
Real-Time Camera Localization in
Pre-Existing 3D Point Cloud Maps
on Mobile Devices via Monocular

SLAM and Continuous
Registration

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software and Information Engineering

by

Florian Miklautsch
Registration Number 12023974

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Projektass. Mag.rer.soc.oec. Stephan Ohrhallinger, PhD

Vienna, December 31, 2025
Florian Miklautsch Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Florian Miklautsch

I hereby declare that I have written this thesis independently, that I have completely
specified the utilized sources and resources and that I have definitely marked all parts of
the work – including tables, maps and figures – which belong to other works or to the
internet, literally or extracted, by referencing the source as borrowed.
I further declare that I have used generative AI tools only as an aid, and that my own
intellectual and creative efforts predominate in this work. In the appendix “Overview of
Generative AI Tools Used” I have listed all generative AI tools that were used in the
creation of this work, and indicated where in the work they were used. If whole passages
of text were used without substantial changes, I have indicated the input (prompts) I
formulated and the IT application used with its product name and version number/date.

Vienna, December 31, 2025
Florian Miklautsch

ii

This thesis addresses the challenge of performing real-time camera localization within pre-
existing 3D point cloud maps on mobile devices, while also visualizing them in augmented
reality. By enabling the use of arbitrary external point clouds on standard smartphones,
this work overcomes the limitations of current mobile AR frameworks. Furthermore, a
novel two-stage pipeline is introduced to address the high computational requirements
of state-of-the-art image-to-point cloud registration methods. This solution combines
the established ORB-SLAM3 system for monocular camera tracking with a continuous
background process that leverages existing algorithms from the Small-GICP library for
rigid (SE(3)) registration against a reference map. To address the inherent scale ambiguity
of monocular SLAM, this is extended with a custom similarity transformation (Sim(3))
estimation. The evaluation confirms that the system achieves real-time performance on
modern smartphones. However, the final localization accuracy is highly dependent on the
characteristics of the SLAM session, such as the environment at startup and the sensor
trajectory, as well as the modality of the input data. Root Mean Square Errors (RMSE)
ranged from 0.3m to 13m in ideal same-device scenarios, but increased to between 18m
and 230m for challenging cross-modality registrations against LiDAR scans.

Contents

Contents iii

1 Introduction 1

2 State of the Art 3
2.1 Platform-Specific Mobile AR Frameworks and Proprietary Solutions . 3
2.2 Proprietary Hardware . 4
2.3 Image-to-Point Cloud Registration . 4

3 Background and Methodology 5
3.1 Visual SLAM for Real-Time Camera Tracking 5
3.2 Point Cloud Registration for Coordinate Alignment 8
3.3 Coordinate Systems and Transformations 13
3.4 Methodology Overview . 13
3.5 Mobile Development with Flutter . 14

4 System Design 16
4.1 Architecture Overview . 16

iii

4.2 System Pipeline . 17
4.3 Threading Model . 20

5 Implementation 22
5.1 Native Library Integration . 22
5.2 ORB-SLAM3 Wrapper Package . 23
5.3 Point Cloud Registration Package . 23
5.4 Point Cloud Renderer . 23
5.5 Application Services . 24
5.6 Major widgets . 25
5.7 Pages . 25

6 Evaluation 27
6.1 Testing Methodology and Experimental Setup 27
6.2 Results . 29
6.3 Discussion . 33

7 Conclusion and Future Work 35
7.1 Summary of Contributions and Findings 35
7.2 Future Work . 36

Overview of Generative AI Tools Used 37

Bibliography 38

CHAPTER 1
Introduction

Point clouds have become a ubiquitous form of representing three-dimensional data
in various applications, including computer vision, robotics, and augmented reality,
spanning diverse fields such as cultural heritage preservation, urban planning, and
gaming. Created through different techniques such as LiDAR scanning, photogrammetry,
and depth sensing, these collections of coordinates provide accurate and useful digital
representations of real-world environments and have become increasingly available for the
likes of buildings and infrastructure. With this gain in popularity, there also arises a need
to better utilize them in the field, like the fundamental challenge of accurately determining
the position and orientation of a camera within one of these pre-existing maps. This
capability is crucial for applications that require the overlay of digital information onto the
physical world, or where precise spatial awareness is needed. A few examples include the
positioning of autonomous hardware within a known environment, educational augmented
reality experiences to overlay historical reconstructions, or contextual information onto
real-world sites. Furthermore, indoor navigation systems can benefit from accurate
camera localization to provide users with real-time directions and information about
their surroundings.

In these scenarios, it is evident why traditional means of localization, like GPS or Wi-Fi
triangulation, are not sufficient. This is due to their limited information and accuracy,
especially in indoor or densely built-up areas, and an approach that leverages the rich
spatial data contained within the 3D point clouds is needed. Approaches that utilize this
form of data include feature-based methods that extract distinctive features from the
camera images and match them to corresponding features in the point cloud. This process
of image-to-point cloud registration, however, is often computationally intensive and
is not feasible for real-time applications on resource-constrained devices. Alternatively,
proprietary solutions and mobile AR frameworks exist, but they often suffer from being
closed-source and expensive, limiting their accessibility. A significant limitation of
these systems is their frequent restriction to point clouds generated within their own

1

specific ecosystem, which precludes the use of arbitrary, pre-existing maps. Finally,
simultaneous localization and mapping (SLAM) techniques can be employed to track the
camera’s position while building a map. While highly effective for tracking, standard
implementations rely on internal mapping and do not inherently utilize pre-existing point
clouds, inhibiting their use in scenarios where such data is already available.

This thesis aims to solve these problems by providing a solution that is able to perform
real-time camera localization within pre-existing 3D point cloud maps on mobile devices.
The focus lies on developing a system that can run efficiently on smartphones, leveraging
their built-in cameras and sensors to achieve accurate localization and visualization in
augmented reality (AR) applications and provide a more accessible solution than existing
methods. This is achieved by building on top of established technologies in the fields of
monocular SLAM and point cloud registration and combining them into a novel two-stage
pipeline: First, the monocular SLAM system provides real-time camera tracking and a
sparse 3D map of the environment. Second, a continuous registration step aligns this
generated map to the pre-existing reference point cloud, allowing for localization within
the known environment. This separation allows the SLAM system to run at the camera’s
frame rate, while the computationally heavier registration is executed at a lower, fixed
interval. This approach is further extended with a custom similarity transformation
(Sim(3)) estimation to address the scale ambiguity inherent in monocular SLAM systems.

The implementation uses the Flutter framework to provide ease of development for
mobile platforms, while also using Dart’s foreign function interface (FFI) to integrate
native industry standard libraries, which also provide the necessary performance needed.
Namely, ORB-SLAM3 is used for monocular SLAM, while the point cloud registration is
performed using different iterative closest point (ICP) algorithms from the Small-GICP
library. In order to visualize the point clouds in AR and provide rudimentary user
feedback, a basic custom rendering engine that is also written natively in Dart is used.

The developed system is evaluated in various real-world scenarios, demonstrating its
effectiveness and limitations. The results show that the application provides good
responsiveness and usability on modern smartphones, while displaying mixed results that
are very dependent on the environment and quality of the pre-existing point cloud when it
comes to the localization accuracy. The findings highlight the challenges associated with
monocular SLAM and point cloud registration, such as scale ambiguity and sensitivity to
environmental conditions. Based on this, potential future improvements are discussed,
including the integration of additional sensors, like inertial measurement units (IMUs),
to enhance robustness and accuracy.

This thesis is structured to first provide a comprehensive overview of the state of the
art, followed by the background and methodology. Afterwards, the system design and
implementation details are presented. Finally, the evaluation results are discussed,
followed by conclusions and suggestions for future research directions.

2

CHAPTER 2
State of the Art

This chapter provides a brief initial overview of existing approaches to the problem
of localizing a camera within a pre-existing 3D point cloud map. Various proprietary
solutions and image-to-point cloud registration techniques are discussed, highlighting
their advantages and limitations in the context of real-time applications on mobile devices.

2.1 Platform-Specific Mobile AR Frameworks and
Proprietary Solutions

When looking at mobile hardware, two major AR frameworks that allow for some form of
point cloud visualization and localization capabilities, while providing ease of development,
appear frequently. Apple’s ARKit is one of them, providing a high-level tool for the
company’s platforms. Their ARWorldMap feature allows developers to create a scan
of a location and save it for later use [Inc24]. This saved map can then be reloaded
in future sessions to localize the device within this previously scanned environment,
solving the formulated problem to some extent. The second framework is Google’s
ARCore, which offers similar functionality for Android devices called Cloud Anchors
[Goo24]. Both of them lack, however, the ability to import and utilize pre-existing point
clouds for localization, limiting their use cases to environments that have been previously
scanned using the respective framework. When looking beyond both of these mobile
operating system giants, there also exist third-party proprietary solutions for mobile
devices. One example is Immersal, which provides a cloud-based AR platform that allows
for localization within pre-scanned environments [Imm24]. Immersal supports the use
of point clouds for localization, but being a proprietary solution, it also comes with
limitations regarding accessibility and cost for research and development purposes.

3

2.2. Proprietary Hardware

2.2 Proprietary Hardware
Proprietary solutions also extend into hardware. Magic Leap, a company specializing
in augmented reality headsets, offers devices that are equipped with advanced sensors
and cameras capable of capturing detailed 3D maps of the environment. Their headsets
implement Spaces that let the HMD create a scan of the surrounding area, which can
then be used for localization down the line [Mag24]. Microsoft HoloLens 2 and others also
implement similar solutions [Mic23]. However, like the previously mentioned software
solutions, these hardware-based approaches are often expensive and closed-source, limiting
their accessibility for broader research and development efforts [VRC24].

2.3 Image-to-Point Cloud Registration
The most apparent scientific approach to localize a camera within a pre-existing point
cloud is to directly register the current camera image to the map. This process, known
as image-to-point cloud registration, involves extracting features from the 2D image
and finding corresponding points in the 3D point cloud. Once these correspondences
are established, algorithms such as Perspective-n-Point (PnP) can be used to estimate
the camera’s 6-DoF pose. Several research works have explored this approach, utilizing
various feature detection and matching techniques to improve accuracy and robustness.
One notable example of this is DeepI2P, which uses frustum classification [LL21]. Here,
a neural network is trained to predict whether points are inside or outside the camera
frustum, allowing for pose estimation using RANSAC on EPnP. Corrl2P is another
solution for this challenge, which establishes 2D-3D correspondences between image
features and point cloud points using a shared feature space to find shared regions
[RZHC22]. The final pose is then calculated by using standard geometric solvers (like
EPnP). CoFiI2P is one of the most performant methods for this task, using a coarse-to-
fine strategy to first estimate a rough pose and then refine it using iterative optimization
techniques [KLL+23]. Even though these methods show promising results and achieve
state-of-the-art accuracy, they are not fit for this exact issue. They have the ability to
perform in real time, but only achieve this on high-end desktop hardware with powerful
GPUs. For example, CoFiI2P specifies an NVIDIA RTX 4090 GPU and Intel Core
i9-13900K CPU were used for their benchmarks in order to reach around 15FPS, which
is far beyond the capabilities of current smartphones.

4

CHAPTER 3
Background and Methodology

This chapter details the fundamental concepts and techniques that form the basis of
the proposed method. It provides an in-depth analysis of simultaneous localization
and mapping (SLAM), specifically focusing on the monocular visual variant, and point
cloud registration algorithms. As these technologies are discussed, the rationale for their
selection is presented, while also outlining how they are integrated into the overall system
and what modifications were necessary to adapt them to the specific requirements of
this work. The chapter further summarizes this methodology, demonstrating how the
individual parts are combined into a unified pipeline, and concludes with the rationale
for the chosen mobile development framework.

3.1 Visual SLAM for Real-Time Camera Tracking
Since all of the solutions for the formulated problem discussed in the previous chapter
have various limitations, a different approach is needed. SLAM is a well-researched field
that does not specifically solve the problem at hand, but can provide a good basis for a
solution. The following sections provide an overview of the SLAM problem, its visual
variant, and the specific reasons for choosing monocular SLAM for this work. Finally,
the selected ORB-SLAM3 system is presented in detail.

3.1.1 The SLAM Problem

Simultaneous Localization and Mapping (SLAM) solves the problem of estimating
a sensor’s trajectory and pose while simultaneously reconstructing the surrounding
environment [DWB06]. It is a fundamental problem in robotics and computer vision
and has been extensively studied over the past few decades. The main challenge of
these systems lies in the fact that both of these tasks are interdependent and rely on the
accuracy of the other. This circular dependency is resolved using iterative approaches,

5

3.1. Visual SLAM for Real-Time Camera Tracking

where both the map and the trajectory are refined over time as more data becomes
available, in order to minimize the accumulated reprojection errors [CCC+16].

Visual SLAM is a variant that relies on visual data from cameras to perform localization
and mapping. It takes a sequence of timestamped images as input and calculates the 6-DoF
pose and improved map for each frame based on visual features extracted from the images
[SF11]. After key points are determined for a frame, correspondences are established
with previously processed data, allowing for the estimation of three-dimensional positions.
To decrease the error accumulation over time, loop closures (revisiting previously seen
locations) are detected, and methods like bundle adjustment (a nonlinear least-squares
optimization technique) are used [TMHF99].

3.1.2 Visual SLAM Variants

Visual SLAM systems differ in their respective sensor configuration used and how this
data is being processed [SF11]. Different sensor setups include monocular SLAM, which
utilizes a single camera, but therefore suffers from scale ambiguity and needs motion
to function properly [MAMT15]; stereo SLAM, which is similar but employs a more
advanced visual system consisting of two cameras to calculate depth values directly
[ESC15]; and RGB-D SLAM, which uses measurement devices such as time-of-flight
sensors in addition to the visual data to provide direct depth measurements, simplifying
the mapping process and improving accuracy [EHS+14]. Furthermore, visual-inertial
SLAM systems combine visual data with inertial measurements from IMUs to enhance
robustness and accuracy, especially in dynamic or fast-paced scenarios [LLB+15].

Processing methods can be categorized into feature-based and direct methods. Feature-
based methods such as ORB-SLAM rely on detecting and matching distinctive features
across frames to estimate motion and build the map [MAMT15]. They are generally more
robust to changes in lighting and texture, but can struggle in feature-poor environments.
Performance is often better, as only a subset of the image data is used for processing.
Direct methods such as LSD-SLAM, on the other hand, optimize the camera pose
by minimizing the photometric error across all pixels, allowing them to utilize more
information from the images. Because of this, they can leverage more information each
frame, but suffer from motion blur issues and require higher frame rate and computational
power [ESC14].

3.1.3 Why Monocular SLAM for This Application?

The requirements of mobile deployment with real-time performance and acceptable device
compatibility already dictate the choice of system that can be used for this work as a
base for camera tracking. Monocular SLAM is the best option for various reasons, with
the biggest one being the availability of a standard RGB camera on virtually all modern
smartphones. Stereo SLAM requires synchronized dual cameras, which are only present
on higher-end devices. Here, an additional problem arises, as the physical distance
between the cameras (the baseline) is fixed and often quite small, limiting depth accuracy

6

3.1. Visual SLAM for Real-Time Camera Tracking

and range [FHASAM16]. Also, most mobile devices that have multiple cameras mostly
use them for zoom capabilities, meaning that the lenses have different focal lengths,
complicating stereo matching [DXO21]. RGB-D SLAM demands depth sensors, which
are also exclusive to high-end devices, and even then, not widespread. Visual-inertial
SLAM could be a viable option, as almost all smartphones have built-in IMUs. However,
this would add additional complexity to the system and could always be added later, if
needed.

Monocular SLAM introduces two fundamental challenges. The already mentioned scale
ambiguity means that the absolute scale of the environment cannot be determined from
monocular images alone [SF11]. The trajectory and constructed map are still correct, but
can be arbitrarily scaled. A camera moving one meter may be indistinguishable from one
moving two meters, if there are no other points of reference. The second challenge is the
need for motion to initialize and maintain tracking. Monocular SLAM systems require
parallax to triangulate depth and build a 3D map [MAMT15] [CDM08]. If the camera
remains static or moves too slowly, tracking can be lost. This, of course, would not be
the case with other SLAM variants, which provide direct depth measurements. Both
of these issues are, in theory, mostly mitigated for the use case presented in this work
through the continuous registration step, which is discussed in Section 3.2. In a nutshell,
registering the generated map to a pre-existing point cloud, with known metrics, should
provide the necessary scale information. This is discussed further in Section 3.2.5. Also,
when the tracking is lost due to the lack of motion, the registration will automatically
jump in once enough parallax is present again. One issue that remains is that the user
experience might suffer from these jumps in tracking, as the camera pose will suddenly
change when re-localization occurs. This, however, is an acceptable trade-off, given the
advantages of monocular SLAM for this application.

Feature-based monocular SLAM further suits this work, as it provides a good balance
between performance and robustness. The generated maps of this method have the
characteristic that they consist of sparse three-dimensional points, which would make
the registration process less computationally demanding [MAT17].

3.1.4 ORB-SLAM3 System Overview

Based on the previously discussed criteria and other practical considerations, ORB-SLAM3
was selected as the feature-based monocular SLAM system for this work [CER+21]. As
an evolution of the well-known ORB-SLAM2 with thousands of citations, it introduces
several improvements and new features that enhance its usability [MAT17].

The ORB-SLAM3 system architecture consists of three concurrent threads, handling
tracking, local mapping, and loop closing, respectively. The tracking thread first extracts
ORB (Oriented FAST and Rotated BRIEF) feature descriptors from the incoming camera
frames, which provide a good balance between computational efficiency and robustness
to changes in scale and rotation [RRKB11].

7

3.2. Point Cloud Registration for Coordinate Alignment

It then establishes correspondences with the local map points to estimate the camera
pose through solving the Perspective-n-Point problem using RANSAC and motion-only
bundle adjustment for refinement. If tracking is successful, the local mapping thread is
responsible for adding new key frames and map points to the map, as well as performing
local bundle adjustment to refine these poses. The map structure is further optimized by
selecting new key frames if the current frame has moved sufficiently far from existing key
frames. If tracking is lost at any point, the Atlas system provides multimap features, like
initializing a new map or re-localizing in the old one.

The loop closing thread detects loop closures by recognizing previously visited locations
using a bag-of-words approach and performs pose graph optimization to correct drift in
the trajectory and improve the overall map consistency.

For this work, two specific outputs are needed from ORB-SLAM3. First, the real-time
camera poses as a 4×4 homogeneous transformation matrix T SLAM

cam ∈ SE(3) representing
the SLAM coordinate system to the camera coordinate system in the OpenCV convention
(x-right, y-down, z-forward). Second, the sparse 3D map points {pSLAM

i } generated by
the SLAM system in the same world frame, which are periodically requested to perform
the continuous registration step described in Section 3.2.

3.2 Point Cloud Registration for Coordinate Alignment
The map, which is generated by the monocular SLAM system, exists in its own arbitrary
coordinate system, which does not correspond to any real-world reference frame. In
order to localize the camera within a pre-existing point cloud map, a transformation
between both coordinate systems must be established. This is achieved through another
fundamental computer vision problem known as point cloud registration. The following
sections provide an overview of this problem, its necessity for this work, and the specific
algorithms used to solve it.

3.2.1 The Registration Problem

Point cloud registration is the process of calculating the transformation that aligns two
sets of three-dimensional points. For rigid registration, this transformation consists of a
rotation R ∈ SO(3) and a translation t ∈ R3, that minimize the distance between corre-
sponding points in the two point clouds and, which can be represented as a homogeneous
transformation matrix T ∈ SE(3) [Ume91, BM92]. When point clouds additionally differ
in scale, however, the problem becomes one of similarity registration Sim(3), where a
uniform scaling factor s ∈ R+ is also estimated alongside rotation and translation. Here,
all of these parameters have to be considered when minimizing the distance between
corresponding points. This increases the complexity of the problem and reduces accuracy
and robustness, as an additional degree of freedom is introduced.

In this work, the challenge of registering two point clouds distinguishes itself from
standard registration tasks to some extent. Usually, both point clouds stem from similar

8

3.2. Point Cloud Registration for Coordinate Alignment

sources, like two consecutive LiDAR scans or photogrammetric reconstruction, where
they share similar densities and distributions of points. Here, however, one point cloud is
always generated by the monocular SLAM system (sparse), while the other can be any
arbitrary pre-existing point cloud (potentially dense). The asymmetric nature of this
registration problem requires special consideration when selecting appropriate algorithms
and techniques, and might limit the achievable accuracy. This also further motivates the
continuous registration approach, with periodic map updates, as a single registration
might not be sufficient to achieve the desired accuracy. The monocular approach also
means that scale ambiguity has to be considered, as discussed in Section 3.2.5.

3.2.2 Why Registration is Necessary

Visual SLAM establishes a local coordinate system that is arbitrary in terms of scale,
orientation, and position at initialization [SF11]. This means that the camera pose T SLAM

cam
and map points {pSLAM

i } generated by the SLAM system are defined relative to this local
frame, which does not correspond to any real-world metric or orientation. ORB-SLAM3
sets its world origin based on the initial camera pose [CER+21]. This remains consistent
throughout the session, but does not provide any absolute reference.

The pre-existing point cloud map, which acts as the reference, exists in its own coordinate
system. This reference frame is entirely independent of the one created by the SLAM
system. In some scenarios, this reference map might be a metrically accurate scan of
the real world, for instance, from a LiDAR scanner or a photogrammetry pipeline. In
other cases, it could be a map generated during a previous SLAM session, which would
also have its own arbitrary origin (and possibly scale). Regardless of the source, to align
the camera view with the reference map, a transformation T ref

SLAM ∈ Sim(3) (or SE(3) if
the scales are identical) between the two coordinate systems must be established. With
this, the camera pose output by the SLAM system can be transformed into the point
cloud’s reference frame through T ref

cam = T ref
SLAM · T SLAM

cam . This transformation enables the
use of accurate AR by placing the camera and the reference point cloud into a unified
coordinate system, allowing for a correct projection.

3.2.3 Iterative Closest Point (ICP) Algorithm

The Iterative Closest Point (ICP) algorithm is a widely used method for rigid point cloud
registration [BM92]. The algorithm works by iteratively refining an initial estimate of
the transformation between the source and target point clouds. There are four main
steps that are iteratively repeated until convergence is reached:

1. Correspondence Estimation: For each point in the source point cloud pi ∈ Psource,
the closest point in the target point cloud qnn(i) ∈ Ptarget (nearest neighbor) is
found, establishing correspondences between the two sets of points.

2. Transformation Estimation: Using the established correspondences, the optimal
rigid transformation (R, t) that minimizes the distance between the corresponding

9

3.2. Point Cloud Registration for Coordinate Alignment

points is computed using Singular Value Decomposition (SVD) or other approaches
[AHB87].

3. Apply Transformation: The computed transformation is applied to the source point
cloud.

4. Convergence Check: The error is checked to see if it is below a predefined threshold
or if a maximum number of iterations has been reached. If not, it returns to step 1.

The performance of this algorithm depends strongly on the nearest-neighbor calculation
method used. Basic implementations that rely on brute-force have a time complexity
of O(N · M), where N and M are the number of points in the source and target point
clouds, respectively. Using more advanced approaches like KD-trees can reduce the
time complexity to O(N log M), significantly speeding up the correspondence estimation
step [RL01]. Another important characteristic of ICP is its strong convergence to local
minima [BM92, RL01]. This means that the error always decreases, but it can get stuck
in suboptimal solutions. Lastly, the algorithm is also sensitive to outliers and noise in
the data, which can lead to incorrect correspondences and poor registration results.

3.2.4 GICP, VGICP and PLANE ICP Improvements

Generalized ICP (GICP) is an extension of the standard ICP algorithm with improved
robustness and accuracy [SHT09]. In simple terms, instead of looking at each point
individually, GICP considers the local surface structure around each point by estimating
local covariance matrices. This allows GICP to better handle noise and outliers, as well
as improve convergence properties. The algorithm modifies the error metric to account
for the local surface geometry, leading to more accurate registration results, especially in
cases where the point clouds have different densities or distributions.

Voxelized GICP (VGICP) further builds upon GICP by introducing a voxel grid structure
to partition the point clouds into smaller, manageable regions [KOY21]. This voxelization
allows for more efficient nearest-neighbor searches and reduces computational complexity.
VGICP can therefore achieve faster convergence and improved performance, particularly
for large point clouds. The voxel grid also helps in reducing the impact of noise and
outliers by averaging points within each voxel, leading to more stable registration results.

Plane ICP (or Plane-to-Plane ICP) is another variant of the standard ICP algorithm
that improves convergence and accuracy by modifying the error metric [Low04]. Unlike
the original Point-to-Point ICP, which minimized the distance between corresponding
points, Plane ICP minimizes the distance between each source point and the tangent
plane defined by its corresponding target point. This is achieved by estimating surface
normals for each of the target points and then minimizing the dot product between these
normals and the point-to-point vectors.

To integrate these algorithms into this work, the Small-GICP library is used, which
provides all the discussed ICP variants, while also being optimized for multithreaded CPU-

10

3.2. Point Cloud Registration for Coordinate Alignment

oriented performance and ease of use [Ish23]. Benchmarks show that the implementation
is even faster than the one provided in the popular Point Cloud Library (PCL), while
also offering the flexibility to choose between different ICP variants based on the specific
requirements of the registration task at hand.

3.2.5 The Scaling Problem

ICP-based registration algorithms provide a stable and robust solution when both point
clouds are in the same scale. This can be the case when the same SLAM system and sensor
configuration that are now used for localization have been used to create the pre-existing
point cloud map. However, since monocular SLAM suffers from scale ambiguity and
the pre-scanned map might also have an arbitrary scale, this cannot be assumed. To
therefore make the approach presented in this work more generalizable, the possibility of
scale differences between the two point clouds has to be considered. This means, that
instead of estimating a rigid transformation T ref

SLAM ∈ SE(3), a similarity transformation
T ref

SLAM ∈ Sim(3) also including a uniform scaling factor has to be calculated increasing
the DoF from 6 to 7. Further increases of complexity, like anisotropic scaling or affine
transformations, are not considered, as they lead to even more unstable results and are
not strictly necessary for this application. Another characteristic of this work, which
aids in solving the scale problem, is visual feedback to the user, which allows for manual
adjustments of the scale if the automatic estimation fails.

In this work, there are two make-shifted approaches to automatically try to solve this
problem, which both rely on a hierarchical coarse-to-fine multiscale pyramid of different
voxel resolutions. This is aimed at improving robustness by first looking at more global
structures and then refining the results at finer levels. They also share the approach
of taking an initial scale estimate of the user into account, and when not provided,
using a bounding box-based heuristic to determine a rough initial scale. This is done by
calculating the diagonal lengths of the bounding boxes of both point clouds and using
their ratio as an initial scale estimate: s0 = |dtarget|/|dsource|, where d = pmax − pmin
represents the bounding box diagonal vector. Furthermore, the coarse estimate is clamped
to avoid extreme scale values.

The first algorithm builds on top of Small-GICP’s registration algorithms [SHT09]. This
method decouples the correspondence calculations and scale estimations by passing the
current scale estimate to the rigid ICP variant at each level. This is a high-level overview
of the proposed algorithm:

1. Estimate initial clamped scale s0 using bounding box heuristic or user input.

2. For each level in the multiscale pyramid (from coarse to fine) l with voxel resolution
vl:

a) Downsample both point clouds Psource and Ptarget to voxel resolution vl. This
merges points within each voxel, reducing noise, computational load, and

11

3.2. Point Cloud Registration for Coordinate Alignment

enhancing the bigger structures. The resulting point clouds are Psource,l and
Ptarget,l. Also build KD-trees for fast nearest-neighbor searches later on.

b) Build a transformation matrix Tl with the current scale estimate sl−1 inte-
grated.

Tl =
[︄
R · sl−1 t

0 1

]︄
(3.1)

c) This initial transformation guess Tl is then passed to the Small-GICP library
with the selected ICP variant to perform rigid registration on the current point
clouds at level l at the scale sl−1.

d) The resulting refined transformation T ′
l now delivers the optimal (for the

settings and approach) rotation R′ and translation t′ at the estimated scale
sl−1.

e) Now the voxelized source point cloud source,l is considered again. Corre-
spondences are established between this and the target point cloud by now
transforming every point pi using the refined transformation T ′

l and then
finding the nearest neighbor qnn(i) in the target point cloud.

f) Now, utilizing these correspondences, the Umeyama method [Ume91] is used
to estimate a new similarity transformation Tsim,l between the two point clouds.
If the resulting scale sl is within acceptable bounds and everything else looks
good (number of matches), the current scale estimate is updated to this new
value. If not, the previous scale estimate is retained.

3. After all levels have been processed, one last refinement step is performed using
Small-GICP at the finest voxel resolution with the final scale estimate sL to obtain
the final transformation T ref

SLAM.

This hybrid approach intends to leverage both the robust registration capabilities of
Small-GICP and the explicit scale estimation of the Umeyama method to achieve accurate
similarity registration. In future sections, it will be referred to as the Sim(3) External
algorithm, since the scale estimation is performed outside of the ICP loop.

The second algorithm is simpler and does not use Small-GICP’s registration methods.
Instead, it implements a custom ICP loop based on Open3D [ZPK18], where scale is
directly estimated using Umeyama’s least-squares similarity transformation within a
multiscale framework [PZK17] [Ume91]. The high-level steps are as follows:

1. Estimate initial scale clamped s0 using bounding box heuristic or user input.

2. For each level in the multiscale pyramid (from coarse to fine) l with voxel resolution
vl:

a) Run an ICP loop until convergence or maximum iterations reached:

12

3.3. Coordinate Systems and Transformations

i. Apply current transformation estimate T iter
l to the source point cloud

Psource,l. This is then used to establish correspondences with the tar-
get point cloud Ptarget,l by finding nearest neighbors. If the number of
correspondences is too low, the process is aborted.

ii. Using the established correspondences, the Umeyama method is employed
to estimate a new optimal similarity transformation T iter

sim,l that includes
rotation, translation, and scale. If the resulting scale siter

l is not within
acceptable bounds, the previous scale estimate is retained.

iii. Convergence is checked by looking at the change in scale and transforma-
tion. If below a certain threshold or oscillating, the ICP loop is exited.

This approach directly integrates scale estimation into the ICP loop, allowing for simulta-
neous refinement of rotation, translation, and scale at each iteration. It is expected to be
more straightforward but potentially less robust than the previous method, as it does not
leverage the advanced registration techniques of Small-GICP. In future sections, it will
be referred to as the Sim(3) Internal algorithm, since the scale estimation is performed
within the ICP loop.

How well these two approaches perform in practice is evaluated in Chapter 6.

3.3 Coordinate Systems and Transformations
In order to combine the different components of the proposed system, it is important to
clearly define the various coordinate systems involved and how they relate to each other.
The following coordinate systems are used throughout this work:

• SLAM Coordinate System: The local coordinate system established by the
monocular SLAM system (ORB-SLAM3) on initialization, but stays consistent
throughout the session. The camera pose T SLAM

cam and map points {pSLAM
i } are

defined in this frame.

• Pre-existing System: The presumed real-world coordinate system of the pre-
existing point cloud map, with reference scale and orientation. {pref

i } is defined
here.

• Camera Coordinate System: The coordinate system of the camera, defined
by its intrinsic parameters and image plane. The camera pose T ref

cam is eventually
needed in this frame for AR rendering.

3.4 Methodology Overview
Based on the theoretical foundations and algorithmic components analyzed in the previous
sections, the methodology for this work is summarized as a two-stage pipeline consisting

13

3.5. Mobile Development with Flutter

of real-time monocular SLAM, followed by a continuous point cloud registration step.
This effectively combines a high-frequency, locally consistent tracking method with a
global alignment method that anchors the trajectory in a pre-existing map, thus achieving
real-time 6-DoF localization within an arbitrary point cloud.

3.4.1 Method at a Glance

The proposed method employs a continuous loop that couples tracking and alignment by
executing both stages repeatedly, however, at the respective frequencies.

First, the monocular SLAM system estimates the camera pose T SLAM
cam ideally at the

frame rate of the camera, while also incrementally building a sparse 3D map {pSLAM
i } of

the environment in its own local coordinate system. This ensures that the system remains
responsive and can handle fast camera motions, while also being robust to temporary
tracking failures through relocalization capabilities.

The second stage is the point cloud registration step, which operates at a lower frequency
in a fixed interval. Here, the current sparse map points {pSLAM

i } generated by the SLAM
system are extracted and used as the source point cloud for registration against the
pre-existing reference point cloud {pref

i }. This process estimates the transformation
T ref

SLAM that relates the SLAM coordinate system to the fixed reference frame of the
pre-existing map, employing either existing rigid registration algorithms or the custom
similarity (Sim(3)) estimation approach. By continuously updating this alignment as the
SLAM map evolves, the system can correct for drift and refine the global position over
time.

Once an estimate of this alignment is available, any locally tracked camera pose T SLAM
cam

can be expressed in the global reference frame through composition:

T ref
cam = T ref

SLAM · T SLAM
cam .

Finally, this global pose is used to render the reference point cloud from the current
virtual viewpoint, overlaying it onto the live camera feed to create the augmented reality
experience. This separation ensures that the AR visualization remains responsive to user
motion, while its alignment to the real world is robustly maintained by the background
registration stage.

3.5 Mobile Development with Flutter
Realizing the proposed system on mobile devices requires a development approach that
balances rapid iteration with high-performance computing. This is achieved by combining
a modern application framework for the user interface with direct integration of native
libraries for computationally intensive tasks.

14

3.5. Mobile Development with Flutter

3.5.1 Why Flutter?

Flutter was selected as the mobile framework for the application in this work due to
its modern architecture, expressive UI capabilities, and ease of development. Flutter’s
reactive framework and widget-based approach allow for rapid prototyping and iteration,
which makes the development process, especially of the user interface, more efficient.
The hot-reload feature, which uses Dart’s Just-In-Time (JIT) compilation, enables quick
testing and debugging, significantly speeding up the development cycle. Furthermore,
Flutter’s performance is comparable to native applications, as it compiles to native ARM
code using Ahead-Of-Time (AOT) compilation for release builds. The package ecosystem
is also quite mature, providing a wide range of plugins and libraries that can be leveraged,
while also providing good documentation and community support. The multi-platform
capabilities of Flutter also deserve a mention, as they keep the possibility open to extend
the application to other platforms.

3.5.2 Foreign Function Interface (FFI)

Although Dart and Flutter provide a good level of performance, there are still certain com-
putationally intensive tasks that are better suited for native implementations. Especially
for the SLAM and point cloud registration components that are needed in this work, every
millisecond counts to achieve real-time performance on mobile devices. Furthermore, the
existing libraries that are used, like ORB-SLAM3 and Small-GICP, are only implemented
in C++ and would be difficult to replicate in Dart. To bridge this gap, Dart’s Foreign
Function Interface (FFI) is utilized, which allows for the integration of native C/C++
code and also provides some developer tools, like automatically generated bindings.

15

CHAPTER 4
System Design

This chapter presents the architectural design and implementation strategies of the
proposed system. It provides an overview of the software components and their layered
organization and also details the data processing pipeline that enables real-time operation.
Finally, the threading model is discussed, highlighting the concurrency mechanisms
employed to ensure responsiveness on mobile hardware.

4.1 Architecture Overview
The system is designed to follow a layered architecture that starts at the Flutter-based
interface and application logic and goes down to the native C++ implementations of
the SLAM and point cloud registration components. It also follows a modular approach,
where each component is encapsulated and is responsible for a specific task, allowing for
some separation of concerns and future extensibility.

The main application (flutter_3d_localization) implements the overall logic
and multipage user interface using Flutter and Dart. It is responsible for managing
different workflows and interactions between the user and the underlying subsystems,
also orchestrating state and data flow. The application is structured into several key
pages, each serving a specific purpose:

• The main page includes the camera widget, with the AR Overlay and a bottom
sheet for quick settings and status information

• The gallery page allows for management and selection of pre-existing point clouds

• The registration settings page is used to configure the registration algorithms and
parameters. There is also a benchmark section provided that allows for performance
evaluation of different settings.

16

4.2. System Pipeline

• The ORB-SLAM3 configuration page provides access to the SLAM system settings,
like camera intrinsics and other parameters, while also offering exporting and
analytics capabilities.

• The AR settings page provides options for customizing the AR rendering, like point
size, colors, and downsampling thresholds.

• The about page provides information about the application, licenses, and credits.

The orb_slam3_wrapper package serves mainly as a Dart FFI wrapper around a
native, slightly modified ORB-SLAM3 library. It exposes necessary functions to initialize
the SLAM system, process camera frames, and retrieve the camera pose and map points,
while also having lifecycle management capabilities. This also includes importing the
vocabulary file needed for place recognition. The package abstracts away the complexities
of the native code, providing a simple Dart interface for the main application to interact
with. Here, all the dependencies of ORB-SLAM3, like OpenCV and Eigen, are also
managed.

The point_cloud_registration package similarly acts as a Dart FFI wrapper
around the Small-GICP library. This makes the use of the different ICP variants possible
from Dart code. On top of this, additional logic is implemented to handle the multiscale
registration approaches, manage point clouds, and also provide benchmarking capabilities
to evaluate the performance of different algorithms and settings.

The point_cloud_renderer implements a simple rendering engine that is purely
written in Dart. This design choice allows for better integration with the Flutter
framework and simplifies the overall architecture. The subsystem provides a widget for
rendering point clouds using a pinhole camera model and basic OpenGL-like rendering
techniques, while also offering an AR overlay version.

4.2 System Pipeline
The processing pipeline of the proposed system can be broken down into several key
stages, which are executed in a continuous loop to provide real-time camera tracking and
localization within the pre-existing point cloud map. The main stages of this pipeline
are as follows:

4.2.1 Frame acquisition and preprocessing

The pipeline initiates with the camera widget, which provides a continuous stream of
frames from the selected sensor at specific settings once started. While there are multiple
resolution presets available, the chosen image format is always YUV420. The reason for
this lies in the fact that ORB-SLAM3 requires grayscale images for feature extraction
and tracking, and since YUV420 contains a dedicated luminance channel, it can be easily
converted to grayscale by extracting this channel directly, avoiding unnecessary color

17

4.2. System Pipeline

Frame Aquisition and
Preprocessing

Camera Widget

- YUV420 Image Stream
- Extract Luminance
- Timestamping
- Preprocessing

Image Tracking
using SLAM

ORB-SLAM3 via FFI

- Pose Estimation
- Extract ORB Features
- Match to Local Map
- Update Sparse Map
- Update Pose

Map Registration
and Alignment

Small-GICP and Custom via FFI

- Estimates registration
to transform reference
point cloud into SLAM
coordinates

- Both Rigid and Similarity

Map Combination and
Matrix Calculation

Dart Services

- Transform reference map
- Apply color
- Apply corrections
- Combine generated and

reference maps

Frame Generated
Map

Reference MapStatus

AR Rendering and
Visualisation
Rendering Engine

- Pinhole Model
- Matrix calculations
- Render point clouds

using camera pose
- Overlay over camera feed

Generated
Map Camera Pose

Reference Map

Registration Transformation

Combined
Map

Metrics

Image

Figure 4.1: The high-level processing pipeline of the proposed system.

space conversions and reducing computational overhead. Each frame is then further
timestamped in order to provide temporal consistency for the SLAM system. Lastly, the
camera dimensions are captured for later use with the rendering engine.

4.2.2 Image Tracking and SLAM Integration

The preprocessed frames are then passed to the ORB-SLAM3 subsystem via the FFI
wrapper. Here, the ORB features of each frame are extracted and matched against the
local map of 3D points to estimate the camera pose T SLAM

cam . The SLAM system also
maintains and updates a sparse 3D map of the environment {pSLAM

i }, which is periodically
requested for the registration step and AR rendering. This process is described in more
detail in Section 3.1.4.

For each frame, the current tracking status is also calculated. If the system has not been
initialized yet, the tracking status is set to NOT_INITIALIZED and a few frames with
enough parallax are needed to bootstrap the process. Once initialized, the system enters
the OK state, where tracking is successful, and the map and pose are being updated
normally. If tracking is lost due to insufficient features or rapid motion, the status changes

18

4.2. System Pipeline

to LOST, and the system will attempt to re-localize using the existing map points. The
current tracking status is communicated back to the main application for user feedback
and to manage the registration process accordingly.

Furthermore, the Atlas system of ORB-SLAM3 is utilized for basic analytics. Everything
else of this data structure is, however, abstracted away, since only the currently active
map is needed for this work.

4.2.3 Point Cloud Extraction and Registration

Once a reference point cloud has been chosen in the gallery and automatic registration
is enabled after SLAM is initialized, the registration subsystem is activated. Here,
the periodically extracted sparse 3D map points {pSLAM

i } from the SLAM step are
continuously registered with the chosen pre-existing point cloud {pref

i } in a set interval.
Depending on the selected algorithm and settings, either rigid or similarity registration
is performed to estimate the transformation T ref

SLAM between the two coordinate systems.
This transformation is then used in the AR rendering step to view the reference point
cloud from the correct camera pose. For user feedback, the error metrics and calculated
changes are also communicated back to the main application.

4.2.4 Point Cloud Combination

In the next stage, the reference point cloud, which has been transformed into the SLAM
coordinate system using the estimated transformation, T ref

SLAM, is prepared for rendering.
Based on the user selection, nothing, only the SLAM map points, only the reference point
cloud, or both point clouds combined will be shown. Before both point clouds are merged,
a uniform RGBA is applied to each point cloud, so that they can be visually distinguished.
The combined point cloud is then downsampled below at a specific threshold using a
voxel grid filter to ensure real-time rendering performance on mobile devices.

4.2.5 Augmented Reality Rendering

The final stage of the pipeline focuses on rendering the selected point clouds. This is
handled by the rendering engine subsystem, which introduces a widget that is drawn
above the camera feed from earlier. Rendering is performed using a simple pinhole model
with the camera intrinsic parameters (focal lengths and principal point), which are set in
the ORB-SLAM3 configuration. For each point, the process involves:

1. World-to-camera transformation: By using the inverse of the estimated camera
pose T ref

cam, each point in the world coordinate system can be transformed into the
camera coordinate system: pcam

i = (T ref
cam)−1 · pref

i .

2. Projection onto image plane: In the next step, now every point in the camera
coordinate system can then be projected onto the 2D image plane using the pinhole

19

4.3. Threading Model

camera model: ui = fx · xcam
i

zcam
i

+ cx, vi = fy · ycam
i

zcam
i

+ cy, where (fx, fy) are the focal
lengths and (cx, cy) is the principal point.

3. Intrinsic transformation: Using the camera intrinsic, the projected points are then
further transformed into pixel coordinates on the screen: xpixel

i = ui, ypixel
i = vi.

4. Viewport mapping: Lastly, the pixel coordinates are mapped to the viewport of
the Flutter widget, taking into account aspect ratio and scaling.

There are also multiple correction settings implemented in the Dart services that allow
for zoom, rotation, and vertical/horizontal offsets of the rendered point cloud to better
align it with the camera feed.

4.3 Threading Model
The application, which is presented in this work, relies on multiple subsystems that have
different performance and responsiveness requirements. To ensure smooth operation
and real-time capabilities, a threading model is implemented to separate concerns and
manage concurrency effectively:

4.3.1 Main Isolate Thread

The application runs primarily on the main Dart isolate thread, which is responsible for
the user interface and the overall application logic. This includes all navigation, state
management, and widgets. Asynchronous calls are handled using Futures and Streams,
which allow for I/O operations without blocking, among other things, while not having
to deal with thread management directly.

4.3.2 Frame Processing

The camera is also handled on the main thread, since it is part of the UI. The frames,
however, are received from platform channels and are passed to the SLAM subsystem
asynchronously to avoid blocking the UI using a Microtask. Since SLAM tracking is
computationally intensive and therefore slower than the frame acquisition, a flag is
employed to not process new frames while the previous one is still being handled, thus
preventing a backlog of frames.

4.3.3 Concurrency in the FFI

When data is fed into the native subsystems via FFI, the execution will not run on the
main Dart thread, but rather on a separate native thread. Dart, however, waits for the
native call to finish before continuing execution on the main thread. Because of this, both
SLAM and registration have to be performed asynchronously separately, even though
they both run on native threads.

20

4.3. Threading Model

4.3.4 Native Layer Threading

When looking at the native C++ libraries, both ORB-SLAM3 and Small-GICP implement
their own multithreading capabilities. ORB-SLAM3 specifically uses three concurrent
threads for tracking, local mapping, and loop closing. The wrapper package around
this library also introduces a mutex protection flag for thread-safe access to the current
estimated camera pose.

4.3.5 Registration Thread

Point cloud registration is the heaviest task, which is part of the application and happens at
a set interval. To ensure that no blocking of the main thread occurs, this is handled inside
a dedicated Dart isolate that starts up its own native thread for executing the registration
algorithms. This requires some additional data serialization and transfer overhead, but
keeps the main application responsive. The prevention of multiple concurrent registration
attempts is also achieved using flags. Inside the isolate, Small-GICP further accepts a
thread count, which additionally parallelizes certain parts of the registration process,
further improving performance.

4.3.6 AR Rendering

The rendering engine is implemented purely in Dart and runs on the main isolate
thread, utilizing Flutter’s CustomPainter class for drawing. Point clouds are fetched
asynchronously, but the actual projection and drawing are performed synchronously.

21

CHAPTER 5
Implementation

This chapter gives a high-level overview of the implementation details and challenges
encountered when developing this application. It covers the integration of the various
subsystems, the design choices made, and how the overall architecture was realized
in practice. The complete implementation is available as open-source software in the
project’s git repository [Mik25].

5.1 Native Library Integration

5.1.1 FFI Bridge

As previously discussed in Chapter 4, Dart’s Foreign Function Interface (FFI) is used to
expose native C++ libraries and functions to the Flutter application, thereby achiev-
ing the necessary performance for real-time operation. Both FFI plugin packages
(orb_slam3_wrapper and point_cloud_registration) follow a consistent pat-
tern in order to achieve this: a C-compatible header of the necessary functions is created
with extern "C", which is then annotated with FFI_PLUGIN_EXPORT to ensure
proper symbol visibility. ffigen is then utilized to automatically generate the Dart
bindings, which are then wrapped in higher-level Dart classes to provide a more idiomatic
interface for the main application. This also requires memory management considerations,
as data passed between Dart and C++ needs to be allocated and freed appropriately to
avoid memory leaks.

5.1.2 Build System Integration

Native code is compiled directly within the Flutter build pipeline through the use of
CMake and platform-specific build scripts. For Android, the CMakeLists.txt files
are configured to include the necessary source files, dependencies, and compiler flags
for ORB-SLAM3 and Small-GICP, respectively. The correct architecture has to be

22

5.2. ORB-SLAM3 Wrapper Package

considered here (ARMv8, x86_64 are supported in this work) to ensure compatibility
with the target devices.

5.2 ORB-SLAM3 Wrapper Package
From an integration standpoint, ORB-SLAM3 is the most complex component of the
system. Here, many dependencies (like OpenCV, Eigen, DBoW2, g2o) are required in
order for it to function. The correct binaries for the specific architecture have to be
built and linked properly. Furthermore, some modifications to the original codebase
were necessary in order to get it to run on mobile devices and to expose the needed
functionality via FFI. This includes, for example, removing the native visualization
components that are not needed in this work.

Another important aspect is the loading of the ORB vocabulary file, which is essential
for place recognition and loop closure. Since this file is quite large (around 150MB),
it is bundled as an asset in the Flutter application and then copied to the device’s file
system at runtime, where it can be accessed by the native code. The configuration
parameters are also handled using this approach, by providing a YAML file that is parsed
by ORB-SLAM3 during initialization.

For the map extraction to work properly, the native code iterates over the current map
points in the active Atlas map and serializes them into a contiguous array that can
then be passed back to Dart via FFI. Pose estimation follows a similar pattern, while
additionally having to be converted from row-major to column-major format, as expected
by the vector_math Dart library.

5.3 Point Cloud Registration Package
The integration of Small-GICP is far simpler. Here, there are fewer dependencies, and
the library is also header-only, meaning that no separate compilation step is necessary.
The main implementation work lies in implementing the custom similarity registration
algorithms, which are not provided by the library out of the box. Apart from this, only a
few extra considerations have to be made, like proper memory management of the point
clouds passed via FFI and ensuring thread-safety during concurrent registration calls.

5.4 Point Cloud Renderer
Unlike the other packages, the renderer is written in pure Dart. This favors better
integration, portability, and ease of development. Furthermore, an approach is chosen
that does not rely on any dedicated rendering libraries or APIs. The main reason for
this is the lack of mature and well-maintained 3D rendering options for Flutter at the
time of writing. For example, flutter_gl has not been updated in multiple years.
Furthermore, flutter_gpu, which is an experimental rendering API, still has a lot of

23

5.5. Application Services

rough edges and is not production-ready. The math follows a standard pinhole camera
model approach, which is implemented using the vector_math Dart library. The actual
rendering is performed using Flutter’s CustomPainter class, which provides a canvas
for drawing 2D graphics. Here, each point is drawn as a simple circle at its projected 2D
coordinates.

5.5 Application Services
The rest of the application logic is implemented directly in Dart inside the main application
package. To keep the code organized and modular, different services are created to
encapsulate specific functionalities.

5.5.1 ORB Registration Service

One of the key services is the OrbRegistrationService, which manages the con-
tinuous registration process of the SLAM map points to the pre-existing point cloud.
Here, the different registration modes are chosen based on the user settings, and the
necessary parameters are prepared and passed to the subsystem at the specified interval.
If requested, this is also the service where inversion of the registration direction is handled,
by swapping source and target and then calculating the inverse transformation. After
the process is complete, the resulting transformation and error metrics are stored and
made available for the rest of the application.

5.5.2 Point Cloud File Management

Another important service is the PointCloudFileService, which handles loading
and saving of point clouds inside a dedicated application directory. Besides CRUD and
import functionality using file_picker, parsing of PLY files is implemented. This
service is also responsible for creating the benchmark isolate, where the current point
cloud is transformed and registered onto the original again to measure performance.

5.5.3 Settings Services

To manage the various settings and configurations of the application, multiple set-
tings services are created. The PCRegistrationSettingsService and ARRender
SettingsService are quite similar in their implementation, as they simply use the
shared_preferences package to persist user preferences across sessions. They also
provide default values and validation logic to ensure that the settings are within ac-
ceptable ranges. Similarly, the OverlayModeService manages the different overlay
modes for the AR rendering. The OrbSlam3ConfigService is a bit more complex, as
ORB-SLAM3 takes a YAML configuration file for initialization and configuration. Here,
a template file is stored as a string that is then modified at runtime based on the user
settings and written to the device’s file system for ORB-SLAM3 to access. There are also

24

5.6. Major widgets

some values present that will not have any effect on the SLAM system (because of the
removal of certain library components), but are required for proper parsing of the file.

5.6 Major widgets
The user interface of the application is built using Flutter’s widget system. Several major
widgets are created to encapsulate specific functionalities and provide a cohesive user
experience.

5.6.1 Camera Widget

camera is responsible for handling the camera lifecycle, frame acquisition, and providing
a preview of the camera feed with the AR overlay on top of the main page. It utilizes the
camera package to access the device’s camera hardware and manage different resolutions
and settings.

5.6.2 Bottom Sheet

The main_page_bottom_sheet widget provides an expandable bottom sheet on
the main page that displays quick settings, status information, and controls for start-
ing/stopping the SLAM and registration processes. It also shows real-time metrics
like registration error and tracking status, while serving as a central hub for all other
functionalities.

5.7 Pages
The application is structured into multiple pages, which are mostly intended for configu-
ration and management of the different subsystems and visualization options. Each page
is implemented as a separate widget that encapsulates its own layout and logic:

• main_page: The main interface of the application, which combines the camera
widget, bottom sheet, and AR overlay.

• gallery_page: A page for managing and selecting pre-existing point clouds, with
options for importing, deleting, and viewing details.

• registration_settings_page: A configuration page for the point cloud reg-
istration subsystem, allowing users to select algorithms, set parameters, and run
benchmarks.

• orb_slam3_config_page: A page for configuring ORB-SLAM3 settings, in-
cluding camera intrinsics, vocabulary loading, exporting capabilities, while also
providing analytics.

25

5.7. Pages

• ar_settings_page: A page for customizing AR rendering options, such as point
size, colors, and downsampling thresholds.

• about_page: An informational page providing details about the application,
licenses, and credits.

26

CHAPTER 6
Evaluation

This chapter looks at the performance of the proposed system in terms of accuracy,
robustness, and real-time capabilities in real-world scenarios. Based on different test
scenarios, the focus lies in answering the following research questions:

1. Can this system effectively register the SLAM-generated point cloud to the pre-
existing map, therefore providing accurate camera poses in the reference coordinate
system, making localization viable for AR applications? (see Section 6.3.1)

2. Does ORB-SLAM3 provide sufficient tracking accuracy and map quality on mobile
devices to support reliable registration and localization? (see Section 6.3.2)

3. How do the different point cloud registration approaches compare? (see Sec-
tion 6.3.3)

4. What are the practical limitations of this system and the chosen approaches when
deployed on real mobile hardware? (see Section 6.3.4)

In the following sections, testing methodology, experimental setup, datasets used, and
metrics for assessing performance are described. The results of the experiments are then
presented, followed by a discussion of the findings in relation to the research questions
outlined above.

6.1 Testing Methodology and Experimental Setup
The evaluation of the proposed system employs three test scenarios that cover different
kinds of pre-existing point clouds and, therefore, registration scenarios for different
environments and use cases. The scenarios increase in complexity and difficulty and focus
on realistic conditions that would be encountered in practical applications.

27

6.1. Testing Methodology and Experimental Setup

6.1.1 Scenario 1: Rigid Registration (Same Device)

This scenario examines the ability of the system to handle the localization inside a point
cloud that has been constructed using the same monocular SLAM setup and device.
This represents the ideal case, where both point clouds share similar characteristics. The
environment is first scanned using the application itself, generating a map, which is then
exported and later re-imported for localization. Since the map that will be created in the
localisation pass shares the same scale, the focus lies on the rigid registration capabilities
of the system. Concretely, a Samsung Galaxy S22 Ultra is deployed in two distinct
locations at Technische Universität Wien: a seminar room with only sparse features,
including tables and chairs, and a community room of the student representation, which
offers more visual clutter, like plants, furniture, and other objects.

6.1.2 Scenario 2: Similarity Registration (Cross-Device Simulation)

To evaluate this more difficult scenario of compatibility between different hardware, the
map is still generated first using the SLAM system, to then be exported later. The
difference lies in the fact that this first mapping pass cloud is then scaled up by a
factor of 2.0, before re-importing. This simulates the case where the reference map
was created using a different device with different camera intrinsics than the one used
for localisation, leading to these scale differences. Therefore, the focus here lies on the
similarity registration capabilities of the system. The same community room environment
and device as in Scenario 1 are used for this purpose.

6.1.3 Scenario 3: Cross-Modality Registration

This final and most challenging scenario evaluates the system’s performance when
localizing inside a pre-existing point cloud that was created using a completely different
modality. Here, an outdoor LiDAR scan of a street corner in Vienna, Austria, is used
as the reference map. Instead of using the same device as before, an Oppo Find X3
smartphone is deployed for this purpose for availability reasons. This, however, should
not have a significant impact on the results, as the focus lies on the cross-modality
registration capabilities of the system and its ability to handle large discrepancies in point
cloud density, noise characteristics, and coverage, no matter the device. The similarity
registration algorithms are again evaluated in this scenario, since the scale difference is
also unknown here.

6.1.4 Configuration Parameters and Metrics

Across all scenarios, the ORB-SLAM3 configuration was always initialized with the
parameters that were calculated for the specific device and sensors using the provided
guide in the code’s documentation. The registration parameters were tuned to fit the
specific scenario. This was done by either analyzing the exported SLAM-generated point
cloud or LiDAR scan, respectively, before the final localization pass and picking sensible
values for downsampling resolution and maximum correspondence distance, among others.

28

6.2. Results

The exact values are described in Table ??. Every parameter that is not mentioned there
was kept at the default value of the application.

Table 6.1: Experimental Parameters and System Configuration across Test Scenarios

Parameter Scenario 1 Scenario 2 Scenario 3
Registration Task Rigid SE(3) Similarity Sim(3) Similarity Sim(3)

Algorithms / Modes PLANE ICP / GICP Internal: Custom Loop (Custom ICP)
External: small_gicp (PLANE ICP / GICP)

Device & Intrinsics
Device Model Samsung S22 Ultra Samsung S22 Ultra Oppo Find X3
Focal Length (fx, fy) 355.0, 533.0 355.0, 533.0 294.0, 442.0
Principal Point (cx, cy) 240.0, 360.0 240.0, 360.0 240.0, 360.0
Resolution 480 × 720 480 × 720 480 × 720

ICP Configuration
Downsampling Res. 0.01m 0.01m 1.0m
Max Corr. Distance 1.5m 1.5m 50.0m
Max Iterations 100 100 20
Conv. Threshold 1e − 6 1e − 6 0.001

The primary evaluation metric is the registration error, which is calculated as the Root
Mean Square Error (RMSE) between corresponding points after applying the estimated
transformation. Additionally, the visual quality of the registration is assessed, while
also considering the smoothness and responsiveness of the application during real-time
operation on the mobile device. Since monocular SLAM tracking is also prone to
interruptions, re-initialization sometimes forces the registration process to restart on
a new map. This often produces significant variance in registration outcomes between
these separate localization sessions.

6.2 Results
Based on the defined scenarios and configurations, the results of the experiments are
presented in this section. This includes a benchmark of the registration algorithms in
isolation, followed by the findings from each scenario.

6.2.1 Registration Evaluation: Synthetic Benchmark

In order to provide a better analysis for the full real-time system in the following sections,
a synthetic benchmark is first performed separately to evaluate the custom Sim(3)
registration algorithms in isolation. Here, the SLAM-generated point cloud from Scenario
2 is taken along with the corresponding settings defined in Table ??. Three different
test cases are then defined, where the reference point cloud is transformed using known
random transformations with varying degrees of difficulty: a baseline case (12◦ rotation,
1.3 scale factor), a noisy case with 10% Gaussian noise and 30% point removal, and a
stress test with a significant misalignment (53◦ rotation, 2.0 scale factor).

29

6.2. Results

Table 6.2: Comparison of External and Internal Sim(3) Registration Performance

Metric Case 1: Baseline Case 2: Noisy Case 3: Stress Test
(Input Scale 1.3) (Input Scale 1.3) (Input Scale 2.0)
Ext. Int. Ext. Int. Ext. Int.

Final Error (RMSE) [m] 0.002 0.0005 0.034 0.008 1.362 0.154
Rotation Est. [deg] 11.99◦ 12.00◦ 11.97◦ 11.99◦ 49.60◦ 21.84◦

Scale Est. (Target S−1) 0.769 0.769 0.769 0.769 0.377 0.200
Target Value (0.769) (0.769) (0.500)
Iterations 3 21 3 23 32 21
Converged Yes Yes Yes Yes No No

In the baseline and noisy cases, both Sim(3)Internal and Sim(3)External perform
quite well and were able to recover the correct transformation. The External mode was
computationally faster, taking only 3 iterations, while the Internal mode required 23.
Conversely, the internal mode achieved a better accuracy, with an RMSE below 0.01m,
even when noise was present, while the external mode had an RMSE of around 0.034m
in both cases.

In the stress tests, however, both algorithms struggled to converge to the correct solution.
The External mode estimated the rotation slightly better at 49.6◦, with the Internal mode
only reaching 21.8◦. Both scale and translation were approximated incorrectly, leading to
high RMSE values of 1.36m and 1.54m, respectively. Unlike the sub-centimeter accuracy
of the baseline case, these values highlight that without a coarse initial alignment,
the algorithms are prone to getting stuck in local minima, resulting in large errors
even in synthetic environments. These results confirm that while both algorithms are
effective under moderate conditions, they face challenges when dealing with significant
misalignments and noise, a factor that directly influences the performance in the following
real-world scenarios.

6.2.2 Scenario 1: Same Device Registration

In this baseline scenario, the system showed very good real-time throughput across all
stages. ORB-SLAM3 took around 3-5 seconds to initialize and was very stable and
responsive thereafter. The configured settings provided good tracking results, with only
minor losses in challenging conditions (fast motion, low texture). The registration step
was also near instantaneous and could therefore be performed at tighter intervals (around
1 second) and more demanding settings (seen above).

The tracking accuracy of ORB-SLAM3 was also quite good, providing high-quality data for
AR rendering that was visually well-aligned with the camera feed. The registration result,
however, showed mixed results based on the environment and conditions. In the seminar
room, the values ranged widely from an RMSE of around 3.1m to 15.4m, depending on
the viewpoint of the localisation scan, oscillating mostly between consecutive intervals in
the same pass. In the community room, the results were a bit more accurate, with RMSE

30

6.2. Results

values between 0.3m and 13.5m, but still inconsistent. Here, when not creating a new
SLAM map, the accuracy decreased initially, but oscillated afterwards. The rendered
overlay of the registration also ranged from mostly good to visibly misaligned. The choice
of registration algorithm did not influence these values in any apparent way.

The main reason for the observed inaccuracies in the results is presumably that the SLAM-
generated point cloud relies heavily on visual features. This introduces the possibility
of inconsistent densities and coverages between maps, depending on the area where the
system was initialized and how the subsequent tracking was performed. This then leads
to difficulties for the registration algorithms to find good correspondences between the
two point clouds. The variability in the results is likely further exacerbated by the lack
of an initial pose guess from the SLAM system. Without an initial guess to guide the
registration, the algorithm’s success is influenced by whether the random initialization
point is close enough and oriented in a similar direction for convergence to occur.

6.2.3 Scenario 2: Cross-Device Registration

In the second scenario focused on similarity capabilities, the system throughput remained
similar to the previous section. ORB-SLAM3 performed well, and the registration step
still happened near-instantaneously, no matter which algorithm was chosen.

When looking at the accuracy results, however, the quality of the results decreased
further. The RMSE values now ranged even more widely, from around 0.6m all the way
to 26.2m. Since the exported point cloud was scaled in a controlled manner, the scale
estimation of the registration algorithm could also be evaluated. Since the map was
scaled by a factor of 2, the registration had to predict a value close to 0.5 to compensate
for this. The results here showed somewhat better accuracy and consistency than the
RMSE, with scale being estimated between 0.39 and 0.58. Visually, the registration also
did not provide good results, with the overlay being misaligned in most cases. Both
registration algorithms performed comparably, while providing mostly oscillating results
within a single localization session.

These findings can be explained by the same reasons as in Scenario 1, but now fur-
ther exacerbated by the added complexity of scale estimation. The SLAM-generated
point cloud still suffered from inconsistent coverage and features, making it difficult
for the registration algorithm to find good correspondences and estimate an accurate
transformation.

6.2.4 Scenario 3: Cross-Modality Registration

In this final scenario, the system throughput decreased noticeably. ORB-SLAM3 still
performed adequately, but the registration step now took up to 30 seconds to complete
(in both External and Internal modes), causing subsequent registrations to wait for the
previous one to finish and effectively increasing the registration interval beyond the
configured value, thereby harming the user experience.

31

6.2. Results

Here, the quality of the results further decreased. The RMSE values now ranged from
around 18.2 m all the way to 230.4 m. These results appeared largely stochastic, exhibiting
significant oscillation both between consecutive updates within a single continuous tracking
session and across different localization passes when SLAM lost tracking and re-initialized.
The scale estimation also suffered visually. This, however, could not be confirmed by
numbers, since the pre-existing LiDAR scan did not provide scale metrics.

This drop in performance can be explained by the significant differences in point cloud
characteristics between the SLAM-generated map and the LiDAR scan. The density,
distribution, and noise profiles of the two point clouds differ greatly, making it challenging
for the registration algorithms to find reliable correspondences and estimate an accurate
transformation.

(a) Scenario 1: Successful align-
ment in the Community Room
(Same Device).

(b) Scenario 3: Registration
overlay against the LiDAR
street scan (Cross-Modality).

Figure 6.1: Qualitative results of the application in operation. SLAM points are drawn
in white and reference map points in green. The value on the bottom sheet shows the
RMSE.

32

6.3. Discussion

Table 6.3: Summary of Experimental Results across Test Scenarios

Scenario Task Env. / Input RMSE [m] Scale Visual Assessment

1: Same Dev. Rigid Seminar Room 3.1 − 15.4 – High variance
Community Room 0.3 − 13.5 – Occasional good align.

2: Cross-Dev. Sim. Comm. (Scaled) 0.6 − 26.2 ≈ 0.5 Poor alignment
3: Cross-Mod. Sim. Outdoor (LiDAR) 18.2 − 230.4 Failed Diverged; high latency

6.3 Discussion
The results from the evaluation provide the necessary insights to answer the research
questions outlined at the beginning of this chapter, creating a broader understanding of
the system’s capabilities and limitations.

6.3.1 Effectiveness of the System for the Formulated Task

The evaluation results across the three scenarios indicate that while the proposed system
is capable of performing point cloud registration and localization in real-time on mobile
devices, its effectiveness is highly dependent on the characteristics of the pre-existing
point cloud map and the conditions under which the SLAM-generated map is created.
In the least difficult case of same-device registration, the system can achieve reasonable
accuracy when other factors also align well. When even small changes in coverage, path,
and viewpoint are introduced, the registration accuracy degrades significantly, leading to
a low overall reliability and robustness of the system. This trend continues and worsens
in the more complex scenario of cross-device registration, where scale differences further
complicate the task by introducing an additional degree of freedom. The most difficult
scenario of cross-modality registration highlights the limitations of the current approach:
while sometimes delivering somewhat approximate results, it more often than not breaks
down completely due to significant differences in point cloud characteristics between
SLAM-generated maps and LiDAR scans.

Overall, the real-time aspect of the system is a strong point, with ORB-SLAM3 and
the registration algorithms performing adequately on mobile hardware. However, the
accuracy and robustness of the registration results are not sufficient for reliable AR
localization in practical applications. Different settings also make the use of this system
quite difficult, since there is no clear guidance on how to choose them for a specific
use case. Therefore, while the system demonstrates the feasibility of real-time point
cloud registration on mobile devices, further improvements are needed to enhance its
effectiveness for AR localization tasks.

6.3.2 Suitability of ORB-SLAM3 for Mobile AR Localization

ORB-SLAM3 proves to be a capable SLAM system for mobile AR localization tasks,
offering real-time performance and robust tracking capabilities on mobile hardware. The
monocular configuration, which was used in this work, offers the advantage of simplicity

33

6.3. Discussion

and ease of deployment, as it only requires a single camera, which is readily available on
most mobile devices. This, however, comes at the cost of the quality of the generated
point cloud map, which is inherently sparse and relies heavily on visual features. This
not only creates challenges when the image quality is poor, but also leads to inconsistent
coverage and density in the resulting point cloud, depending on the motion and path
taken during the mapping phase. This negatively impacts the subsequent registration
step, as reliable correspondences are harder to find, resulting in reduced accuracy and
robustness.

6.3.3 Comparison of Point Cloud Registration Approaches

When looking at the synthetic benchmark results in Section 6.2.1, both the custom
internal similarity registration algorithm and the external Small-GICP-based approach
demonstrate promising performance under controlled conditions, with low RMSE values
and successful convergence in the baseline and noisy test cases. The result of the stress
test, however, highlights the limitations of both algorithms when faced with significant
misalignments, a factor that directly impacts their suitability for real-world applications.

When integrated into the real-world system, these limitations became evident. The
rigid registration algorithms struggled to find reliable correspondences in the SLAM-
generated point clouds, leading to high RMSE values and visually misaligned overlays.
The similarity registration approaches faced additional challenges due to scale differences
and the inherent variability in point cloud characteristics, resulting in even higher
errors and inconsistent scale estimations. Overall, while both registration approaches
show promising estimations under controlled conditions, their effectiveness and, more
specifically, robustness in this concrete application are limited.

6.3.4 Practical Limitations on Mobile Hardware

The deployment of the proposed system on mobile devices introduces multiple limitations.
Performance and the unavailability of advanced sensor configurations are the main issues.
While the overall application runs well and can provide real-time capabilities in most
cases, the accuracy of the results is hindered by these characteristics. The monocular
SLAM setup limits the quality of the generated point cloud maps, which in turn affects
the registration accuracy. The computational resources of mobile devices also constrain
the complexity of the algorithms that can be implemented, so lighter-weight registration
methods had to be chosen over more advanced alternatives, resulting in inherent trade-offs
between achievable accuracy and processing speed. Furthermore, the variability in mobile
device hardware and camera quality can lead to inconsistent performance across different
platforms.

34

CHAPTER 7
Conclusion and Future Work

This chapter concludes the thesis by summarizing the key contributions and findings
regarding the formulated problem. It reflects on the achieved results in relation to the
initial research objectives and discusses the limitations encountered. Finally, potential
directions for future research are outlined to address the identified challenges.

7.1 Summary of Contributions and Findings
Overall, this thesis set out to address the challenge of real-time localization in pre-
existing point cloud maps on mobile hardware, overcoming the limitations of proprietary
ecosystems and the computational constraints of direct image-to-point cloud registration.
The presented solution is a fully functional mobile application that integrates established
components, specifically ORB-SLAM3 and Small-GICP, into a novel two-stage pipeline,
while also introducing custom similarity registration algorithms to handle scale ambiguities.
The evaluation demonstrated the feasibility of the concept, while also highlighting both
the strengths and significant hurdles regarding accuracy and robustness, particularly
when bridging the domain gap between sparse SLAM maps and dense LiDAR reference
data.

The core hypothesis, that sparse SLAM-generated point clouds can be effectively registered
to pre-existing maps for localization purposes, was tested across multiple scenarios of
increasing complexity and resulted in the following key findings:

• Real-Time Feasibility: The system successfully demonstrated real-time capabilities
on mobile devices, with ORB-SLAM3 and the registration algorithms performing
adequately within the constraints of mobile hardware.

35

7.2. Future Work

• Registration Accuracy: While the system could achieve reasonable accuracy in con-
trolled scenarios, the registration results were highly variable and often insufficient
for reliable AR localization in practical applications.

• Scale Ambiguity: The similarity registration approaches further exposed weaknesses
of the system, although also performing well under controlled conditions.

• Gap in Modality: The most difficult challenge that was identified is the inherent
gap between SLAM-generated point clouds and those created using other modalities
like LiDAR. This discrepancy in characteristics poses a major hurdle for effective
registration.

Beyond the conceptual framework, the thesis also provides a robust implementation basis
for future research, specifically through the integration of ORB-SLAM3 into Flutter and
the development of a registration library extending Small-GICP with custom similarity
estimation algorithms.

7.2 Future Work
In order to bridge the identified gaps and improve the overall system, the two major
parts of the pipeline could be further investigated and enhanced.

7.2.1 Enhancing Map Quality and Scale

Since the monocular setup proved to be a limiting factor in terms of point cloud quality,
investing in other sensor configurations could yield better results. For example, stereo
or RGB-D SLAM systems could provide denser and more reliable point clouds, while
also solving the scale ambiguity inherent in monocular setups. This, however, could
limit the applicability of the system, since not all mobile devices are equipped with the
necessary hardware, namely multiple cameras or time-of-flight sensors. As a sweet spot,
IMU-augmented monocular SLAM could be investigated, but this approach might also
suffer from similar issues as pure monocular SLAM.

7.2.2 Advanced Registration Strategies

The standard geometric registration approaches also restricted the overall system perfor-
mance. This could be improved by exploring machine learning-based approaches that
can learn robust feature representations and correspondences from data, potentially
improving registration accuracy and robustness. Additionally, more robust similarity
registration algorithms could be employed that can better handle scale differences and
outliers. This, however, might also require more performant hardware.

36

Overview of Generative AI Tools
Used

The use of AI tools in this work was mainly limited to supportive tasks and did not
replace core findings or contributions. For the implementation and application part,
GitHub Copilot was used to assist with code generation and suggestions, primarily
for refactoring, boilerplate code, debugging, and visual enhancements, as well as some
basic logic implementations. It was also responsible for documentation and comments.
Concerning the writing part of this work, Perplexity AI was employed as a supportive
tool for literature search, receiving general writing advice and occasionally generating or
rephrasing small text snippets. All AI-generated content was critically evaluated, verified,
and edited to ensure accuracy, coherence, and alignment with the original ideas and
findings.

37

Bibliography

[AHB87] K. Somani Arun, Thomas S. Huang, and Steven D. Blostein. Least-squares
fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and
Machine Intelligence, (5):698–700, 1987.

[BM92] Paul J. Besl and Neil D. McKay. A method for registration of 3-d
shapes. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 14(2):239–256, 1992.

[CCC+16] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scara-
muzza, José Neira, Ian Reid, and John J Leonard. Past, present, and
future of simultaneous localization and mapping. IEEE Transactions on
Robotics, 32(6):1309–1332, 2016.

[CDM08] Javier Civera, Andrew J Davison, and JM Martinez Montiel. Inverse depth
parametrization for monocular slam. IEEE Transactions on Robotics,
24(5):932–945, 2008.

[CER+21] Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, J. M. M.
Montiel, and Juan D. Tardós. Orb-slam3: An accurate open-source library
for visual, visual–inertial, and multi-map slam. IEEE Transactions on
Robotics, 37(6):1874–1890, 2021.

[DWB06] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and
mapping: part i. IEEE Robotics & Automation Magazine, 13(2):99–110,
2006.

[DXO21] DXOMARK. Multi-camera smartphones: Bene-
fits and challenges. https://www.dxomark.com/
multi-camera-smartphones-benefits-and-challenges/,
2021. Accessed: 2025-12-15.

[EHS+14] Felix Endres, Jürgen Hess, Jürgen Sturm, Daniel Cremers, and Wolfram
Burgard. 3-d mapping with an rgb-d camera. IEEE Transactions on
Robotics, 30(1):177–187, 2014.

38

https://www.dxomark.com/multi-camera-smartphones-benefits-and-challenges/
https://www.dxomark.com/multi-camera-smartphones-benefits-and-challenges/

[ESC14] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale
direct monocular slam. In European Conference on Computer Vision
(ECCV), pages 834–849. Springer, 2014.

[ESC15] Jakob Engel, Jörg Stückler, and Daniel Cremers. Large-scale direct slam
with stereo cameras. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1935–1942, 2015.

[FHASAM16] Mohammed Faisal, Ramdane Hedjar, Mansour Al-Sulaiman, and Khalid
Al-Mhedib. Multi-sensors multi-baseline mapping system for mobile robot.
Advances in Mechanical Engineering, 8(6), 2016.

[Goo24] Google. ARCore Cloud Anchors. https://developers.google.
com/ar/develop/cloud-anchors, 2024. Accessed: 2025-12-15.

[Imm24] Immersal Ltd. Immersal SDK Documentation: Visual Positioning System.
https://immersal.com/developers, 2024. Accessed: 2025-12-15.

[Inc24] Apple Inc. ARKit Documentation: Saving and Loading World
Data. https://developer.apple.com/documentation/arkit/
arworldmap, 2024. Accessed: 2025-12-15.

[Ish23] Yohsuke Ishida. small_gicp: A header-only, cpu-optimized, and flexi-
ble gicp implementation. https://github.com/SMRT-AIST/small_
gicp, 2023. Accessed: 2025-12-15.

[KLL+23] Shuhao Kang, Youqi Liao, Jianping Li, Fuxun Liang, Yuhao Li, Xianghong
Zou, Fangning Li, Xieyuanli Chen, Zhen Dong, and Bisheng Yang. Cofii2p:
Coarse-to-fine correspondences-based image-to-point cloud registration.
arXiv preprint arXiv:2309.14660, 2023.

[KOY21] Kenji Koide, Shuji Oishi, and Kei Yokoi. Voxelized gicp for fast and
accurate 3d point cloud registration. In IEEE International Conference
on Robotics and Automation (ICRA), pages 11130–11136. IEEE, 2021.

[LL21] Jiaxin Li and Gim Hee Lee. Deepi2p: Image-to-point cloud registration
via deep classification. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 15960–15969,
2021.

[LLB+15] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and
Paul Furgale. Keyframe-based visual-inertial odometry using nonlinear
optimization. The International Journal of Robotics Research, 34(3):314–
334, 2015.

[Low04] Kok-Lim Low. Linear least-squares optimization for point-to-plane icp
surface registration. Technical Report TR04-004, University of North
Carolina, Chapel Hill, 2004.

39

https://developers.google.com/ar/develop/cloud-anchors
https://developers.google.com/ar/develop/cloud-anchors
https://immersal.com/developers
https://developer.apple.com/documentation/arkit/arworldmap
https://developer.apple.com/documentation/arkit/arworldmap
https://github.com/SMRT-AIST/small_gicp
https://github.com/SMRT-AIST/small_gicp

[Mag24] Magic Leap, Inc. Magic Leap 2 Developer Documentation: Spatial
Mapping & Localization. https://developer-docs.magicleap.
cloud/docs/guides/features/spaces/spaces-tool/#, 2024.
Accessed: 2025-12-15.

[MAMT15] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. Orb-slam: a
versatile and accurate monocular slam system. IEEE Transactions on
Robotics, 31(5):1147–1163, 2015.

[MAT17] Raúl Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Transactions on
Robotics, 33(5):1255–1262, 2017.

[Mic23] Microsoft. Spatial mapping in DirectX - Mixed Reality. https:
//learn.microsoft.com/en-us/windows/mixed-reality/
develop/native/spatial-mapping-in-directx, 2023. Ac-
cessed: 2025-12-15.

[Mik25] Florian Miklautsch. Flutter 3d localization: Real-time camera local-
ization in point cloud maps. https://gitlab.cg.tuwien.ac.at/
fmiklautsch/flutter_3d_localization, 2025. Accessed: 2025-
12-22.

[PZK17] Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Colored point cloud
registration revisited. In Proceedings of the IEEE International Conference
on Computer Vision, pages 143–152, 2017.

[RL01] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp al-
gorithm. In Proceedings of the Third International Conference on 3-D
Digital Imaging and Modeling (3DIM), pages 145–152. IEEE, 2001.

[RRKB11] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:
An efficient alternative to sift or surf. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), pages 2564–2571,
2011.

[RZHC22] Siyu Ren, Yiming Zeng, Junhui Hou, and Xiaodong Chen. Corri2p:
Deep image-to-point cloud registration via dense correspondence. IEEE
Transactions on Circuits and Systems for Video Technology, 32(12):8747–
8760, 2022.

[SF11] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry: part
i: The first 30 years and fundamentals. IEEE Robotics & Automation
Magazine, 18(4):80–92, 2011.

[SHT09] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-icp. In
Robotics: Science and Systems, volume 2, page 435, 2009.

40

https://developer-docs.magicleap.cloud/docs/guides/features/spaces/spaces-tool/#
https://developer-docs.magicleap.cloud/docs/guides/features/spaces/spaces-tool/#
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/native/spatial-mapping-in-directx
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/native/spatial-mapping-in-directx
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/native/spatial-mapping-in-directx
https://gitlab.cg.tuwien.ac.at/fmiklautsch/flutter_3d_localization
https://gitlab.cg.tuwien.ac.at/fmiklautsch/flutter_3d_localization

[TMHF99] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W
Fitzgibbon. Bundle adjustment—a modern synthesis. In Proceedings of
the International Workshop on Vision Algorithms, pages 298–372. Springer,
1999.

[Ume91] Shinji Umeyama. Least-squares estimation of transformation parameters
between two point patterns. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(4):376–380, 1991.

[VRC24] VRCompare. Comparison of Magic Leap 2 vs Microsoft HoloLens
2. https://vr-compare.com/compare?h1=mt3AEYJu5&h2=
EkSDYv0cW, 2024. Accessed: 2025-12-15.

[ZPK18] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern
library for 3D data processing. arXiv preprint arXiv:1801.09847, 2018.

41

https://vr-compare.com/compare?h1=mt3AEYJu5&h2=EkSDYv0cW
https://vr-compare.com/compare?h1=mt3AEYJu5&h2=EkSDYv0cW

	Contents
	Introduction
	State of the Art
	Platform-Specific Mobile AR Frameworks and Proprietary Solutions
	Proprietary Hardware
	Image-to-Point Cloud Registration

	Background and Methodology
	Visual SLAM for Real-Time Camera Tracking
	Point Cloud Registration for Coordinate Alignment
	Coordinate Systems and Transformations
	Methodology Overview
	Mobile Development with Flutter

	System Design
	Architecture Overview
	System Pipeline
	Threading Model

	Implementation
	Native Library Integration
	ORB-SLAM3 Wrapper Package
	Point Cloud Registration Package
	Point Cloud Renderer
	Application Services
	Major widgets
	Pages

	Evaluation
	Testing Methodology and Experimental Setup
	Results
	Discussion

	Conclusion and Future Work
	Summary of Contributions and Findings
	Future Work

	Overview of Generative AI Tools Used
	Bibliography

