
Cycle Safely
Ein Kollisionsvorhersagesystem

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Simon Pointner, BSc
Matrikelnummer 01612401

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Projektass. Mag.rer.soc.oec. Stefan Ohrhallinger, PhD

Wien, 30. November 2025
Simon Pointner Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Cycle Safely
A collision prediction system

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Simon Pointner, BSc
Registration Number 01612401

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Projektass. Mag.rer.soc.oec. Stefan Ohrhallinger, PhD

Vienna, November 30, 2025
Simon Pointner Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Simon Pointner, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 30. November 2025
Simon Pointner

v

Danksagung

Ich möchte meinem Betreuer, Projektass. Mag.rer.soc.oec. Stefan Ohrhallinger, PhD, für
seine Geduld, Unterstützung und bedingungslose Ermutigung während der Vorbereitung
und des Verfassens dieser Arbeit danken. Seine Ratschläge und Inspirationen waren sehr
wertvoll, und er war immer verfügbar und ansprechbar, wenn ich ihn brauchte.

Mein aufrichtiger Dank gilt auch meiner Partnerin Annika, deren Unterstützung, Toleranz
und Verständnis während des Studiums und des Schreibens der Abschlussarbeit diese
Zeit wesentlich erleichtert haben. Ich bin auch meinen Eltern sehr dankbar für ihre
Unterstützung und Ermutigung, nicht nur bei dieser Abschlussarbeit, sondern während
meiner gesamten akademischen Laufbahn und auch im Leben.

Ebenfalls ein besonderer Dank gilt meinen Freunden und Kollegen, insbesondere Thorsten
und David, mit denen ich sowohl die Herausforderungen als auch die Freuden des
Masterstudiums geteilt habe. Die gemeinsame Bewältigung der Aufgaben machte diese
nicht nur leichter, sondern auch viel angenehmer.

Abschließend möchte ich die Open-Source-Community erwähnen, deren Engagement für
die freie Verbreitung von Datensätzen und die Veröffentlichung von Source-Code die
Grundlage für dieses Projekt geschaffen hat. Ihre Initiative verkörpert den Geist der
Zusammenarbeit, der den wissenschaftlichen Fortschritt vorantreibt.

vii

Acknowledgements

I would like to express my gratitude to my advisor, Projektass. Mag.rer.soc.oec. Stefan
Ohrhallinger, PhD, for his patience, support, and unconditioned encouragement while
preparing and writing this thesis. His advice and inspiration have been very valuable,
and he was always available and responsive when needed.

I want to extend my sincerest gratitude to Annika, my partner, whose persistent motiva-
tion, tolerance, and understanding made the long years of study and writing of the thesis
into difficulties much easier and worthwhile. I am also grateful to my parents for the
support and encouragement not only in this thesis but throughout the entire course of
my academic career and in life as well.

I would also like to give special thanks to my friends and colleagues, particularly Thorsten
and David, with whom I shared both the challenges and joys of the master’s program.
Sharing the burden only made the task more feasible as well as much more enjoyable.

Finally, I would like to cite the open-source world, whose commitment to distributing
datasets freely and releasing research code has set the foundation for this project. Their
initiative embodies the spirit of collaboration that drives scientific progress.

ix

Kurzfassung

Diese Arbeit präsentiert den Entwurf und die Implementierung einer End-to-End-Pipeline
zur Kollisionsvorhersage und -erkennung, die speziell auf Radfahrer zugeschnitten ist. Das
primäre Ziel besteht darin, potenzielle Kollisionen zwischen dem Radfahrer (Ego-Agent)
und anderen Verkehrsteilnehmern, insbesondere motorisierten Fahrzeugen, vorherzusagen,
die aufgrund ihrer höheren Bewegungsenergie und Geschwindigkeit ein höheres Risiko
darstellen.

Die vorgeschlagene Pipeline integriert konventionelle Techniken für die Lösung der Teil-
probleme wie Objekterkennung, Objektverfolgung und Trajektorienvorhersage. Konkret
wird SFA3D für die Erkennung von 3D-Objekten verwendet, ein Kalman-Filter-basierter
Multi-Objekt-Tracker für die zeitliche Zuordnung und ein auf maschinellem Lernen
basierendes Modell (PRECOG) werden für die Vorhersage zukünftiger Trajektorien
angepasst und trainiert. Um das Training und die Entwicklung des Vorhersagemodells
zu unterstützen, wird ein synthetischer Datensatz zum Radfahren erstellt, indem die
Bewegung von Radfahrern und die Interaktion mit anderen Verkehrsteilnehmern mit dem
CARLA-Fahrsimulator simuliert werden. Das System wird anhand des synthetischen
Datensatzes und auch anhand des realen KITTI-Datensatzes evaluiert, und zusätzliche
Ablationsstudien untersuchen den Beitrag jeder Pipeline-Stufe.

Experimente zeigen, dass der vorgeschlagene Ansatz in der Lage ist, zuverlässige Leistun-
gen bei der Objekterkennung und -verfolgung zu erzielen. Dies bestätigt, dass eine solche
Pipeline auch unter begrenzten Sensormöglichkeiten mit Zugang nur zu LIDAR- und
GPS/IMU-Messungen möglich ist. Die Trajektorienvorhersage bleibt jedoch eine schwie-
rige und rechenintensive Aufgabe, vor allem aufgrund des Mangels an dokumentierten
und leicht einsetzbaren Open-Source-Modellen. Der Beitrag enthält auch ein Visualisie-
rungsframework, das auf dem Rerun-Tool basiert und die interaktive Überprüfung der
Zwischen- und Endergebnisse der Pipeline ermöglicht.

Insgesamt bietet diese Arbeit ein praxisnahes Framework für die Erkennung von Fahrra-
dunfällen, gibt Einblicke in die Kombination konventioneller und maschineller Lernme-
thoden in solchen Pipelines und ermittelt wichtige Einschränkungen und Ansatzpunkte
für zukünftige Arbeiten zur Verbesserung der Trajektorienvorhersage in schwierigen
Verkehrssituationen.

xi

Abstract

This thesis presents a design and implementation of an end-to-end collision prediction and
detection pipeline tailored to cyclists. The primary goal is to predict potential collisions
between the cyclist (ego agent) and other road users, particularly motorised vehicles,
which pose a higher risk due to higher momentum and speed.

The proposed pipeline integrates conventional techniques for solving the sub-tasks of
object detection, object tracking, and trajectory forecasting. Specifically, Super Fast
and Accurate 3D Object Detection (SFA3D) is used for the detection, a Kalman filter-
based multi-object tracker for temporal association of these detections, and a machine
learning-based model (prediction conditioned on goals in visual multi-agent settings) is
adapted and trained for the prediction of future trajectories. CARLA driving simulator
facilitates the training and development of the prediction model by creating a synthetic
dataset of cycling and the interaction with other road users. The system is evaluated on
the synthetic dataset and also on the real-world KITTI dataset, and additional ablation
studies examine the contribution of each pipeline stage.

Experiments demonstrate that the proposed approach is capable of achieving reliable
performance in object detection and tracking tasks. This confirms the feasibility of such a
pipeline under limited sensing capabilities, such as LIDAR and GPS/IMU measurements.
However, trajectory prediction remains a difficult and computationally expensive task,
primarily due to the lack of documented and easily deployable open-source models. The
implementation comes with a visualisation framework, built from the Rerun tool, for
interactive inspection of the pipeline’s intermediate and final results.

The contribution of this thesis can be summarised by the implementation of a framework
for cyclist collision detection. It offers insights into how conventional and machine learning
methods can be combined into a pipeline, and key limitations and points of future work
for the creation of better trajectory prediction in adverse traffic contexts are outlined.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Contributions . 4
1.4 Structure of the Work . 4

2 Related work 7
2.1 End-to-end Frameworks . 7
2.2 Sensors . 9
2.3 Object Detection . 11
2.4 Object Tracking . 15
2.5 Trajectory Prediction . 16
2.6 Datasets . 17

3 Methodology 23
3.1 Super fast and accurate 3D object detection 23
3.2 3D Multi-object-tracker . 24
3.3 Predictions conditioned on goals in visual multi-agent scenarios 25

4 Implementation 27
4.1 Pipeline . 27
4.2 Data Structures . 39
4.3 Visualization . 40
4.4 Training . 42
4.5 Dataset generation . 45

5 Results 51
5.1 Tracking performance . 52

xv

5.2 Trajectory prediction accuracy . 52
5.3 Effect of detection and tracking ablation 58
5.4 Visual demonstrations . 58
5.5 Runtime . 61

6 Discussion 63

7 Limitations and future work 67

Overview of Generative AI Tools Used 69

List of Figures 71

List of Tables 73

List of Algorithms 75

Glossary 77

Acronyms 79

Bibliography 81

CHAPTER 1
Introduction

The evolution of automotive safety has been a significant achievement over the past
few decades. Advances such as adaptive cruise control, collision avoidance systems and
lane-keeping assistance have continuously improved the safety of motorists. Recently,
the emergence of self-driving technology promises to take this progress even further.
Previous implementations focus on autonomous driving and motorised vehicles, but one
group of road users has been consistently overlooked: cyclists. Due to their particular
vulnerability, many safety systems stemming from motorised vehicles can not be applied to
cycling. For cyclists, the emphasis must shift from damage control to damage prevention,
aiming to predict and prevent dangerous situations before they occur. Developing such
systems for bicycles presents unique challenges. Space, weight and cost constraints are far
more restrictive than in cars or trucks, limiting the range of sensors and computational
hardware that can be deployed. Under these conditions, this work proposes a collision
prediction and prevention pipeline for cyclists based solely on position data and LIDAR
point cloud input. To overcome the scarcity of real-world data containing collisions, a
simulation-based approach is adopted, enabling the generation of diverse training and
evaluation scenarios.

But before detailing the implementation, this Chapter introduces the motivation, problem
statement, and key contributions of the work, followed by an overview of related research
and the methodological approach taken in this thesis.

1.1 Motivation
As previously mentioned, cyclists are arguably the most vulnerable traffic participants
and are at a disadvantage when it comes to safety innovations. While cars are equipped
with sophisticated systems that can predict and prevent collisions, cyclists are still reliant
on rudimentary safety devices such as helmets, reflective tapes or vests, protective vests
and or knee pads, all of which offer limited protection. The disparity in safety gadgets

1

1. Introduction

between motorists and cyclists is a call to action, especially with an increase in the
number of people choosing bicycles as a mode of commuting and recreation. Urban
areas promote cycling as an environmentally friendly means of transportation, calling
for improved safety features for cyclists. A deficiency in innovative cyclist protection
technology is not just a technological gap but a matter of public health [1].
A revealing case of the challenges cyclists face is the development of the Open Bike Sensor
[2], a crowd-funded initiative aimed at measuring the distance at which powered traffic
passes cyclists. The endeavour is both a symptom of the problem and the potential of
bottom-up innovation: it provides valuable data on overtaking behaviour, yet also reflects
the underlying asymmetry of power in favour of motorised transport and against cyclists.
Drivers can rely on protective infrastructure as well as advanced in-car systems, while
cyclists are forced to use external monitoring projects to report and campaign for their
safety.
Machine learning and related technologies have opened new possibilities for improving
road safety. Learning-based methods that analyse traffic flow and predict potential
hazards have been developed primarily for motor vehicles. These systems utilise inputs
from several sensors to anticipate and avoid risks, which in turn helps prevent many
crashes from occurring. These technologies have mainly evaded cyclists, who have
particular issues on the road. Such an imbalance only highlights the need for a dedicated
collision detection system for cyclists. Bicycles do not offer a lot of physical protection in
the event of a crash. Therefore, any cyclist safety system must be prevention-oriented
and instead of performing damage control.
Separation of space between cyclists and motor cars is perhaps the optimal way to improve
cyclist safety. Segregated bicycle lanes are well known to reduce accidents significantly
[3]. However, in the majority of urban environments, constraints of space as well as
infrastructure make such measures hard to implement. Hence, a programmatic approach
to safety, utilising advanced sensors and machine learning, could fill this gap. To build an
effective collision prediction system for cyclists, there are a number of considerations that
are required. Firstly, the sensors themselves are the top priority. While RGB cameras
are commonplace in automotive safety use cases, they may not be the optimal solution
for cycling due to their limitations in low-light and adverse weather conditions. LIDAR
(Light Detection and Ranging) technology provides a more resilient alternative. Unlike
cameras, LIDAR sensors reliably detect obstacles and measure distance in the dark, in
rain, or in fog, with stable performance where vision-only systems fail.
Also, sensor fusion techniques that combine LIDAR with other sensory inputs (see Figure
1.1 for commonly used sensors in driving-related tasks) are even more resilient because
they can cover each other’s blind spots and provide redundancy. The trade-off, however, is
that such systems are more expensive, not only in sensor acquisition but also in processing
time. Despite this, their insensitivity to adverse conditions makes them particularly
valuable for safety-critical systems. Furthermore, unlike camera-based solutions, LIDAR
sensors do not capture identifiable visual information, thereby avoiding privacy concerns
associated with image data collection in public spaces.

2

1.2. Problem Statement

Furthermore, the limitations of camera-only solutions are well illustrated by the issue
of phantom braking in Tesla cars. As pointed out in Phantom Attacks on Driver-
Assistance Systems [4], vision-based models are susceptible to adversarial patterns such
as manipulated billboards or projected images, leading to unwarranted and even dangerous
emergency braking. Relying only on RGB cameras can expose vehicles to safety risks
that could be addressed by multi-modal sensor setups.

With the rise of machine learning and better sensors, it should be possible to make a safer
environment for cyclists, such that cycling can become a sustainable and accessible form
of transportation for a larger number of people. A valuable side effect of such systems is
that the data they collect on cycling activity and near-miss incidents can provide officials
with evidence-based insights to improve the safety and design of roads and bike paths.

1.2 Problem Statement
The primary problem addressed in this work is the prediction of potential collisions
between the cyclists, from here on referred to as ego vehicle, and other road users. These
other road users include pedestrians, other cyclists, and particularly motorised vehicles.
The latter are of significant concern due to the higher potential for severe injury or
damage caused by higher speed and momentum.

Predicting collisions involving a cyclist presents unique challenges because the dynamics
of interactions between the cyclist and various classes of road users differ significantly.
Pedestrians, for example, move at relatively slow speeds and have the agility to change
direction quickly. In contrast, motorised vehicles, such as cars, trucks and motorcycles,
move faster and have higher momentum. These vehicles typically follow more predictable
paths dictated by the road layout, which simplifies their trajectory modelling compared
to the more unpredictable behaviour and movement of pedestrians.

For this reason, the focus of this work is on motorised vehicles. This allows for a more
straightforward approach to predicting their movements based primarily on their past
trajectories and the road layout. Trajectory prediction for pedestrians and the related
challenges will also be discussed in the related work section of this thesis.

Key Challenges of this problem include:

• Sensor selection: Identifying the appropriate sensors to detect and monitor sur-
rounding vehicles. The selection of sensors impacts the accuracy and reliability of
the data collected, which is vital for effective collision prediction. (Commonly used
sensors can be seen in Figure 1.1)

• Vehicle detection and tracking: Once the sensors are in place, the system must be
capable of accurately identifying other vehicles on the road and determining their
positions. This requires robust algorithms that can handle various environmental
conditions and partial occlusions.

3

1. Introduction

Figure 1.1: Commonly used sensors/inputs in computer vision for driving-related tasks.
[5]

• Trajectory prediction: After detecting and tracking the vehicles, the next challenge
is to predict their future trajectories based on the surrounding area (scene context)
and their past trajectories.

• Collision prediction: Based on the predicted trajectories, the system must assess
the likelihood of collisions between the cyclist and other road users.

1.3 Contributions
The contributions of this work include the design and implementation of an end-to-
end collision prediction pipeline tailored for cyclists, combining existing methods and
models for solving sub-problems such as object detection, object tracking and trajectory
prediction. This includes the generation of a synthetic dataset for the prediction of the
cyclist trajectory using the CARLA driving simulator and the training of a machine
learning model for the prediction of the path based on the synthetic dataset. In addition,
the model and the pipeline were evaluated in both the synthetic dataset and the KITTI
dataset. All of this is achieved using a limited set of sensors, namely LIDAR and
IMU/GPS for relative positioning. In addition, a tool named rerun [6] is utilised to
better visualise and demonstrate intermediate results and the output of the pipeline in
an interactive 3D viewer.

1.4 Structure of the Work
The thesis is structured in the following way: First, in Chapter 2, related work is reviewed
and discussed, structured by topics and sub-problems relevant to the overarching task of
predicting potential collisions. In addition, end-to-end frameworks are presented, and
publicly available datasets for driving-related tasks are listed and compared.

Subsequently, in Chapters 3 and 4, the methodology and implementation are described in
detail. Since the main contribution of this thesis lies in the development of a pipeline that

4

1.4. Structure of the Work

integrates existing methods, each pipeline stage is first explained individually. This is
followed by a description of the data structures used for training the trajectory prediction
model, which was implemented as part of this work. The visualisation of pipeline stages,
including the generation of images used throughout this thesis, is then outlined, along
with the details of the training procedure. Finally, the process of generating the dataset
for training the trajectory prediction model is described.

After the implementation section, the results are presented in Chapter 5, focusing on
the evaluation of the pipeline. The results provide a statistical analysis of the pipeline
outputs, complemented by ablation studies for individual pipeline components. Lastly,
in Chapters 6 and 7, the findings are discussed, and the limitations of this work as well
as directions for future research are addressed.

5

CHAPTER 2
Related work

In this section, the key advances in the field of autonomous vehicle perception and motion
prediction relevant to this thesis will be outlined, reviewed. The discussion is organised
in the main sub-tasks addressed by this thesis: Object detection, object tracking and
trajectory prediction.

But first, end-to-end methods which produce high-level outputs directly from sensor
inputs, such as trajectory predictions or collision warnings, are presented. Afterwards,
the historical development from classical methods to learning based and finally to deep
learning based methods is outlined for the aforementioned sub-tasks of this thesis. The
focus of this section is to provide an understanding of the underlying algorithms and core
ideas.

In addition to methods and research papers, finally, an overview of widely used datasets
in autonomous driving research, such as KITTI, nuScenes, Argoverse or Waymo Open,
is presented, examining sensor configurations and differences between the datasets, to
provide context for the choice of algorithms and methods used in this thesis.

2.1 End-to-end Frameworks
In modern driver-assistance systems, end-to-end frameworks refer to networks that
accomplish everything from parsing input data (camera images, LIDAR, radar, HD-
maps, etc.) and produce directly high-level outputs like computed vehicle trajectories or
alerts/warnings of potential collisions or steering instructions or braking/acceleration.

One very early example of such a system was already introduced in 1989; ALVINN
[8] demonstrated that a simple neural network can learn to map camera inputs to
steering instructions directly. It learned online from human driving examples to produce
instructions to keep driving on the lane. While crude by today’s standards, ALVINN

7

2. Related work

Figure 2.1: Examples of HD maps [7]

proved that a single network can learn driving from raw images without hand-designed
steps.

A more modern example of an end-to-end framework is Fast and Furious (2018) [9]. The
goal of this network, unlike ALVINN, is not to produce steering commands, but to unify
detection, tracking and motion forecasting in one trainable network. The architecture can
be outlined as follows. The LIDAR point cloud is projected into a BEV representation
such that the network can process the point cloud using a 2D CNN, which captures
spatial-temporal features about the scene around the ego vehicle. This backbone is shared
by all three tasks solved by this framework (detection, tracking, forecasting). Then,
multiple heads (task-specific output modules) are used to output 3D bounding boxes
for objects, tracking results and motion forecasts. The training optimises for a joint
loss function, which optimises for detection loss, tracking loss and L1 or L2 trajectory
prediction loss. FaF achieved real-time performance with around 33 frames per second
on the tested hardware.

Following this development, RobustTP [10] in 2019 was published as another end-to-end
motion forecasting network. The main improvement compared to FaF was made by using
LSTMs (long-short term memory) to encode each agent’s past trajectory. For encoding
the spatial information (the LIDAR point cloud or, in this case, camera images), again a
CNN is used to learn how agents influence each other. Fusing the output of the LSTMs
and the CNN produces a context-aware embedding for each agent.

In 2020, LiraNet [11] fused LIDAR, radar and HD-maps in one method to achieve
better trajectory prediction results. Fusing LIDAR and radar is challenging because
of the relatively low angular resolution of the radar and the sparsity of the produced
data compared to LIDAR. This problem is tackled by a novel spatio-temporal radar
feature extraction scheme. The output of this spatio-temporal network is then fused in a
multi-scale fusion backbone with the LIDAR and HD-map inputs. These fused features

8

2.2. Sensors

are then fed into a joint perception-prediction network, which produces detections and
their future trajectories. Similarly, PnPNet [12] proposed a similar multi-modal network
based on LIDAR and HD-maps, using LSTMs for the trajectory estimation module.

More recently, end-to-end prediction models were still more advanced with richer repre-
sentations. A network called MVFuseNet [13] was proposed, which fuses BEV view and
range-view of the input LIDAR data in one network to jointly detect objects and predict
their motion.

Another regime of end-to-end trajectory prediction frameworks is based on sampling
multiple possible future trajectories per agent based on multiple predicted target locations
an agent might steer towards, like TnT [14] or the later version, DenseTnT [15]. The
goal of the network is to first predict target locations per agent and then condition the
full trajectory prediction on those goals.

RNN and LSTMs have been standard tools for time-series forecasting in the past decade,
but more recently, following the advances in natural language processing using transformer-
based networks (like GPT), these transformers were also applied to end-to-end trajectory
prediction modelling. For example, ViP3D [16] uses a transformer-based query attention
network as a backbone and uses concepts like cross-attention, replacing classical tracking
association methods with learned attention. Another modern example, CATPlan [17],
builds upon existing end-to-end trajectory prediction models and uses a transformer
decoder to output probabilities of potential collisions in addition to trajectories.

Although this list of end-to-end frameworks is far from complete, it gives an overview of
existing methods and the basic solution proposals, from classical methods to different
machine learning models.

2.2 Sensors
The basis of all autonomous driving challenges and benchmarks is defined by the available
recorded data from different sensors. The most widely used modalities are RGB cameras,
LIDAR, radar, GPS/IMU, and HD maps with their respective strengths and trade-offs.
Strictly speaking, HD-maps are not a direct sensory output, but can be extracted using
complex, multi-stage processes that involve specialised sensors equipped on mapping
vehicles to create lane-level geometry.

Cameras are utilised most extensively among computer vision research sensing modalities.
RGB cameras provide high-definition semantic data required for object classification,
scene understanding, and human-centric trajectory prediction (e.g., Social-LSTM [18],
Social-GAN [19]). Their low form factor, low cost and simplicity of use render them
attractive for large-scale deployment, as evidenced by datasets like KITTI [20] (see sensor
setup in Figure 2.2) and WAYMO Open [21]. But cameras lack good depth perception
and do not handle poor weather or low light well, so they are limited in their application
to safety-critical systems.

9

2. Related work

Figure 2.2: Sensor setup used for recording the KITTI dataset [20]

LIDAR sensors measure the environment around them with accurate 3D geometry by
direct measurement of depth in terms of capturing a laser’s reflections and measuring
the time it takes for the laser beam to return, the so-called "Time of Flight" (ToF).
LIDAR excels at sensing for obstacles and measuring distance with extreme precision.
But the technology has drawbacks: sensors are expensive, make infrequent measurements
at greater ranges and can also deteriorate in rain or fog.

The combination with radar, though, can eliminate the problems of deteriorating perfor-
mance of LIDAR in bad weather conditions and therefore increase performance under
rain/fog or weak illumination. Radar sensors appear in datasets such as nuScenes [22], but
find less usage in the academic prediction model. Their lower spatial resolution compared
to LIDAR and cameras makes them less valuable for granular object classification, but
this robustness makes them an excellent second sensor for multi-modal sensor fusion.

GPS/IMU systems are used in the creation of datasets (e.g., WAYMO [21], KITTI [20])

10

2.3. Object Detection

to provide precise ego-vehicle localisation. While not typically used for object detection or
prediction, they enable precise ground truth annotation and multi-sensor data alignment.

Finally, HD maps provide static, formal definitions of lane topology, traffic rules and
drivable space (see Figure 2.1 for examples of HD maps), such as in ARGOVERSE [23]
and WAYMO Open. Providing map data significantly improves the accuracy of trajectory
forecasting by constraining possible agent paths and destinations. The only downside
is that HD maps are expensive to construct and maintain, making it hard to scale to
unseen areas.

2.3 Object Detection
Now, after discussing end-to-end frameworks and commonly used sensors in computer
vision and driving-related tasks, let’s discuss related work for the three main sub-problems
emerging from the problem stated. The first one, object detection, is probably the most
important task of perception in driving-related tasks, as it enables vehicles to see the
agents in their vicinity or static objects. The accuracy of the object detection is not only
essential to understanding scenes captured by sensors but also serves as the foundation
for downstream operations such as trajectory prediction and collision detection. Over the
past decade, methods have been evolving at a quick pace, from two-stage proposal-based
architectures to one-shot detectors and advanced multi-modal fusion models, each tuned
for trading off speed, accuracy and robustness across multiple sensing modalities. While
two-stage detectors are very powerful and useful for fields where high accuracy is more
important than real-time capabilities (e.g. medical applications), one-stage detectors are
more widely used for real-time applications.

2.3.1 One-Stage Detectors
The most notable work in the field of object detection and one-stage detectors is probably
YOLO [24], which showed that one-stage detectors strike a good balance between accuracy
and speed. To illustrate the idea of the YOLO one-stage detector, let us consider the
simpler case of detecting 2D bounding boxes of objects in a 2D image retrieved from a
camera. The principle idea is the following: First, the input image is divided into grid
cells and the networks task is to predict a bounding box (offsets of the box relative to
it’s corresponding grid cell) and a confidence score as well as a class label (e.g. "dog"
or "bicycle" as shown in Figure 2.3). A CNN architecture is used to parse the input,
followed by two fully connected layers. Then, based on the confidence score, grid cells
that likely contain no valid object detection can be discarded, leaving only the predicted
bounding boxes of detected objects. One downside worth mentioning of this approach is
that the granularity of the grid defined limits the maximum number of detectable objects
in a given image. But depending on the size of the grid, in practice, this is not an issue.

Similarly, SSD (Single Shot Multi-Box Detector) [25], skips the object proposals defined
by the grid layout used in YOLO, but instead features maps from multiple layers of the

11

2. Related work

Figure 2.3: Principle idea and outputs of the YOLO model for object detection [24].

CNN are used to predict several default boxes (anchors) of different sizes and aspect
ratios. The model again predicts offsets, confidence scores and class probabilities for each
box. The approach of taking the feature maps on different levels of the CNN allows the
network to better capture very small or very large objects, in comparison to YOLO.

But one-stage detectors have one major drawback, they treat all detections equally,
favouring larger, easily detectable objects while suppressing harder to detect smaller
object classes. This problem was tackled by RetinaNet [26], which uses a ResNet backbone
to extract low-level features like edges and shapes. A ResNet is a residual network that
uses residual connections to solve the problem of diminishing gradients, which results in
performance degradation as the network becomes very deep. Then those features are
combined at different scales using a feature pyramid network (FPN), which allows each
layer to capture objects of different sizes. The main improvement of RetinaNet is that it
uses a focal loss function instead of cross-entropy, which means during training of the
network, a higher importance is given to harder samples. In other words, if a sample
is already easy to detect, it contributes less to the loss, reducing its influence during
training. This allows RetinaNet to compete with two-stage detectors on datasets such as
COCO [27] with the same speed as one-stage detectors.

12

2.3. Object Detection

2.3.2 Two-Stage Detectors
Contrary to one-stage detectors, the idea of two-stage detectors is to solve the object
detection problem by firstly finding possible object regions (region proposals) and then
classifying and refining those regions. A prominent architecture of two-stage detectors
was introduced in 2014, R-CNNs [28]. The main idea of R-CNNs is to use features learned
by a CNN instead of using hand-crafted features like HOG (histogram of gradients) or
SIFT (scale-invariant feature transform). But before extracting features using CNNs, the
category-independent region proposal stage relies on a method called selective search,
which is a classical computer vision approach. It starts off with small regions that are
then grouped by similarity, as for example colour or texture. As these small regions are
merged, each set of combined regions forms a region proposal. This process is repeated
at multiple scales to create differently scaled region proposals. The CNN, as mentioned,
consequently extracts features per region proposal, which are processed by a support
vector machine (SVM) to classify the proposed region. A separate SVM is used per
object class. The next step is using a bounding box regressor to refine the sometimes not
perfectly aligned region proposal to the classified object. Finally, since many proposals
may overlap the same object, they are filtered using non-max suppression (for example,
to keep the proposal with the highest score).

Figure 2.4: VoxelNet architecture, which processes raw point cloud input by voxelization
of space and per voxel encoding of features, which allows processing sparse input data
like a 2D image using a CNN [29].

2.3.3 LIDAR-Based 3D Detectors
Now that the basics of object detection based on machine learning methods have been
discussed, these ideas must be applied and adjusted from functioning on 2D image inputs

13

2. Related work

to detecting 3D bounding boxes based on LIDAR input data. LIDAR point clouds are,
contrary to images, sparse and irregular, meaning they cannot be directly fed into a
CNN. A major advancement in this field was VoxelNet [29], which, as the name suggests,
divides the space into a grid of voxels. Each voxel may contain a variable amount of input
points from the LIDAR. VoxelNet encodes this variable amount of input points into a
fixed-length feature vector, by first centring the points inside each voxel by the mean of
all LIDAR points inside the current cell (centring). Then, all positions are concatenated
and fed into a fully connected neural network to transform the positions into fixed-length
features. A convolutional backbone then produced a 3D feature map that captures object
shapes and locations. The 3D feature map is then collapsed into a BEV. Now, the input
is transformed into a 2D image that can be conveniently transformed using a CNN and
object detection can be achieved similarly to the previous methods, but now, instead
of trying to predict offsets for 2D bounding boxes, 3D bounding boxes and their class
labels, as well as confidence scores are predicted. The process is illustrated in Figure 2.4.

A modification of this idea was presented by PointPillars [30], where instead of encoding
the LIDAR point cloud in grid cells, the space is divided into pillars. This is faster than
first encoding the points per voxel, but at a loss of accuracy. But it works reasonably
well for LIDAR point clouds, which were recorded with a sensor with a low vertical field
of view (FOV).

2.3.4 Multi-Modal Detectors

Based on the developments of object detectors using either image or point cloud input
data, to further improve detection quality, multi-modal object detectors have been
proposed. These combine input data from multiple sensors (modalities) to achieve
better results, especially when the sensors’ weaknesses and strengths complement each
other. Which, for example, is the case for cameras, which are great for capturing colour
information, and LIDAR, which capture depth, and therefore are less prone to optical
illusions. A pioneering work in multi-modal detectors was proposed by the name MV3D
[31]. In simple terms, it combines the ideas from the previously explained detectors,
taking several individual neural network architectures, and then fuses the outputs by
taking the element-wise mean. There are several strategies to combine the inputs or
outputs: early, deep or late fusion. In early fusion, the inputs are simply concatenated
before parsing them into the network, while deep fusion combines outputs of different
layers of the CNN architecture. Late fusion refers to the element-wise mean combination
of the individual high-level outputs. The deep fusion method achieved the best results
on the KITTI dataset.

Similarly, AVOD [32] combines LIDAR and camera inputs, but contrary to MV3D, the
input is combined before creating bounding box proposals, improving performance on
detecting smaller objects. The training strategy of AVOD also differs; instead of training
each stage individually as performed in MV3D, the network is trained end-to-end.

14

2.4. Object Tracking

2.4 Object Tracking

Object tracking refers to the task of assigning unique IDs to objects in the scene over
time. A common approach for object tracking is tracking-by-detection, which refers to
searching for an arbitrary number of objects in each frame, not assuming any knowledge
of objects from the previous frame, and then associating these objects with previous
detections. Further, methods can be distinguished into offline and online methods. In
offline methods, the whole sequence can be used for better association results, while in
online scenarios, the frames are processed sequentially. Further, trackers differ by their
capability of either tracking a single object over time (SOT) or multiple objects (MOT).
The latter are most relevant for this work.

Object tracking in autonomous vehicles is the problem of maintaining persistent object
identities, such as vehicles or pedestrians, over time, ideally from 2D images, 3D bounding
boxes, or point clouds. The dominant solution is tracking-by-detection, where frame-by-
frame detections are linked to trajectories through motion modelling and data association.
It is a challenging problem due to occlusion, detection failures, and dynamic motion, and
thus efficient prediction and robust association are required.

A prominent example for object tracking-by-detection is SORT [33], which, receiving
the detected bounding boxes every frame, uses an algorithm called Hungarian matching
to associate detections from different frames. But before matching, the next state of
all tracked objects is predicted using a Kalman filter. In simple terms, a Kalman filter
estimated the state of a system (in this case, the positions of the tracked objects) over time
from noisy observations. It can be thought of as a smart moving average that predicts
the next state while correcting for noisy input. The Hungarian algorithm then uses the
intersection over union (IoU) to match the new detections to the predicted positions of
the already tracked objects. This results in a cost matrix, where each detection can be
greedily matched with the lowest cost associated with it.

While SORT was implemented to track 2D objects, the 3D variant of it, AB3DMOT
[34], matches 3D detections. Although this Kalman+Hungarian-based approach is very
light-weight, it is surprisingly competitive and yields stable results. But both approaches
fail when the detection quality is poor or under heavy occlusion or more sophisticated
motion (for example, pedestrian motion).

These shortcomings are addressed by learning-based approaches. An early example,
DeepSORT [35], builds upon SORT, but incorporates deep appearance descriptors
to improve the object tracking. The idea: in addition to the bounding box outputs,
DeepSORT uses a pre-trained CNN to extract appearance embeddings from each detected
bounding box, which capture how the object looks (e.g. colour, texture, shape). Intuitively,
this information helps to not confusing tracked objects of, for example, different colours.
The appearance features are used similarly to the cost matrix produced by the IoU based
matching, but the cosine distance between the feature vectors is used as the cost between
a detection and a prediction from the Kalman filter.

15

2. Related work

Another example for object-tracking is FairMOT [36], which jointly performs object de-
tection and tracking, training a network to perform both tasks. Compared to DeepSORT,
this approach improves the frame per second processable from 6.4 to 25.9, including both
the detection and association time. Another more recent example of a network putting
both detection and tracking into one network is RetinaTrack [37]. The core idea is to use
an anchor-based one-stage detector and extend it with tracking capabilities.

End-to-end methods have made the distinction between detection and tracking even more
difficult recently. Methods based on transformers such as TrackFormer [38], CenterPoint
[39], P2B [40] and MOTR [41] use extended object queries that learn simultaneously
continuous detection and temporal association end-to-end. In the 3D matching problem,
SimTrack [42] and S2-Track [43] further extend this idea by predicting track states
directly from LIDAR point clouds with uncertainty-aware methods that can reason about
occlusions and missed detections.

2.5 Trajectory Prediction
Trajectory prediction refers to the task of forecasting the future positions of the traffic
agents based on their past movement and the behaviour of neighbouring agents, as
well as based on an understanding of the scene around the agents. Similarly to many
other computer vision problems, new advances solve this problem using deep learning.
Before diving into deep learning based methods, though, the following outlines classical
approaches and the historical development of trajectory prediction.

Prior to learning-based methods, physics-based methods were used for trajectory pre-
diction. The idea is to use kinematic models to predict the motion of a vehicle. Simple
examples are constant velocity or constant acceleration models [44]. These models are
computationally efficient but cannot handle complex interactions between vehicles or
uncertainties produced by noisy sensor inputs in real-world applications. Probabilistic ap-
proaches like Monte Carlo or Kalman filters were employed to measure these uncertainties
and improve trajectory predictions.

The first learning based trajectory prediction methods were based on support vector
machines (SVM) [45] or Gaussian processes. But these methods did not capture dynamic
interactions between multiple traffic agents.

This problem was addressed with deep learning approaches, DESIRE [46], for example,
produces distant future predictions in dynamic scenes using a conditional variational
autoencoder (CVAE) to generate multiple trajectory prediction candidates for each agent.
In simpler terms, a CVAE learn to map input data, such as the past trajectory of the
detected and tracked objects, and maps it to a latent distribution. From this distribution,
samples are then taken and decoded to retrieve multiple hypothetical future trajectories.
But since the agents don’t move independently, DESIRE models interactions between
agents using a RNN to encode the past trajectories and a scene context module to
encode the map layout (e.g. the LIDAR point cloud processed by a CNN). Trajectron

16

2.6. Datasets

[47], on the other hand, uses a graph-structured RNN to produce future trajectories in
dynamic scenes. The idea, each tracked object is represented as a node in a graph. The
features of a node include the past trajectory and its velocity. Edges in the graph connect
nodes which can influence each other (for example, are in each other’s proximity). A
graph neural network (GNN) is used to propagate information along the edges of the
graph. Trajectron++ [48], an improvement to Trajectron published in 2020, maintains
the graph-based, multi-agent interaction modelling presented in Trajectron, but adds
significant improvements in representation and scalability and multi-modality of the
model. A key feature of Trajectron++ is that it can, compared to the original paper,
predict motion continuously and not only at concrete time-steps. Further improvements
were made by TnT [14] (Target-driving trajectory prediction). The idea of the paper:
instead of predicting the future trajectory of the tracked objects directly, instead predict
potential target locations where the tracked objects might want to move, and later figure
out how the objects might get to those locations. So in contrast to other methods,
TnT does not rely on latent variables and sampling to generate diverse trajectories,
but instead encodes the agent’s environment using a CNN, the past trajectories using
LSTMs (long-short term memory) and nearby agents using an interaction encoder. These
features are combined into a context encoding to represent the agent’s current state. The
target prediction model then predicts several target offsets and target scores. These are
sorted based on the target scores, and a motion estimator module generates the possible
trajectories to reach the target offsets. Another incarnation of the idea of predicting
target goals instead of sampling trajectories was introduced by PRECOG [49], the model
used in this thesis.

2.6 Datasets
Datasets are an important basis for developing algorithms for diverse computer vision
problems, because they allow comparing different methods with each other, form a
baseline and alleviate the need for researchers to go out and record custom datasets first
before being able to work on a problem. For autonomous driving tasks, multiple datasets
have been proposed, which contain different data but also ground truth annotations
depending on the challenges that can be solved with those datasets. Since most of
the sub-tasks listed above, in an attempt to crack this thesis problem are complex in
themselves, it is useful to get an overview over available datasets, compare them with
the requirements of each step, check if the inputs and outputs given are according to the
problem definition and finally select a method, preferably with open-source code, to solve
the sub-task. One excellent place to seek open source code for solving the sub-problems
is Papers with Code, where one can filter or search by the problem being tackled. In
the topic of object detection, there are many datasets, but very few have to do with the
detection of other road users in LIDAR point clouds.
In autonomous perception and driving-related tasks, a number of large datasets have been
created in the recent past to enable research on object detection, semantic segmentation,
tracking and motion prediction tasks. The datasets are quite different in terms of sensor

17

2. Related work

configuration, size, annotation richness and diversity of driving scenarios. Most modern
autonomous driving datasets are multi-modal, incorporating the joint use of RGB imagery
and other sensors such as LiDAR, radar, and inertial measurement units (IMU), for
capturing the 3D geometry and trajectory of surrounding road users.

Some of the most widely used datasets available include KITTI, nuScenes, Argoverse,
and theWaymo Open Dataset, which are all based on real-world sensor captures from
instrumented vehicles. There is also the CARLA simulator, where a pseudo-dataset
based on simulated scenes allows accurate ground-truth labelling and controlled variation
of weather and lighting. These datasets together provide the basis for developing and
testing perception algorithms for autonomous driving research.

The following sections provide a description of these datasets, their sensor configurations
and the type of annotations they offer, followed by a comparison of their most significant
aspects relative to this work.

2.6.1 KITTI

KITTI Vision Benchmark (2012) is a pioneering on-road dataset captured in Karlsruhe,
Germany. The setup consists of a rooftop arrangement with four synchronised video
cameras (two colour and grayscale stereo pairs per side) and a Velodyne HDL-64E 3D
LIDAR. The cameras record 1392x512 pixel frames (90°x35° FOV) at 10Hz and the
LIDAR scans at 10Hz generating 100 k points per sweep (64 beams, ±13° vertical range).
GPS/IMU information (OXTS RT3003) is employed for complete 6-DOF localisation.
Highway, residential and urban scenes (most daytime, decent weather) have been recorded
(see Figure 2.5). Annotations involve richly annotated 2D bounding boxes over the images
and correlated 3D bounding boxes in LIDAR space for pedestrians, cars and cyclists
(and also tracking across frames) [20, 50].

2.6.2 nuScenes

This dataset was published in 2020 and recorded in Singapore and Boston (USA) and
serves as a large-scale multimodal driving dataset. It was recorded on a sensor-packed
test car with the following configuration: six ring-mounted cameras (1600x900 pixel per
camera, 360° horizontal; front and side cameras 70° FOV, rear camera 110°), one rotating
LIDAR (Velodyne VLP-32C, 32 beams, –30° to +10° vertical FOV, 360° horizontal,
20Hz) and five automotive radars (77GHz, FMCW, each 13Hz, up to 250m range).
IMU and GPS provide robust ego-motion. The dataset contains 1,000 scenes (20 s each)
under different conditions (day, night, rain, different traffic densities). A "keyframe"
is labelled every 0.5 s with 3D bounding box annotations over 23 object classes (cars,
trucks, pedestrians, etc.) and rich attributes (object pose, visibility, etc.). High-definition
semantic maps of the recorded areas are also provided within the dataset [22, 51].

18

2.6. Datasets

Figure 2.5: GPS Traces of the sequences in the KITTI Dataset (red tracks have a higher
GPS precision than the blue tracks due to the usage of RTK corrections, black tracks
did not have any GPS signal, so they are not contained in the dataset) [20]

2.6.3 Argoverse
Argoverse has two versions of data released (2019 and 2022). Argoverse-1 was the first
dataset collected in Miami and Pittsburgh using Argo AI test vehicles, which were
equipped with a sensor rig that has 7 ring cameras of high resolution (1920×1200 pixels
each, 30Hz, together giving 360° surrounding view) and two front-facing stereo cameras

19

2. Related work

(each 2056×2464, 5Hz). Two overlapping 40° vertical FOV roof-mounted Velodyne HDL-
64Es offer 200m range and 107 k points per frame at 10Hz. Complete 6-DOF GPS/IMU
localisation and high-accuracy HD maps (lane centerlines, driveable area) are available.
The recorded drives cover diverse urban environments (city downtowns, suburbs, different
weather conditions and times of day). Argoverse-1 3D Tracking subset has 113 labelled
sequences (17 k frames) with 3D bounding-box tracks (vehicles, pedestrians, cyclists).
Argoverse-2 is significantly larger in scale: it includes 1000 labelled 20 s sequences from
multiple U.S. cities (seven ring cameras + two stereo + LIDAR same as before), with
10Hz 3D bounding box annotations for 30 object classes, and dense ground-truth semantic
labels and height maps [23, 52].

2.6.4 Waymo Open Dataset
The Waymo Open Dataset (2020–2024) is one of the largest autonomous driving datasets
and benchmarks. The data was recorded using Waymo’s self-driving car fleet in the San
Francisco Bay Area, Phoenix and Mountain View. Five high-resolution cameras capture
the front and the sides of the vehicle (three are 1920x1280 pixels for front/forward-
left/forward-right angles and two are 1920x886 pixels for left/right side angles) at
around 20–30Hz, with full 360° coverage. It also has five LIDAR sensors (one high-res
rotating LIDAR, along with four short-range LIDAR units) spinning at 10Hz. All five
LIDARs send synchronised point clouds (with the mid-range glspl lidar sweeping 75m
range, side/short-range LIDARs 20–25m). Complete localisation is provided by an
IMU/GPS/INS. The data comprises urban and suburban scenes, daytime and nighttime,
under a wide range of weather (but largely clear weather) and is geographically highly
heterogeneous, meaning there is not much terrain diversity in the dataset. The perception
dataset release has 2,030 driving segments (390 k total frames, 20 s each). It includes
detailed annotations: 3D bounding boxes with track IDs for pedestrians, cyclists, vehicles
and signs on the LIDAR data and corresponding 2D boxes on the camera images (more
than 12 million labels per set). There are additional 2D/3D semantic segmentation,
panoptic segmentation (pixel-wise segmentation) and keypoint labels on some of the data
[21, 53].

2.6.5 CARLA (pseudo dataset)
CARLA is a Unity-based open-source driving simulator used typically to generate
synthetic perception datasets. In CARLA, an arbitrary number of sensors can be
simulated on an ego-vehicle: e.g. multiple RGB cameras (default 800x600 pixel, 90°
FOV, up to 100Hz, configurable intrinsics), depth and semantic segmentation cameras, a
spinning LIDAR (usually 32 or 64 beams, default ±10° vertical FOV, 360° horizontal, at
10Hz) or a radar (default 77GHz, 30° FOV, 1500 points/sec). GPS and IMU readings
can be synthesised as well. The worlds (urban scenes, traffic, pedestrians) are completely
synthetic but support varied lighting (day, dusk, night) and weather (sunny, rainy, foggy)
conditions. CARLA can supply perfect ground-truth annotations for every visible object
(instance segmentation masks, 2D and 3D bounding boxes for cars/pedestrians/cyclists,

20

2.6. Datasets

road geometry, etc.). Pseudo-datasets generated by CARLA typically contain ground-
truth labels that are perfect for training/testing perception algorithms in controlled
environments [54, 55].

A brief comparison of the used sensors and included data of the individual datasets can
be seen in Table 2.1.

Table 2.1: Comparison of sensor availability and the number of sensors across major
autonomous driving datasets.

Dataset Cameras LiDAR Radar GPS/IMU HD Maps
KITTI (2012) ✓(4) ✓(1) ✗ ✓ ✗

nuScenes (2019) ✓(6) ✓(1) ✓ ✓ ✓
Argoverse 2 (2022) ✓(9) ✓(2) ✗ ✓ ✓
Waymo Open (2020) ✓(5) ✓(5) ✗ ✓ ✓
CARLA (2017) ✓(∞) ✓(∞) ✓ ✓ ✓

This concludes the related work for this thesis, listing end-to-end frameworks that perform
similar tasks to the pipeline that will be presented, as well as highlighting different methods
for solving the sub-problems present in this thesis. In the next section, the methods
used for solving the object detection, object tracking, and trajectory prediction will be
discussed and explained in more detail, as well as the structure and usage of the datasets
used or generated.

21

CHAPTER 3
Methodology

In this Chapter, the methodologies used in the implementation of this work, as well
as other methods that were considered or tested, will be described. The focus is on
understanding how data is processed to understand strengths and weaknesses, and why
they have been selected to be used in this thesis implementation.

3.1 Super fast and accurate 3D object detection
While there are many published works on object detection, open-source, well-documented
implementations for detecting 3D bounding boxes on LIDAR point clouds are way less
common. The primary sources for comparing sources on this topic were papers with
code, which is unfortunately no longer active, and the Benchmark results listing on the
KITTI dataset webpage. The starting point for finding a suitable method was finding a
YOLO-based implementation for 3D objects, which led to the open-source implementation
of "Complex YOLOv4" [56].

While the implementation meets the input and output requirements, it is relatively
slow. But the implementation references a newer, faster 3D bounding box method called
"Super fast and accurate 3D object detection", which forms the first stage of the pipeline
performing the object detection task [57]. It is a real-time 3D detection framework
based on RTM3D [58]. SFA3D operates on BEV image representations of the input
LIDAR data. From this view, the model extracts keypoints, such as the centre of objects,
their physical dimensions and their orientation. By predicting these properties directly,
SFA3D does not require post-processing of the detected object bounding box like non-max
suppression, which is often required in other detection pipelines. The model predicts
the object centres using a heatmap per object class it is trained to detect. This method
builds upon a ResNet backbone and a keypoint feature pyramid network, and outputs
objects with 7 degrees of freedom. Figure 3.1 demonstrates the outputs of SFA3D. The
method was picked because it is MIT licensed, works solely on LIDAR input without

23

3. Methodology

any need for prior segmentation or other forms of data preprocessing, contains good
execution instructions and performed well on the KITTI benchmark.

Figure 3.1: Demonstration of the outputs of SFA3D by visualising both the RGB camera
input image as well as a top-down view of the LIDAR point cloud annotated with the
detected objects. Note that although visualised on the RGB camera input, the detection
does not utilise the camera image.

3.2 3D Multi-object-tracker
The first considerations for tackling the problem of object tracking were the baseline
object tracking method SORT [33] or its deep learning variant DeepSORT [35]. The open
source implementation for SORT [59] and DeepSORT [60] offer examples and demos
for the tracking capabilities, but focus on 2D bounding box tracking. Although the
methods are extendable to track 3D bounding boxes, these implementations struggle
with occlusions of objects over several frames as they only implicitly keep track of the
object’s trajectory internally through a Kalman Filter, but don’t actively forecast future
positions.

For this reason, a more mature method was picked. The 3D multi-object tracker used to
assign IDs to the object detections and track them over multiple frames is a reproduced and
simplified implementation of the paper "3D Multi-Object Tracking Based on Uncertainty-
Guided Data Association" [61]. The method also uses a Kalman filter to predict the
next positions of the tracked objects and associates detections using greedy matching,

24

3.3. Predictions conditioned on goals in visual multi-agent scenarios

but compared to SORT and DeepSORT, a larger state vector for the 3D tracking and a
different motion model are used. Furthermore, the method was chosen because it is very
fast, and the implementation is based on 3D bounding boxes with 7 degrees of freedom
and supports input of bounding boxes in the format provided by the KITTI dataset
annotations.

3.3 Predictions conditioned on goals in visual multi-agent
scenarios

Figure 3.2: Predicted trajectories from the PRECOG model on the nuScenes dataset. The
model receives a LIDAR point cloud and the past trajectories of several road agents as
inputs and outputs multiple plausible future trajectories per agent. The image illustrates
the predictions and the ground truth for the agents’ trajectories.

Finding a suitable method for trajectory prediction turned out to be very challenging.
This is due to less published work on the topic compared to the tasks of object detection
or tracking, but also due to a wider range of possible input types and output formats.
For example, most methods for trajectory prediction are designed for autonomous driving
applications, which often use additional inputs like camera, radar or HD-maps. As for
this work, the requirements on the inputs are more restrictive, and many methods are
not open-source. At first, it seemed necessary to implement a custom solution, but a
promising method, MANTRA [62], fulfilled most of these requirements, as it is open-
source and requires only LIDAR and the past trajectories of the agents as inputs, and

25

3. Methodology

outputs multiple plausible future trajectories. Though pre-trained models are available,
the problem with those is that they were trained using complete BEV maps of the whole
sequence, which effectively means the method is for an offline but not online use-case.
But since the input of the scene context is an image, the idea was to train the model for
an online use-case by simply only providing a BEV representation of the LIDAR point
cloud of the current frame during training. However, this turned out not to achieve any
reasonable results during training, so this approach was discarded. The implementation
of the method also does not provide any format specification for the training data, making
it hard to train on other training data than the KITTI dataset, for example, synthetic
data produced by a driving simulator.

Ultimately, the method used for the trajectory prediction stage of the pipeline imple-
mentation is a deep learning model based on the idea to predict goals for the objects
of which to predict the trajectories instead of directly predicting the trajectories. The
model incorporates two encoders, one for encoding the past trajectories of the objects
and one for encoding the scene context represented by the LIDAR point cloud. These
encodings allow the model to learn interaction patterns. As an intermediate output,
the model predicts several goals for each object, while the actual trajectories are then
produced by a recurrent generator. These generated trajectories are then conditioned on
the goals produced by an intermediate layer of the model. The paper’s implementation
[63] was chosen because the author provided a separate implementation [64] to train
the model using data generated from the CARLA driving simulator, which encodes
information about the scene from a LIDAR point cloud, and the model can output
trajectories of an arbitrary number of agents. Although the paper describes a flexible
count implementation, the provided model is limited by a fixed count of nearby objects.
An illustration of the model’s inputs and inputs for five road users can be seen in Figure
3.2, which compares the ground truth to several predictions made per tracked object.

26

CHAPTER 4
Implementation

The pipeline for detecting, tracking and predicting the future paths of vehicles was
implemented using Python 3.8.19 and was initially implemented and executed in a
Windows environment. But the usage of PRECOG’s CARLA driving simulator integration
required using Linux because the CARLA driving simulator version 0.8.4 required for the
dataset generation for training the PRECOG model did not support Windows (or more
specifically, the Windows download for this release was no longer available). Although the
recommended Python versions of the used implementations of the pipeline would have
required different Python versions, they were upgraded to version 3.8 in order to allow
the usage of the rerun package with this minimum required version. Rerun enabled the
use of enhanced visualisation and debugging of the pipeline. For training and inference of
machine learning models, on the one hand, PyTorch 1.5.0 was used for object detection
(SFA3D), while TensorFlow 1.15.0 was used for the trajectory prediction (PRECOG).
Although mixing TensorFlow and PyTorch versions is generally not considered a good
practice, in this case, due to the limited choice in open-source trajectory prediction
models which meet the requirements, the downsides of mixing both were accepted. In
the following Chapter, the design and structure of the pipeline will be described in more
detail.

4.1 Pipeline
The implemented end-to-end pipeline requires a stream of input LIDAR point clouds
and a camera-to-world transformation matrix. Example input data are visualised in
Figure 4.2. The requirements for how the LIDAR point cloud is structured and how it
was recorded for the pipeline to properly function are dictated by the pretrained object
detection model. The utilised SFA3D model was trained on the KITTI dataset, where
the LIDAR sensor was mounted on top of the car at a height of 1.73m from ground
level and can process 120 k points per second. With a field of view of 360° horizontally

27

4. Implementation

Center Global Position

Object Detection

Object Tracking

Trajectory Tracking

Transform detected poses to world space

Trajectory Prediction

Collision Detection

Evaluation

Visualizer (Rerun)

Collision Detection Pipeline

LIDAR

Ego Vehicle Pose

Ground Truth

Inputs

Collision Position

Collision Time

Outputs

Data

Offset

Frame ID

Trajectories

Figure 4.1: Pipeline structure overview

and 26.8° vertically, the sensor provides the coverage necessary for detecting most road
users within a distance that is close enough that they could interfere or collide with the
ego vehicle. The resulting point cloud is transformed into a bird-eye view map of the
environment in both the object detection and the trajectory prediction models. Although
the preprocessing of the point cloud is very different in the two models, unfortunately, it
is not possible to perform the preprocessing step only once and use it for both models.
Figure 4.1 illustrates the inputs, outputs, processing nodes and intermediate data stored
in the pipeline, as well as the side modules for visualisation and evaluation, which will be
explained in more detail in the following subsections.

4.1.1 Object detection

The object detection implementation used, as mentioned before, SFA3D, is based on
the RTM3D paper, which works only on monocular RGB images. SFA3D applies the
key concepts of RTM3D to LIDAR point clouds. The core innovation of RTM3D lies
in the prediction of nine keypoints that correspond to the 3D bounding box of a road
user. Eight keypoints correspond to the corners of the bounding box projected onto
the image, including the occluded corners, and the ninth keypoint corresponds to the
centre of the bounding box. Using these keypoints, the 3D dimensions, location, and
orientation can then be recovered by leveraging geometric constraints between the 2D
projections and the 3D points. In order to detect objects with varying sizes, RTM3D
employs a ResNet-based keypoint feature pyramid network (KFPN) to handle multiscale

28

4.1. Pipeline

Figure 4.2: Pipeline input - left: LIDAR input (z-coordinate is encoded using a grayscale
transition from dark for the street to light grey for obstacles, right: GPS input (Map
data from OpenStreetMap)

feature extraction. Relying on and processing of only one input allows the RTM3D
implementation to achieve real-time performance on the KITTI benchmark. Now, to
apply the KFPN, which takes an image as input, to LIDAR point clouds, the point cloud
is transformed into a bird’s-eye view representation. In more detail, each point of the
point cloud is projected into the image, and the three colour channels encode the height,
intensity, and density of the point cloud. The point cloud is divided into a front part and
a back part. In principle, this could also be done in a single pass, using only one BEV
image of the whole point cloud. But splitting the point cloud into the front and back
view of the vehicle allows the design to adapt to, for example, LIDAR sensors that have
a limited field of view, usually focusing more on the front of the vehicle. By separating
the BEV maps, the system can better handle differences in the density or distribution
of the point-cloud data. Other objects in the front and rear of the vehicle may have
different characteristics due to a difference in perspective or occlusion. In summary,
object detection consists of the following steps:

1. Split LIDAR point cloud into front and back facing parts

2. Create BEV images of both sides, encoding height, intensity and density

3. Detect vehicles on the front BEV image (by inference of the described model)

4. Detect vehicles on the back BEV image

29

4. Implementation

R = 6378137 Mean Earth radius, WGS84 standard
s = cos(latitude0) Latitude of first observation (in radians)
x = s · R · latitude Latitude (in radians)

y = s · R · ln

tan

 longitude
2 + π

4


Longitude (in radians)

(4.1)

The output of SFA3D is the 3D bounding boxes in the format (score, x, y, z, height,
width, length, yaw), where the position (x, y, z) and the heading angle (yaw) are relative
to the ego vehicle. To retrieve the trajectory of a vehicle relative to the ego vehicle, the
position must be transformed into a global frame of reference. The obvious solution
here might be to use the GPS location of the ego vehicle to transform the detected
bounding boxes into world coordinates. While this procedure works, it has an issue with
precision, which leads to very inaccurate trajectories. The following example illustrates
the problem: The unit used for detections is meters, while GPS positions are given in
degrees for the longitude and latitude. To compare the detections to the GPS location,
the Mercator projection and the mean earth radius (according to the WGS84 standard)
are used according to Equation 4.1, resulting in the ego vehicle’s position in meters.
When converting geographic coordinates from latitude and longitude (in degrees) to
metric coordinates using the Web Mercator projection, the resulting values are typically
in the range of 106 meters. Incorporating additional small-scale measurements, such
as object detections within ±50 meters, into these large coordinate values can lead to
floating-point precision errors, which were observed to introduce positional inaccuracies
of up to approximately 30 centimetres. These inaccuracies are further compounded
when applying additional transformations, such as rotation and translation relative to
the ego vehicle’s local reference frame to a global world frame. Experimental results
indicated that the total accumulated error could reach up to one meter. To mitigate this
issue, the initial GPS coordinate was used as a fixed spatial anchor, and all subsequent
GPS positions were expressed relative to this reference point. This anchoring approach
effectively re-centres all computations around the origin, significantly reducing floating-
point error accumulation and improving overall positional accuracy. Pseudo-code of the
transformation from local to global coordinates originating around the first observation
of the ego vehicle can be found in Algorithm 4.1.

30

4.1. Pipeline

Algorithm 4.1: Transform detections from local to global coordinates originat-
ing around the first observation to enable trajectory tracing
Input: metadata, metadata0, detections (Metadata of first and current frame,

consisting of GPS position and IMU measurements, and front and
back-facing object detections)

Output: detectionsglobal (Detections transformed from local to global
coordinates)

1 1. Compute camera-to-world matrix using Equation 4.1
2 Tcw ← camera_to_world_matrix(metadata,metadata0)
3 if Tcw,offset not initialized then
4 Store translation of Tcw as Tcw,offset (origin reference)
5 end
6 2. Centre transformation around offset
7 Subtract Tcw,offset translation from translation components of Tcw

8 3. For each detected object (front and back detections)
9 foreach detection in detections do

10 Transform detection point from local coordinates to ego vehicle frame
(involving an 180° rotation for back-facing detections and a scaling factor to
retrieve detection position in meters)

11 Apply centered Tcw to obtain global coordinates
12 Adjust orientation of detection by ego vehicle heading angle
13 Append transformed position and orientation to the global detection list
14 end

31

4. Implementation

(a) (b)

(c)

Figure 4.3: Output of the object detection: detections are shown with red bounding
boxes, while the axis in the centre shows the ego vehicle position.

32

4.1. Pipeline

4.1.2 Object tracking
The 3D multi-object tracker receives an input, a timestamp, in this case the frame index,
as the timestamps of the datasets are very stable with a very low variance (for KITTI
below 10−4 seconds), for which reason the timestamp can be omitted as an input to the
pipeline. Further, the current pose, which is a 4x4 matrix of the ego vehicle pose (shifted
by the origin) and a detection score for each bounding box. And last but not least, the
actual detections. Internally, the tracker keeps track of the detections by storing them
in a list of dead and active trajectories. Dead trajectories are trajectories that have not
been updated for a while. For each active trajectory, a prediction for its next state is
made in order to match new detections with the existing trajectories. To predict the
next state (positions) of the trajectories, the tracker uses a Kalman filter internally in
the following manner:

1. Retrieve the previous positions of the tracked objects.

2. Determine which positions to use: If a previous position was not updated, use the
predicted position.

3. Calculate a prediction score depending on whether the position was updated or not
(meaning the object was missed during detection in the last state). Penalise if the
position was not updated in the previous state (score decay).

4. Predict the next positions using the standard Kalman filter prediction process,
applying the state transition matrix and the state covariance matrix. See [65] for
more details about the Kalman filter formulation and [66] for the implementation.

33

4. Implementation

Figure 4.4: Multi-object tracker framework used to perform the bounding box association
across multiple frames [66].

Figure 4.5: Example of labels assigned by the object tracker to each detection.

34

4.1. Pipeline

Now, in order to assign the new detection with existing trajectories, or in case no existing
trajectory fits, a new object ID and a new trajectory are created, and a cost map between
all detections and the predicted states is computed. The cost map contains all Euclidean
distances between each pair of state predictions and detection. Using the cost map, a
greedy data association between the predictions and detections is performed, assigning
each detection to an existing tracked object. If the minimum cost for a detection is
smaller than a given threshold (in this case, a threshold of 2.0 meters is used), the
detection is matched. Otherwise, the detection is treated as a new object. Figure 4.5
showcases the greedy label assignment. If a trajectory failed to be updated for a specified
number of frames, the trajectory is removed from the list of active trajectories, which are
considered for the tracking, and added to the list of dead trajectories. Figure 4.4 shows
the structure of the object tracker. Note that keeping the dead trajectories has no direct
purpose but is used for post-processing purposes only. Since the tracking is not perfect
and errors occur or propagate from the detector, the resulting trajectories may contain
errors. Figure 4.6 visualises all tracked paths in a sequence from the generated CARLA
dataset presented later on in this thesis, illustrating the expected length and accuracy of
the tracking over a longer sequence.

Figure 4.6: Tracked paths resulting from the object tracking (blue to purple trajectories).
The latest available LIDAR data is also visualised.

35

4. Implementation

4.1.3 Trajectory prediction
This section will talk about the challenges faced while testing different approaches to
trajectory prediction in practice and the integration of the PRECOG model. The goal
at this stage is to predict future trajectories for all currently tracked agents, using all
information that is available. That includes the scene as a LIDAR point cloud. It also
includes past trajectories of the tracked agents, which can vary in length and quality.
But as mentioned already, the PRECOG model implementation uses a fixed-size model,
so in case too many agents are tracked simultaneously, only the nearest-K agents are
considered for prediction. But before that, a discussion of considered and tested methods:

Figure 4.7: Implementation of a simple trajectory generator using clothoids with a varied
number of input lanes at an intersection and vehicles driving through it.

A basic way to predict future motion is a constant velocity model, which assumes
each vehicle keeps moving with the same velocity and direction from the past. This
means to estimate positions at future times with simple kinematic equations, simply
by extrapolating the current state. This method does perform well for very short-term
predictions and works in simple traffic situations, like vehicles on a straight road at
constant speed. It is easy to implement and computationally efficient, for which reason,
it is appealing for real-time systems; still, the big drawback is that it ignores the road
layout and restrictions given by the surrounding area, which limit movements or may
affect the most probable future trajectory. It also misses out on interactions with other
road users. Meaning that a constant velocity model cannot predict turns, lane changes
or braking behaviours, which happen a lot in urban areas. Predictions get inaccurate
fast as the length of the horizon of the prediction increases.

To improve trajectory prediction and to create more training data for learning based
models, one attempt was made in generating synthetic trajectories, using a simple self-
developed 2D driving simulator based on clothoids (see Figure 4.7). Clothoids are a
type of curve, also known as the Euler spiral, which are often used for modelling vehicle
trajectories or road layouts, as when traversing clothoids, the rate of change in steering
is constant. The simulator implementation made vehicle paths through intersections
modelled with clothoids. Those had different numbers of incoming and outgoing lanes.
Vehicles travelled at various speeds. By tweaking curvature and speed parameters, it

36

4.1. Pipeline

produced smooth, realistic paths in a wide range. But we ended up dropping this
approach. Modelling real intersections and vehicle interactions was complicated, even
in two dimensions. One would need many extra rules for behaviours like stopping
or yielding, or merging. Plus, tools like CARLA [67] already handle this well. They
offer realistic environments, accurate physics and agent behaviours. Those generate
high-quality trajectory data more efficiently, so the custom simulator was not needed.

Simple physical models have limits, though; learning-based methods offer a more flexible
option, as already mentioned in the related work section of this thesis. These can use
motion history, but also context from the scene and other agents. Trajectory data is
sequential, meaning models are required that can handle temporal dependencies, similar
to natural language processing, speech recognition or, in this case, this problem is also
known as time series forecasting. Common approaches to solve this task that have evolved
are RNNs, LSTMs, GRUs, Transformers and Hidden Markov Models.

Figure 4.8: Initial proposed pipeline using MANTRA [62], which required a separate
model for semantic segmentation on the LIDAR data.

The first proposal of the pipeline (see Figure 4.8) was based on the open source model
named MANTRA. It was originally trained on top-view semantic maps of the whole
scene (as shown in Figure 4.9). Though the model encodes not just the current lidar
frame, it requires the full sequence of frames to capture the whole scene. This suits offline
applications fine, but not online operation as required here, where future LIDAR frames
are not available yet. To adapt it for real-time, retraining using only the current lidar
frame for the top-view encoder was required. This approach was tested, but unfortunately,
the results were not satisfying, most likely because the original MANTRA model relies
on semantic info from datasets like KITTI, which is missing in this online setup. One fix
for this could have been a separate model to add semantic labels to each lidar frame first,
then pass the labelled LIDAR to MANTRA. We did not follow through on that, though,
because the approach already seemed unlikely to be successful and the extra processing
time per frame would exceed the real-time limit, which is set by the lidar sensor at 10Hz.
In the end, as already presented in Chapter 3, we picked the target-driven trajectory

37

4. Implementation

prediction model PRECOG, which does not require semantic labels for the lidar points
and works in an online setting, unlike MANTRA, which was trained on a complete BEV
map. Like MANTRA, though, a drawback of PRECOG was that the pre-trained model
was trained solely on ego vehicle trajectory input, although the model is capable of
considering and predicting the trajectories of a fixed count of road users.

Figure 4.9: MANTRA model: input (left), output (right)

4.1.4 Collision detection

As a last step, the goal is to detect potential collisions using the trajectory predictions.
Now, one simple method would be to just search for intersections in the trajectory
predictions. But this does not consider the fact that two road users may have intersecting
trajectories but do not collide because they passed the intersection point at different
times. For this reason, the bounding box of each vehicle is determined by the extent of
the bounding box from the first detection of this road user. Or more specifically, the first
time a road user with label x got assigned that label by the object tracking step. Then
the bounding box is swept over the trajectory and checked for intersections with other
bounding boxes at each point in time. If an intersection is found, a potential collision is
detected.

38

4.2. Data Structures

4.2 Data Structures
This section mainly describes the structure of the data used for training the trajectory
prediction model, but also briefly explains what data transfer objects were used inside
the pipeline.

The training input parser parses a series of JSON files storing the current state of the
scene as well as past and future trajectories. The JSON files are directly produced by
invoking the CARLA driving simulator script based on the scripts provided along with
the PRECOG model, but adapted for this thesis. These output a JSON in this format
every n-th frame. The LIDAR is not saved directly but parsed to a BEV representation
before being saved to save disk space and speed up training of the model. The agents’
past and future trajectories are sorted by distance to the ego vehicle. All heading angles
(yaw) are stored relative to the ego vehicle. The structure of the training data format is
as follows:

• player_past - 2D past trajectory of the ego agent, shape [2, Tpast]

• player_future - 2D future trajectory of the ego agent, shape [2, Tfuture]

• player_yaw - Heading angle (yaw) of the ego agent, shape [1, 1]

• agent_pasts - Past trajectories of other agents, shape [2, Tpast, N]

• agent_futures - Future trajectories of other agents, shape [2, Tfuture, N]

• agent_yaws - Heading angles of other agents, shape [1, N]

• overhead_features - Bird’s-eye view LIDAR features, shape [H, W]

• LIDAR_params - Dictionary with LIDAR metadata:

– pixels_per_meter - Resolution of BEV image
– val_obstacle - Value representing obstacles in BEV
– hist_max_per_pixel - Max history count per pixel
– meters_max - Maximum LIDAR range in meters

As shown in Chart 4.1, the pipeline maintains a list of detected and tracked vehicles,
their past trajectories and the current future predictions in memory. The detections are
stored in the format provided by SFA3D [57], but the output of the two-phase detection
(front and back of the ego vehicle) is parsed into one list. The detections are stored
relative to the ego vehicle position but also relative to the global coordinate system. This
corresponds to the first GPS location of the ego vehicle, which is done to avoid numerical
issues during conversion from GPS coordinates to meters, as previously mentioned. The
heading angle is also saved relative to the ego vehicle as well as globally. The relatively

39

4. Implementation

stored detection results are used upon invoking the tracker, which outputs a list of
bounding boxes and a list of IDs, stored as tuples, before being appended to the list of
all tracked vehicles and their trajectories. The trajectory data structure consists of:

• positions: all past positions of this tracked object

• yaws: all heading angles of this tracked object (with the same size as the positions
field)

• sample_indices: a list of indices, corresponding to the frame indices where the
observations (positions/yaws) of this vehicle were detected/tracked. This field is
used to check if the trajectory is outdated or if several detections were missed, and
the intermediate trajectory needs to be interpolated

• prediction: If enough past positions are available, this field contains the current
best prediction (out of a set of 12 provided by the trajectory prediction model)

• all_predictions: All 12 predictions

All data structures utilise the vector/matrix representations provided by the Python
version of the OpenGL Mathematics (GLM) library [68].

4.3 Visualization
Visualisation was a big part of this work as visualising the intermediate steps and the
outcome of the pipeline is essential to gain a better understanding of the processes and
potential issues/bottlenecks, and verify the correctness of the implementations. While at
first, standard Python tools like matplotlib for displaying images and point clouds, or
tkinter for creating an interactive interface, were used, creating implementations that were
scalable and interactive was time-consuming and hard. For this reason, the visualisation
was finally done using rerun [6]. Rerun is a fairly new visualisation tool that relies on a
server-client-based setup, where the client is the user-side code, in this case, the collision
detection pipeline, and the server is a separate application running on the local host.
Although not used in this work, this can be especially useful when running this pipeline
on a separate device, but streaming the data to a desktop machine to visualise it. So, in
comparison to writing your own visualisation code, the procedure is as follows:

1. Connect to rerun-viewer (or spawn a viewer if none is present)

2. Notify the rerun-viewer about the current frame ID

3. Stream data converted to rerun visualisation data-types during program execution
(for example, LIDAR input, detected bounding boxes, etc.)

40

4.3. Visualization

4. Disconnect from server (program execution stops, but the streamed data remains
visible in the rerun-viewer)

After the execution, the streamed data can then still be observed in the viewer and stored
on the disk as rerun recording files. This has the further benefit that the recordings
can be shared with other people without the need to set up the pipeline and install
all Python packages, but rather just install the rerun viewer. The rerun viewer itself
organises all streamed data in timelines and uses a hierarchy of data streams. In this
work, the timelines represent different KITTI and CARLA sequences recorded. The
hierarchy of data streams is used to organise the data into everything as follows:

• Inputs LIDAR point cloud, GPS location, ego vehicle bounding box

• Ground truth If available, the full trajectory of the ego vehicle, the future and
past paths of all other road users

• Outputs Outputs of the pipeline as well as intermediate outputs, which include
all tracked detections, all tracked past paths and all predicted paths.

See Figure 4.10, which shows how the data can be organised in the rerun viewer using
a 3D view to visualise the current state of the pipeline, and a map view (based on
OpenStreetMap) to visualise the GPS location. The slider at the bottom allows scrolling
through the recording in a video-recorder-like fashion and visualises the pipeline state at
any given frame.

Figure 4.10: Visualisation of the pipeline inputs and outputs using the rerun-viewer.

41

4. Implementation

On the left side of the viewer, the data hierarchy that is being visualised can be seen.
The logged data is organised into inputs, outputs, ground truth and evaluation results,
visible in the side panel. As inputs, the LIDAR point cloud is being logged (but for every
frame except the first one, only a subset of the point cloud is logged to save data and
increase performance), the GPS location and a 3D axis representing the scene origin (this
is a verbose log and not really required). The outputs consist of the detected objects
represented by a set of bounding boxes with labels, as well as different set of paths.
Furthermore, the output contains the past paths of the currently tracked objects, as
well as the past paths of all objects tracked so far but which are not tracked anymore.
Additionally, the predicted paths of the currently tracked objects (12 per object), as well
as only the most likely path prediction, are also logged to the visualizer. Further, in case
a potential collision is detected, a red sphere is logged to indicate where the potential
collision might occur.

The logged data is organised into timelines, which can be used to switch between the
logged data from different recorded sequences. This allows us to inspect a collection of
sequences after executing the collision detection pipeline on them. Note that, especially
depending on how densely sampled the point cloud is logged, the streamed data can
quickly add up to gigabytes of data that needs to be stored in memory. In the recording
shown in Figure 4.10, the 17 KITTI sequences require 408 megabytes of data. Depending
on the hardware and especially the GPU, a large rerun recording can significantly reduce
the performance of the viewer and stop the viewer from visualising the data in real time.

4.4 Training
The published model from the PRECOG trajectory prediction framework was trained
on the ego vehicle only. This means that only a single trajectory could be predicted,
which did not enable the estimation of potential collisions between multiple vehicles. The
authors, however, released the CARLA dataset described in their work, which includes
the past and future trajectories of the ego vehicle and four other vehicles. In total, the
dataset consists of 60,701 training, 7,586 validation, and 7,567 test samples, most of
which were recorded in Town01 of the CARLA simulator.

A drawback for reuse in combination with the object detection model SFA3D was that a
differently configured LiDAR sensor was employed for the released dataset. The sensor
recorded approximately 100 k points per second, resulting in a less densely populated
BEV (bird’s-eye view) histogram compared to the 120 k points per second contained in
the KITTI dataset. Another crucial difference is the height at which the LiDAR was
mounted. At 2.5 meters above the ground, the sensor was positioned higher than the
roof of most cars and above the typical helmet height of cyclists, whereas the KITTI
dataset used a mounting position closer to the top of the vehicle.

PRECOG does not provide a pretrained multi-agent model; for this reason, the trajectory
prediction model was trained from scratch using data generated with CARLA. For each
training cycle, the system generated 50 episodes with 2000 frames per episode for training.

42

4.4. Training

After each cycle, the dataset was discarded and regenerated (this process will be described
in more detail in the next section), ensuring diverse samples across episodes. The network
was trained in an effectively endless-loop regime, where new synthetic data continuously
replaced the previously used dataset. The training procedure is outlined as pseudo-code
in Algorithm 4.2, which shows the order in which the dataset is regenerated and how the
model is trained. The architecture was based on a SocialConvRNN configuration with
convolutional, recurrent, and MLP components. The training uses a stochastic gradient
descent (SGD) with Forward KL divergence as the optimisation objective.

Table 4.1 and Table 4.2 summarise the key parameters of the training setup and the
major building blocks of the network, also illustrated in Figure 4.11.

Figure 4.11: PRECOG model architecture, BEV image of the scene is processed by a
CNN-backbone, while the past trajectories are fed directly into the RNN.

Training proceeded for a couple of days on a university server with an Intel Core i7-3770K
and a NVIDIA GeForce RTX 2080Ti for 10 million steps before being stopped at epoch
116 as training did not show improvements for a period of time. The latest best model
resulted in the following evaluation results: log-likelihood values H(p, q) of -600 to -700
and error estimate ê ranging from 0.3 to 1.1. Evaluation runs were executed every
5000 steps, since they were computationally expensive, often taking over 10 minutes per
validation cycle. Intermediate outputs from the validation cycles can be seen in Figure
4.12.

The loss term provided H(p, q) is the cross-entropy between the ground-truth trajectory
distribution p and the predicted distribution q by the model. That is, it approximates
how much likelihood the model assigns to the actual observed paths. The more negative
the value is, the more probability density the model allocates to the correct results, which
is a metric for improved training.

43

4. Implementation

Table 4.1: Model architecture and optimiser configuration for PRECOG.

Component Configuration
CNN backbone 4 layers, 32 filters, kernel size 3
RNN (past) GRU, 128 units, pre-conv horizon = 3
RNN (future) GRU, 200 units
MLP layers 2 pre-RNN + 2 post-RNN layers, 200 units
Social features Map-based features enabled, MLP = 200 units
Light features Representation size = 5, integrated post-RNN
Trajectory samples K = 12, perturbed samples Kperturb = 12

Optimizer SGD learning rate = 0.0001,
epochs = 10,000 (but stopped at 116 epochs)

Objective Forward KL divergence
Batch size B = 1
Seed 42

Table 4.2: Dataset generation settings for PRECOG training.

Parameter Value
Episodes per split 50 (train, validation, test)
Frames per episode 2000
Past horizon Tpast 10 timesteps
Prediction horizon T 20 timesteps
Max agents per scene 6 (ego vehicle + 5 other road users)
Feature resolution 2.0 pixels/meter
Data format Serialized JSON, regenerated each cycle

The best-of-K error prediction is described by the error term ê. Since the model makes
more than one likely future path prediction for every scene, ê indicates the ground-truth
to best predicted among sampled trajectories. This tests not just the model on a single
prediction, but on whether it has at least one of its plausible forecasts close to the truth.
Lower values for ê therefore represent better predictions, while higher values indicate
that even the best predicted trajectory is quite far from the ground truth.

44

4.5. Dataset generation

Algorithm 4.2: Pseudo-code of training procedure for the trajectory prediction
model
Input: epochs (Number of epochs)
Output: model (Trained model for trajectory prediction)

1 for epoch ← 0 to epochs do
2 while True do
3 minibatch ← get_minibatch(epoch)
4 Perform gradient update using minibatch
5 if plot condition met then
6 Plot current training status
7 end
8 if evaluation condition met then
9 Evaluate on validation set

10 if validation score improved then
11 Save model checkpoint
12 end
13 end
14 end
15 end
16 Function get_minibatch(epoch)
17 if epoch mod 25 = 0 and no data left in current dataset then
18 generate_new_data()
19 end
20 Fetch and return minibatch data from storage
21 Function generate_new_data()
22 Discard the previous dataset Generate a new dataset using the CARLA

simulator (invoked as a subprocess)
23 Shuffle and store newly generated data

4.5 Dataset generation
As already discussed, for training the trajectory prediction model, we decided to generate
a dataset to train the model instead of using the ground truth from the KITTI dataset,
as the amount of annotated data is very small for the KITTI dataset, which likely would
cause overfitting. Another benefit of generating a dataset is that the model can later be
retrained with different sensor settings. For example, the location of the LIDAR (how high
up it is mounted on the bicycle) or the field of view of the LIDAR can be adjusted easily.
In a first attempt, as already mentioned previously, a hand-made trajectory simulation
was tested, which simulated only the paths of vehicles but not any information about
the surroundings. Although this simulation was very fast to generate paths, it obviously
lacked the capabilities to generate information that also encodes the environment, and it
also lacked the capability to model interactions between road users and did not include

45

4. Implementation

Figure 4.12: Intermediate training snapshots showing the convergence of the predictions.
The LIDAR data is separated into obstacle (red) and drivable areas (grey). The top row
shows outputs from the first 10 epochs of training, while the bottom row shows outputs
from epochs > 90. The predictions in the first 10 epochs are still noisy, colliding with
obstacles and not following the road layout, while the outputs from later epochs converge
to a single trajectory for cases where no intersection is nearby, while diverging into the
different lane directions for intersections.

any pedestrians. For this reason, we switched to the Unity-based open source driving
simulator, CARLA. This driving simulator is based on a server-client architecture. The
server performs the physics and traffic simulation, the rendering of the scene, and the
generation of the sensory output information (most importantly, the simulation of LIDAR
data). The client, which is controlled by a user-side script, sends commands to the
server. For example, which map to load, how many and which road users to spawn, which
sensor to mount on the ego vehicle, properties about the traffic simulation and road-user
behaviour. Also, a major benefit of using a simulator over training with an annotated
dataset such as KITTI is that the simulation can contain data samples with collision or
other infrequently observable traffic situations. A downside of the simulation is that it
represents idealised conditions, which are not present in the real data. For example, the
simulated data are smoother, the recorded LIDAR point cloud is more regular and not
affected by weather conditions.

In the following, the setup in CARLA is described, which generates the data samples
required to train the precog trajectory prediction model:

First, the CARLA server is launched, depending on configurations, either in head-

46

4.5. Dataset generation

Figure 4.13: Town01 map from CARLA driving simulator representing a suburban area

less/offscreen mode or with the viewport enabled. Then the map is selected, in this
example, Town01 (see Figure 4.13) or Town02 (see Figure 4.14). In total CARLA features
12 built-in maps, ranging from urban area maps to maps with mostly highways, rural
areas with narrow roads or very large maps. For the generation of the dataset, only the
first two maps were used, as they contain many intersections and have smaller memory
footprints than other maps. Then the ego vehicle is spawned, which is, in our case, a
bicycle with a head-mounted LIDAR sensor and a GPS sensor. The same LIDAR sensor
properties as the sensor used in the car that recorded the KITTI data set, namely a
Velodyne HDL-64E sensor. The simulated sensor records data with 10Hz, generating
130 k points per frame (see [67] with a vertical field of view of -24.8° to +2°. The
horizontal field of view is 360°. In other words, the sensor is sensing down on the street
and straight ahead, but not up any walls/buildings. So, naturally, bridges and overhangs
are not visible in the sensor output.

Then the simulation is started, using the built-in autopilot from CARLA, and the traffic
manager, which controls the other vehicles and agents. The client is collecting sensor data
for every frame and storing the GPS location of the ego vehicle, the relative positions of
nearby road users using simply a threshold on the Euclidean distance between them and
the ego vehicle. This means that information about nearby road users is collected, even
when the line of sight is blocked. As soon as more frames than the desired prediction
length have been collected, data samples for the training can be saved to the file system
as JSON files. But instead of creating a new data sample for every upcoming frame, only
every n-th frame is saved, to get more variation in the collected data faster. PRECOG
used a data sample every 10th frame; in this implementation, the frequency was reduced

47

4. Implementation

Figure 4.14: Town02 map from CARLA driving simulator representing a more urban
area with a commercial area

to every 5th frame to speed up the dataset generation. Although the CARLA simulation
is, in general, reasonably fast, the computation of the LIDAR sensor occupies a huge
chunk of the time spent during dataset generation. As an example, generating the
training data for a single episode running for 2000 frames takes approximately 21 minutes,
resulting in 400 training samples (as every 5th frame is actually saved). This means that
in total it takes around 17 hours to generate one set of training data that is used for
25 epochs during training. And even though the LIDAR frame is only required every
time a data sample is generated (in our case, every 5th frame), unfortunately, the used
CARLA version 0.8.4 does not support controlling the output frequency of the sensor.
This means that the LIDAR point cloud is still computed for every frame, but discarded
most of the time. Since CARLA is open-source, this functionality could be added to a
fork of the repository, identifying the corresponding code and creating a custom build
that allows skipping the computation of unnecessary LIDAR frames.

Now, by default, the traffic manager [55] in CARLA prohibits any collisions and dangerous
manoeuvres from occurring, but by changing the settings of the traffic manager, more
interesting data samples can be generated. For generating the dataset, the following
adjustments to the manager were made: At the start of each episode, for each vehicle,
randomise the following properties:

• Ignore lights percentage: Controls the likelihood that a vehicle will ignore a
red traffic light. Range used: [0 - 10]%

48

4.5. Dataset generation

• Vehicle percentage speed difference Relative difference to the current speed
limit, a value of 20 corresponds to the car driving 20% faster than the speed limit.
Range used: [-25 - 25]%

• Distance to leading vehicle Minimum distance to any vehicle in front of this
vehicle. Range used: [0-10]m

• Ignore signs percentage Same as ignore lights percentage, but for stop signs.
Range used: [0 - 10]%

• Ignore vehicles percentage During the collision detection stage of the traffic
manager, this property controls the likelihood that another vehicle is ignored
(basically like the driver of one vehicle did not notice another vehicle and might
collide with it). Range used: [0-10]%

The CARLA traffic manager offers many more ways to manipulate the behaviour of
vehicles in the simulation, which can be exploited to generate even more realistic data.

This concludes the pipeline implementation section, leading to the results showing
visuals of the pipeline outputs, examples of some interesting traffic situations, as well as
quantitative results about the pipeline performance.

49

CHAPTER 5
Results

This chapter presents a comprehensive evaluation of the proposed collision detection
pipeline on two datasets. The analysis focuses on assessing the effectiveness of the
trajectory prediction model, while also evaluating the object detection and tracking, as
well as the contribution of individual pipeline steps through an ablation study. But before
diving into the evaluation results, the evaluation setup and datasets used were as follows:

• KITTI Sequences with Ground Truth: Since not all KITTI sequences are
annotated, approximately 20 sequences were selected, each containing between 100
and 500 frames.

• CARLA-Generated Sequences: A set of 10 sequences was used, each consisting
of 2000 frames.

For each sequence and dataset, the evaluation focused on two key metrics. First, the
prediction accuracy was measured in terms of average and median error over different
time horizons, ranging from 0.1 to 2 seconds. Second, the tracking consistency was
analysed by computing the percentage of frames in which each nearby vehicle remained
tracked. For instance, a value of 0.9 indicated that a particular vehicle was tracked for
90% of the frames in which it was in the cyclist’s vicinity.

Furthermore, an ablation study was conducted to assess the impact of different components
in the pipeline. The system was evaluated under the following conditions:

1. Without Object Detection: The object detection step (SFA3D) was removed
and replaced with ground truth data. The evaluation was then performed using
only the tracker and the trajectory prediction module.

51

5. Results

2. Without Object Detection and Tracking: Both the object detection and
tracking components were removed. Ground truth data was used directly, and only
the trajectory prediction module was evaluated.

This structured evaluation provided information on the effectiveness of the trajectory
prediction pipeline and the individual contributions of object detection and tracking.
The results of the analysis are presented in the following section.

The performance analysis of the CARLA-generated and KITTI dataset shows prominent
trends regarding tracking performance, prediction accuracy of the trajectory, and object
tracking and detection contributions.

5.1 Tracking performance
On the CARLA dataset (see Figure 5.3), the overall pipeline exhibits a mid-range tracking
consistency of 30%–50%, indicating that tracked vehicles are appropriately maintained
across roughly one-third to half of the frames in which they appear. On the contrary, if
the object detection stage is eliminated and ground truth detections are used, tracking
consistency reaches an optimal 100% across all tested sequences. This confirms that
detection stage failures are the prime cause for limiting tracking stability in CARLA.

The same trend is seen on KITTI (see Figure 5.1). Using the entire pipeline, consistency
of tracking is 50%–70%, demonstrating better robustness than CARLA, but this is
explainable with the fact that the CARLA sequences contain annotations for obstructed
vehicles while KITTI does not. Once more, substituting detections with ground truth
gives near-perfect tracking performance of 98%–99%. This consistency on both datasets
reiterates that the tracking module itself works when given clean inputs, and that
performance is largely bottlenecked by imperfect detections.

5.2 Trajectory prediction accuracy
Error in trajectory prediction grows steadily with prediction time horizon in both datasets,
as would be expected (see Figure 5.4 as well as Figure 5.2). Average prediction error on
CARLA starts at 0.2m to 1m (for predicting 0.1 s ahead) and increases nearly linearly to
around 4m (at prediction horizon 2.0 s). While no clear difference between the mean and
median values is present, the prediction error on the full pipeline is significantly higher
than when ablating the detection and or tracking stage. Meanwhile, there is almost no
difference in prediction error between solely ablating the detection stage and also ablating
the tracking stage, indicating that while the detection stage induces a lower accuracy in
prediction, the tracking stage does not cause any problems.

On KITTI, errors are, as expected, higher and noisier. Mean error begins at 0.6m and
rises to almost 6m by 2.0 s. But contrary to the evaluation result for the trajectory
prediction accuracy on the CARLA dataset, there is no significant difference between the

52

5.2. Trajectory prediction accuracy

three modes. In general, the graphs indicate that the KITTI set is significantly harder
for prediction than CARLA, likely due to noisier sensor data, more diverse environments,
and less structured traffic conditions. The small mean-median error gap in KITTI also
means that outliers are common, not due to individual extreme cases.

53

5. Results

(a) Tracking performance showing an increasing tracking performance with increased distance.

(b) Tracking performance when the detection stage is ablated, indicating that the tracker output
is of high quality.

Figure 5.1: Evaluation results of KITTI dataset.

54

5.2. Trajectory prediction accuracy

(a) Mean prediction error, showing a clear increase in prediction uncertainty the further into the
future the prediction is made.

(b) Median prediction error, showing no significant difference between predictions made from
road users tracked by the pipeline or ablation of the detection or detection+tracking stages.

Figure 5.2: Evaluation results of KITTI dataset.

55

5. Results

(a) Tracking performance, similar to the performance trend as on the KITTI dataset, but with
decreased performance due to the dataset containing annotations for occluded objects.

(b) Tracking performance when the detection stage is ablated, indicating that the tracker output
is of high quality.

Figure 5.3: Evaluation results of CARLA dataset.
56

5.2. Trajectory prediction accuracy

(a) Trajectory prediction mean, showing a clear difference between predictions made on trajectories
traced from detected objects compared to when the object detection stage is ablated.

(b) Trajectory prediction median, showing the same trend as for the mean.

Figure 5.4: Evaluation results of CARLA dataset.

57

5. Results

5.3 Effect of detection and tracking ablation
Ablation studies uncover the relative contribution of pipeline modules. Removing the
detection module eliminates the primary source of tracking inconsistency. When detection
and tracking are skipped altogether (using ground truth trajectories as input directly),
the results filter out the performance losses of the trajectory prediction module. As the
prediction error under ablation is comparable in trend but systematically smaller, it is
clear that upstream detection noise carries over to the prediction phase and scales the
overall error. But the evaluation showed that the tracking stage is much more reliable
than the detection stage, as the performance only significantly increased when ablating
the detection stage.

5.4 Visual demonstrations
In addition to quantitative results, the following will show and describe a few snapshots of
the pipeline’s outputs and how to read the richly annotated lidar point clouds visualised
in the rerun-viewer. Figure 5.5 shows an intermediate frame of the KITTI dataset with
several tracked vehicles. The predicted paths of the vehicles show the expected movement
along the road, while, notably for the vehicle with ID 2, there are two predictions that
the vehicle will turn left along with the ego vehicle, potentially crossing paths. The ego
vehicle’s future trajectory (ground truth) is outlined in red. No future predictions for
the ego vehicle exist yet, as it is stationary. In Figure 5.6, an example of a scene can be
seen where the ego vehicle is not stationary, for which reason predictions about its future
path are made and visualised in blue. The image also shows the difference between the
most likely path prediction and the actual ground truth (the hatched lines connecting the
path prediction and the yellow line representing the ground truth). Contrary, Figure 5.7
demonstrates a case of a potential collision, where the predicted path of the ego vehicle
intersects the predicted path of a pedestrian, although, as also visualised, this is a false
positive, as the ego vehicle actually turns right while the pedestrian remains stationary.

58

5.4. Visual demonstrations

Figure 5.5: Future path predictions and ground truth past and future paths visualised.
Note that all trajectory samples are visualised, not only the prediction with the highest
predicted probability. Ego vehicle future path ground truth (red), other vehicles past path
ground truth (green), other vehicles future path ground truth (yellow), other vehicles
future predictions (same colour as the detected vehicle bounding box), the ego vehicle
has no future prediction and past path as it is currently stationary.

Figure 5.6: Similar to Figure 5.5, but with the ego vehicle in motion and its future
trajectory samples visualised (dark blue).

59

5. Results

Figure 5.7: Visualisation of a potential collision with a pedestrian in 2 seconds (large red
circle). The ego vehicle (dark blue with label -1) and the detected pedestrian with label
22. The true future path of the ego vehicle (yellow), the difference between the true path
and the predicted path (red).

60

5.5. Runtime

5.5 Runtime

Step Calls Total Time (s) Mean per call (s) FPS
Initialisation/Setup
Load object detection model 1 0.43 0.43 -
Load trajectory prediction model 1 10.6 10.6 -
Initialize object tracker 17 0.06 0.004 -
Total 1 11.8 11.8 -
Main cycle
Object detection (inference) 3703 238 0.064 16
Trajectory prediction (inference) 3703 368 0.099 10
Multi object tracker 3703 40 0.011 91
Total - 646 0.174 6

Table 5.1: Profiling summary of main pipeline steps.

The profiling in table 5.1 summarises the pipeline components’ run-times when tested
against 17 annotated KITTI sequences (total of 3703 frames).

During the pipeline setup, the object detector, trajectory predictor, and multi-object
tracker are initialised. Both the object detector and the trajectory predictor are deep
neural network models and therefore require significant one-time initialisation (0.4 s and
10.6 s respectively). Since the models are stateless, they are initialised just once. In
contrast, the tracker maintains state across frames of a sequence and is therefore reset 17
times, once per sequence, resulting in many initiations (17 total, but very rapid at 3.6ms
per call). Initialisation time is dominated by loading the neural network model, taking a
total of about 23 s.

The main loop of the pipeline is tasked with processing all frames in the sequences. The
pipeline processes at 175ms per frame, slower than the 100ms per frame available using
the 10Hz LIDAR sampling rate. This shows that the pipeline is close to, but cannot
process real-time data under the tested hardware setup (Intel(R) Core(TM) i5-9600KF
CPU @ 3.70GHz, 32 GB RAM, NVIDIA GeForce RTX 4060 GPU).

The largest runtime bottleneck is the trajectory prediction inference (99ms/call, total
368 s), the most computationally expensive operation. Object detection inference is
also significant (64ms/call, total 238 s). There is further considerable overhead due
to redundant preprocessing: converting LIDAR point clouds to bird’s-eye view (BEV)
images. Both the predictor and detector require BEV inputs, but of different types,
leading to repeated conversion and extra data format conversion between modules.

61

5. Results

The profiling of the object detection process is broken down into sub-steps:

• Filtering LIDAR: The point cloud is reduced in size by a bounding box filter (side
length 50m). This is light at 1.4ms per call.

• LIDAR to BEV conversion: Returns BEV images from filtered point clouds, 14.3ms
per call.

• Detection model inference: Performs the actual detection, 16ms per call.

These sub-steps are invoked 7406 times in total instead of 3703 times because the
object detector splits each LIDAR frame into a back and front view and processes them
sequentially, combining the detections afterwards.

The multi-object tracker is capable of processing 100 fps, with 10ms per call (total 38 s
for all frames).

In general, pipeline run time is dominated by inference of the neural networks (specifically,
trajectory prediction), with further overhead added by preprocessing stages such as
LIDAR-to-BEV conversion and inter-module data conversion. Although every non-ML
step is very fast, their repeated use per two point clouds per frame totals up to a large
fraction of the runtime. Profiling shows that on the hardware available, the system runs
at 5.7Hz rather than the target 10Hz.

62

CHAPTER 6
Discussion

The presented work demonstrates the feasibility of operating a complete collision detection
pipeline for vulnerable road users from LiDAR data. The integration of SFA3D object
detection, a 3D multi-object tracker for ensuring temporal consistency, and PRECOG
for trajectory prediction presents a functional proof-of-concept capable of running in
real-time on a special computing platform. However, the current implementation remains
in a prototypical phase and is not fully ready for use on an actual bicycle. While the
simulated environment provided with CARLA data facilitated rapid development and
testing, transitioning to real-world implementation comes with some challenges. The
system remains without integration with sensors in the real world and a communication
setup between a sensor-equipped bicycle and a data-processing device. Testing in real
conditions would constitute synchronous operation, data transfer, and calibration among
other sensors—factors not sufficiently represented in the simulated environment.
All components of the pipeline—detection, tracking, and prediction—were shown to
function independently. Nevertheless, error propagation among these components is still
a significant shortcoming. Tracking mismatches, for example, can input faulty object
states into the prediction module and cause false collision warnings or at least infeasible
future paths. While detection and tracking performance were reasonable, the trajectory
prediction module (PRECOG) was unable to provide the anticipated accuracy. Thus,
although the system has potential, the predictive reliability is insufficient for real-time
collision warnings.
Another issue is the repeated preprocessing of LiDAR data and variable input/output
formats across algorithms, resulting in computational inefficiencies. Furthermore, the
current pipeline is sensor-specific, and generalisation proves to be difficult. In case LiDAR
characteristics change, for example, point density, range, or field of view, the deep learning
models would have to be retrained or significantly modified, limiting scalability. Having
such a system on a bike in itself also places hardware and computational challenges.
Processing onboard would likely be impractical. Hiding computation away into some

63

6. Discussion

external device or cloud system might help, but it introduces additional issues such as
communication latency, cost of communicating data, and usability in low-connectivity
areas.

Figure 6.1: Redesign project of Hütteldorfer Straße in Vienna, realising a clear separation
of motorised traffic and cyclists

From a broader perspective, there is an infrastructural vs. technological trade-off for
cycling safety. Intelligent perception systems can offer a flexible and inexpensive addition,
but infrastructure measures such as improved street design, protected cycling lanes, and
physical separation from motorised traffic proved to perform better on collision reduction,
albeit at a higher monetary cost. Praterstraße, Alte Donau, Mariahilfer Straße, and
recently Hütteldorfer Straße (see Figure 6.1) redesign projects are Viennese examples
of how infrastructural interventions, such as swapping the parking and cycling lanes,
achieve long-term safety benefits compared to reactive technological approaches. But
technology-driven safety devices can also make a difference. Existing market solutions,
such as bicycle radar systems, brake lights, and turn signal indicators, prove that even
simple sensor-based solutions are able to increase cyclist visibility and awareness. The
proposed pipeline for collision detection can be a more advanced development of similar
systems, potentially adding prediction capabilities when its efficacy and robustness are
improved.
To summarise, this thesis illustrates a proof of concept for real-time LIDAR-based cyclist
collision prediction and detection. It demonstrates the feasibility of applying cutting-edge
deep learning models in an end-to-end processing pipeline but reveals inherent limitations
in runtime, accuracy, and adaptability. Future studies would focus on improving data
consistency, runtime performance, retraining with real-world data, and addressing the

64

communication challenges of such systems being integrated into bicycles. In totality,
while intelligent sensing solutions may complement existing infrastructure, they will not
eliminate the need for safer street design and dedicated cycling infrastructure as the most
effective means of avoiding collisions.

65

CHAPTER 7
Limitations and future work

Despite demonstrating a functioning perception–prediction–planning pipeline based on
SFA3D, the 3D Multi-Object Tracker, and PRECOG trajectory prediction, several
limitations remain from which the following future work can be derived:

Trajectory prediction constraints: The PRECOG implementation currently available
is restricted to a fixed number of predicted trajectories that must be specified during
training. This constraint limits its flexibility in real-world scenarios where the number
of possible nearby agents varies dynamically. In addition, PRECOG requires the last
n-observed positions as input, which reduces its applicability when dealing with incom-
plete or noisy tracking histories. Improving the generalisation of trajectory prediction
remains a central challenge, particularly given potential issues in the CARLA-generated
training data (e.g., labelling noise, suboptimal training parameters, or input formatting
mismatches).

Tracking and detection limitations: The performance of the 3D Multi-Object Tracker
depends heavily on appropriately calibrated parameters such as Kalman filter parameters,
detection score thresholds, and latency expectations. Suboptimal tuning diminishes
tracking stability and following trajectory prediction. As a further challenge, the detector
(SFA3D) and the predictor (PRECOG) were both trained for specific sensor modalities
and mounting orientations. Deployments to alternative sensor configurations (e.g., altered
LiDAR mounting locations or camera FOV) would require retraining or considerable
adaptation. A more liberal multi-modal input pipeline (allowing both LiDAR and camera
inputs, with fewer field-of-view limitations) would be more robust.

Data collection and simulation issues: Data generation within CARLA v0.8.4 is
limited by its inability to subsample LiDAR frames (e.g., record every n-th frame).
This required a hack of only using every 10th frame, which created a large bottleneck.
Moreover, occluded objects within the scene were not pruned, leaving behind irrelevant
or confounding training instances. Synchronising to more recent CARLA releases and

67

7. Limitations and future work

improved dataset preparation may help alleviate these issues. Beyond simulation, ground
truth data in real-world environments is nonetheless restricted. Gathering datasets
equipped with sensor-rich bicycles would provide valuable training and test data, and
aid in bridging the domain gap between CARLA simulation and real-world deployment
of such a system.

System integration issues: There was considerable engineering needed to cross Python
version needs and library compatibility between SFA3D, the tracker, and PRECOG. This
highlights the need for more standardised or containerised development platforms for
reproducibility and scalability.

Pipeline design implications: The current architecture has a staged design: object
detection−→tracking−→trajectory prediction−→collision detection. While such a modu-
lar design enables interpretability and debugging, each intermediate step results in error
propagation. Another way would be to learn an end-to-end model from raw LiDAR data
to predict potential collisions without intermediate bounding boxes or tracks. Such a
design might achieve higher performance and efficiency, though at the cost of reduced
transparency regarding failure points.

Future Extensions: There are several ways in which the pipeline could be extended
further:

• Improving the accuracy of trajectory prediction via parameter tuning, alternative
architectures.

• Including richer output from collision detection than merely a warning (e.g., graded
warnings such as automotive parking sensors, or active safety interventions such as
automatic braking or evasive steering).

• Exploring vehicle-to-bicycle (V2X/V2B) communication protocols for cooperative
intent sharing and collision avoidance.

By addressing these challenges, this research takes a small step toward safer and more
sustainable bicycle mobility.

68

Overview of Generative AI Tools
Used

GPT-3.5 and GPT-4o and the integrated version of Overleaf TextGPT were used to
improve writing style and vocabulary. Further, GPT was used for providing LaTeX
snippets for integrating figures, tables and circuittikz. TikzMaker was used to generate
the pipeline flowchart Graphic 4.1

TextGPT suggestions were applied from the integrated suggestion toolbox within Overleaf.

DeepL was used to generate the basis of the German translations for the abstract and
acknowledgements sections.

69

List of Figures

1.1 Commonly used sensors/inputs in computer vision for driving-related tasks.
[5] . 4

2.1 Examples of HD maps [7] . 8
2.2 Sensor setup used for recording the KITTI dataset [20] 10
2.3 Principle idea and outputs of the YOLO model for object detection [24]. . 12
2.4 VoxelNet architecture, which processes raw point cloud input by voxelization

of space and per voxel encoding of features, which allows processing sparse
input data like a 2D image using a CNN [29]. 13

2.5 GPS Traces of the sequences in the KITTI Dataset (red tracks have a higher
GPS precision than the blue tracks due to the usage of RTK corrections, black
tracks did not have any GPS signal, so they are not contained in the dataset)
[20] . 19

3.1 Demonstration of the outputs of SFA3D by visualising both the RGB camera
input image as well as a top-down view of the LIDAR point cloud annotated
with the detected objects. Note that although visualised on the RGB camera
input, the detection does not utilise the camera image. 24

3.2 Predicted trajectories from the PRECOG model on the nuScenes dataset.
The model receives a LIDAR point cloud and the past trajectories of several
road agents as inputs and outputs multiple plausible future trajectories per
agent. The image illustrates the predictions and the ground truth for the
agents’ trajectories. 25

4.1 Pipeline structure overview . 28
4.2 Pipeline input - left: LIDAR input (z-coordinate is encoded using a grayscale

transition from dark for the street to light grey for obstacles, right: GPS input
(Map data from OpenStreetMap) . 29

4.3 Output of the object detection: detections are shown with red bounding boxes,
while the axis in the centre shows the ego vehicle position. 32

4.4 Multi-object tracker framework used to perform the bounding box association
across multiple frames [66]. 34

4.5 Example of labels assigned by the object tracker to each detection. 34

71

4.6 Tracked paths resulting from the object tracking (blue to purple trajectories).
The latest available LIDAR data is also visualised. 35

4.7 Implementation of a simple trajectory generator using clothoids with a varied
number of input lanes at an intersection and vehicles driving through it. . 36

4.8 Initial proposed pipeline using MANTRA [62], which required a separate
model for semantic segmentation on the LIDAR data. 37

4.9 MANTRA model: input (left), output (right) 38
4.10 Visualisation of the pipeline inputs and outputs using the rerun-viewer. . 41
4.11 PRECOG model architecture, BEV image of the scene is processed by a

CNN-backbone, while the past trajectories are fed directly into the RNN. 43
4.12 Intermediate training snapshots showing the convergence of the predictions.

The LIDAR data is separated into obstacle (red) and drivable areas (grey).
The top row shows outputs from the first 10 epochs of training, while the
bottom row shows outputs from epochs > 90. The predictions in the first
10 epochs are still noisy, colliding with obstacles and not following the road
layout, while the outputs from later epochs converge to a single trajectory for
cases where no intersection is nearby, while diverging into the different lane
directions for intersections. 46

4.13 Town01 map from CARLA driving simulator representing a suburban area 47
4.14 Town02 map from CARLA driving simulator representing a more urban area

with a commercial area . 48

5.1 Evaluation results of KITTI dataset. 54
5.2 Evaluation results of KITTI dataset. 55
5.3 Evaluation results of CARLA dataset. 56
5.4 Evaluation results of CARLA dataset. 57
5.5 Future path predictions and ground truth past and future paths visualised.

Note that all trajectory samples are visualised, not only the prediction with
the highest predicted probability. Ego vehicle future path ground truth (red),
other vehicles past path ground truth (green), other vehicles future path
ground truth (yellow), other vehicles future predictions (same colour as the
detected vehicle bounding box), the ego vehicle has no future prediction and
past path as it is currently stationary. 59

5.6 Similar to Figure 5.5, but with the ego vehicle in motion and its future
trajectory samples visualised (dark blue). 59

5.7 Visualisation of a potential collision with a pedestrian in 2 seconds (large red
circle). The ego vehicle (dark blue with label -1) and the detected pedestrian
with label 22. The true future path of the ego vehicle (yellow), the difference
between the true path and the predicted path (red). 60

6.1 Redesign project of Hütteldorfer Straße in Vienna, realising a clear separation
of motorised traffic and cyclists . 64

72

List of Tables

2.1 Comparison of sensor availability and the number of sensors across major
autonomous driving datasets. 21

4.1 Model architecture and optimiser configuration for PRECOG. 44
4.2 Dataset generation settings for PRECOG training. 44

5.1 Profiling summary of main pipeline steps. 61

73

List of Algorithms

4.1 Transform detections from local to global coordinates originating around
the first observation to enable trajectory tracing 31

4.2 Pseudo-code of training procedure for the trajectory prediction model . 45

75

Glossary

BEV Bird’s Eye View. A top-down 2D representation of the environment (e.g. LIDAR
or camera input).. 8, 9, 14, 23, 26, 29, 38, 39, 43, 72

CARLA An open-source simulator for testing perception and safety pipelines.. 4, 18,
26, 27, 35, 41, 42, 46–49, 52, 53, 56, 57, 67, 68, 72

CNN Convolutional Neural Network. A deep learning model that extracts features from
input data using convolution operations.. 8, 13, 14, 44, 71

ego vehicle The main vehicle equipped with sensors in a collision detection system.
It is the point of reference for determining whether surrounding objects pose a
potential collision risk.. 3, 8, 30, 32, 33, 38, 39, 41, 42, 44, 46, 47, 58, 71

Forward KL Forward Kullback–Leibler Divergence. A statistical measure of how one
probability distribution diverges from another.. 43, 44

GRU Gated recurrent unit. A type of recurrent neural network designed for sequential
data.. 44

KITTI A benchmark dataset containing real-world sensor recordings, including images,
LIDAR scans, and GPS/IMU data.. 4, 7, 9, 10, 14, 18, 19, 27, 29, 33, 41, 42, 45–47,
51–56, 61, 71, 72

LIDAR Light Detection and Ranging. A sensing method that uses laser beams to
measure distances to surrounding objects.. 1, 2, 4, 7–10, 14, 16–18, 20, 23–29,
35–37, 39, 64, 71, 72

residual connection A "skip connection" used in deep neural networks, where the input
is added directly to the output of a layer.. 12

RNN Recurrent neural network. A model for sequential data processing using residual
connections to memorise previous input.. 9, 16, 17, 44

SGD Stochastic gradient descent. An optimisation algorithm for training neural net-
works.. 43, 44

77

Acronyms

DOF Degrees of freedom. 18, 20

GPS Global positioning system. xi, 18, 19, 71

IMU Inertial measurement unit. xi, 18

ML Machine learning. 62

RGB Red Green Blue. 2, 3, 9, 18, 24, 28, 71

79

Bibliography

[1] S. Austria, “Weniger verkehrstote 2021, aber höchstwerte bei verletzten
radfahrerinnen und radfahrern.” https://www.statistik.at/fileadmin/
announcement/2022/05/20220428Unfaelle2021.pdf, 2022. (Accessed on
06/12/2024).

[2] “OpenBikeSensor.” https://www.openbikesensor.org, May 2025. [Online; accessed
21. Sep. 2025].

[3] “Separated Bike Lanes—Making Roads Safer for Bicyclists | Innovator | 2024 |March /
April.” https://www.fhwa.dot.gov/innovation/innovator/issue101/
page_02.html, Mar. 2024. [Online; accessed 16. Oct. 2025].

[4] B. Nassi, Y. Mirsky, D. Nassi, R. Ben-Netanel, O. Drokin, and Y. Elovici, “Phantom
of the adas: Securing advanced driver-assistance systems from split-second phantom
attacks,” in Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security, pp. 293–308, 2020.

[5] C. Mike Horton, “IMU Technology Forms the Brains of the Autonomous Vehicle,”
5G Technology World, Feb. 2019.

[6] “Rerun.” https://rerun.io, July 2025. [Online; accessed 8. Jul. 2025].

[7] G. Elghazaly, R. Frank, S. Harvey, and S. Safko, “High-definition maps: Comprehen-
sive survey, challenges, and future perspectives,” IEEE Open Journal of Intelligent
Transportation Systems, vol. 4, pp. 527–550, 2023.

[8] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,”
Advances in neural information processing systems, vol. 1, 1988.

[9] W. Luo, B. Yang, and R. Urtasun, “Fast and furious: Real time end-to-end 3d
detection, tracking and motion forecasting with a single convolutional net,” in
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 3569–3577, 2018.

[10] R. Chandra, U. Bhattacharya, C. Roncal, A. Bera, and D. Manocha, “Robusttp:
End-to-end trajectory prediction for heterogeneous road-agents in dense traffic with

81

https://www.statistik.at/fileadmin/announcement/2022/05/20220428Unfaelle2021.pdf
https://www.statistik.at/fileadmin/announcement/2022/05/20220428Unfaelle2021.pdf
https://www.fhwa.dot.gov/innovation/innovator/issue101/page_02.html
https://www.fhwa.dot.gov/innovation/innovator/issue101/page_02.html

noisy sensor inputs,” in Proceedings of the 3rd ACM Computer Science in Cars
Symposium, pp. 1–9, 2019.

[11] M. Shah, Z. Huang, A. Laddha, M. Langford, B. Barber, S. Zhang, C. Vallespi-
Gonzalez, and R. Urtasun, “Liranet: End-to-end trajectory prediction using spatio-
temporal radar fusion,” arXiv preprint arXiv:2010.00731, 2020.

[12] M. Liang, B. Yang, W. Zeng, Y. Chen, R. Hu, S. Casas, and R. Urtasun, “Pnpnet:
End-to-end perception and prediction with tracking in the loop,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11553–
11562, 2020.

[13] A. Laddha, S. Gautam, S. Palombo, S. Pandey, and C. Vallespi-Gonzalez, “Mvfusenet:
Improving end-to-end object detection and motion forecasting through multi-view
fusion of lidar data,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2865–2874, 2021.

[14] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen, Y. Shen,
Y. Chai, C. Schmid, et al., “Tnt: Target-driven trajectory prediction,” in Conference
on robot learning, pp. 895–904, PMLR, 2021.

[15] J. Gu, C. Sun, and H. Zhao, “Densetnt: End-to-end trajectory prediction from dense
goal sets,” in Proceedings of the IEEE/CVF international conference on computer
vision, pp. 15303–15312, 2021.

[16] J. Gu, C. Hu, T. Zhang, X. Chen, Y. Wang, Y. Wang, and H. Zhao, “Vip3d:
End-to-end visual trajectory prediction via 3d agent queries,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5496–5506,
2023.

[17] Z. Xiong, S. Liu, N. Helgesen, J. Johnander, and P.-E. Forssen, “Catplan: Loss-
based collision prediction in end-to-end autonomous driving,” arXiv preprint
arXiv:2503.07425, 2025.

[18] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social
lstm: Human trajectory prediction in crowded spaces,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 961–971, 2016.

[19] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially
acceptable trajectories with generative adversarial networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2255–2264, 2018.

[20] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–
1237, 2013.

82

[21] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,
Y. Zhou, Y. Chai, B. Caine, et al., “Scalability in perception for autonomous driving:
Waymo open dataset,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2446–2454, 2020.

[22] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for autonomous
driving,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11621–11631, 2020.

[23] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang,
P. Carr, S. Lucey, D. Ramanan, et al., “Argoverse: 3d tracking and forecasting with
rich maps,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8748–8757, 2019.

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 779–788, 2016.

[25] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in European conference on computer vision,
pp. 21–37, Springer, 2016.

[26] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” in Proceedings of the IEEE international conference on computer vision,
pp. 2980–2988, 2017.

[27] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision, pp. 740–755, Springer, 2014.

[28] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 580–587, 2014.

[29] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d
object detection,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4490–4499, 2018.

[30] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast
encoders for object detection from point clouds,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 12697–12705, 2019.

[31] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection network
for autonomous driving,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pp. 1907–1915, 2017.

83

[32] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint 3d proposal
generation and object detection from view aggregation,” in 2018 IEEE/RSJ in-
ternational conference on intelligent robots and systems (IROS), pp. 1–8, IEEE,
2018.

[33] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and real-
time tracking,” in 2016 IEEE international conference on image processing (ICIP),
pp. 3464–3468, Ieee, 2016.

[34] X. Weng, J. Wang, D. Held, and K. Kitani, “3d multi-object tracking: A baseline and
new evaluation metrics,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 10359–10366, IEEE, 2020.

[35] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a
deep association metric,” in 2017 IEEE international conference on image processing
(ICIP), pp. 3645–3649, IEEE, 2017.

[36] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “Fairmot: On the fairness of
detection and re-identification in multiple object tracking,” International journal of
computer vision, vol. 129, no. 11, pp. 3069–3087, 2021.

[37] Z. Lu, V. Rathod, R. Votel, and J. Huang, “Retinatrack: Online single stage joint
detection and tracking,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 14668–14678, 2020.

[38] T. Meinhardt, A. Kirillov, L. Leal-Taixe, and C. Feichtenhofer, “Trackformer: Multi-
object tracking with transformers,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8844–8854, 2022.

[39] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection and track-
ing,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11784–11793, 2021.

[40] L. Hui, L. Wang, M. Cheng, J. Xie, and J. Yang, “3d siamese voxel-to-bev tracker for
sparse point clouds,” Advances in Neural Information Processing Systems, vol. 34,
pp. 28714–28727, 2021.

[41] F. Zeng, B. Dong, Y. Zhang, T. Wang, X. Zhang, and Y. Wei, “Motr: End-to-end
multiple-object tracking with transformer,” in European conference on computer
vision, pp. 659–675, Springer, 2022.

[42] K. Pauwels and D. Kragic, “Simtrack: A simulation-based framework for scalable
real-time object pose detection and tracking,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1300–1307, IEEE, 2015.

[43] T. Tang, L. Zhou, P. Hao, Z. He, K. Ho, S. Gu, Z. Hao, H. Sun, K. Zhan, P. Jia, et al.,
“S2-track: A simple yet strong approach for end-to-end 3d multi-object tracking,”
arXiv preprint arXiv:2406.02147, 2024.

84

[44] A. Singh, “Trajectory-prediction with vision: A survey,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 3318–3323, 2023.

[45] R. S. Tomar, S. Verma, and G. S. Tomar, “Svm based trajectory predictions of lane
changing vehicles,” in 2011 International Conference on Computational Intelligence
and Communication Networks, pp. 716–721, IEEE, 2011.

[46] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker, “Desire:
Distant future prediction in dynamic scenes with interacting agents,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 336–345,
2017.

[47] B. Ivanovic and M. Pavone, “The trajectron: Probabilistic multi-agent trajectory
modeling with dynamic spatiotemporal graphs,” in Proceedings of the IEEE/CVF
international conference on computer vision, pp. 2375–2384, 2019.

[48] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data,” in European
Conference on Computer Vision, pp. 683–700, Springer, 2020.

[49] N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “Precog: Prediction condi-
tioned on goals in visual multi-agent settings,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2821–2830, 2019.

[50] “The KITTI Vision Benchmark Suite.” https://www.cvlibs.net/datasets/kitti, Oct.
2025. [Online; accessed 11. Oct. 2025].

[51] “nuScenes.” https://www.nuscenes.org, Dec. 2024. [Online; accessed 11. Oct. 2025].

[52] “Home.” https://www.argoverse.org, May 2025. [Online; accessed 11. Oct. 2025].

[53] “About – Waymo Open Dataset.” https://waymo.com/open, Oct. 2025. [Online;
accessed 11. Oct. 2025].

[54] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open
urban driving simulator,” in Conference on robot learning, pp. 1–16, PMLR, 2017.

[55] “Traffic Manager - CARLA Simulator.” https://carla.readthedocs.io/en/
latest/adv_traffic_manager, Aug. 2025. [Online; accessed 27. Aug. 2025].

[56] maudzung, “Complex-YOLOv4-Pytorch.” https://github.com/maudzung/Complex-
YOLOv4-Pytorch, Nov. 2025. [Online; accessed 26. Nov. 2025].

[57] N. M. Dung, “Super-Fast-Accurate-3D-Object-Detection-PyTorch.” https://
github.com/maudzung/Super-Fast-Accurate-3D-Object-Detection,
2020.

85

https://carla.readthedocs.io/en/latest/adv_traffic_manager
https://carla.readthedocs.io/en/latest/adv_traffic_manager
https://github.com/maudzung/Super-Fast-Accurate-3D-Object-Detection
https://github.com/maudzung/Super-Fast-Accurate-3D-Object-Detection

[58] P. Li, H. Zhao, P. Liu, and F. Cao, “Rtm3d: Real-time monocular 3d detection from
object keypoints for autonomous driving,” in European Conference on Computer
Vision, pp. 644–660, Springer, 2020.

[59] abewley, “SORT.” https://github.com/abewley/sort, Nov. 2025. [Online; accessed
26. Nov. 2025].

[60] nwojke, “DeepSORT.” https://github.com/nwojke/deep_sort, Nov. 2025.
[Online; accessed 26. Nov. 2025].

[61] H. Wu, W. Han, C. Wen, X. Li, and C. Wang, “3d multi-object tracking in point
clouds based on prediction confidence-guided data association,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 6, pp. 5668–5677, 2021.

[62] F. Marchetti, F. Becattini, L. Seidenari, and A. D. Bimbo, “Mantra: Memory aug-
mented networks for multiple trajectory prediction,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 7143–7152, 2020.

[63] nrhinehart, “precog.” https://github.com/nrhinehart/precog, Oct. 2025. [Online;
accessed 26. Oct. 2025].

[64] nrhinehart, “deep_imitative_models.” https://github.com/nrhinehart/
deep_imitative_models, Oct. 2025. [Online; accessed 26. Oct. 2025].

[65] J. He, C. Fu, and X. Wang, “3d multi-object tracking based on uncertainty-guided
data association,” arXiv preprint arXiv:2303.01786, 2023.

[66] hailanyi, “3D-Multi-Object-Tracker.” https://github.com/hailanyi/3D-Multi-Object-
Tracker?tab=readme-ov-file, May 2025. [Online; accessed 30. May 2025].

[67] J.-E. Deschaud, “KITTI-CARLA: a KITTI-like dataset generated by CARLA Simu-
lator,” arXiv e-prints, 2021.

[68] “pyglm.” https://pypi.org/project/pyglm, Oct. 2025. [Online; accessed 3. Oct. 2025].

86

https://github.com/nwojke/deep_sort
https://github.com/nrhinehart/deep_imitative_models
https://github.com/nrhinehart/deep_imitative_models

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Contributions
	Structure of the Work

	Related work
	End-to-end Frameworks
	Sensors
	Object Detection
	Object Tracking
	Trajectory Prediction
	Datasets

	Methodology
	Super fast and accurate 3D object detection
	3D Multi-object-tracker
	Predictions conditioned on goals in visual multi-agent scenarios

	Implementation
	Pipeline
	Data Structures
	Visualization
	Training
	Dataset generation

	Results
	Tracking performance
	Trajectory prediction accuracy
	Effect of detection and tracking ablation
	Visual demonstrations
	Runtime

	Discussion
	Limitations and future work
	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Acronyms
	Bibliography

