
positioning system.

Regardless of these limitations, we presented a platform that demonstrates the feasibility
of a fully self-contained, server-free indoor scanning UAV. Its modular mechanical and
electrical design proved robust under manual flights, and our ROS-based software stack
allowed rapid integration of perception and control modules.

5.1 Future Work

The Platform could be improved in a few key areas to make it fully autonomous and
more reliable. Addressing the residual odometry “flyaways” will be essential. This could
be achieved with a different odometry approach, either with other algorithms or different
hardware solutions like dedicated pose-estimation systems.

The used Realsense d435i camera can provide decent depth images for 3d mapping but
relies on an integrated IR projector that had to be switched off because of interference
with the visual odometry system. To avoid this compromise, we propose decoupling
pose estimation from mapping by using two dedicated sensors: one optimized for robust
odometry and another one dedicated solely to depth capture. By assigning each task to
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the sensor best suited for it, they can operate at peak performance without interference
and compromises. To reduce the risk of interference, the sensors could use different
technologies, such as LIDAR and visual imaging, or an IR filter could be applied to block
the projected pattern from one of the sensors.

The current power solution, while effective at preventing Pi drop-outs, relies on manual
battery monitoring. Integrating an onboard power-management system with under-
voltage cutoff and charge estimation would enable longer missions without human
intervention.
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Overview of Generative AI Tools
Used

During the preparation of this thesis, I leveraged Al tools to streamline research and
enhance clarity. Google Gemini was used for literature searches and summarization,
while ChatGPT (04 and 4.5-beta) assisted with ROS and ArduPilot troubleshooting, as
well as refining formulations and improving overall readability. I also used Grammarly
for Spelling correction.
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