
Analysis of the GPU Acceleration
Potential of the FFT-Based

Pressure Solver in the PALM-4U
Model System

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Computational Science and Engineering

eingereicht von

Stefanie North, BSc BSc
Matrikelnummer 51803598

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Mitwirkung: Dipl.-Ing. Dr.techn. Daniel Cornel

Wien, 1. Jänner 2001
Stefanie North Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Analysis of the GPU Acceleration
Potential of the FFT-Based

Pressure Solver in the PALM-4U
Model System

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computational Science and Engineering

by

Stefanie North, BSc BSc
Registration Number 51803598

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Assistance: Dipl.-Ing. Dr.techn. Daniel Cornel

Vienna, January 1, 2001
Stefanie North Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Stefanie North, BSc BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 1. Jänner 2001
Stefanie North

v

Danksagung

Diese Arbeit wurde durch das Kompetenzzentrum VRVis ermöglicht. Die VRVis GmbH
wird im Rahmen von COMET – Competence Centers for Excellent Technologies (911654)
durch BMIMI, BMWET, Land Tirol, Land Vorarlberg und Wirtschaftsagentur Wien
– Ein Fonds der Stadt Wien gefördert. Das Programm COMET wird durch die FFG
abgewickelt.

vii

Acknowledgements

This work was enabled by the Competence Centre VRVis. The VRVis GmbH is funded by
BMK, BMAW, Tyrol, Vorarlberg and Vienna Business Agency in the scope of COMET -
Competence Centers for Excellent Technologies (911654) which is managed by FFG.

ix

Kurzfassung

Der Klimawandel führt zu einer Zunahme der Häufigkeit und Schwere extremer Wetterer-
eignisse. Dadurch werden die Lebensgrundlagen von Menschen sowie wichtige Infrastruk-
turen gefährdet. Entscheidungshilfetools können die Entwicklung klimaresistenter Städte
unterstützen, indem sie während des Planungsprozesses Informationen über die potenzielle
Wirksamkeit bestimmter Maßnahmen liefern. Besonders wirkungsvoll sind dabei Systeme,
die genaue Mikroklimamodelle integrieren. PALM-4U, ein wissenschaftlich validiertes
städtisches Klimamodell, eignet sich dafür, ist jedoch außerhalb der wissenschaftlichen
Gemeinschaft nur eingeschränkt nutzbar, da es für den Betrieb auf HPC-Clustern opti-
miert ist. Mit dem Aufkommen leistungsstarker GPUs wird die Nutzung auf einzelnen
Workstations zunehmend möglich.

Diese Studie erforscht das Potential einer Laufzeitbeschleunigung der Druckberechnung
des PALM-4U Models mit der Verwendung von einer Grafikkarte und der Änderung
der Computerarchitektur. Die Leistungssteigerung wird anhand von drei Parametern
gemessen: Geschwindigkeit, Gültigkeit (über NMSE, R und FB) und Speichereffizienz.
Außerdem wird der Einfluss auf die Laufzeit der vollständigen Simulation gemessen und
mögliche Bottlenecks identifiziert. Schließlich wird das vollständige Modell analysiert,
um die allgemeine Machbarkeit der GPU-Optimierung zu bewerten und Erkenntnisse für
die zukünftige Entwicklung zu gewinnen.

In der Druckberechnung wird mithilfe der Fast Fourier Transform die 3D-Poissongleichung
umgeformt, die resultierenden 1D-Gleichungen werden mithilfe des Thomas Algorithmus
gelöst. Die Codestruktur wird verändert, CUDA-Kernels implementiert und die cuFFT-
Bibliothek integriert. Außerdem wird ein Mixed-Precision-Ansatz getestet.

Die Single-Core-GPU-Implementierung erreicht eine Beschleunigung von bis zu Faktor 65,5
bei Single Precision und bis zu Faktor 49,3 bei Double Precision für große Domängrößen.
Die Stabilität des Systems bleibt durch den Mixed-Precision-Ansatz unbeeinträchtigt, und
es werden keine signifikanten Abweichungen zwischen FP32- und FP64-Läufen beobachtet.
Nach 45 × 103 Simulationsschritten zeigen NMSE (0,02), FB (-0,017) und R (0,96) eine
stabile und genaue Berechnung. Darüber hinaus konnte der Speicherbedarf um bis zu
68% gesenkt werden. Diese Optimierungen verringern die Gesamtsimulationszeit um 15%.
Damit wird das Potenzial zugänglicher, wissenschaftlich validierter Mikroklimamodelle
durch eine GPU-Optimierung demonstriert.

xi

Abstract

Due to climate change, the frequency and severity of extreme weather events is increasing,
which endangers human livelihoods and key infrastructures. Decision support tools can
guide the development of climate-resilient cities by providing information on the potential
effectiveness of specific measures during the planning process. In urban environments,
decision support tools that incorporate accurate micro-climate models are particularly
effective. PALM-4U, a state-of-the-art, scientifically validated microclimate model, could
offer this functionality, however it remains largely inaccessible outside the scientific
community as it is optimised to run on HPC clusters. However, with the rise of high-
performance GPUs, a shift towards single workstations is possible.

This study investigates the potential for performance increase of the PALM-4U’s pressure
solver, by utilising the GPU’s acceleration potential in combination with a change in
target architecture. Performance increase is measured using three parameters: speed up,
validity (via NMSE, R, and FB), and memory efficiency. Also the effect on the runtime
of the full simulation is measured and possible bottlenecks identified. Finally, the full
model is analysed to assess the overall feasibility of GPU optimisation, providing insights
to guide future development.

The pressure solver transforms the 3D Poisson equation using Fast Fourier Transform
and solves the resulting 1D system via the Thomas algorithm. The code structure is
optimised, CUDA-optimised kernels are implemented and the cuFFT library is integrated.
In addition a mixed-precision approach is tested to evaluate its impact on performance
and accuracy.

The single core GPU implementation achieves a speed up of up to 65.5 times in single
precision and up to 49.3 times for double precision for large domain sizes. The stability
of the system remains unaffected by the mixed-precision approach, and no significant
variation is observed between FP32 and FP64 runs. After 45 × 103 simulation steps,
NMSE (0.02), FB (-0.017) and R (0.96), demonstrate a stable and accurate performance
consistent across precisions. Additionally, the memory requirement is reduced up to 68%
compared to the baseline CPU solver. The optimisations leads to a runtime reduction of
the full model by 15%, demonstrating the potential for accessible, scientifically validated
microclimate models.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Contributions . 3
1.2 Research Structure . 4

2 Fundamental Background 5
2.1 Large-Eddy Simulation . 5
2.2 PALM Model System . 7
2.3 Numerical Method . 10
2.4 Code Structure . 12
2.5 Graphics Processing Unit . 14
2.6 scenarify . 17

3 Related Work 19
3.1 Urban Microclimate Modelling . 19
3.2 GPU-Accelerated Climate Modelling 20
3.3 Advanced GPU Methods . 21
3.4 Discussion and Gaps . 23

4 Methods 25
4.1 Research Design Overview . 25
4.2 Computational Environment Setup . 26
4.3 Experiment Design and Evaluation . 27

5 Implementation 33
5.1 Setup . 33
5.2 Preliminary Implementation . 37
5.3 Data Types and Memory Optimization 38
5.4 Algorithmic Optimization for GPU . 40

xv

5.5 Resulting Structure and Limitations 46

6 Results 49
6.1 Speed Up Analysis . 49
6.2 Validity Evaluation . 56
6.3 Memory Profiling . 58
6.4 Structural Analysis of the Model . 60

7 Discussion 63
7.1 Performance Improvements . 63
7.2 Runtime Impact on Full Simulation . 65
7.3 Impact of Memory Management . 65
7.4 Identified Bottlenecks . 66
7.5 Feasibility of Full Model Optimization 66
7.6 Limitations of the Study . 67
7.7 Implications . 68

8 Conclusion 69

Overview of Generative AI Tools Used 71

List of Figures 73

List of Tables 75

List of Algorithms 77

Bibliography 79

CHAPTER 1
Introduction

Climate change is arguably one of the most complex challenge humanity has faced to
date. As the planet warms, natural disasters such as extreme weather will continue to
affect billions of people worldwide [1]. When looking at urban settings, climate change
can lead to an increase in the intensity of heat extremes, which has a direct impact on
human health, livelihoods and key infrastructures [1, 2, 3, 4]. As cities are home to half
of humanity [5], it is important to consider these impacts and risks when designing and
planning urban and rural settlements, as the consequences of climate change can be
mitigated if suitable adaption measures are implemented [6, 7, 1]. This concept is known
as Climate-Sensitive Urban Design and emphasises the importance of climate adaption
in city planning, in addition to the focus on economic, spatial, functional and aesthetic
aspects [8].

There have already been measured benefits from the implementation of adaption measures,
but there is a wide gap between the actually implemented measures and the societally set
goals. Research shows that climate-resilient development benefits form the availability of
decision support tools to guide the active planning process [1] by providing information
about the potential effectiveness of specific measures [9, 10]. To examine the impact of
climate change on the urban environment, microscale modelling is used. An example is
the PALM-4U urban climate model system, which simulates atmospheric processes in
urban areas on a city- and building-resolving scale [11, 12]. Urban microclimate models
such as PALM-4U can help identify options that enable mitigation and adaptation across
a wide range of future scenarios, while remaining cost-effective and minimising potential
risks [1].

The problem, however with high-accuracy simulations like PALM-4U is that they have
been developed primarily for scientific research and run optimised on high-performance
computing clusters (HPC). Although PALM-4U has the possibility to run on desktop
computers in serial mode, the performance is slowed down drastically [13]. In some cases,

1

1. Introduction

even scientific research is restricted by the limited computing power of the available HPC
systems, which limits the spatial resolution that can be analysed in a study [14].

Consequently, accurate and scientifically validated urban microclimate models are not
readily available outside the scientific community to people working on climate change
adaptation, such as policy makers, urban planners, and disaster managers [15]. This is
problematic, as decision-support tools could help close the adaptation gap in climate-
resilient planning.

The aim of this work is to investigate the potential of utilisation the parallel computing
capabilities of modern graphic processing units (GPUs) to speed up the calculation of
the urban climate model PALM-4U. This will allow the model to be used interactively
on a standard desktop computer, making it available outside the scientific community
as a decision-support tool. This work is part of the COMET Module ClimaSens -
Climate-Sensitive Adaptive Planning for Shaping Resilient Cities which aims to address
the challenge of making high-accuracy urban climate models available to people working
on climate change adaption without access to a high-performance computing cluster [16].

In a the past Knoop et al. [17] attempted to port the entire PALM Model System
codebase to the GPU using OpenACC. They achieved an approximate 2.3 times speed
up for the total model and a 1.5 times speed up for the FFT-based pressure solver
when running the model with a minimum of four CPU cores, and saw a decrease in
performance for an increase of cores. This work chose a different approach and researches
the optimisation potential of the microclimate model by changing the target architecture
to a single CPU/GPU workspace and using a low level GPU language. The focus is
specifically put on the FFT pressure solver, which has been identified as a computationally
intensive routine in the PALM model core. As PALM-4U is an extension of the PALM
model designed for modelling urban settings, the two share the same computational core.
Although the ultimate objective is to run PALM-4U efficiently, for the purposes of this
analysis of the pressure solver, focusing on the PALM model is sufficient.

The following research questions will be answered:

1. What effect does transitioning an FFT-based pressure solver from a HPC cluster-
optimised implementation to a GPU-accelerated version on a single workstation
have on its performance?

2. Is it possible for the parallelisation of a single module to have a substantial impact
on the runtime of an entire system?

3. How does memory management on GPUs affect the performance of the FFT-based
pressure solver in the PALM-4U model?

4. Which bottlenecks or limitations can be identified in comparison to the GPU
Cluster attempts?

2

1.1. Contributions

5. Does this optimisation provide insight into the overall feasibility of the optimisations
of the full model for the target architecture?

When implementing the optimised version, the main focus lies on analysing and adapting
the structure of the code to fit the new target architecture. This also involves considering
the GPU platform, particularly its defining features, such as memory architecture and
thread hierarchy, which play an important role in efficiently organising and executing
parallel tasks. For this, the NVIDIA API CUDA is used, as it provides an extension to
the C/C++ language offering the possibility of specifying parallelism at thread level and
also specifying GPU-specific operations [18]. Guiding the optimisation process, profiling
tools such as Nsight Systems [19] and Nsight Computer [20] are used. Nsight Systems uses
a unified timeline to visualise algorithms and identify optimisation opportunities. Nsight
Compute provides detailed performance metrics on a kernel-by-kernel basis. Once the
implementation is complete, the resulting code will be benchmarked against real urban
topography, using Cologne. Different dimensions are chosen for the scalability analysis
with the specific target application in mind. In addition to improving runtime speed, the
required memory and margin of error compared to the existing CPU implementation will
be analysed.

1.1 Contributions
This research presents several contributions to the field of microclimate modelling and
high-performance computing, particularly in the context of adapting the PALM model
system for single-node architectures using a GPU. The key contributions are:

• A structural analysis of the PALM codebase to identify components suitable for
single-node GPU optimisation.

• Shift of the target architecture of the PALM model system from high-performance
computing (HPC) clusters, to a single-node architecture, investigating the optimi-
sation potential introduced by this change when optimising for a GPU execution.

• Implementation and evaluation of a GPU accelerated version of the FFT based
pressure solver using the low-level programming language CUDA, showing an
improved performance over the existing single-node desktop PC execution.

• Demonstration of the feasibility and performance benefits of using mixed-precision
modelling in microclimate modelling for hybrid CPU-GPU execution.

• Proof-of-concept for running PALM on a single-node GPU, making microclimate
modelling more accessible outside of HPC environments.

• Evaluation of GPU performance within the scenarify environment, using the prior
PALM integration to provide realistic and relevant benchmarking.

3

1. Introduction

1.2 Research Structure
Firstly, Chapter 2 presents relevant background information. Section 2.1 provides the
theoretical basis for climate modelling. Section 2.2 provides a detailed description of the
PALM-4U model and derives the Poisson pressure equation. Section 2.3 discusses the
numerical method used to solve this equation. Section 2.4 provides detailed information
about the relevant code section. Section 2.5 provides a basic introduction to the graphics
processing unit (GPU), and Section 2.6 then describes the framework in which the
optimised solver will be benchmarked. State-of-the-art research in this field is presented
in Chapter 3, which initially focusses on current models used in microclimate modelling.
Then common approaches, which are used during GPU acceleration attempts on climate
models are presented. Finally, state-of-the-art GPU algorithms are introduced.

Chapter 4 outlines the methods used, starting with an in-depth analysis of the original
codebase. It also presents the external libraries used in the implementation process.
Starting from the baseline GPU implementation, Chapter 5 presents all performed
implementation steps. Chapter 6 benchmarks the optimised GPU implementation,
focusing on speed up and memory usage. Finally Chapter 7 discusses the presented
results in the context of the presented research questions.

This work lays the foundation for further research which could expand the focus to
analyse the optimisation potential of utilising the GPU in different parts of the urban
climate model.

4

CHAPTER 2
Fundamental Background

The following chapter aims to lay the foundation for the rest of the research. Firstly the
theoretical framework for modelling atmospheric flow is explained. Next, it provides a
detailed explanation of the PALM model and how pressure calculations are performed.
Then the numerical strategy for solving the resulting equation is presented and how
this method is implemented in the PALM model. Finally an overview of the graphics
processing unit and the scenarify framework is provided.

2.1 Large-Eddy Simulation
Naturally occurring flows, and therefore atmospheric flows, are turbulent. For this reason,
researchers in the field of computational fluid dynamics (CFD) focus on flows where
turbulence plays an important role. Although the theory is not fully understood, the
developed methods enable the flow to be modelled with sufficient accuracy. To achieve
that the three-dimensional computational grid must be large enough to capture large-scale
effects, and the mesh size must be small enough to resolve the smallest dynamically
significant length scale, known as the Kolmogorov micro-scale [21].

From this, different approaches were designed to simulate turbulence, an overview can
be seen in Figure 2.1. The most accurate method is the direct numerical simulation
(DNS), where the full Navier-Stokes equations are numerically solved, with corresponding
domain size and mesh size to capture all scales making it computationally expensive [21].
As visualised in Figure 2.1, in the direct solver all scales, from large eddies to dissipating
eddies, are resolved [22]. At the other end of the spectrum, where fewer computational
resources are required, there is a solver that solves the Reynolds-averaged Navier–Stokes
(RANS) equations. This method is useful if the focus is put on steady-state fluid flow
rather than instantaneous flow. In these simulations, only averaged quantities are resolved
and the turbulence is modelled separately leading to less accurate results [21].

5

2. Fundamental Background

Figure 2.1: Overview of numerical modelling approaches of turbulent flow [22].

Figure 2.2: Comparison of large-scale resolved eddies (left) and parametrised sub-grid
scale eddies (right).

As shown in Figure 2.1, the large-eddy simulation (LES) approach sits between DNS and
RANS. Large-scale motions of turbulent flows are calculated directly, while turbulence
at smaller scales is modelled. The difference between resolved and sub-grid scale (SGS)
eddies can be seen in Figure 2.2, where the left figure shows a resolved eddy, while
the right image shows sub-grid scale turbulence, which is not resolved. This approach
achieves a higher level of accuracy than RANS because large eddies contain most of
the turbulent energy, but is still less computationally expensive than a direct solver
(DNS). It is therefore a widely used numerical tool for simulating realistic turbulent and
transitional flows [21].

6

2.2. PALM Model System

2.2 PALM Model System
This research is based on the PALM Model System 6.0, which has been used to study the
atmospheric and oceanic boundary layer for around 20 years. In 2020, an extension to
the climate model made it possible to simulate atmospheric processes in urban settings at
a building-resolution scale. This is known as PALM-4U [12, 11]. As this research focuses
on the pressure solver of the model core, which is shared by both PALM-4U and PALM,
the focus for now is on the PALM model. However, the results can also be applied to the
full PALM-4U model.

Figure 2.3 shows three exemplary results from a PALM-4U simulation of the Maria-
Theresien-Platz in Vienna from initial test runs conducted to evaluate key output
parameters relevant for subsequent analysis and future application [23]. Figure 2.3a shows
the simulated wind speed in meters/second, while Figure 2.3b displays the calculated
air temperature in degrees Celsius. Furthermore, the PALM-4U model can be used to
simulate bioclimate indices, as shown in Figure 2.3c, which displays the universal thermal
climate index (UTCI), which describes the physiological comfort of the human body [24].

In the default setting, which is what this study is using, PALM is a Large Eddy Resolving
(LES) model. The model is using the finite difference approximation for model domain
discretization in space with equidistant horizontal grid spacing. As it has been found
to be well suited for fluid dynamics simulations, a staggered Cartesian grid is used [11].
This means that temperature and pressure are set at the centre of the grid cell. However,
vector-valued variables such as velocities u, v, w are anchored at the boundary between
two cells. This leads to the calculation of the velocity divergence at the centre of each cell,
at the exact location of the pressure or temperature, which is beneficial for calculations
at the boundary [25]. Figure 2.4 shows a visualisation of the grid and the positions of
the variables within it.

In order to achieve a more efficient calculation the model is optimised to run in parallel
on HPC clusters. To enable this, the domain is decomposed into equally-sized 2D
subdomains along the x and y directions, which are then divided up among the available
cores. MPI communication is used to exchange information between compute cores [11].

In the dynamic core of the model, the prognostic equations are calculated at each time
step, incrementing the designated variable by one time step. After this, the pressure
solver is executed. In serial execution, this takes approximately 15% of each full time step.
At the end of the time step, the desired output variables are calculated. A visualisation
of the model core execution can be seen in Figure 2.5.

The PALM model solves the non-hydrostatic, filtered, incompressible Navier-Stokes
equations in the Boussinesq-approximated form [26]. In this context filtered means
the separation of the resolved scale from the subgrid scale. This allows the model to
simulate the atmosphere from the urban microclimate scale to atmospheric phenomena
that extend throughout the troposphere [11]. The Boussinesq approximation assumes
that the variation in density can be ignored in the equations of motion except in the

7

2. Fundamental Background

buoyancy term [27].

Since the focus of this analysis is on the pressure solver, This section presents the
momentum equation of the PALM model core and how to derive the Poisson equation
for pressure from it. The momentum equation consists of five forces: the advection
force, the Coriolis force, the pressure force, the buoyancy force, and a stress term that
includes the sub-grid scale which is not resolved by the model. In Equation 2.1 angular
brackets represent the horizontal domain average of that variable, the variables with
the subscript 0 symbolise a surface value, and the variables with a double prime denote
sub-grid scale variables. π∗ = p∗ + 2

3ρ0e is the modified perturbation pressure, with p*
being the perturbation pressure.

(a) wind speed ranging form 0m/s(dark blue)
to 4m/s(light blue).

(b) air temperature ranging from 26.3řC(dark
blue) to 32.4řC(red).

(c) The Universal Thermal Comfort Index
(UTCI) ranges from 24 (dark blue), which in-
dicates no heat stress, to 39.7 (red), which
signifies strong heat stress [24].

Figure 2.3: PALM-4U simulation results of the Maria-Theresien-Platz in Vienna.

8

2.2. PALM Model System

Figure 2.4: Visualisation of the computational grid.

Figure 2.5: Visualisation of the time loop of the PALM model core [17].

∂ui

∂t
= −∂uipj

∂xj
− ϵijkfjuk + ϵi3f3ug,j − 1

ρ0

∂π∗

∂xi

+ g
θv − ⟨θv⟩

⟨θv⟩ δi3 − ∂

∂xj

(︃
u′′

i p′′
j − 2

3eδij

)︃ (2.1)

Equation 2.2 shows the continuity equation which must also be fulfilled. Since the
Boussinesq approximation is used in the governing equations, Equation 2.2 can be
transformed into Equation 2.3, the continuity equation for incompressible flow.

∂ρ

∂t
+ ∇(ρu) = 0 (2.2)

∇u = ∂ui

∂xi
= 0 (2.3)

However, incompressibility is not provided as divergence of the flow field is produced as the
result of the integration of the governing equations. To compensate, a predictor–corrector
method is used, where a second equation is solved after each time step [25]. When

9

2. Fundamental Background

performing the time integration for the next time step, Equation 2.1 is split into two
parts. In the first step, the pressure term is excluded from Equation 2.1 and a preliminary
velocity ut+Δt

i,pre is calculated. The appearing divergence can then be attributed to the
pressure term. In a second step, shown in Equation 2.4, the pressure term can be used
to calculate the prognostic velocity.

ut+Δt
i = ut+Δt

i,pre − Δt
1
ρ0

∂π∗t

∂xi
(2.4)

To enforce incompressibility for ut+Δt
i Equation 2.5 can be written.

∂

∂xi
ut+Δt

i = ∂

∂xi

(︄
ut+Δt

i,pre − Δt
1
ρ0

∂π∗t

∂xi

)︄
!= 0 (2.5)

This results in a Poisson equation (Equation 2.6) for the modified perturbation pressure
π∗.

∂2π∗t

∂x2
i

= ρ0
Δt

∂ut+Δt,pre
i

∂xi
(2.6)

The ideal solution to this problem would result in a u that is free of divergence when
inserted in Equation 2.4. However, in practice, a reduction in divergence of several orders
of magnitude has been found to be sufficient [26].

2.3 Numerical Method
This section presents a solution method for the three-dimensional Poisson equation
derived in the previous section. For better readability in this section, the modified
perturbation pressure vector π∗t is written as u and the right-hand side of the equation
as f and Equation 2.6 can be written as Equation 2.7.

∂2ui

∂x2
i

= ∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 = f (2.7)

The finite difference method with equidistant grid spacing can be used to rewrite Equa-
tion 2.7, resulting in

1
h2

������
B −I

−I B
. . .

. −I

−I B

������

������
u1

u2
...

um

������ =

������
f1

f2
...

fm

������
10

2.3. Numerical Method

with

B =

������
4 −1

−1 4 . . .
. −1

−1 4

������ .

The j-th (block) row can be written as Equation 2.8.

−uj−1 + Buj − uj+1 = fj (2.8)

The Fourier method can be used to solve this equation, as it exploits knowledge of the
eigenvalues and eigenvectors of the matrix B, where eigenvalues are

λj = 4 − 2cos

(︃
jπ

p + 1

)︃
= 4 − 2cos(θj) j = 1, ..., p

and eigenvectors are defined as

qj =
√︄

2
p + 1 × [sin(θj), sin(2θj), .., sin(pθj),]T .

With Q = [q1, ..., qp] being the eigenbasis, matrix B can be diagonalised to QT BQ = Λ =
diag(λi). A similar transformation can be used to rewrite Equation 2.8 as follows

−QT uj−1 + (QT BQ)QT uj − QT uj+1 = QT fj .

By adapting the notation such that a bar denotes the variables in the Q-basis, the
equation becomes

−ūj−1 + Λūj − ūj+1 = f̄ j .

When the matrix equation is put back together, m independent tridiagonal systems
emerge [28], as can be seen in Equation 2.9.

���������

λi −1
−1 λi −1

.
−1 λi −1

−1 λi

���������

���������

ūi1

ūi2
...

ūip−1

ūip

���������
=

���������

b̄i1

b̄i2
...

b̄ip−1

b̄ip

���������
(2.9)

11

2. Fundamental Background

The full methods can therefore be separated into three stages [28, 29, 30].

1. Determine fj , j = 1, 2, ..., n by applying a discrete 2D Fourier transform on the
right-hand side of the original equation.

f(m + 1, n + 1, k) = 1
Mx ∗ My

Mx+1∑︂
i=0

My∑︂
j=0

f(i, j, k)ω−m(i−2)
Mx ω

−n(j−1)
My (2.10)

with:
ωM = exp(2πi

M
) (2.11)

This can also be separated in two one-dimensional Fourier transforms, and executed
with a transposition in between.

2. Solve the resulting one-dimensional tridiagonal linear system for ū from Equa-
tion 2.9.

3. Compute the solution for ui.

u(i, j, k) =
Mx−1∑︂
m=0

My−1∑︂
n=0

u(m + 1, n + 1, k) ω
m(i−2)
Mx ω

n(j−2)
My (2.12)

with:
ωM = exp(2πi

M
) (2.13)

Taking the complex conjugate pairs formed by the complex Fourier modes into account
can reduce the necessary computational work and storage. The transformation can be
seen in Equation 2.14.

u(m + 1, n + 1, k) = u(Mx − m, Mx − n, k) (2.14)

The benefits of this method for solving large three-dimensional systems lie in the fact
that the three-dimensional coupled equation is transformed into a set of independent
one-dimensional equations that can be solved in parallel.

2.4 Code Structure
This section describes how the numerical method of solving the pressure Poisson equation
using the Fast Fourier Transform, described in Section 2.3, is embedded in the PALM
model core. The complete PALM codebase consists of 551 Fortran 90 files, each file
containing hundreds to thousands of lines of code. The project uses different subroutines
and modules to create a framework, with each module managing a specific process.

12

2.4. Code Structure

The FFT pressure solver is spread out between seven files, Figure 2.6 shows how these
files are connected. As the codebase grew over the years, more and more optimisations
were added for different cases, this adds to the complexity of the code structure because
all possible versions of the pressure solver can still be run if desired.

Figure 2.6: Visualisation of the file dependencies involved in the pressure solver. Arrows
indicate the direction of function calls: a file at the tail of an arrow calls a file at the
head of the arrow.

In the PALM model core, the pressure solver starts with the computation of the right hand
side of the Poisson equation for the modified perturbation pressure from the preliminary
velocities, as shown in Equation 2.6. This is executed in file pres.f90. After that, the
solution method, in this case the FFT solver, is chosen and the designated file is called.
File poisfft_mod.f90 controls the solver and calls subroutines as needed. This file starts
with the initialisation of the routines used. As the discrete Laplacian matrix of the
Poisson equation is constant for each time step, the FFT and the coefficients of the
Thomas algorithm are initialised once at the beginning of the simulation.

Figure 2.7: Breakdown of the FFT based pressure solver into 19 steps.

The code structure of the file poisfft_mod.f90 can be separated into 19 steps that are
executed each time step. These steps are visualised in Figure 2.7 and start after the
allocation of the working memory needed. As the input array is spread across multiple
CPU cores, it must be resorted to ensure the array is correctly arranged in memory for
the MPI communication that is necessary during the execution of the three-dimensional
transposition. The transposition is necessary, as the input array is stored in memory in
a column-major order, where each node has a z-dimensional column of data. However,
for the FFT in the x-direction, one full x-row needs to reside on one node. The same

13

2. Fundamental Background

process is repeated to shift the data for the FFT in the y-direction. As the Thomas
coefficients are initialised and saved with x in its leading dimension, the data must be
resorted and transposed again before the tridiagonal solver can be started. This solver
is the central point of the method. Once completed, the solution array is transformed
back to its original form. The method concludes with the deallocation of the temporary
arrays and the return of the solution array.

As mentioned above, the functionality of the pressure solver is divided into different files.
The file poisfft_mod.f90 coordinates the FFT pressure solver, while the other functionality
is wrapped up in subroutines in designated files. Table 5.1 lists and summarises all files
connected to the FFT pressure solver.

Filename Description
pres.f90 Driver for pressure calculation calculates the perturbation

pressure (π∗) and does pre- and post-processing
poisfft_mod.f90 Driver for FFT calls all relevant modules
transpose_mod.f90 Computes 3D reorderings for MPI calls and 3D transposition

of matrix
tridia_solver_mod.f90 Solved Tridiagonal System
fft_xy.f90 Pre- and post-processing and set up of 1D FFT calls and

calls desired FFT methods
temperton_fft_mod.f90 1. FFT method
singleton_mod.f90 2. FFT method

Table 2.1: A summary of the description of each file.

2.5 Graphics Processing Unit
To optimise a module for the graphics processing unit (GPU), first the characteristics of
this architecture need to be understood. A GPU differs from the standard CPU in that
it offers higher memory bandwidth and instruction throughput. A CPU can execute a
sequence of operations as quickly as possible, and to achieve parallelism, a few tens of
these threads can be executed simultaneously. A GPU can execute thousands of threads
in parallel, making it possible to offset the slower performance of individual threads
and achieve greater throughput. This makes the GPU well suited for highly parallel
computations [31].

These capabilities can be harnessed in several ways. One low-level option is CUDA C++,
an extension to the C++ language that enables programmers to define C++ functions
called kernels. At runtime, these kernels can be executed by hundreds of CUDA threads.
To manage the large amount of threads the NVIDIA GPU has a unique architecture called
SIMT (Single Instruction, Multiple Threads). Similarly to SIMD (Single Instruction,

14

2.5. Graphics Processing Unit

Multiple Data), this architecture allows a single instruction to control multiple processing
elements. However, unlike SIMD, SIMT enables the execution of both thread-level and
data-parallel code, for independent and coordinated threads. When executing a kernel,
threads are scheduled in groups of 32, known as warps, in which one common instruction
is executed in parallel. This leads to full efficiency if all 32 threads have the same
execution path. On a larger scale, threads are grouped together into structures called
thread blocks. A user-set number of thread blocks is then organised into a grid, the size
of which is dictated by the amount of data. Threads within a block reside on the same
streaming multiprocessor core, enabling them to share resources. However, complete
thread blocks are executed independently of each other, and the order in which they are
executed is not fixed [31]. An overview can be seen in Figure 2.8.

Figure 2.8: Visualisation of the CUDA Programming Model [31].

To optimise performance, CUDA uses various memory types. In general, memory can
be divided into three groups according to memory access speed: host memory, device
off-chip memory, and device on-chip memory. Figure 2.9 illustrates the different types of
memory.

Figure 2.9: Visualisation of the CUDA Memory Model [31].

Host Memory: The host memory is accessible by the CPU and is separate from the GPU.

15

2. Fundamental Background

When a GPU kernel wants to access a specific item that is allocated on the host memory,
it must be copied from the host memory to the GPU via a PCI Expressbus. Since the
default host memory is pageable, the operating system can move the memory without
notice. This prevents the GPU from having direct memory access (DMA) via hardware.
Therefore, during the copying process, the desired memory must first be fixed in a CPU
staging memory buffer and then copied to the GPU in a second step [18, 31].

Global Memory: When data is copied from host memory to the GPU, it is stored in
global memory, which is integrated directly into the GPU, but not on the SM. Compared
to the PCI Express link (6GByte/s), access to global memory has a high peak bandwidth
(140GByte/s), and data can be read and manipulated during kernel execution. For
optimal performance, CUDA kernels should perform coalesced memory access operations.
This uses the hardware optimally [18] as memory is always accessed in segments of 32,
64 or 128 bytes [31]. This means that in order to perform coalesced access, the element
must be at least 32 bits in size, and the addresses of threads accessed within a warp must
increase contiguously [18].

Local Memory: Local memory is part of off-chip global memory, but during a kernel
execution each thread has its own stack which only it can access during kernel execution.

Shared Memory: Shared memory is physically located in every Streaming Multiprocessor
(SM), which is a fundamental processing unit on the GPU. This memory can be used to
exchange data between threads within a thread block during kernel execution. Access to
shared memory is ten times faster than access to global memory. To optimise for 32-bit
access, shared memory is structured in interleaved banks of memory, meaning threads
read in an interleaved pattern all accessing a different bank at a time. If this access
pattern is not followed and multiple threads try to interact with the same memory bank
at the same time, a bank conflict occurs, and the hardware has to handle the requests
sequentially, stalling the system [18].

As CPU and GPU threads are physically separate, they can execute code concurrently as
the CUDA programming model assumes that they function on different memory spaces.
This is called heterogeneous programming. However, this asynchronous behaviour is
broken if memory needs to be exchanged between device and host because, as described
above, host memory is not page-locked and could be moved by the CPU during the
GPU copying process. To achieve asynchronous copying, where the CPU does not have
to wait for the data transfer to and from the GPU to complete, the memory can be
page-locked on the CPU. This means that the operating system loses the ability to move
it unannounced. With the CUDA API page-fixed memory can be initialised as pinned
memory which can be copied to the GPU asynchronously. In addition, the GPU can copy
it in one step during a copy operation, achieving faster transfer performance [18, 31].

16

2.6. scenarify

Figure 2.10: This figure shows an example of a scenarify simulation in the application
[32].

2.6 scenarify
As described in the introduction, decision-support tools can be used to guide climate-
sensitive urban design and help to close the adaptation gap in climate-resilient planning.
One well-established decision-support tool for flood management is the scenarify system,
an example of which can be seen in Figure 2.10. It integrates flood simulation, analysis
and 3D visualisation tools, allowing information to be processed, filtered and extracted
from time-dependent data within a single tool. scenarify is implemented using a wordlines
concept, enabling scenarios to be created and switched between in order to evaluate
the effect of different measures [32]. The resulting 3D visualisations are better suited
to presentations and discussions, as they are more intuitive [33]. This streamlines the
decision-making process.

scenarify follows the dataflow concept and consists of modular nodes that can be mixed and
matched to create new modules and simulations, depending on the desired functionality.
Extending functionality is therefore straightforward, as it does not require any alterations
to the underlying architecture. This simplifies the integration of new models, such as
PALM/PALM-4U, into the existing framework while enabling the use of the existing data
preparation, visualisation and decision-support framework. For this reason, scenarify
serves as a framework for the optimisations executed in this research.

17

CHAPTER 3
Related Work

This chapter outlines the related work to this research and is organised in three sections.
The first section reviews state-of-the-art models used in urban climate studies. The
second section presents current methods used when analysing the performance increase
in climate models through the use of GPUs. It also gives an in-depth analysis of Knoop
et al.’s paper. The final section focusses on GPU-accelerated algorithms that can be used
to solve the Poisson equation via FFT on the GPU.

3.1 Urban Microclimate Modelling
To simulate the urban environment different modelling methods, with varying complexety
and informational requirements exist. The radiation model SOLWEIG simulates three-
dimensional radiation fluxes in complex urban domains, disregarding the effects of thermal
mass or fluid flow through urban canyons [34]. SOLENE computes the sky irradiance
(direct flux) and the sky vault (diffuse flux), as well as simulating their interaction with
the environment’s surfaces.[35]. The Rhinoceros 3D/Grasshopper native tool LADYBUG
models solar radiation in combination with energy daylight simulations, but due to the
computational complexity airflow and turbulence modelling is often not included, as is the
interaction with vegetation [36]. VTUF-3D on the other hand does model the interaction
of vegetation together with surface energy balance. However as with LADYBUG, airflow
and turbulence are not considered [37].

In 2021 a review was conducted that examined 130 peer-reviewed papers published
between 2006 and 2019 to investigate the use of urban climate models. The researchers
found that during this period, most studies had used the microclimate model ENVI-
met [38]. ENVI-met uses the dynamic coupling of heat transfer and vegetation with
atmospheric flow to simulate microclimates in complex urban environments [39]. Among
other things, temperature, wind speed and humidity as well as radiation exchange and
thermal conductivity of surfaces are calculated [40]. Applications of this model include

19

3. Related Work

studies on green roofs and facades in domains of size 40m × 40m [41] and 180m × 120m
[42], simulated at a resolution of one meter. Other research has analysed urban heat
mitigation potentials using a 400m × 400m domain with a resolution of two meters [43].
In all ENVI-met simulations a domain height of double the maximum building height
was chosen.

Due to limited computational power and memory, the maximum number of cells calculated
with ENVI-met is approximately 250m × 250m × 30m [44] and the simulation time is
limited to a 24 hour period. In addition, the model is only partially validated [40].
Furthermore, with ENVI-ment, it is possible to resolve the microscale, however, it is
not possible to include atmospheric forcing data using a downscaling approach from
mesoscale or macroscale simulations [45]. To make this possible, in 2019 the national
research programme Urban Climate Under Change [UC]2 extended the established PALM
climate model to work at an urban scale, with the ability to downscale to capture larger
effects [45]. In 2020, the resulting PALM-4U model was introduced [12]. Studies working
with PALM-4U simulate typical domain sizes of 400m × 256m [9] to 1km × 1km with a
resolution of one meter. The model is optimised for massively large parallel computers
with CPUs only, but can also run on local workstations. However, as mentioned in the
introduction, there it runs in serial mode with performance loss [14]. Typical simulation
run times for Windcomfort simulations with PALM-4U can be as long as 5 hours for a
domain size of 400m × 450m × 50m with a resolution of 1m running on an HPC (Levante)
with 300 cores for a six hours simulation. For a single workstation with 52 cores, a smaller
domain size of 320m × 320m × 80m and a resolution of 1m, a runtime of 14h hours is
suggested for three hours of simulation [46].

3.2 GPU-Accelerated Climate Modelling
GPUs have become an important solution for accelerating scientific applications. Two
main approaches have been adopted when working with climate models. To achieve
GPU runtime acceleration, firstly, the directive-based high-level programming paradigm
OpenACC is used [47, 48, 49, 17]. Research using this method mainly focusses on porting
an entire climate model to run on multiple CPUs and GPUs. The second method focusses
on a specific subsection of the climate model, exploring acceleration potential using
the low-level programming API CUDA to run mostly on one GPU [50, 51]. In a case
study, Norman et al. compared the two approaches using an atmospheric climate kernel.
They found that, although developing the OpenACC kernel is simpler, the CUDA kernel
achieved a better speed up compared to the CPU version [52].

In 2016 during the GPU Hackathon at TU Dresden/Forschungszentrum Jülich, Knoop et
al. [17] worked on a GPU-accelerated version of the PALM model core. Their goal was to
port the entire codebase of the model to the GPU using OpenACC and MPI + OpenMP,
increasing the computational power in small clusters. Their approach was similar to the
first method described above. They added OpenACC directives to the hotspot subroutines
throughout the codebase without changing the code structure, allowing the compiler to

20

3.3. Advanced GPU Methods

optimise existing loops. To transfer data to the GPU, the code blocks are wrapped in
data regions, with data automatically transferred at the start and end of each region. As
this data movement can be a bottleneck in GPU code, they attempted to minimise it
by merging data regions, but this was limited by the need for MPI communication to
exchange data between the different nodes of the cluster. In some cases CUDA-aware
MPI enabled them to transfer data directly between GPUs. However, they experienced
severe performance loss when the data were non-contiguous in memory, forcing them to
update the arrays on the CPU before sending them to the correct MPI rank. This was
the biggest bottleneck, which reduced the final speed up they had expected [17].

When porting the FFT pressure solver they utilised the functionality of the NVIDIA
C++ library cuFFT. As this library is not directly usable in Fortran they used the
Fortran 2003 bind feature and the intrinsic module ISO C BINDING. To replace the
original one-dimensional FFTs they created a cuFFTPlan1D and executed the forward
and backward transformation with the cuFFTExecD2Z and cuFFTExecZ2D command
[17].

With this method, they found a performance increase for up to ten CPU cores, with a
runtime improvement ranging between 4.5 and 1.5 times for the prognostic equations as
only a small amount of MPI calls are necessary in that section. However, they found
that their method did not improve the performance of the pressure solver as much as
expected. They only achieved a speed up of 1.5 times with a minimum of four cores,
and with eight cores, the performance of their implemented version was slower than that
of the CPU-based solver. They explained that this was due to the heavy optimisation
for HPC clusters. Overall, they achieved performance improvements, with a maximum
speed up of 2.3 times. The bottlenecks were MPI-heavy routines [17].

3.3 Advanced GPU Methods
As this study focusses on the pressure solver, This section provides information about the
state-of-the-art algorithms required for this purpose. The numerical methods for solving
the Poisson equation using Fast Fourier Transform (FFT) have long been developed
as described in Section 2.3 [29, 53] and can be separated into three distinct parts:
Transposition of a three-dimensional matrix, one-dimensional Fast Fourier Transforms
and a tridiagonal matrix solver. Significant effort has been invested in optimising the
algorithms involved, and with the rise of GPUs, the algorithms have also been adapted
to this architecture.

Fast Fourier Transformation

The FFT is a fundamental building block that has been applied in a wide range of scientific
and engineering disciplines. For that reason many different algorithms have been proposed
like the Cooley-Turkey algorithm [54], Temperton algorithm [55], Vector radix FFT
algorithm [56] and many more. Implementations and versions of these algorithms have

21

3. Related Work

also been applied to the GPU to accelerate the computation. One such implementation
is cuFFT, which is a state-of-the-art GPU-based FFT library provided by NVIDIA, with
an algorithm based on the Cooley-Turkey algorithm [nvidia_cuFFT_2025]. It can
be used to perform 1D, 2D and 3D FFTs and is optimised for GPUs. Several studies
have been conducted to analyse its performance and potential setup optimisations when
using cuFFT [57, 58, 59]. Recent studies have also attempted to utilise the tensor cores,
special-purpose processing units of the GPU, for FFT computations. Pisha and Ligowski
[60], Li et al. [61], and Durrani et al. [62] demonstrated tensor-core-based FFT methods
and achieved better performance than the cuFFT library. Despite this, these methods
have a number of drawbacks, such as limited accuracy [61] and supported vector size
[60, 62]. Consequently, a more universal solution is to use standard GPU cores. When
dealing with an array that exceeds the memory capacity of the GPU, two approaches
have been developed: hybrid methods that distribute the workload between the CPU and
GPU [63], and methods in which the GPU sequentially calculates 1D FFTs of sections of
the array [64].

3D Transposition

Based on the optimised two-dimensional out-of-place matrix transposition on the GPU
proposed by [65], which uses shared memory and padding to avoid bank conflicts, Jodra
et al. developed a version that can work in three dimensions [66]. Additionally, a library
named cuTT has been developed to handle tensor transposes, which can be applied for
tensor ranks ranging from 2 to 12 [67] and has since been integrated into the Tensor
Algebra Library TAL-SH [68]. If the GPU’s memory is not large enough to fit the entire
array, the transposition can be divided into memory chunks and calculated sequentially
by the GPU [64].

Tridiagonal System Solver

The acceleration potential of solving the tridiagonal system using NVIDIA GPUs has been
the focus of numerous studies. The state-of-the-art method for solving the tridiagonal
system is the Thomas algorithm [69]. However, different approaches have been explored
using other parallel algorithms such as Cyclic Reduction (CR) and Parallel Cyclic
Reduction (PCR) [70, 71, 72]. In the standard NVIDIA library cuSPARSE the function
cusparseSgtsv2StridedBatch is provided, making batch computation of a high number
of systems possible, using a combination of the CR and PCR algorithms. Compared to
the Thomas algorithm, these algorithms need more operations. Pedro et al. developed
an algorithm (cuThomasBatch) based on the Thomas algorithm [73] achieving better
performance compared to cusparseSgtsv2StridedBatch, which has consequently been
integrated into the cuSPARSE library as cusparseSgtsvInterleavedBatch [72].

22

3.4. Discussion and Gaps

3.4 Discussion and Gaps
A review of prior work in this field and state-of-the-art GPU methods suggests that the
current approach to accelerate the PALM climate model prioritises a simple, high-level
implementation of the entire code base when adapting for the GPU, potentially at the
cost of performance. The approach to optimise models for the GPU using the low-level
programming API CUDA, as describe in Section 3.2, has not yet been explored in the
context of the PALM model. Switching to CUDA enables the use of state-of-the-art GPU
techniques (3.3) with shared memory for example, which is inaccessible with OpenACC.
Additionally, based on the identified bottleneck in GPU optimisation by Knoop et al. [17],
this research changes the target architecture from a HPC cluster to a desktop workstation
to eliminate MPI communication entirely.

23

CHAPTER 4
Methods

This chapter describes the methodology that will be used to investigate the performance
gains of transitioning from the HPC-optimised pressure solver of the PALM model to
a GPU-based, single workstation-optimised version. The methodology is structured to
reflect the research questions set out in Chapter 1.

4.1 Research Design Overview
This study uses an experimental research design to explore the potential difference in
performance between an optimised single workstation GPU implementation integrated
into the scenarify framework and the baseline pressure solver of the PALM model. The
performance measures used in this research are:

• Speed Up, which measures the runtime acceleration achieved by the optimisation,
compared to the baseline implementation. It is defined as the ratio between median
CPU wall clock time of the baseline and the minimum of the optimised version.

• Validity, which measures the numerical accuracy of the implemented solver com-
pared to the baseline

• Memory Efficiency, which measured how much resources are need for the execu-
tion of the solver

Initially, the focus of the optimisation will be to identify structural changes made possible
by the transition to a new target architecture. This will include an initial clean-up of MPI
and cluster-specific code. Each section of the code will then be analysed and optimised
for the GPU. Additionally, a mixed-precision approach will be tested in which the GPU
code is executed in single precision. During this process, the speed up compared to the

25

4. Methods

original code will be calculated to identify effective optimisations. The profiling tools
Nsight Compute and Nsight Systems will be used to guide the optimisation process.

Once the optimisation process is complete, the performance of the optimised pressure
solver will be examined (RQ1). Then, the impact of the optimised module on the full
simulation runtime will be analysed (RQ2). Thirdly, the runtime of the individual
components of the pressure solver (such as the Fast Fourier Transform) will be evaluated
in isolation, compared to the baseline. This will make it possible to identify any
computational bottlenecks and analyse the effect of memory management (RQ3, RQ4).

As PALM is scientifically recognised and validated, the validity of the GPU execution
must also be guaranteed. To ensure this, the numerical error between the original pressure
solver and the GPU optimised version will be calculated as part of the performance
evaluation, to make sure that the achieved speed up did not compromise the validity.

As this research is the first step towards analysing the optimisation potential of the full
PALM-4U model for transitioning to a single workstation with a GPU, a high-level code
analysis of the full model will be conducted to answer the final research question (RQ5).

Each research question will be addressed by a corresponding experiment. The details
about the exact methodologies are described in Section 4.3.

4.2 Computational Environment Setup
The analysis will be performed on a desktop PC with 12 AMD Ryzen 9 7900X3D cores
running at 4.4 GHz and 64 GB of RAM. The GPU is a NVIDIA GeForce RTX 4070 Ti
SUPER with 8448 cores and 16 GB of memory. The theoretical peak performance of
the GPU for FP32 is 44.19 TFLOPS and 689.0 GFLOPS for FP64, which corresponds
to a ratio of 64:1. The code will be implemented using version 12.3 of the CUDA
Toolkit with GPU driver version 571.96. The CUDA code is compiled using compiler
flag use_fast_math.

As described in Section 3.3 the base algorithms used in the pressure solver have been
known and studied for years, with that come state-of-the-art methods and libraries that
can be used in any application. This section describes the libraries and external resources
that will be used in the implementation.

cuFFT

In this research the state-of-the-art GPU FFT library cuFFT can be used to compute the
FFTs needed for the solution of Equation 2.6. It is based on the Cooley–Tukey algorithm,
which is an O(n log n) algorithm. cuFFT can efficiently compute FFTs with various
input sizes, but the library is optimised for input sizes of the form 2a × 3b × 5c × 7d,
and generally performs better with smaller prime factors. Half, single, and double
precision are supported, but lower precision generally achieves higher performance. The
numerical error increases with log2(N), where N is the input size. In order to perform an

26

4.3. Experiment Design and Evaluation

FFT, a plan must be created to allocate space for the computations. In the worst case,
8 × batch × n0..nrank−1 elements are required, in the best case, 1 × batch × n0..nrank−1
elements are required. Here, nrank−1 represents the number of elements in each dimension
(rank) [74].

NVIDIA Nsight Suite

The NVIDIA Nsight Suite is a collection of developer tools that can be used to build,
debug, and profile applications. In this study, two tools from this suite are used: Nsight
Systems is a system-wide performance analysis tool [19]. It will be used throughout
the implementation process to visualise the application’s algorithms on a timeline,
thereby guiding the optimisation process. Nsight Compute will also be used during the
implementation, as it provides detailed performance metrics on a kernel-by-kernel basis
and generates a detailed report on the optimisation potential of each profiled kernel [20].

4.3 Experiment Design and Evaluation
This section describes the methods that will be used to evaluate the implemented pressure
solver in order to answer the set of research questions. Research question RQ1 focuses
on the effect of the transition to an optimised single workstation PC with GPU on
the performance. For that all three of the selected performance measures described
in Section 4.1 need to be addressed. The next three subsections (Subsection 4.3.1,
Subsection 4.3.2, Subsection 4.3.3) focus on each performance measure individually to
describe the methods that are going to be used to analyse the performance in order to
answer the formulated research question. To answer the research questions RQ2, RQ3
and RQ4, Subsection 4.3.1 explains how the speed up performance measure will be used
to identify the effect of the single module optimisation on the overall runtime of the
model (RQ2), the effects of memory management (RQ3) and possible bottlenecks (RQ4).
The methodology chosen to answer the final research question (RQ5) is described in
Subsection 4.3.4.

4.3.1 Speed Up Evaluation Methodology
The first of the three performance measures is speed up as it quantifies the difference
between the runtime of the optimised GPU module and the original PALM module. A
scalability analysis will be performed to gain a comprehensive understanding of how the
achieved runtime scales with increasing workload. For this reason, a variety of realistic
domain sizes will be analysed for the final application. These domain sizes range from a
base area of 50m × 50m to 1024m × 1024m and are chosen according to microclimate
studies described in Section 3.1. The scales can be grouped into three categories: Building,
Site/Block and Neighbourhood, according to definitions in Urban Design [75, 76]. As the
vertical extent should be at least twice the height of the tallest building, as outlined in
Section 3.1, a fixed vertical domain size of 128m is set. Since the GPU (Section 2.5) and
cuFFT (Section 4.2) achieve optimal performance when the computational domain sizes

27

4. Methods

are powers of two (i.e. 2x), the chosen domain sizes are a combination of domains that
meet this condition and those that do not. A grid spacing of 1m is chosen in all directions
for all domain sizes. Table 4.1 gives an overview of all the domain sizes selected for
analysis. The measurements are going to be conducted using the real-world topography
of Cologne in the scenarify framework, with a suitable location chosen for each domain
size.

Group Nx Ny Nz N
[m] [m] [m] [m3]

Building 50 50 128
64 64 128 219

Site/Block 100 100 128
128 128 128 221

Neighbourhood small 200 200 128
256 256 128 223

Neighbourhood medium 512 512 128 225

600 600 128
Neighbourhood large 1024 1024 128 227

Table 4.1: Table of the selected domain sizes for the speed up performance analysis.

To quantify the speed up, the wall clock time for both versions is going to be measured
using the PALM internal measurement system, which uses the Fortran intrinsic SYS-
TEM_CLOCK timing function. The measurements for the CPU and GPU versions are
both going to be taken inside the original Fortran code, such that the full execution time
of the module is measured. For the optimised GPU version this includes the calls to the
C bind-in functions and the copy of the data to the GPU. When timing CUDA programs
with a CPU measurement technique, it is important to ensure that the CPU and GPU
are synchronised before taking the measurement.

To get representative measurements in order to answer RQ1, the simulation will be run
five times for 10 seconds each in each domain, with a step size of 1 second. However,
as the CFL condition is used to adjust the internal time step size, the actual internal
calculated steps are expected to vary depending on domain size and topography. Due to
computational limitations, for the largest domain size of 1024m × 1024m × 128m, only 5
seconds are going to be calculated.

In order to answer RQ2, the impact of the optimisations on the overall runtime of a full
simulation step will be measured using the same timing framework as described above.
In the original sequentially executed implementation, the solving of the Poisson equation
accounts for 15% of a simulation step. The aim is to measure whether this percentage
can be reduced and what effect this would have on the overall runtime. This will provide

28

4.3. Experiment Design and Evaluation

insight into whether optimising one module can affect the overall simulation time. For
this analysis, a domain size of 512m × 512m × 128m is chosen.

Different operations are expected to be affected by GPU optimisations in different ways,
particularly communication operations between the GPU and CPU and computation
operations performed on the GPU. To isolate the effect of memory movement (RQ3)
and to identify possible bottlenecks (RQ4), the code is divided into four parts, which
are categorised based on the analysis in Section 2.4. The speed up will be analysed for
each operation category. Additionally, the percentage of execution time attributed to
each section will be compared between the original Fortran code and the optimised code.
The CPU measurement method described above will be used to measure the execution
times of the Fortran code, and CUDA events will be used to accurately measure the wall
clock of individual sections of the GPU code. This analysis will be conducted for the
representative domain size of 512m × 512m × 128m.

4.3.2 Methodology for Validity Assessment

As the aim of this research is to accelerate the runtime of the serial execution of the
scientifically validated PALM model without compromising accuracy, the numerical error
will be calculated to determine whether the implemented algorithm produces the same
results as the original Fortran-based version. For this purpose, the relative L2 norm error
is chosen. This error is calculated using Equation 4.1, where u is the result of the Fortran
code and ũ the result of the optimised C++ and CUDA code.

∥u − ũ∥2
∥u∥2

, ∥u∥2 =

⌜⃓⃓⎷ N∑︂
k=1

|uk|2. (4.1)

The error will be measured for the modified perturbation pressure at the end of the
Poisson solver, in order to analyse the numerical accuracy of the method for different
domain sizes and will be compared to the machine epsilon at the given precision. The
values for the machine epsilon can be seen in Table 4.2 [77].

Data Type Machine epsilon value
single precision 1.192093 × 10−7

double precision 2.220446 × 10−16

Table 4.2: Table of the used machine epsilon for comparison [77].

To quantify the immediate effect of the error in the pressure calculation on the velocity
output, the L2 error and the maximum pointwise difference will be calculated for wind
velocities u, v, w after 10 seconds of simulation time. As the velocity output is given in
single precision, only differences visible at that level of precision will be measured.

29

4. Methods

To ensure that the GPU-based pressure solver does not cause instability during longer
model runs, a ten hour simulation will be executed on a domain of size 128×128m×128m
due to computational limitations when running the non-optimised full model. If an error
in the pressure calculation results in an explosion in velocity, the CFL condition, which
ensures numerical stability, would reduce the size of PALM’s internal time step. For
this reason, the number of internal simulation steps will be counted and compared. The
resulting wind speed, as calculated with Equation 4.2, and the wind speed components
u, v, w, will then be compared to that of a model run with the original pressure solver.
Three statistical measures, taken from a paper by Resler et al. [78] in which PALM-4U
was validated against real-world observations, will be used as a reference when analysing
the effect of optimisations on model outputs: Normalized Mean Squared Error (NMSE),
Fractional Bias (FB), Pearson Correlation Coefficient (R).

X =
√︁

u2 + v2 + w2 (4.2)

FBX = 2 · XGPU32 − Xoriginal
XGPU32 + Xoriginal

(4.3)

NMSEX = (XGPU32 − Xoriginal)2

XGPU32 · Xoriginal
(4.4)

R = cov(XGPU32, Xoriginal)
σXGPU32 · σXoriginal

(4.5)

Here, XGPU32 denotes the optimised pressure solver run on the GPU in single precision,
while Xoriginal denotes the use of the original PALM pressure solver. X̄ indicates the
arithmetic mean.

4.3.3 Memory Profiling Methodology
Since GPUs have limited memory capacity, the memory footprint of the derived methods
is going to be analysed and compared to that of the original algorithm as part of the
performance comparison to answer research question RQ1.

As three-dimensional arrays set on the computational grid account for most of the
required memory, to estimate the memory footprint, the number of three-dimensional
arrays initialised and used in each method will be counted to calculate the memory
required per computational cell. As external libraries will be used in the GPU version,
the memory reserved for each function call is also taken into account. To put the memory
required by the Poisson solver into perspective, the amount of memory required by the
full PALM model will be calculated. To find the number of arrays, regex in combination
with Python will be used to identify all allocated unique three- or four- dimensional
arrays.

30

4.3. Experiment Design and Evaluation

4.3.4 Approach to Assessing Full Model Optimization Feasibility
In order to answer research question RQ5, the feasibility of full model optimisation will
be analysed. For that the characteristics of the pressure solver that led to its selection
for this research will be analysed for the full model and evaluated in the context of the
optimisation carried out.

The characteristics that will be analysed here can be divided into three categories:

• Connectivity

• Memory requirement

• HPC optimisations

The first category to be analysed is the dependency of the selected module on others with
regard to variables and methods. High connectivity means that, if not all computation is
performed on the GPU, a significant number of communication steps between the GPU
and CPU are necessary. In order to understand how the files are connected and which
modules use global arrays, all Fortran files in the codebase that are called during time
stepping will be analysed using Python in order to count the loaded modules. Particular
focus will be given to the 3D arrays module, as it includes arrays on the computational
grid, which are updated with each time step.

The next parameters to be analysed are the number of three- and four-dimensional arrays
used in each module. This analysis will provide insight into the memory footprint of each
module, since the arrays defined on the computational grid are the main contributor
to the required memory. These arrays can be categorised as either allocated inside the
module or loaded from the outside. This distinction will also help identify how many
arrays need to be copied to and from the GPU at each time step if the rest of the
model remains on the CPU, and how many temporary arrays the module requires for its
calculations.

The PALM codebase was originally designed to operate on HPC systems, using MPI
(Message Passing Interface) for inter-node communication. During integration into a
precompiled library for a single CPU system, these MPI calls will become obsolete
and can therefore be removed. Despite the removal of these MPI routines, the code’s
overall structure remains tailored to the HPC cluster, adding optimisation potential when
changing the target architecture. To identify routines involving MPI communication,
the original PALM source code will be analysed to provide an overview of MPI-heavy
routines by counting the number of times that CALL MPI is written in the code, as well
as the number of calls to the exchange boundaries module, for each file. As MPI barriers
can stall execution, they will be counted separately.

31

CHAPTER 5
Implementation

In this chapter the implementation details and the integration into scenarify framework
are given. First, the setup is explained, then, the optimisations made to the original code
to fit the new target architecture are described. Next, the preliminary implementation is
optimised step by step. As NVIDIA Nsight Compute was used to guide the optimisations,
the profiler results are presented to visualise the effect of the optimisations.

5.1 Setup
The setup can be separated into two sections, first it must be decided which parts of the
pressure solver are suitable for optimisation at this stage. Then the interface to combine
the optimised C++/CUDA code with the original FORTRAN code needs to be setup.

5.1.1 Intersection with Original Code
As the transfer between GPU and CPU is expensive, the goal is to adapt or replace as
much code as possible to enable an optimised GPU single desktop PC method for the
pressure solver. As the rest of the codebase will still reside on the CPU for now, it is
important to choose a fitting entry point for the optimisation of the pressure solver.

As described in Subsection 4.3.4, specific characteristics can be used to identify the
optimal intersection point for integration into the original code. To achieve this, the files
connected to the pressure solver are analysed. As for the FFT algorithm, cuFFT will
be used, the two files that compute the FFT with different algorithms are ignored here.
The results can be seen in Table 5.1.

From this analysis it can be seen that only file pre.f90 needs the globally allocated
arrays defined on the computational grid at each time step. File poisfft_mod.f90 is not
connected to the global 3D arrays and only needs one external array from pres.f90. The

33

5. Implementation

Filename connected
modules

uses
global
arrays

#
external
arrays

tem-
porary
arrays

MPI
calls

MPI
barriers

pres.f90 14 Yes 6 0 10 4
poisfft mod 9 No 1 7 1 0
transpose mod f90 3 No 2 0 8 8
fftx mod f90 8 No 5 0 0 0
tridia solver mod 7 at init 3 2 0 0

Table 5.1: Files connected to the FFT pressure solver, showing for each: the number of
loaded modules, whether the 3D Arrays module is included, the number of external three
or four dimensional arrays, the number of temporary arrays allocated and the number of
inter-node communication.

MPI communication steps are evenly distributed throughout the execution of the pressure
solver, creating regular barriers in the process indicating a code section that was heavily
optimised for a distributed computing system.

The pressure calculation starts as described in file pres.f90. However as this file has
a relatively high number of connected modules and needs multiple global arrays for
the calculation of the perturbation pressure, in the context of this research, this cal-
culation is kept on the CPU. Only the resulting array is copied to the GPU and
handed to the subroutine poisfft, which using transpos_mod.f90, fftx_mod.f90
and trifia_solver_mod.f9 solves the Poisson equation. This means that only one
array needs to be copied to and from the GPU at each time step. After solving the
Poisson equation, only one array is returned to the initial pressure file to apply the
boundary condition and continue with time stepping.

5.1.2 FORTRAN - C++ Integration
Since PALM is written in FORTRAN 90 and the objective is to optimise and adapt
it using CUDA C++, it was necessary to establish an interface that bridges the gap
between FORTRAN and CUDA C++. This work focusses on CUDA C++ and not
CUDA FORTRAN to explore optimisation opportunities, particularity because the target
architecture is Windows-based and the HPK-SDK Cuda FORTRAN Compiler is only
available for Linux-based systems. Additionally, the target application is a C++ codebase.
For this reason PALM is used as a pre-compiled Fortran library to allow for steering
from a C++ environment. The optimisations implemented are also written in C++ and
CUDA.

To achieve this interaction, multiple steps were performed. On the C++ side, a standard
function with the desired functionality was implemented. In the Algorithm 1, this
function is called FunctionInCpp. Additionally, a function pointer (setFunction)

34

5.1. Setup

was created to hold the address of the C++ function. As the subroutine is going to be
called from Fortran, a Fortran procedure pointer with the corresponding subroutine was
created with C binding to ensure C-compatible linkage. This can be seen in Algorithm
2 as native in lines 1–7. A second Fortran subroutine was created that can be called
from a C++ environment, accepting a C function pointer as input and assigning it to the
Fortran procedure pointer (SetCallback), using c_f_procpointer. To integrate
C++ and Fortran, the Fortran setter routine was loaded and called in C++, passing the
C++ function pointer. These steps are split into functions loadFunctionPointer
and setFunctionPointer in the Algorithm 1 [79]. This made it possible to test
different versions of the GPU code during the implementation process by simply setting
the function pointer to the desired version at runtime.

Algorithm 1 C++ Function Pointer Setup and Usage
Require: C++ function pointer setFunction
Require: Fortran binding function pointer externSetFunction
Require: C++ callback function FunctionInCpp
Require: Shared library handle lib

1: procedure loadFunctionPointer
2: setFunction ← reinterpret_cast<GetProcAddress(lib,
"externSetFunction")>

3: end procedure

4: procedure SetFunctionPointer
5: setFunction(FunctionInCpp)
6: end procedure

The C binding allows C-style pointers, which are initialised during PALM execution, to
be passed to C++ as input and output. However, variables that only need to exist in the
C++ context do not need to be exchanged and can be initialised in the C++ environment.
The same applies to CUDA arrays. This decoupling is necessary because the compiler used
to build the pre-compiled PALM library is not CUDA-compatible. A global namespace
has been created in which all C++-only arrays are initialised, eliminating the need to
allocate and deallocate CUDA arrays with each C++ function call. A visualisation can
be seen in Algorithm Figure 5.1.

With that, the full integration between Fortran and C++ was achieved, allowing for the
adaptation and optimisation of the selected section.

35

5. Implementation

Algorithm 2 Fortran Procedure Setup and Invocation
Require: Callback procedure native(array)
Require: Target array array(:,:,:)

1: PROCEDURE(native), POINTER :: callback
2: procedure native(array)
3: USE, INTRINSIC :: iso_c_binding
4: USE kinds
5: IMPLICIT NONE
6: REAL(wp), INTENT(INOUT), DIMENSION(*) :: array
7: end procedure

8: procedure SetCallback(new_callback)
9: bind(C, name="externSetFunction")

10: callback ← c_f_procpointer(new_callback)
11: end procedure

12: procedure Function(array)
13: call callback(array)
14: end procedure

Figure 5.1: Visualisation of the Fortran and C++ Integration process.

36

5.2. Preliminary Implementation

5.2 Preliminary Implementation
This analysis shifts the target architecture of PALM from high-performance computing
clusters to single desktop PC and GPU. The initial optimisations presented here focus
on parts of the code that have become redundant due to this shift in architecture, with
any function calls that were solely required for HPC execution having been removed.

When running the solver on an HPC cluster, the order of the array elements is important
for the efficiency of the MPI communication. For that reason the array elements originally
had to be rearranged before each transposition. However, as the full array now resides
on one node, these code sections are no longer necessary. Figure 5.2 shows the new code
structure. The crosses indicate the six dropped function calls used to rearrange the data,
as opposed to the structure shown in Figure 2.7.

Figure 5.2: The timeline shows the structure of the Poisson FFT solver. The greyed-out
blocks indicate the dropped function calls used to rearrange the data, as opposed to the
structure shown in Figure 2.7.

Following the initial modifications, a preliminary version was implemented by converting
several lines of Fortran code into C++ and CUDA. As this implementation only served as a
baseline, the original code was not optimised for the GPU. Except for the above-described
changes, its structure remains the same as that of the original Fortran implementation.

The right-hand side of Equation 2.6 is calculated in the Fortran code using the preliminary
velocities and copied to the GPU at the start and end of the method. The cuFFT library,
similar to the implementation of Knoop et al. [17], was used for the Fast Fourier
Transform. This involved creating a one-dimensional (1D) batched plan for each Fast
Fourier Transform (FFT) dimension (x and y) and direction (forward and inverse). All
the necessary information about the chosen transform is saved in each plan, such as the
domain size and batch size. These plans are executed at each time step, as shown in
Figure 5.2. After each forward FFT, the resulting complex array must be converted to
real numbers, and before each inverse FFT, it must be converted to complex numbers. A
custom CUDA kernel was implemented for this purpose, translating the original loop

37

5. Implementation

into CUDA code. As Jodra et al. concluded that although the cuFFT library has the
option to perform FFTs on non-contiguous array elements, it is more efficient to use
batched one-dimensional FFTs on contiguous data with optimised three-dimensional
transpositions in-between, this approach was chosen [80]. The necessary transpositions
were implemented as CUDA kernels, however in the initial implementation not GPU
optimised. Finally the tridiagonal solver was translated to GPU code.

5.3 Data Types and Memory Optimization

The GPU architecture has been optimised for specific data types, and the device memory
is limited. This section details the optimisations made to the initial implementation in
order to account for this.

5.3.1 Enabling Float Support

The PALM model system, as it is used in the C++ interface, can only be run in double
precision without substantial changes throughout the model system, which is outside
the scope of this study. However, as described in Section 2.5 and Section 4.2, the GPU
hardware and with it cuFFT is much better optimised for single precision. For this reason,
the first optimisation involved enabling single precision calculations for the Poisson solver
on the GPU. This was achieved by casting the array elements from double to single
precision at each time step, and then back again after the GPU section had finished and
the array was handed back to PALM. All functions that are executed on the GPU are
templated so that they are compatible with both types. Each subsequent implementation
was run and analysed in both single and double precision.

To convert from double to float, the input array is cast on the CPU using OpenMP to
enable parallel computation. Although a CUDA kernel could perform naive casting with
higher parallelism, this approach was chosen because it reduces the number of bytes
transferred between the host and the device at each time step, halving the required transfer
time. Additionally, if the calculation is performed using single-precision arithmetic, less
memory needs to be allocated to the GPU, since no additional array of doubles is required
on the device, aside from the single-precision array.

To accelerate memory transfer further, the array is cast onto a page-locked, pinned
memory array. As described in Section 2.5, copying memory from a page-locked position
is faster compared to pageable memory and the transfer can be executed asynchronously,
enabling the CPU computation and the copying process to overlap. This effect is visualised
in Figure 5.3. The first line shows a synchronous execution, where the light grey area
represents the casting operation on the CPU and the dark block represents the memory
transfer, which is divided into the transfer to the page-locked memory buffer (black)
and the transfer to the device (pink). In asynchronous execution, the copy to the buffer
as part of the copying process can be skipped, as the data are already cast in pinned

38

5.3. Data Types and Memory Optimization

memory and with that, cast and copy can overlap. 3 shows dummy code that explains
the process.

Figure 5.3: A comparison of synchronous and asynchronous execution. In the synchronous
case (top), the light grey block represents the casting operation on the CPU, followed
by a memory transfer to a page-locked (pinned) memory buffer (black) and then to the
device (pink). In the asynchronous case (bottom), the casting operation occurs directly in
the pinned memory. This allows the casting and memory transfer to overlap, eliminating
the intermediate copy step.

Algorithm 3 Cast and Copy to GPU
Require: Nx, Ny, Nz
Ensure: Processed data on deviceSamples

1:
2: N ← Nx × Ny × Nz
3: sectionSize ←

⌈︂
N

numSections

⌉︂
4:
5: for s = 0 to numSections - 1 do
6: offset ← s × sectionSize
7: correctSize ← min(sectionSize, N − offset)
8: Convert samples[globalIdx + j] for j = 0 to correctSize − 1
9: Asynch. copy samplesFP32[offset] to deviceSamples[offset + correctSize]

10: end for

5.3.2 Memory Optimisations
The first implementation revealed two primary contributors to the memory consumption
of the method. Methods to address and minimise their needed memory are discussed in
this section.

Firstly, following the architectural shift, extensive temporary memory allocations were no
longer necessary. The extra memory was only required when the array was split between
different nodes in an HPC cluster, with each node processing arrays of different sizes
depending on the coordinate permutation. However, as the aim was to optimise the solver
for a single node, the entire three-dimensional array is now stored as a single, flattened

39

5. Implementation

one-dimensional array. This means that the memory requirement does not change with
each transposition and that a single temporary array can be used for all out-of-place
transpositions, or whenever a temporary array is needed in the new implementation.

Secondly, in the initial implementation, a cuFFT plan is created for each version of
the Fast Fourier Transform (FFT) that needs to be executed. At the initiation of the
plan, each cuFFT plan allocates the memory space required for that specific Fast Fourier
Transform during execution. This memory space can range from one to eight times
the size of the input array, as described in Section 4.2, but it is only used during the
computation of that specific FFT plan. To reduce the memory footprint of the FFT
calculation, it is possible to point all four required cuFFT plans to the same workspace,
thus reducing the allocated memory by a factor of four. This is possible because the
plans are only ever called in sequence. The optimisation is implemented using the cuFFT
API, as shown in 4 [74].

Algorithm 4 Optimized cuFFT Plan Initialization
Require: Nx, Ny, Nz

1: // Create plans and disable auto allocation
2: for all plan in plans do
3: cuFFTCreate(plan)
4: cuFFTSetAutoAllocation(*plan, 0)
5: cuFFTMakePlan(plan, ..., size)
6: end for
7: // Find maximum workspace size and allocate once
8: workSize ← max(size for all plans)
9: cudaMalloc(&workArea, workSize)

10: // Assign the same pointer to all plans
11: for all plan in plans do
12: cuFFTSetWorkArea(*plan, &workArea)
13: end for

5.4 Algorithmic Optimization for GPU
This section provides an overview of the optimisation of individual operations. It starts
with the optimisation of the pre- and post-processing kernel, where a change in parallelism
granularity was performed to increase performance. Next, the optimised transposition
algorithm, implemented based on methods described in the literature, is presented. The
final subsection outlines the optimisation process of the tridiagonal matrix solver.

5.4.1 Pre-Processing and Post-Processing Acceleration
After each forward Fast Fourier Transform (FFT) and before each inverse FFT, the array
must be converted from real to complex, or vice versa. In the initial implementation, the

40

5.4. Algorithmic Optimization for GPU

original OpenMP-accelerated sorting loop was converted to CUDA, without adapting for
that architecture. This means each thread sorted one full row. However, this approach
restricts the number of CUDA threads that can be utilised to the size of the batch,
significantly limiting parallelisability and, consequently, the achievable performance.

To optimise this kernel, a new method was developed where each thread moves a single
array element, rather than a full row, from its original position to its new position in the
array. This technique utilises parallelisation capabilities of the GPU by creating an equal
number of threads to the elements of the input array, which then work in parallel. The
algorithm, shown in 5, illustrates how real values are assigned to the correct locations
in the complex array. Figure 5.4 shows a visualisation of the variables used. First, the
thread index is calculated. From this and the size of each block, the index of the element
in the block and the index of the block itself can be calculated. These can then be used
to determine the correct location to which the current element needs to be moved. As
the values are complex conjugate pairs, the complex part of the array is sorted from the
end of each batch.

Figure 5.4: Visualisation of the variable definitions used in 5. The figure on the left
shows the complex number resulting from a forward fast Fourier transform (FFT), or the
pre-processed input for an inverse FFT. The figure on the right shows the real number
after post-processing, or before pre-processing.

41

5. Implementation

Algorithm 5 createComplexData
Require: complexDevice, realDevice, batches, elementsInBatch

1: idx ← threadIdx.x + blockIdx.x × blockDim.x
2: blockSize ← elementsInBatch

2 + 1
3: // if idx in the first section = real values
4: if idx < batches × blockSize then
5: elementInBlock ← ⌊idx/elementsInBatch⌋
6: blockId ← ⌊idx/elementsInBatch⌋
7: if elementInBlock < blockSize then
8: idxReal ← elementInBlock + blockSize × blockId
9: complexDevice[idxReal].x ← realDevice[idx]

10: else
11: idxComplex ← elementsInBatch − elementInBlock + blockSize × blockId
12: complexDevice[idxComplex].y ← realDevice[idx]
13: end if
14: end if

Nsight Compute was used to profile the initial and the optimised kernel to compare
their performance. The results of the runtime comparison are shown in Table 5.2. As
the primary function of the kernel is to rearrange data, this results in high memory
traffic and relatively low arithmetic intensity, which leads to both versions of the kernel
being memory-bound. However, the new kernel achieves a higher compute throughput.
Additionally, depending on domain size, the new version allows for an approximately
99% increase in the number of threads launched. Overall, the new version delivers a clear
performance increase, achieving a maximum speed up of up to 6.4 times.

Function Initial [ms] New [ms] speed up (×)
Postprocessing

FP32 2.02 0.39 5.2
FP64 2.62±0.13 1.26±0.2 2.1

Preprocessing
FP32 2.61±0.4 0.41 6.4
FP64 2.05±0.1 0.84±0.01 2.4

Table 5.2: Comparison of performance metrics between old and new implementations for
FP32 and FP64 precision.

5.4.2 Transpose Optimization
In the preliminary implementation described in Section 5.2, the transposition kernel was
implemented without taking the GPU architecture into account. This section describes

42

5.4. Algorithmic Optimization for GPU

how it was adapted for GPU implementation. Previous works by Jodra et al. [66] and
Ruetsch and Micikevicius [81] were used as a guide for a custom reimplementation.

Transpositions are defined as permutations of the x, y and z axes of the array. There
are six possible permutations for a 3D array, which can be grouped into three cate-
gories. The trivial identity permutation (T (A) = A), three involution transpositions
(Txyz(Tyxz/xzy/zyx(A)) = A) and two rotation transpositions (Txyz(Tzxy(Tyzx(A))) = A,
Txyz(Tyzx(Tzxy(A))) = A) [66]. Two types of transposition, both falling into the category
of involution transpositions, are required for the pressure solver of PALM, they can be
seen in Figure 5.5.

Figure 5.5: Figure of the two needed involution transpositions of the three-dimensional
array.

Ruetsch and Micikevicius describe an optimised transposition method for two-dimensional
matrices, the principles of which can be applied to three-dimensional arrays [81]. This
proposed optimised 2D matrix transposition method exploits the knowledge of the GPU
architecture to optimise the kernels for coalesced global memory access. More specifically,
the method decomposes the matrix into square shared memory tiles that are used as
temporary memory within a thread block. Threads read coalesced from global memory
and write into the rows of the shared memory tile. When a thread block has completed
this first sweep, threads read columns from shared memory to write them back to the
new location in global memory, again in a coalesced manner. However, with square tiles
this leads to memory bank conflicts when a number of threads want to access a column
of the shared memory at the same time. To avoid this, padding the memory tile was
proposed and the dimension of the tile changed to 32 × (32 + 1) [81].

Since three-dimensional involution transpositions can also be seen as transpositions of a set
of two-dimensional planes, the principles of Ruetsch and Micikevicius’s two-dimensional
matrix transposition can be applied [66]. The algorithm can be seen in pseudocode in 6.
Figure 5.6 visualizes how each plane can be placed inside the three-dimensional array.
The difference between this execution and the previous work described is that compared
to works which only benchmarked cubic matrices, this work deals with mainly cuboids
matrices as the vertical dimension is mostly smaller than the two horizontal dimensions.

43

5. Implementation

Figure 5.6: Figure visualising the three-dimensional transposition algorithm, using a
shared memory tile with padding.

Algorithm 6 Transpose_xyz2yxz
Require: idata: 3D input array (x, y, z)
Ensure: odata: 3D output array (y, x, z)

1: Allocate tile[TILE_DIM][TILE_DIM+1] in shared memory
2: Compute index_in, index_out from thread and block indices
3:
4: val ← 0
5: if access is valid then
6: val ← idata[index_in]
7: end if
8: tile[threadIdx.y][threadIdx.x] ← val
9:

10: __syncthreads()
11:
12: if access is valid then
13: odata[index_out] ← tile[threadIdx.x][threadIdx.y]
14: end if

To see if the optimisation has had any effect Nsight Compute was used, the resulting
calculated speed up is shown in Table 5.3. Although the new version has an increased
amount of shared memory, which limits the ’occupancy’ of the kernels, it performs
better due to improvements in memory access and the absence of bank conflicts. As the
implemented transposition kernel is optimised for memory access in single precision, the
transposition time for both required involution transpositions could be nearly halved.

During the implementation process the cuTT library, which is briefly mentioned in

44

5.4. Algorithmic Optimization for GPU

Function Initial [ms] New [ms] speed up (×)
xyz2yxz

FP32 0.84 0.47 1.8
FP64 0.84±0.01 0.83±0.01 1.01

xyz2zyx
FP32 0.83±0.1 0.49 1.7
FP64 1±0.1 0.84±0.01 1.2

Table 5.3: Comparison of performance between old and new implementations of the
transposition kernels for FP32 and FP64 precision.

Section 3.3, was tested, however using NVIDIA Nsight it was found that before each call
the kernel called a preprocessor which degrades performance.

5.4.3 Tridiagonal Solver GPU Adaptation

In PALM to solve the tridiagonal matrix the Thomas algorithm was chosen. In the pre-
liminary implementation the standard Thomas algorithm which pre-computes coefficients
was implemented for the GPU. To make sure that this was the optimal solver different
implementations were tested. As described in Section 3.3 the NVIDIA linear algebra
library for sparse matrices called cuSPARSE includes an optimized Thomas algorithm for
GPUs called cuThomas first presented by Valero-Lara et al. [73] as well as an algorithm
using Cyclic Reduction and Parallel Cyclic Reduction [72].

Both algorithms were tested in batch mode. As cuThomas needs fewer internal steps it
performed better than the CR/PCR in a comparison of single batch execution. Yet this
algorithm overwrites part of the tridiagonal matrix with each function call which must
be reset during each time step. Consequently, it is not suitable for repeated usage with
a fixed tridiagonal matrix, such as in the Poisson solver implemented in this research.
Additionally, as neither algorithm was optimised to work with constant upper and lower
diagonals for each equation, but rather with different tridiagonal matrices, both had
a larger memory footprint than the initially implemented kernel. Furthermore, both
versions performed the same as or worse than the custom kernel.

For this reason, the self-implemented Thomas algorithm kernel, which is derived from the
original PALM Fortran function was chosen for the GPU-optimised version. However as
the array now resides entirely on the GPU, the structure around the Thomas algorithm
could be adapted to exploit this. In the original implementation, the coefficients of
the Thomas algorithm are initialised with x in the leading dimension. This means
that the Fourier-transformed array must be transposed before the tridiagonal solver is
applied, and transposed back afterwards. These transpositions could be eliminated by
adapting the Thomas algorithm to work with y in the leading dimension. Based on the

45

5. Implementation

initial implementation, this structural change made it possible to reduce the number of
transposition operations from six to four.

5.5 Resulting Structure and Limitations
The final pipeline of the optimised FFT-based Poisson pressure solver can be seen in
Figure 5.7. The greyed-out blocks indicate code elements that could be eliminated
during the transition from the HPC-optimised code to an optimised version for a single
workstation combined with a GPU. More than 40% of the original number of steps could
be removed, ignoring the initial and final memory transactions, this translates to only
53% of the steps remaining in the optimised version.

Figure 5.7: The solver structure of the GPU and standard workstation implementation
after the changes for the new architecture.

To see how this optimisation fits into the otherwise unchanged PALM model code,
Table 5.4 shows all the files connected to the FFT pressure solver and the extent to which
they were altered by the optimisations presented in this research.

Filename Not Changed Adapted Replaced
pres.f90 X
poisfft_mod.f90 X
transpose_mod.f90 X
tridia_solver_mod.f90 X
fft_xy.f90 X
temperton_fft_mod.f90 X
singleton_mod.f90 X

Table 5.4: This Table summarises the extent to which the files required for the FFT-based
pressure calculation during time stepping were altered during optimisation.

46

5.5. Resulting Structure and Limitations

As can be seen in Table 5.4, none of the files called by the Poisson FFT steering file
(poisfft_mod.f90) are used in the new implementation. The Poisson FFT steering file
itself has been adapted to call only C++ and CUDA functions. Only the pres.f90 file was
not altered. As described in Subsection 5.1.1, this intersection point was chosen because
many external 3D arrays are required in this file for the calculation of the wind velocities
from the perturbation pressure using Equation 2.4. If more of the PALM model would
reside on the GPU, optimising and replacing this file would be the next step.

47

CHAPTER 6
Results

This chapter presents the benchmarking and the evaluation results of the implemented
solver, based on the methodologies described in Section 4.3. It begins with a scalability
analysis, examining the speed up achieved with this new method in three stages. This
is followed by a validation of the results. Then, the memory footprint of the optimised
version is compared to the original implementation. Finally the results of the full model
analysis are presented.

As described in Chapter 4, a range of domain sizes and locations in the city of Cologne
was selected for a representative analysis. These variations enabled the solver to be tested
under different conditions. Figure 6.1 shows exemplary simulation results for different
domain sizes and their locations, visualising the resulting wind velocities.

6.1 Speed Up Analysis
This section presents the results of the performance analysis, it is split into three sections.
First, the results of the scalability analysis of the achieved speed up are presented. Next,
the impact of the optimisations on various sections of the code is examined. Finally, the
impact of the pressure solver speed up on the full model run is analysed.

6.1.1 Scalability Analysis
Figure 6.2 shows the performance of the FFT pressure solver, which has been optimised
for a single desktop PC and GPU, compared to the original serial PALM execution. The
y-axis displays the speed up of the measured wall clock time relative to the baseline
execution. A speed up of one is indicated by a dashed line, showing an execution time
identical to that of the original PALM version. The x-axis shows different domain sizes
spanning multiple orders of magnitude. At the bottom, the number of cells in the
complete domain is shown. As only square domains were chosen for this analysis, the

49

6. Results

(a) Quartier am Gustav Heinemann Ufer Cologne - Domain 256 m × 256 m.

(b) Mainzer Street to "Die Bottmühle" Cologne - Domain 512 m × 512 m.

Figure 6.1: Two exemplary simulation domains are shown, where colours indicate wind
velocity ranging from nearly zero, shown in green, over yellow and orange to blue, which
indicates 50 per cent of the maximum simulated velocity. Velocities that exceed this
threshold are not displayed.

50

6.1. Speed Up Analysis

x-axis at the top of the Figure shows the number of cells in the horizontal dimension,
which spans from 50m to 1024m. The maximum domain size for the interactive simulation
in the ClimaSense module is 1024m × 1024m, and larger sizes are deemed irrelevant. The
exact dimensions chosen are summarised in Subsection 4.3.1. The colours indicate the
calculation precision of the optimised version. Blue represents the speed up of the single
precision GPU calculation, including casting and copying. Orange indicates the speed
up when running the GPU version in double precision. Again, the wall clock time was
measured, which includes the time taken to copy the needed memory to the GPU. The
line style shows the type of domain size analysed: solid lines show domain sizes chosen
to optimally fit the memory architecture of the GPU and dashed lines show the results
of the model run on domain sizes not subject to this restriction. Thus, four different
scaling benchmarks are displayed.

Figure 6.2: This Figure shows the results of the scalability analysis. Colours indicate the
used date type and line style the domain type.

As can be seen in Figure 6.2, for all domain sizes and data types, the optimised version
for the target architecture and GPU achieves a speed up compared to the baseline PALM
implementation. For all domain sizes, the single precision calculation performed better
than the double precision calculation. Additionally, for all tested domain sizes and both
data types, simulations with the optimised domain size performed better than simulations
on a non-GPU-optimised grid. Furthermore, for all tested domain sizes, simulations using
single precision with edge lengths not divisible by 32 performed better than those using
restricted, optimised domain sizes in double precision. The speed up is smallest for the
smallest tested domain size and increases afterwards for all combinations.

Table 6.1 shows the maximum speed up over the baseline implementation achieved for

51

6. Results

Precision Domain Type Max. speed up (×)
FP32 N = 2x 65.4
FP32 N ̸= 2x 50.6
FP64 N = 2x 49.3
FP64 N ̸= 2x 33.1

Table 6.1: The maximum achieved speed up compared to the original PALM implemen-
tation is shown for all combinations of precision and domain type.

each combination. The best overall performance was achieved with single precision runs
and domain sizes that optimally fit the GPU. With this combination, a maximum speed
up of 65.4 times was measured compared to the original sequential PALM execution.
Next is the single precision execution with N ̸= 2x, achieving a maximum speed up of
50.6 times. The simulations in double precision then follow, with speed ups of 49.3 times
and 33.1 times respectively.

6.1.2 Performance Comparison of Key Operations
As described in the Section 2.4 the operation of the Poisson FFT pressure solver can be
categorised into four parts: memory operation including casting, operations connected
to the three-dimensional matrix transposition, operations connected to the FFT and
finally the tridiagonal matrix solver. In this section the effect of the optimisations on the
different categories are presented. This analysis was done on the representative domain
size of 512m × 512m × 128m.

Figure 6.3 illustrates the percentage of each category of operations in the simulation for
the original PALM solver and the single and double precision optimised versions. In the
original version, 67.5% of the execution time can be attributed to operations connected
to the transposition operations. The next largest section, accounting for 24%, is the
execution of the FFT. The Thomas algorithm accounts for 7.5% of the execution time.
Memory operations and other set-up tasks, such as the allocation and deallocation of
temporary arrays, make up the smallest section at 1%.

Even though only one array needs to be copied to and from the GPU for the optimised
execution, this section accounts for the largest proportion of the optimised version in both
single and double precision. It was found that 67.2% of the single precision execution
was taken up by the memory copy to the GPU and the casting from double to floats.
The copying process takes 55.9% of the double precision execution. The FFT is second
most expensive operation for both data types, however the percentage is much smaller
for single precision than double precision. Transpositions, which account for more than
half of the original execution time, only run for 11.7% and 7.7% of the execution time in
the optimised cases. This was expected, as during optimisation for the single desktop PC,
many of the function calls connected to transposition could be removed. The smallest

52

6.1. Speed Up Analysis

Figure 6.3: Visualisation showing the proportion of execution time for each of the four
operation categories of the solver.

section, accounting for only 5.7% or 4.5%, is attributed to the Thomas algorithm.

Operation speed up (×) Relative speed up
FP32 FP64 FP64/FP32

Transpose 546 324 1.7
Fast Fourier Transform 148 27 5.4
Thomas algorithm 115 57 2
Memory operations 1.7 0.67 2.1

Table 6.2: Speed up of the execution time for each of the four operation categories of the
solver.

Table 6.2 shows the calculated speed up for each category. As could be expected from
Figure 6.3, the biggest speed up was found for the transpositions, where a speed up of
up to 546 times was measured. The biggest difference in speed up between single and
double precision was in the FFT category, where the speed up was measured to be 148
times for single precision and 27 times for double precision. This was to be expected,
given that the library used is optimised to work with floats. The GPU version of the
Thomas algorithm shows a speed up of 115 times for single precision and 57 times for
double precision. The smallest difference between the original and the GPU version was
found in the memory operations category, with a speed up of 1.7 times for the single
precision and a speed up of 0.67 for double precision. This demonstrates on the one hand
that the the setup and deallocation of the six necessary temporary arrays that happen
each time step in the initial implementation is slower than the copying process of one
array to the GPU in single precision. On the other hand it shows that despite the need

53

6. Results

Figure 6.4: Visualisation of the proportion of execution time for the operation categories
of the solver, without taking memory management into account.

for an additional casting step to calculate in single precision, the entire copying process
is still faster than the double precision copying process.

Comparing the execution times of the solver ignoring the CPU/GPU interactions and
precision changes can provide insight into the potential speed up between Fortran-based
CPU and GPU execution. This assumes that the entire simulation would run on the
GPU, with no memory copying necessary, and that there would be no limitations on
GPU memory space. As memory was only a minor factor in the original PALM execution,
Figure 6.4 shows that this chart stayed similar to the one in Figure 6.3. Excluding
memory operations, 46.8% of the GPU execution time can now be attributed to the FFT
category in the single precision case and 72.3% in the double precision case. Table 6.3
compares the speed up calculated using wall clock time with that calculated using only the
time taken for mathematical operations. In the single precision case, the time taken for
memory copying and casting between floats and doubles cannot be separated. Therefore,
the shown speed up of 191.7 times compares the original double precision execution
on a CPU with the single precision execution on a GPU. However, as the difference
in performance between single and double precision on CPUs is much smaller than on
GPUs, this can still provide valuable insight. As the ratio of FP32 to FP64 performance
on CPUs is typically 2:1 [82, 83] compared to 64:1 on GPUs, the speed up compared
to the original PALM execution using floating point can be calculated to be at least
95 times, if a perfect 2:1 ratio compared to the double precision time would occur in
the original PALM execution. Ignoring memory operations, the speed up for the double
precision execution would be 91.9 times.

54

6.1. Speed Up Analysis

Precision Domain type speed up (×) speed up w/o
cast+memcopy (×)

single N = 2x 65.2 190.1
double N = 2x 46.3 91.9

Table 6.3: Comparison of the wall clock time speed up to the theoretical speed up if
memory transactions were excluded.

6.1.3 Evaluating the Global Effect
The effect of the time improvement of the pressure solver in context of the overall
simulation is shown in Figure 6.5. To quantify the relative change of the execution time
the x-axis shows the simulation time in percent of the original PALM execution. For this
analysis the representative domain size of 512m × 512m × 128m was chosen.

As described by Amdahl’s law, the speedup is limited by the fraction of the code that can
be parallelised, as can be seen in Equation 6.1. Here, s is the fraction of the code that is
run in serial mode, and p is the fraction that is run in parallel on n processors [84].

Speedup = 1
s + p

N

with s + p = 1 (6.1)

As stated in Section 6.4, in the original PALM implementation run in serial mode during
each time step 15.1% of the runtime are spent on solving the pressure Poisson equation,
this percentage could be reduced to 0.3% for FP32 and 0.4% for FP64. The simulation
time was reduced by around 15%, meaning the single precision calculation with the
optimised version took 85.2% of the original time, while the double precision version took
85.3%.

Figure 6.5: Figure showing the global effect in simulation time with the optimisations
made.

55

6. Results

6.2 Validity Evaluation
This section presents the results of the validity evaluation described in Subsection 4.3.2.
First, the numerical accuracy of the implemented algorithm is presented, then the effect
of the new implementation on the resulting velocities is shown.

6.2.1 Numerical Error of Pressure Solver
Figure 6.6 shows the different domain sizes on the x-axis. The same optimised domain
sizes chosen for the performance evaluation were used here. The y-axis shows the relative
L2 norm error. The colour of the line corresponds to the data precision used during
execution. The dashed line shows the corresponding machine precision for single and
double precision.

It can be seen that the error depends on the precision used in the calculation. If the set-up
of the solver is used from the original model the results of the double and single precision
implementations are the same as the original implementation up to the corresponding
machine precision. When the discrete Laplacian matrix is set up in double precision
using CUDA, the double-precision pressure calculation shows a normalised L2 error of
10−11, while the single-precision calculation is minimally affected.

Figure 6.6: Numerical accuracy of the implemented Poisson solver, executed in single
and double precision. The dashed lines correspond to the machine epsilon.

6.2.2 Impact on Wind Speed
To evaluate the immediate effect of the numerical error in the pressure calculation on the
resulting wind speed, as described in Subsection 4.3.2 the relative L2 norm error and the

56

6.2. Validity Evaluation

maximum pointwise difference between two coordinate points were calculated between
the wind speed output of a ten second simulation with the optimised pressure solver and
with the original solver. The results are shown in Table 6.4. A dash indicates that no
measurable difference was found. Overall, it can be concluded that keeping the optimised
pressure calculation in double precision has no effect on the final result. However, if the
pressure calculation is performed using the optimised single precision, the relative L2

error is in the order of 10−8, with a maximum difference in the last digit. The relative
L2 error and the pointwise difference appeared to increase in proportion to the domain
size. However a different topography was used for each domain size which could have an
influenced on the accuracy.

Domain Size Relative L2 Norm Error Max. Difference
Nx N FP32 FP64 FP32 FP64

64 219 3.02e-08 - 1.00e-06 -
128 221 8.85e-08 - 2.00e-06 -
256 223 8.33e-08 - 5.00e-06 -
512 225 8.67e-08 - 7.60e-05 -

Table 6.4: Comparison of the effect of error in the pressure calculation in the single
precision output of the velocities (u, v, w).

6.2.3 Error Propagation and Simulation Stability
To evaluate the effect of the numerical error resulting from the mixed-precision approach
on the wind speed a ten hour simulation was evaluated. Since the CFL condition can
reduce the step size when instabilities occur, the number of internal simulation steps
provides an initial indication of the stability of the model. It was found that, in the
ten-hour simulation, the number of internal time steps adjusted according to the CFL
condition differed by less than 1% from one another. The exact numbers can be seen in
Table 6.5.

Internal Steps
PALM 45 760
PALM + optimised pressure solver (FP32) 45 672
PALM + optimised pressure solver (FP64) 45 345

Table 6.5: Resulting number of internal steps after a 10 hours simulation on a 128m ×
128m × 128m domain.

As described in Subsection 4.3.2 three error measures were calculated for the wind speed
and the individual wind speed components and can be seen in Table 6.6. For comparison,

57

6. Results

the same measures from a validity study of PALM-4U wind speed at a location in Prague
with a domain size of 1400m×1400m×256m and a resolution of 2m [78] can be seen next
to it. After ten hours of simulation time (over 45 thousand steps), the optimised pressure
solver produced wind speeds for which the mean squared difference between the baseline
and the optimised versions are less than 5% of the product of their means. Furthermore,
the wind speeds showed a near-zero bias as a result of the optimised pressure solver.
The R coefficient also indicates a good pattern match between the model runs. The
simulation was run using both the FORTRAN and GPU setups. However, the error does
not depend on whether the setup was executed in the original code or on the GPU in
double precision.

Metric
Wind speed Wind speed components Reference

FP32 FP64 FP32 FP64 Value

NMSE 0.01 0.01 | 0.01 0.03 0.03 | 0.05 1.0
FB -0.01 -0.02 | -0.02 -0.01 -0.02 | -0.01 0.5
R 0.93 0.94 | 0.95 0.98 0.98 | 0.98 0.5

Table 6.6: Statistical performance metrics comparing wind speeds after a 10-hour simula-
tion of the original PALM model with those resulting from the optimised pressure solver:
Normalized Mean Squared Error (NMSE), Fractional Bias (FB), Pearson Correlation
Coefficient (R). The second value in the FP64 columns show the simulation results when
using the FORTRAN initialised discrete Laplacian matrix. The reference value indicates
the difference between PALM-4U and observations in a validation study [78].

6.3 Memory Profiling
This section presents the results of the memory analysis. As described in Subsection 4.3.3,
to approximate the required memory, the number of arrays defined on the computational
grid were counted, as these are responsible for the majority of the used memory. The
requirements of the original double precision pressure solver are compared to those of
the single- and double precision optimised solvers presented in this research. For GPU
versions, the original CPU array copied to the GPU is counted as one array because it
represents the same array in two memory locations: CPU and GPU memory. In a fully
GPU-based implementation, only one of these memories would be required. The results
are summarised in Table 6.7.

In the original solver, eleven arrays are necessary, more than half of which can be assigned
to temporary arrays for transposition. To compute and save the coefficients for the
Thomas algorithm, three arrays are necessary, making use of the fact that the upper and
lower diagonal values are the same for every equation. An additional temporary array
is allocated to run the Thomas algorithm. The final arrays required are the input and

58

6.3. Memory Profiling

output arrays. As described in Chapter 5, the number of temporary arrays required has
been reduced in the new versions. In both optimised options, one real-valued and one
complex temporary array are needed, and these are used throughout each method. As
the generic temporary array can also be reused in the tridiagonal solver, the memory
requirement for this section could also be reduced compared to that for the original solver.
In the single precision version, a second input array is required on the CPU to convert
the incoming doubles to floats, this array differs from the original input array and must
be taken into account. With the described memory optimisations for cuFFT, the library
only needs one array as a workspace.

Implementation Variant Number of
3D Arrays

Numerical
Precision

Memory
per Cell
[bytes]

Relative
Memory

Usage [%]
PALM Pressure Solver 11 double 80 100

Input 1
Temporaries 6
Thomas algorithm 4

Optimized Pressure Solver 6 double 48 54
Input 1
Temporary 2
Thomas algorithm 2
FFT 1

Optimized Pressure Solver 7 single 28 31
Input 1 + 1
Temporary 2
Thomas algorithm 2
FFT 1

Table 6.7: Comparison of memory usage between the original PALM pressure solver and
two optimised variants: The number of three-dimensional arrays used and the numerical
precision are shown. From these, the memory required per computational cell and the
memory usage relative to the baseline were calculated.

A comparative analysis of the relative memory usage of the optimised solver and the
original double precision PALM pressure solver, shows that the memory of the adapted
double precision solver requires 54% of memory. It was anticipated that executing the
code in single precision would result in a memory reduction of at least 50%. However, in
the single precision implementation presented here, it was demonstrated that the adapted
solver requires only 31% of the original memory, taking the array necessary for casting
into account.

59

6. Results

As stated in the introduction, this analysis and adaptation of the pressure solver to the
GPU was the first step in optimising the full PALM model for a single workspace CPU
and GPU. Finally, the memory required by the pressure solver was compared to that
needed by the entire simulation. All code files connected to the solver were checked,
and the number of unique allocated arrays on the computational grid were counted.
The found 448 arrays can possibly be reduced depending on the activated module and
the selected implementation version of the specific sections of the code. It should also
be noted that PALM allocates and deallocates arrays as needed, so it is not possible
to determine which of these arrays need to be allocated at the same time. However,
compared to the full model, the pressure solver requires a small amount of memory: all
versions of the pressure solver require less than 2.5%. The optimised single precision
version requires only 0.7%.

Implementation Numerical
Precision

Number of 3D
Arrays

Relative Memory
Usage [%]

Full PALM Model FP64 448 100
PALM Pressure Solver FP64 11 2.5
Optimized Pressure Solver FP64 6 1.3
Optimized Pressure Solver FP32 7 0.7

Table 6.8: Comparison of the memory usage of the different pressure solvers with that
required by the full PALM model.

6.4 Structural Analysis of the Model
As described in Subsection 4.3.4 to answer the final research question the full model
was analysed with the same parameters as the files connected to the pressure solver.
Table 6.9 shows the top five files ranked with respect to the number of external modules
loaded. The file time_integration.f90 coordinates the calculation of the time steps and is
clearly at the top of the list with 44 external modules loaded. All five of the listed files
use the global arrays module. As described, particular focus is given to the 3D arrays
module, as this signifies arrays defined on the computational grid that are updated by
different routines during the simulation process. This means that the module depends on
the current iteration of the arrays. However, since this analysis only counts the number
of loaded modules, it is not clear to what extent these arrays and modules are actually
used.

Table 6.10 shows the top five modules when sorted with regard to the total number
of three- or four-dimensional arrays, separated into external and temporary arrays.
Comparing Table 6.9 and Table 6.10 it is notable that files prognostic_equations_mod.f90
and radiation_model_mod.f90 are listed on both, indicating many dependences on
external modules.

60

6.4. Structural Analysis of the Model

Filename # Modules loaded included 3D arrays
time_integration.f90 44 Yes
chemistry_model_mod.f90 37 Yes
prognostic_equations_mod.f90 29 Yes
ocean_mod.f90 24 Yes
radiation_model_mod.f90 24 Yes

Table 6.9: Top five files called during a time step, ranked by the number of modules
loaded. The second column indicates whether the 3D array module was included among
the loaded modules.

Filename # external arrays # temporary arrays
salsa_mod.f90 55 26
surface_mod.f90 62 0
radiation_model_mod.f90 44 6
bulk_cloud_model_mod.f90 33 0
prognostic_equations.f90 33 0

Table 6.10: Top five files called during a time step, ranked by the number of three or four
dimensional external arrays used. The second column indicates the number of arrays
allocated inside the file.

Table 6.11 shows five files that were found to have the highest number of MPI calls and
barriers, indicating code that is optimised for a HPC system.

Filename # MPI calls # MPI barrier
radiation model mod .f90 129 5
lagrangian partical model .f90 97 16
bulk cloud model mod.f90 32 0
multi_agent_system_mod .f90 26 5
dynamics_mod .f90 22 0

Table 6.11: Top five files called during a time step, ranked by the number inter-node
communications.

61

CHAPTER 7
Discussion

Building on the results presented in the previous chapter, this chapter discusses the main
findings in the context of the research questions set at the beginning. The results are
interpreted in the context of existing literature and their implications.

7.1 Performance Improvements
Transitioning the pressure solver from a HPC cluster-optimised implementation to a
GPU-accelerated version on a single workstation makes it possible to adapt the code
structure for the new target architecture, as running a HPC cluster-optimised code in
serial mode is not efficient. Compared to HPC execution, where the heaviest routine of
the FFT-based pressure solver is the computation of the Fast Fourier Transform itself
[17], the highest percentage of computation time in serial execution mode was detected in
functions associated with transposition, as can be seen in Figure 6.3. Therefore, in order
to transition the codebase to the new target architecture optimally, it was necessary
to remove obsolete functionality. This mainly affected the transposition section, as six
function calls to rearrange the data before each transposition and two full transpositions
could be omitted during the optimisation process. This meant that the transposition
section was reduced to a much smaller part of the final execution. These changes including
the addition of GPU specific code bring performance improvements. Performance as
defined in Section 4.1 can be split up into three sections: Speed up, Validity and Memory
Efficiency.

The runtime analysis, of Section 6.1, shows a speed up of up to 65 times. For comparison,
Knoop et al. [17], accelerated the original model with OpenACC, achieved a maximum
speed up of 1.5 times when running with a minimum of four CPU cores in a HPC cluster.
The present study indicates that performance acceleration with a GPU appears to be
more successful for single workstation executions. Optimisations especially for serial
execution and the use of the low-level GPU programming language CUDA also contribute

63

7. Discussion

to this. This outcome was anticipated to some extent, as it was concluded by Knoop et al.
that the biggest performance bottleneck in their attempt was the MPI communication,
which is a fundamental component of any HPC execution.

The speed up achieved by the presented optimisations depends on the size of the domain
and the data type used. As expected, the single precision simulation achieved a higher
speed up than the double precision simulation, even when the casting process was included
in the timings. The effect of domain size on performance can be categorised in two
ways: the number of cells and the edge length of the domain. Firstly, as an increasing
number of cells need to be calculated, the GPU’s parallel capabilities are utilised more
and more. For this reason, the smallest domain size tested of 50m × 50m × 128m achieves
the smallest speed up, while the largest domain size of 1024m × 1024m × 128m achieves
the largest speed up, with the measured speed up ranging from 13.5 times to 65 times.
The second factor is the edge length of the domain. It is preferable that the edge lengths
of the domain are divisible by 32, as this reflects the fact that the GPU is optimised
to work in batches of 32. This effect can be seen in the results: domains that followed
this recommendation exhibited higher performance than those that did not. Depending
on whether double or single precision was used, the change in domain size resulted in a
speed up difference of approximately 20–30%.

The validity analysis shows that the optimised implementation presented for the pressure
solver are numerically accurate. This means that the optimised GPU approach can be
integrated into the existing PALM model in both double and single precision as the
mixed-precision approach did not affect the stability of the system. The error induced by
the discrete Laplacian matrix is likely caused by floating-point rounding effects that are
amplified by local operations, however the accuracy of the discrete Laplacian matrix does
not impact the simulation output. The difference between the three PALM simulation
versions is negligible after a ten hour simulation. Furthermore, it was found that the
magnitude of the error was the same, regardless of whether the pressure solver was
calculated in single- or double precision. Even though only the error after a ten hour
simulation was analysed explicitly here, many studies have shown that single precision is
suitable for short-term simulations and long-term climate modelling [85, 86]. Currently,
the PALM model core can be run in single precision as a test feature [87], however
this was not tested during this research as it would have required substantial changes
throughout the model system.

From a working memory perspective, Table 6.7 indicates that a successful adaptation
to the new architecture was achieved, as the number of temporary arrays required for
transposition could be reduced. This drastically reduced the method’s required workspace,
as the temporary arrays contributed the most to the memory footprint, as presented
in Section 6.3. For double precision execution, the memory required is only 54% of the
original, and if the calculation were single precision, this could be further reduced to 31%
of the original. The biggest impact on memory efficiency was reducing temporary arrays,
which was possible due to the change in target architecture.

64

7.2. Runtime Impact on Full Simulation

7.2 Runtime Impact on Full Simulation
To analyse the possibility if the optimisation of one module, here the Poisson pressure
solver, can have an substantial effect on the overall runtime, the runtime of a simulation
step with the original pressure solver was compared to a simulation step with the optimised
version. The results can be seen in Figure 6.5.

Of a full simulation step approximately 15% can be assigned to the pressure solver, with
the optimised version of this solver this could be reduced to 0.3 − 0.4%. This leads to
runtime reduction of approximately 15% and a overall runtime speed up of 1.17 times.
This tells us that the parallelisation and optimisation of a single module can have an
substantial impact on the runtime of an entire model, however the impact is bounded by
the percentage of the runtime of the original module following Amdahl’s law.

7.3 Impact of Memory Management
The effect of the optimisations on the different operation categories was analysed to
determine the extent to which memory transactions affect overall performance. Subsec-
tion 6.1.2 showed that more than half of the GPU execution time is spent on memory
interactions between the GPU and CPU, even though only one array needs to be ex-
changed between the two. Therefore it is important to find the best intersection point in
hybrid CPU and GPU methods to limit the necessary memory transfers. One could also
try to hide the copying cost by overlapping the copying operation with computation on a
part of the array [31]. However in the analysed pressure solver this was not applied as
a full overlap was not possible, due to the different array permutations needed during
execution. The FFTs need a full row to execute, where for the Thomas algorithm a
full column must be accessible at a time. An option would be to transpose the matrix
while putting it into pinned memory to overlap the asynchronous memory copy with the
batched FFT executions [64], but it would be necessary to synchronise the application
before the start of the matrix solver and only start overlapping again after this is finished,
consuming the time initially saved. In addition the chosen FFT library (cuFFT) is
optimised to run on big batched FFTs and the implemented transposition operation is
also optimised for the GPU. Due to these reasons concurrent copy and GPU computation
was not implemented for this method.

If in the final implementation the full PALM model would run in C++ and not Fortran,
pinned memory could be used for all arrays that would need to be exchanged between CPU
and GPU to accelerate the copying process. In the case of mixed-precision approach that
was tested to leverage the GPUs optimised performance in single precision this was already
implemented. The double precision array elements were cast onto a single precision
page-locked pinned memory location, to accelerate the memory transfer. However with
double precision in the current version this would not be applicable as the input array
for the GPU is already allocated in the Fortran code as pageable. This made it possible
to accelerate memory transfer, resulting in single precision casting with pinned memory

65

7. Discussion

copying being faster than double precision pageable copying.

7.4 Identified Bottlenecks
The main bottleneck in this implementation is regrading memory, on the one hand the
performance loss due to the copying to the GPU and the amount of memory needed for
the computation and the restrictions that this imposes on the possible domain sizes. In
contrast to the implementation by Knoop et al. [17], which used a distributed memory
system to manage massive domain sizes, this implementation is localised to one CPU
and GPU, and is therefore designed for domain sizes up to 1 km2.

The current implementation assumes that the full array fits on the GPU. If that is
not possible this method would not bring the performance speed up as was achieved
here. It may be possible to avoid having the entire array on the GPU at once, instead
copying sections of the array back and forth between the CPU and GPU, overlapping
computation and communication. However, as described above, the FFT-based pressure
solver requires the array in different permutations throughout the process. If the array
could not be placed on the GPU in its entirety, additional memory transactions would
be necessary before and after the tridiagonal solver to ensure that the required slice of
the array was present on the GPU. This would slow down the optimised routines and
result in a smaller speed up.

However, Table 6.8 shows that, although the memory footprint could be reduced to about
30% of the original pressure solver, the pressure solver is not a memory-heavy routine
when compared to the full model. Therefore, if the full model should be optimised for
the new target architecture and GPU the high memory requirements could turn out to
be a bottleneck, ultimately limiting the maximum extent of the simulation domain.

7.5 Feasibility of Full Model Optimization
The aim of this research was to explore the acceleration potential of the pressure solver
as part of the PALM-4U model system. The pressure solver in the model core was ideally
suited to GPU optimisation, while the rest of the simulation ran on the CPU. As the
intersection point was chosen carefully, only one array needed to be copied from the GPU
at each time step. This is important, as the runtime benchmarking showed that this
memory movement was a limiting factor in the speed up of the method.

The analysis showed that, compared to the pressure solver, the other modules are much
more closely coupled with other parts of the model. For example, although the radiation
module appears to be highly optimised for HPC due to its large number of MPI calls, it
is also highly dependent on other modules and variables. The same is true of the time
integration and prognostic equation modules, which are a central part of the model core
and require high connectivity. However, as file lengths and the number of modules per
file vary, this analysis can only provide a high-level overview.

66

7.6. Limitations of the Study

Despite this, the PALM-4U model’s modular structure makes it highly suitable for a
module-by-module optimisation process for a single workstation PC with a GPU. If any
other section is chosen for optimisation in future research, it must be examined in more
detail to identify potential issues and determine the optimal intersection point. After all,
even though the entry pressure solver module is highly dependent on other arrays, this
did not limit the final optimisation thanks to the clever choice of intersection point. In
addition, efficient lossless compression of floating-point data could be implemented to
reduce the data transfer bottleneck.

7.6 Limitations of the Study
While this study demonstrates the potential for accelerating a part of the model core
of the microclimate PALM-4U, the results cannot be generalised to the entire model,
especially as different parts of the model have different computational requirements and
would benefit differently form a GPU architecture.

Furthermore, the reported speed up should not be interpreted as an improvement over
the original PALM model running on a high-performance computing architecture for
which it was designed and optimised. Benchmarking was performed against the models
serial execution on a standard desktop workstation.

In addition, a detailed investigation into the underlying cause of the numerical inaccuracy
in the discrete Laplacian matrix is not currently prioritized, as it does not affect the
overall simulation results and because the machine-precision accurate single-precision
calculation is the primary focus of this study due to its performance advantages. However,
if needed, this issue will be examined more closely in future studies.

Finally, this work did not explore the long-term effects of mixed-precision simulations
on the PALM climate model. This research involved performing short-term (seconds)
and medium-term (ten hours) simulations. The simulation time was limited by the
serialised runtime of the full model, on a domain of 128m × 128m × 128m, the full
runtime with the optimised solver is three times the simulation time. For this reason,
the long-term influence on accuracy and stability would need to be explored in future
studies. Nevertheless, the ten hour simulation with over 45,000 internal steps shows that
the mixed-precision approach is promising.

67

7. Discussion

7.7 Implications
This study suggests that it is possible to successfully accelerate a microclimate model
such as PALM-4U using GPUs. However, as the comparison with the study by Knoop et
al. [17] shows, this acceleration has more potential if it is accompanied by a change in
computing architecture from an HPC cluster to a single workstation. As with a shift away
from high-performance computing clusters, the main bottleneck identified by Knoop et
al. can be avoided. Furthermore, the findings indicate that changing to single precision
for computations on the GPU is promising. These findings open up new ways to make
urban microclimate modelling more accessible and efficient.

68

CHAPTER 8
Conclusion

This research investigated the potential for accelerating the PALM urban microclimate
model, focussing on a key component of the core of the model. Restructuring the method
to optimise for serial execution and utilising the GPU’s parallel capabilities achieved a
speed up of up to 65 times for the pressure solver. Although only part of the model core
was optimised, this resulted in a 15% reduction in the runtime of the full model. These
findings demonstrate the value of GPU acceleration and optimisation for specific target
architectures in climate modelling.

Although the scope of this work was limited to the Poisson FFT pressure solver, the
results suggest that applying the approach to other sections, or even the full original
model codebase, could further enhance performance. However, memory constraints could
affect the scalability and effectiveness of optimising the full model. Therefore, careful
memory management must be a key consideration in any future study.

Ultimately, this work highlights the importance of modern hardware architecture in
enabling complex climate models to be transferred from high-performance computing
clusters to standard desktop computers. This could make the models available to people
outside the scientific community as decision-support tools for climate-resilient planning.

69

Overview of Generative AI Tools
Used

This thesis used the DeepL tool (www.deepl.com) to refine the grammar and fluency of
the text without altering its meaning.

71

List of Figures

2.1 Overview of numerical modelling approaches of turbulent flow [22]. 6
2.2 Comparison of large-scale resolved eddies (left) and parametrised sub-grid

scale eddies (right). 6
2.3 PALM-4U simulation results of the Maria-Theresien-Platz in Vienna. . . . 8
2.4 Visualisation of the computational grid. 9
2.5 Visualisation of the time loop of the PALM model core [17]. 9
2.6 Visualisation of the file dependencies involved in the pressure solver. Arrows

indicate the direction of function calls: a file at the tail of an arrow calls a file
at the head of the arrow. 13

2.7 Breakdown of the FFT based pressure solver into 19 steps. 13
2.8 Visualisation of the CUDA Programming Model [31]. 15
2.9 Visualisation of the CUDA Memory Model [31]. 15
2.10 This figure shows an example of a scenarify simulation in the application [32]. 17

5.1 Visualisation of the Fortran and C++ Integration process. 36
5.2 The timeline shows the structure of the Poisson FFT solver. The greyed-out

blocks indicate the dropped function calls used to rearrange the data, as
opposed to the structure shown in Figure 2.7. 37

5.3 A comparison of synchronous and asynchronous execution. In the synchronous
case (top), the light grey block represents the casting operation on the CPU,
followed by a memory transfer to a page-locked (pinned) memory buffer (black)
and then to the device (pink). In the asynchronous case (bottom), the casting
operation occurs directly in the pinned memory. This allows the casting and
memory transfer to overlap, eliminating the intermediate copy step. . . . 39

5.4 Visualisation of the variable definitions used in 5. The figure on the left shows
the complex number resulting from a forward fast Fourier transform (FFT),
or the pre-processed input for an inverse FFT. The figure on the right shows
the real number after post-processing, or before pre-processing. 41

5.5 Figure of the two needed involution transpositions of the three-dimensional
array. 43

5.6 Figure visualising the three-dimensional transposition algorithm, using a
shared memory tile with padding. 44

5.7 The solver structure of the GPU and standard workstation implementation
after the changes for the new architecture. 46

73

6.1 Two exemplary simulation domains are shown, where colours indicate wind
velocity ranging from nearly zero, shown in green, over yellow and orange
to blue, which indicates 50 per cent of the maximum simulated velocity.
Velocities that exceed this threshold are not displayed. 50

6.2 This Figure shows the results of the scalability analysis. Colours indicate the
used date type and line style the domain type. 51

6.3 Visualisation showing the proportion of execution time for each of the four
operation categories of the solver. 53

6.4 Visualisation of the proportion of execution time for the operation categories
of the solver, without taking memory management into account. 54

6.5 Figure showing the global effect in simulation time with the optimisations
made. 55

6.6 Numerical accuracy of the implemented Poisson solver, executed in single and
double precision. The dashed lines correspond to the machine epsilon. . . 56

74

List of Tables

2.1 A summary of the description of each file. 14

4.1 Table of the selected domain sizes for the speed up performance analysis. 28
4.2 Table of the used machine epsilon for comparison [77]. 29

5.1 Files connected to the FFT pressure solver, showing for each: the number of
loaded modules, whether the 3D Arrays module is included, the number of
external three or four dimensional arrays, the number of temporary arrays
allocated and the number of inter-node communication. 34

5.2 Comparison of performance metrics between old and new implementations
for FP32 and FP64 precision. 42

5.3 Comparison of performance between old and new implementations of the
transposition kernels for FP32 and FP64 precision. 45

5.4 This Table summarises the extent to which the files required for the FFT-based
pressure calculation during time stepping were altered during optimisation. 46

6.1 The maximum achieved speed up compared to the original PALM implemen-
tation is shown for all combinations of precision and domain type. 52

6.2 Speed up of the execution time for each of the four operation categories of
the solver. 53

6.3 Comparison of the wall clock time speed up to the theoretical speed up if
memory transactions were excluded. 55

6.4 Comparison of the effect of error in the pressure calculation in the single
precision output of the velocities (u, v, w). 57

6.5 Resulting number of internal steps after a 10 hours simulation on a 128m ×
128m × 128m domain. 57

6.6 Statistical performance metrics comparing wind speeds after a 10-hour simu-
lation of the original PALM model with those resulting from the optimised
pressure solver: Normalized Mean Squared Error (NMSE), Fractional Bias
(FB), Pearson Correlation Coefficient (R). The second value in the FP64
columns show the simulation results when using the FORTRAN initialised
discrete Laplacian matrix. The reference value indicates the difference between
PALM-4U and observations in a validation study [78]. 58

75

6.7 Comparison of memory usage between the original PALM pressure solver
and two optimised variants: The number of three-dimensional arrays used
and the numerical precision are shown. From these, the memory required
per computational cell and the memory usage relative to the baseline were
calculated. 59

6.8 Comparison of the memory usage of the different pressure solvers with that
required by the full PALM model. 60

6.9 Top five files called during a time step, ranked by the number of modules
loaded. The second column indicates whether the 3D array module was
included among the loaded modules. 61

6.10 Top five files called during a time step, ranked by the number of three or four
dimensional external arrays used. The second column indicates the number
of arrays allocated inside the file. 61

6.11 Top five files called during a time step, ranked by the number inter-node
communications. 61

76

List of Algorithms

1 C++ Function Pointer Setup and Usage 35
2 Fortran Procedure Setup and Invocation 36
3 Cast and Copy to GPU . 39
4 Optimized cuFFT Plan Initialization 40
5 createComplexData . 42
6 Transpose_xyz2yxz . 44

77

Bibliography

[1] Intergovernmental Panel On Climate Change (Ipcc). Climate Change 2022 – Im-
pacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change. 1st ed.
Cambridge University Press, June 2023. isbn: 978-1-009-32584-4. doi: 10.1017/
9781009325844.

[2] T. R. Oke. “The energetic basis of the urban heat island”. en. In: Quarterly Journal
of the Royal Meteorological Society 108.455 (Jan. 1982), pp. 1–24. issn: 0035-9009,
1477-870X. doi: 10.1002/qj.49710845502.

[3] A. Haines et al. “Climate change and human health: Impacts, vulnerability and
public health”. en. In: Public Health 120.7 (July 2006), pp. 585–596. issn: 00333506.
doi: 10.1016/j.puhe.2006.01.002.

[4] Jonathan A. Patz et al. “Impact of regional climate change on human health”. en.
In: Nature 438.7066 (Nov. 2005), pp. 310–317. issn: 0028-0836, 1476-4687. doi:
10.1038/nature04188.

[5] Ashish Sharma et al. “The Need for Urban-Resolving Climate Modeling Across
Scales”. en. In: AGU Advances 2.1 (2021), e2020AV000271. issn: 2576-604X. doi:
10.1029/2020AV000271.

[6] S.E Gill et al. “Adapting Cities for Climate Change: The Role of the Green
Infrastructure”. en. In: Built Environment 33.1 (Mar. 2007), pp. 115–133. issn:
02637960. doi: 10.2148/benv.33.1.115.

[7] Alistair Hunt and Paul Watkiss. “Climate change impacts and adaptation in cities:
a review of the literature”. en. In: Climatic Change 104.1 (Jan. 2011), pp. 13–49.
issn: 0165-0009, 1573-1480. doi: 10.1007/s10584-010-9975-6.

[8] Elisa Palazzo and Wan Nurul Mardiah Wan Mohd Rani. “Regenerating Urban
Areas Through Climate Sensitive Urban Design”. In: Advanced Science Letters 23.7
(July 2017), pp. 6394–6398. doi: 10.1166/asl.2017.9277.

[9] Michal Belda et al. Sensitivity analysis of the PALM model system 6.0 in the urban
environment. Aug. 2020. doi: 10.5194/gmd-2020-126.

79

https://doi.org/10.1017/9781009325844
https://doi.org/10.1017/9781009325844
https://doi.org/10.1002/qj.49710845502
https://doi.org/10.1016/j.puhe.2006.01.002
https://doi.org/10.1038/nature04188
https://doi.org/10.1029/2020AV000271
https://doi.org/10.2148/benv.33.1.115
https://doi.org/10.1007/s10584-010-9975-6
https://doi.org/10.1166/asl.2017.9277
https://doi.org/10.5194/gmd-2020-126

[10] E Scott Krayenhoff et al. “Cooling hot cities: a systematic and critical review
of the numerical modelling literature”. en. In: Environmental Research Letters
16.5 (May 2021). Publisher: IOP Publishing, p. 053007. issn: 1748-9326. doi:
10.1088/1748-9326/abdcf1.

[11] Björn Maronga et al. “Overview of the PALM model system 6.0”. en. In: Geosci-
entific Model Development 13.3 (Mar. 2020), pp. 1335–1372. issn: 1991-9603. doi:
10.5194/gmd-13-1335-2020.

[12] Mohamed Hefny Salim et al. “Introducing the Urban Climate Model PALM System
6.0”. en. In: International Journal of Applied Energy Systems 2.1 (Jan. 2020),
pp. 15–18. issn: 2636-3720. doi: 10.21608/ijaes.2020.169937.

[13] Björn Maronga et al. “Development of a new urban climate model based on the
model PALM – Project overview, planned work, and first achievements”. en. In:
Meteorologische Zeitschrift (June 2019). Publisher: Schweizerbart’sche Verlagsbuch-
handlung, pp. 105–119. issn: , doi: 10.1127/metz/2019/0909.

[14] Maja Žuvela-Aloise et al. “Evaluation of city-scale PALM model simulations and
intra-urban thermal variability in Vienna, Austria using operational and crowd-
sourced data”. In: Urban Climate 59 (Feb. 2025), p. 102245. issn: 2212-0955. doi:
10.1016/j.uclim.2024.102245.

[15] Antonina Kriuger et al. Innovative urban climate model PALM-4U as a support tool
for municipal climate adaptation strategies. en. Tech. rep. EGU21-12563. Conference
Name: EGU21. Copernicus Meetings, Mar. 2021. doi: 10.5194/egusphere-
egu21-12563.

[16] VRVis GmbH. ClimaSens. Climate-sensitive Adaptive Planning for Shaping Re-
silient Cities. 2024. url: https://projekte.ffg.at/projekt/4856674
(visited on 03/12/2025).

[17] Helge Knoop et al. “Porting the MPI Parallelized LES Model PALM to Multi-GPU
Systems - An Experience Report”. en. In: Jan. 2016. url: https://openreview.
net/forum?id=CokxUKSqwU (visited on 03/10/2025).

[18] Nicholas Wilt. The CUDA Handbook: A Comprehensive Guide to GPU Program-
ming. en. Google-Books-ID: KUxsAQAAQBAJ. Addison-Wesley, 2013. isbn: 978-0-
321-80946-9.

[19] NVIDIA. Nsight Systems. en. 2025. url: https://developer.nvidia.com/
nsight-systems (visited on 05/18/2025).

[20] NVIDIA. Nsight Compute. en. 2025. url: https://developer.nvidia.com/
nsight-compute (visited on 05/18/2025).

[21] Yang Zhiyin. “Large-eddy simulation: Past, present and the future”. In: Chinese
Journal of Aeronautics 28.1 (Feb. 2015), pp. 11–24. issn: 1000-9361. doi: 10.
1016/j.cja.2014.12.007.

[22] Jurij Sodja. “Turbulence models in CFD”. In: University of Ljubljana (Jan. 2007),
pp. 1–18.

80

https://doi.org/10.1088/1748-9326/abdcf1
https://doi.org/10.5194/gmd-13-1335-2020
https://doi.org/10.21608/ijaes.2020.169937
https://doi.org/10.1127/metz/2019/0909
https://doi.org/10.1016/j.uclim.2024.102245
https://doi.org/10.5194/egusphere-egu21-12563
https://doi.org/10.5194/egusphere-egu21-12563
https://projekte.ffg.at/projekt/4856674
https://openreview.net/forum?id=CokxUKSqwU
https://openreview.net/forum?id=CokxUKSqwU
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://doi.org/10.1016/j.cja.2014.12.007
https://doi.org/10.1016/j.cja.2014.12.007

[23] palm4u – PALM. url: https://palm.muk.uni-hannover.de/trac/wiki/
palm4u (visited on 07/23/2025).

[24] Peter Bröde et al. “Deriving the operational procedure for the Universal Thermal
Climate Index (UTCI)”. en. In: International Journal of Biometeorology 56.3 (May
2012), pp. 481–494. issn: 0020-7128, 1432-1254. doi: 10.1007/s00484-011-
0454-1.

[25] Aristides A. N. Patrinos and Alan L. Kistler. “A numerical study of the Chicago
lake breeze”. In: Boundary-Layer Meteorology 12.1 (Aug. 1977), pp. 93–123. issn:
1573-1472. doi: 10.1007/BF00116400.

[26] B. Maronga et al. “The Parallelized Large-Eddy Simulation Model (PALM) version
4.0 for atmospheric and oceanic flows: model formulation, recent developments, and
future perspectives”. English. In: Geoscientific Model Development 8.8 (Aug. 2015).
Publisher: Copernicus GmbH, pp. 2515–2551. issn: 1991-959X. doi: 10.5194/gmd-
8-2515-2015.

[27] Radyadour Kh. Zeytounian. “Joseph Boussinesq and his approximation: a contem-
porary view”. en. In: Comptes Rendus. Mécanique 331.8 (July 2003), pp. 575–586.
issn: 1873-7234. doi: 10.1016/S1631-0721(03)00120-7.

[28] Yousef Saad. Iterative Methods for Sparse Linear Systems. 2nd ed. Minnesota:
Univeristy of Minnesota - Society for Industrial and Applied Mathematics, 2003. url:
https://www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf.

[29] Ulrich Schumann and Roland Sweet. “Fast Fourier Transforms for Direct Solu-
tion of Poisson’s Equation with Staggered Boundary Conditions”. In: Journal
of Computational Physics 75 (Mar. 1988), pp. 123–137. doi: 10.1016/0021-
9991(88)90102-7.

[30] Helmut Schmidt. Three-dimensional, direct and vectorized elliptic solvers for various
boundary conditions. ger. Als Ms. gedr.. Mitteilung / Deutsche Forschungs- und
Versuchsanstalt für Luft- und Raumfahrt. Köln: Wiss. Berichtswesen der DFVLR,
1984.

[31] NVIDIA. CUDA C++ Programming Guide. url: https://docs.nvidia.com/
cuda/cuda-c-programming-guide/ (visited on 05/18/2025).

[32] scenarify ist eine Visualisierungs- und Simulationssoftware für Hochwasser und
Starkregen. de. url: https://www.vrvis.at/produkte- loesungen/
produkte-lizenzen/scenarify (visited on 07/23/2025).

[33] Sebastian Grottel et al. “Real-time visualization of urban flood simulation data
for non-professionals”. In: Workshop on Visualisation in Environmental Sciences
(EnvirVis) Eurographics Association (2015), pp. 37–41.

[34] Fredrik Lindberg et al. “SOLWEIG 1.0 – Modelling spatial variations of 3D radiant
fluxes and mean radiant temperature in complex urban settings”. en. In: Interna-
tional Journal of Biometeorology 52.7 (Sept. 2008), pp. 697–713. issn: 0020-7128,
1432-1254. doi: 10.1007/s00484-008-0162-7.

81

https://palm.muk.uni-hannover.de/trac/wiki/palm4u
https://palm.muk.uni-hannover.de/trac/wiki/palm4u
https://doi.org/10.1007/s00484-011-0454-1
https://doi.org/10.1007/s00484-011-0454-1
https://doi.org/10.1007/BF00116400
https://doi.org/10.5194/gmd-8-2515-2015
https://doi.org/10.5194/gmd-8-2515-2015
https://doi.org/10.1016/S1631-0721(03)00120-7
https://www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://doi.org/10.1016/0021-9991(88)90102-7
https://doi.org/10.1016/0021-9991(88)90102-7
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.vrvis.at/produkte-loesungen/produkte-lizenzen/scenarify
https://www.vrvis.at/produkte-loesungen/produkte-lizenzen/scenarify
https://doi.org/10.1007/s00484-008-0162-7

[35] Francis Miguet. “A FURTHER STEP IN ENVIRONMENT AND BIOCLIMATIC
ANALYSIS: THE SOFTWARE TOOL SOLENE”. en. In: Building Simulation
(2007).

[36] Mostapha Sadeghipour Roudsari et al. “Ladybug: A Parametric Environmental
Plugin For Grasshopper To Help Designers Create An Environmentally-conscious
Design”. en. In: Building Simulation Conference Proceedings. ISSN: 2522-2708.
IBPSA, Aug. 2013. doi: 10.26868/25222708.2013.2499.

[37] Kerry A. Nice et al. “Development of the VTUF-3D v1.0 urban micro-climate
model to support assessment of urban vegetation influences on human thermal
comfort”. In: Urban Climate 24 (June 2018), pp. 1052–1076. issn: 2212-0955. doi:
10.1016/j.uclim.2017.12.008.

[38] Cho Kwong Charlie Lam et al. “A review on the significance and perspective of
the numerical simulations of outdoor thermal environment”. In: Sustainable Cities
and Society 71 (Aug. 2021), p. 102971. issn: 2210-6707. doi: 10.1016/j.scs.
2021.102971.

[39] Sebastian Huttner and Michael Bruse. “Numerical modeling of the urban climate
– a preview on ENVI-met 4.0”. en. In: The seventh International Conference on
Urban Climate (2009).

[40] S. Tsoka et al. “Analyzing the ENVI-met microclimate model’s performance and
assessing cool materials and urban vegetation applications–A review”. en. In:
Sustainable Cities and Society 43 (Nov. 2018), pp. 55–76. issn: 22106707. doi:
10.1016/j.scs.2018.08.009.

[41] Zhixin Liu et al. “Modeling microclimatic effects of trees and green roofs/façades
in ENVI-met: Sensitivity tests and proposed model library”. In: Building and
Environment 244 (Oct. 2023), p. 110759. issn: 0360-1323. doi: 10.1016/j.
buildenv.2023.110759.

[42] Kristian Fabbri et al. “Effect of facade reflectance on outdoor microclimate: An
Italian case study”. In: Sustainable Cities and Society 54 (Mar. 2020), p. 101984.
issn: 2210-6707. doi: 10.1016/j.scs.2019.101984.

[43] Nils Eingrüber et al. “Investigation of the ENVI-met model sensitivity to different
wind direction forcing data in a heterogeneous urban environment”. English. In:
Advances in Science and Research. Vol. 20. ISSN: 1992-0628. Copernicus GmbH,
July 2023, pp. 65–71. doi: 10.5194/asr-20-65-2023.

[44] Simon Helge. “Modeling urban microclimate : development, implementation and
evaluation of new and improved calculation methods for the urban microclimate
model ENVI-met”. eng. Dissertation. Johannes Gutenberg-Universit at Mainz,
2016. url: https://openscience.ub.uni-mainz.de/handle/20.500.
12030/4044 (visited on 05/23/2025).

82

https://doi.org/10.26868/25222708.2013.2499
https://doi.org/10.1016/j.uclim.2017.12.008
https://doi.org/10.1016/j.scs.2021.102971
https://doi.org/10.1016/j.scs.2021.102971
https://doi.org/10.1016/j.scs.2018.08.009
https://doi.org/10.1016/j.buildenv.2023.110759
https://doi.org/10.1016/j.buildenv.2023.110759
https://doi.org/10.1016/j.scs.2019.101984
https://doi.org/10.5194/asr-20-65-2023
https://openscience.ub.uni-mainz.de/handle/20.500.12030/4044
https://openscience.ub.uni-mainz.de/handle/20.500.12030/4044

[45] Dieter Scherer et al. “Urban Climate Under Change [UC]2 – A National Research
Programme for Developing a Building-Resolving Atmospheric Model for Entire
City Regions”. en. In: Meteorologische Zeitschrift (June 2019). Publisher: Schweizer-
bart’sche Verlagsbuchhandlung, pp. 95–104. issn: , doi: 10.1127/metz/2019/
0913.

[46] Antonina Krueger. “PALM-4U Handbuch für die Praxis”. de. In: (2023). url:
https://www.uc2- propolis.de/imperia/md/assets/propolis/
images/propolis_handbuch_fuer_die_praxis_final_31-08-2023.
pdf.

[47] Jinrong Jiang et al. “Porting LASG/ IAP Climate System Ocean Model to Gpus
Using OpenAcc”. In: IEEE Access 7 (2019), pp. 154490–154501. issn: 2169-3536.
doi: 10.1109/ACCESS.2019.2932443.

[48] Michail Alvanos and Theodoros Christoudias. “GPU-accelerated atmospheric chem-
ical kinetics in the ECHAM/MESSy (EMAC) Earth system model (version 2.52)”.
en. In: Geoscientific Model Development 10.10 (Oct. 2017), pp. 3679–3693. issn:
1991-9603. doi: 10.5194/gmd-10-3679-2017.

[49] Mark Govett et al. “Parallelization and Performance of the NIM Weather Model
on CPU, GPU, and MIC Processors”. In: Bulletin of the American Meteorological
Society 98.10 (Oct. 2017), pp. 2201–2213. issn: 0003-0007, 1520-0477. doi: 10.
1175/BAMS-D-15-00278.1.

[50] Yuzhu Wang et al. “Using a GPU to Accelerate a Longwave Radiative Transfer
Model with Efficient CUDA-Based Methods”. en. In: Applied Sciences 9.19 (Sept.
2019), p. 4039. issn: 2076-3417. doi: 10.3390/app9194039.

[51] Jarno Mielikainen et al. “GPU Compute Unified Device Architecture (CUDA)-
based Parallelization of the RRTMG Shortwave Rapid Radiative Transfer Model”.
In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 9.2 (Feb. 2016). Conference Name: IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, pp. 921–931. issn: 2151-1535.
doi: 10.1109/JSTARS.2015.2427652.

[52] Matthew Norman et al. “A case study of CUDA FORTRAN and OpenACC for an
atmospheric climate kernel”. In: Journal of Computational Science. Computational
Science at the Gates of Nature 9 (July 2015), pp. 1–6. issn: 1877-7503. doi:
10.1016/j.jocs.2015.04.022.

[53] Gunilla Sköllermo. “A Fourier method for the numerical solution of Poisson’s
equation”. en. In: Mathematics of Computation 29.131 (1975), pp. 697–711. issn:
0025-5718, 1088-6842. doi: 10.1090/S0025-5718-1975-0371096-4.

[54] James W. Cooley and John W. Tukey. “An algorithm for the machine calculation of
complex Fourier series”. en. In: Mathematics of Computation 19.90 (1965), pp. 297–
301. issn: 0025-5718, 1088-6842. doi: 10.1090/S0025-5718-1965-0178586-
1.

83

https://doi.org/10.1127/metz/2019/0913
https://doi.org/10.1127/metz/2019/0913
https://www.uc2-propolis.de/imperia/md/assets/propolis/images/propolis_handbuch_fuer_die_praxis_final_31-08-2023.pdf
https://www.uc2-propolis.de/imperia/md/assets/propolis/images/propolis_handbuch_fuer_die_praxis_final_31-08-2023.pdf
https://www.uc2-propolis.de/imperia/md/assets/propolis/images/propolis_handbuch_fuer_die_praxis_final_31-08-2023.pdf
https://doi.org/10.1109/ACCESS.2019.2932443
https://doi.org/10.5194/gmd-10-3679-2017
https://doi.org/10.1175/BAMS-D-15-00278.1
https://doi.org/10.1175/BAMS-D-15-00278.1
https://doi.org/10.3390/app9194039
https://doi.org/10.1109/JSTARS.2015.2427652
https://doi.org/10.1016/j.jocs.2015.04.022
https://doi.org/10.1090/S0025-5718-1975-0371096-4
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1090/S0025-5718-1965-0178586-1

[55] Clive Temperton. “Implementation of a self-sorting in-place prime factor FFT
algorithm”. en. In: Journal of Computational Physics 58.3 (May 1985), pp. 283–299.
issn: 00219991. doi: 10.1016/0021-9991(85)90164-0.

[56] D. Harris et al. “Vector radix fast Fourier transform”. In: ICASSP ’77. IEEE
International Conference on Acoustics, Speech, and Signal Processing. Vol. 2. May
1977, pp. 548–551. doi: 10.1109/ICASSP.1977.1170349.

[57] David Střelák and Jiří Filipovič. “Performance analysis and autotuning setup of
the cuFFT library”. en. In: Proceedings of the 2nd Workshop on AutotuniNg and
aDaptivity AppRoaches for Energy efficient HPC Systems. Limassol Cyprus: ACM,
Nov. 2018, pp. 1–6. isbn: 978-1-4503-6591-8. doi: 10.1145/3295816.3295817.

[58] Fan Zhang et al. A GPU Based Memory Optimized Parallel Method For FFT
Implementation. en. arXiv:1707.07263 [cs]. July 2017. doi: 10.48550/arXiv.
1707.07263.

[59] Akira Nukada and Satoshi Matsuoka. “Auto-tuning 3-D FFT library for CUDA
GPUs”. en. In: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. Portland Oregon: ACM, Nov. 2009, pp. 1–10.
isbn: 978-1-60558-744-8. doi: 10.1145/1654059.1654090.

[60] Louis Pisha and Łukasz Ligowski. “Accelerating non-power-of-2 size Fourier trans-
forms with GPU Tensor Cores”. In: 2021 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). ISSN: 1530-2075. May 2021, pp. 507–516.
doi: 10.1109/IPDPS49936.2021.00059.

[61] Binrui Li et al. “tcFFT: A Fast Half-Precision FFT Library for NVIDIA Tensor
Cores”. In: 2021 IEEE International Conference on Cluster Computing (CLUSTER).
ISSN: 2168-9253. Sept. 2021, pp. 1–11. doi: 10.1109/Cluster48925.2021.
00035.

[62] Sultan Durrani et al. “Accelerating Fourier and Number Theoretic Transforms
using Tensor Cores and Warp Shuffles”. en. In: 2021 30th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT). Atlanta, GA,
USA: IEEE, Sept. 2021, pp. 345–355. isbn: 978-1-6654-4278-7. doi: 10.1109/
PACT52795.2021.00032.

[63] Shuo Chen and Xiaoming Li. “A hybrid GPU/CPU FFT library for large FFT
problems”. In: 2013 IEEE 32nd International Performance Computing and Com-
munications Conference (IPCCC). ISSN: 2374-9628. Dec. 2013, pp. 1–10. doi:
10.1109/PCCC.2013.6742796.

[64] Jaehong Lee and Duksu Kim. “Large-scale 3D fast Fourier transform computation
on a GPU”. In: ETRI Journal 45.6 (Dec. 2023). Publisher: John Wiley & Sons,
Ltd, pp. 1035–1045. issn: 1225-6463. doi: 10.4218/etrij.2022-0297.

[65] Liang Gu et al. “An empirically tuned 2D and 3D FFT library on CUDA GPU”.
In: June 2010, pp. 305–314. doi: 10.1145/1810085.1810127.

84

https://doi.org/10.1016/0021-9991(85)90164-0
https://doi.org/10.1109/ICASSP.1977.1170349
https://doi.org/10.1145/3295816.3295817
https://doi.org/10.48550/arXiv.1707.07263
https://doi.org/10.48550/arXiv.1707.07263
https://doi.org/10.1145/1654059.1654090
https://doi.org/10.1109/IPDPS49936.2021.00059
https://doi.org/10.1109/Cluster48925.2021.00035
https://doi.org/10.1109/Cluster48925.2021.00035
https://doi.org/10.1109/PACT52795.2021.00032
https://doi.org/10.1109/PACT52795.2021.00032
https://doi.org/10.1109/PCCC.2013.6742796
https://doi.org/10.4218/etrij.2022-0297
https://doi.org/10.1145/1810085.1810127

[66] Jose L. Jodra et al. “Efficient 3D Transpositions in Graphics Processing Units”. en.
In: International Journal of Parallel Programming 43.5 (Oct. 2015), pp. 876–891.
issn: 1573-7640. doi: 10.1007/s10766-015-0366-5.

[67] Antti-Pekka Hynninen and Dmitry I. Lyakh. cuTT: A High-Performance Tensor
Transpose Library for CUDA Compatible GPUs. arXiv:1705.01598 [cs]. May 2017.
doi: 10.48550/arXiv.1705.01598.

[68] Dmitry I. Lyakh. “An efficient tensor transpose algorithm for multicore CPU, Intel
Xeon Phi, and NVidia Tesla GPU”. In: Computer Physics Communications 189
(Apr. 2015), pp. 84–91. issn: 0010-4655. doi: 10.1016/j.cpc.2014.12.013.

[69] Llewellyn Hilleth Thomas. “Elliptic problems in linear difference equations over a
network”. In: Watson Sci. Comput. Lab. Rept., Columbia University, New York 1
(1949), p. 71.

[70] Yao Zhang et al. “Fast tridiagonal solvers on the GPU”. en. In: ().
[71] Hee-Seok Kim et al. “A Scalable Tridiagonal Solver for GPUs”. en. In: 2011

International Conference on Parallel Processing. Taipei, Taiwan: IEEE, Sept. 2011,
pp. 444–453. isbn: 978-1-4577-1336-1. doi: 10.1109/ICPP.2011.41.

[72] NVIDIA. cuSPARSE - CUDA Toolkit Documentation. 2025. url: https://docs.
nvidia.com/cuda/cusparse/ (visited on 04/08/2025).

[73] Pedro Valero-Lara et al. “cuThomasBatch & cuThomasVBatch, CUDA Routines
to Compute Batch of Tridiagonal Systems on NVIDIA GPUs”. en. In: (2018).

[74] NVIDIA. cuFFT - CUDA Toolkit Documentation. 2025. url: https://docs.
nvidia.com/cuda/cufft/ (visited on 03/10/2025).

[75] Denise Hertwig et al. “Urban signals in high-resolution weather and climate simu-
lations: role of urban land-surface characterisation”. In: Theoretical and Applied
Climatology 142 (Oct. 2020). doi: 10.1007/s00704-020-03294-1.

[76] Jeffrey Raven et al. “Urban Planning and Urban Design”. In: Climate Change and
Cities: Second Assessment Report of the Urban Climate Change Research Network.
Ed. by Cynthia Rosenzweig et al. Cambridge: Cambridge University Press, 2018,
pp. 139–172. isbn: 978-1-316-60333-8. doi: 10.1017/9781316563878.012.

[77] De La Fraga and Luis Gerardo. “Differential Evolution under Fixed Point Arithmetic
and FP16 Numbers”. en. In: Mathematical and Computational Applications 26.1
(Mar. 2021). Number: 1 Publisher: Multidisciplinary Digital Publishing Institute,
p. 13. issn: 2297-8747. doi: 10.3390/mca26010013.

[78] Jaroslav Resler et al. “Validation of the PALM model system 6.0 in a real urban
environment: a case study in Dejvice, Prague, the Czech Republic”. English. In:
Geoscientific Model Development 14.8 (Aug. 2021). Publisher: Copernicus GmbH,
pp. 4797–4842. issn: 1991-959X. doi: 10.5194/gmd-14-4797-2021.

[79] Paul Norvig. Interoperability of Fortran with C/C++: coding tutorial (2024). en. Jan.
2024. url: https://www.paulnorvig.com/guides/interoperability-
of-fortran-with-cc.html (visited on 07/02/2025).

85

https://doi.org/10.1007/s10766-015-0366-5
https://doi.org/10.48550/arXiv.1705.01598
https://doi.org/10.1016/j.cpc.2014.12.013
https://doi.org/10.1109/ICPP.2011.41
https://docs.nvidia.com/cuda/cusparse/
https://docs.nvidia.com/cuda/cusparse/
https://docs.nvidia.com/cuda/cufft/
https://docs.nvidia.com/cuda/cufft/
https://doi.org/10.1007/s00704-020-03294-1
https://doi.org/10.1017/9781316563878.012
https://doi.org/10.3390/mca26010013
https://doi.org/10.5194/gmd-14-4797-2021
https://www.paulnorvig.com/guides/interoperability-of-fortran-with-cc.html
https://www.paulnorvig.com/guides/interoperability-of-fortran-with-cc.html

[80] Jose Luis Jodra et al. “A Study of Memory Consumption and Execution Performance
of the cuFFT Library”. In: 2015 10th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC). Nov. 2015, pp. 323–327. doi:
10.1109/3PGCIC.2015.66.

[81] Greg Ruetsch and Paulius Micikevicius. “Optimizing Matrix Transpose in CUDA”.
en. In: (2009). url: https://www.cs.colostate.edu/~cs675/MatrixTranspose.
pdf.

[82] Wikipedia contributor. Floating point operations per second. en. Page Version ID:
1297964186. June 2025. url: https://en.wikipedia.org/w/index.php?
title=Floating_point_operations_per_second&oldid=1297964186
(visited on 07/11/2025).

[83] Karl Rupp. CPU, GPU and MIC Hardware Characteristics over Time | Karl
Rupp. en-US. June 2013. url: https://www.karlrupp.net/2013/06/cpu-
gpu- and- mic- hardware- characteristics- over- time/ (visited on
07/11/2025).

[84] John L. Gustafson. “Reevaluating Amdahl’s law”. In: Commun. ACM 31.5 (May
1988), pp. 532–533. issn: 0001-0782. doi: 10.1145/42411.42415.

[85] E. Adam Paxton et al. “Climate Modelling in Low-Precision: Effects of both
Deterministic & Stochastic Rounding”. en. In: Journal of Climate 35.4 (Feb. 2022).
arXiv:2104.15076 [physics], pp. 1215–1229. issn: 0894-8755, 1520-0442. doi: 10.
1175/JCLI-D-21-0343.1.

[86] Siyuan Chen et al. “Mixed-precision computing in the GRIST dynamical core for
weather and climate modelling”. en. In: Geoscientific Model Development 17.16
(Aug. 2024). Publisher: Copernicus GmbH, pp. 6301–6318. issn: 1991-9603. doi:
10.5194/gmd-17-6301-2024.

[87] Leibniz University Hannover. PALM preprocessor options. 2021. url: https:
//palm.muk.uni-hannover.de/trac/wiki/doc/app/cpp_options
(visited on 07/11/2025).

86

https://doi.org/10.1109/3PGCIC.2015.66
https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://en.wikipedia.org/w/index.php?title=Floating_point_operations_per_second&oldid=1297964186
https://en.wikipedia.org/w/index.php?title=Floating_point_operations_per_second&oldid=1297964186
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://doi.org/10.1145/42411.42415
https://doi.org/10.1175/JCLI-D-21-0343.1
https://doi.org/10.1175/JCLI-D-21-0343.1
https://doi.org/10.5194/gmd-17-6301-2024
https://palm.muk.uni-hannover.de/trac/wiki/doc/app/cpp_options
https://palm.muk.uni-hannover.de/trac/wiki/doc/app/cpp_options

	Kurzfassung
	Abstract
	Contents
	Introduction
	Contributions
	Research Structure

	Fundamental Background
	Large-Eddy Simulation
	PALM Model System
	Numerical Method
	Code Structure
	Graphics Processing Unit
	scenarify

	Related Work
	Urban Microclimate Modelling
	GPU-Accelerated Climate Modelling
	Advanced GPU Methods
	Discussion and Gaps

	Methods
	Research Design Overview
	Computational Environment Setup
	Experiment Design and Evaluation

	Implementation
	Setup
	Preliminary Implementation
	Data Types and Memory Optimization
	Algorithmic Optimization for GPU
	Resulting Structure and Limitations

	Results
	Speed Up Analysis
	Validity Evaluation
	Memory Profiling
	Structural Analysis of the Model

	Discussion
	Performance Improvements
	Runtime Impact on Full Simulation
	Impact of Memory Management
	Identified Bottlenecks
	Feasibility of Full Model Optimization
	Limitations of the Study
	Implications

	Conclusion
	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

