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Kurzfassung

Das Extrapolieren von Informationen aus unvollständigen Daten ist eine zentrale mensch-
liche Fähigkeit, die es uns ermöglicht, Muster zu erkennen und Vorhersagen auf der
Grundlage begrenzter Beobachtungen zu treffen. Ein anschauliches Beispiel ist unsere
Fähigkeit, kohärente Formen aus scheinbar zufälligen Punktmengen wahrzunehmen. Wenn
es keine vordefinierten Regeln gibt, wird die Rekonstruktion von Daten jedoch erschwert,
da unklar ist, wie Punkte miteinander verbunden werden sollen oder welche Muster
abgeleitet werden können. In der Computergrafik ist ein zentrales Ziel, diese menschliche
Fähigkeit zu replizieren, indem Algorithmen entwickelt werden, die in der Lage sind,
ursprüngliche Strukturen präzise zu rekonstruieren oder bedeutungsvolle Informationen
aus Rohdaten zu extrahieren.

Diese Arbeit befasst sich mit der Rekonstruktion von Punktwolken unter Verwendung
von Methoden, die auf Nähe basieren, wobei ein besonderer Schwerpunkt auf dem
Einflusssphären-Graphen (SIG) liegt. Wir erörtern die Kurvenrekonstruktion, bei der
wir das Verbinden von Punkten zur Erstellung von Konturen automatisieren und dabei
theoretische Garantien für unsere Methode bieten. Im Vergleich zu ähnlichen Methoden
zur Rekonstruktion von Mannigfaltigkeitskurven erzielen wir die besten Ergebnisse.
Wir erweitern unsere Kurvenrekonstruktion auf Mannigfaltigkeiten und überwinden
die Herausforderungen, die mit dem Wechsel in unterschiedliche Domänen verbunden
sind, wobei wir unsere theoretischen Garantien ausbauen. Wir sind in der Lage, Kurven
aus spärlicheren Eingaben zu rekonstruieren als der aktuelle Stand der Technik und
untersuchen verschiedene Szenarien, in denen diese Kurven existieren können. Wir
analysieren die Eigenschaften des SIG als parameterfreie Nähecodierungsstruktur für
dreidimensionale Punktwolken. Dabei führen wir neue räumliche Grenzen für die SIG-
Nachbarn ein. Wir untersuchen, wie nah die Codierung an der tatsächlichen Oberfläche
liegt, verglichen mit den häufig verwendeten kNN-Graphen, und bewerten unsere Leistung
im Kontext der Normalenschätzung als Anwendung. Abschließend führen wir SING ein –
einen Stabilität-eingeschlossenen Nachbarschaftsgraphen, der als nützliches Werkzeug für
verschiedene Anwendungen, wie etwa das Clustering, dient und einen soliden theoretischen
Hintergrund in der topologischen Datenanalyse aufweist.
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Abstract

Extrapolating information from incomplete data is a key human skill, enabling us to infer
patterns and make predictions from limited observations. A prime example is our ability
to perceive coherent shapes from seemingly random point sets, a key aspect of cognition.
However, data reconstruction becomes challenging when no predefined rules exist, as it is
unclear how to connect the data or infer patterns. In computer graphics, a major goal is
to replicate this human ability by developing algorithms that can accurately reconstruct
original structures or extract meaningful information from raw, disconnected data.

The contributions of this thesis deal with point cloud reconstruction, leveraging proximity-
based methods, with a particular focus on a specific proximity-encoding data structure -
the spheres-of-influence graph (SIG). We discuss curve reconstruction, where we automate
the game of connecting the dots to create contours, providing theoretical guarantees
for our method. We obtain the best results compared to similar methods for manifold
curves. We extend our curve reconstruction to manifolds, overcoming the challenges of
moving to different domains, and extending our theoretical guarantees. We are able to
reconstruct curves from sparser inputs compared to the state-of-the-art, and we explore
various settings in which these curves can live. We investigate the properties of the SIG
as a parameter-free proximity encoding structure of three-dimensional point clouds. We
introduce new spatial bounds for the SIG neighbors as a theoretical contribution. We
analyze how close the encoding is to the ground truth surface compared to the commonly
used kNN graphs, and we evaluate our performance in the context of normal estimation
as an application. Lastly, we introduce SING – a stability-incorporated neighborhood
graph, a useful tool with various applications, such as clustering, and with a strong
theoretical background in topological data analysis.
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CHAPTER 1
Introduction

As humans, we are able to extrapolate information from incomplete data, which allows
us to infer patterns, fill in gaps, and make predictions based on limited observations. A
simple yet powerful example is our gestalt perception of point sets; this ability to discern
a coherent shape or pattern from seemingly random data points, seeing them as unified
figures instead of disconnected points, is a key aspect of human cognition.

However, the problem of data reconstruction becomes significantly more difficult when
there are no predefined rules or guidelines. When presented with raw data, it is not always
clear how to connect the samples or what pattern to infer. As we observe in Figure 1.1,
the lack of rules can easily create an undesirable or incorrect output. Therefore, one of the
primary goals of reconstruction in computer science, of trying to extend human perceptual
abilities to machines, is to create or infer the best possible rules or algorithms that can
reliably reconstruct the original structure from the given data, or extract meaningful
information from it. This involves developing methods that can automatically detect
patterns, relationships, and underlying structures within the data, facilitating accurate
and meaningful reconstructions.
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1. Introduction

Figure 1.1: Inferring the rules from the input points alone is a tedious and complex task,
which can easily result in a big mess [Wat90]. We aim to extract the set of rules that
best fit our current analysis context, be it curve reconstruction, connectivity encoding or
clustering.

1.1 Motivation

Data reconstruction plays a crucial role in computer graphics as it enables the conversion
of raw point cloud data into meaningful and usable models. Point clouds consist of
collections of discrete data points that represent the contour of a curve, the surface
of an object, or define samples with similar properties, yet lack inherent structure or
connectivity. The main goal of this thesis is to improve upon data reconstruction,
which we define as recreating the original object or surface the point cloud represents or
extracting critical information regarding the features of the data.

In point clouds, the primary way information is encoded is through the positions of
the points in space, meaning that the absolute and relative positions of points carry
critical information about the shape and features of the object. By analyzing these
proximity relations, we can determine which connections are possible, allowing us to
reconstruct curves, surfaces, or other geometric features. This approach is particularly
powerful because it does not require additional information beyond the point positions
themselves, making it a versatile and robust method for dealing with various types of
point clouds. Hence, a second goal of this thesis is to focus on leveraging proximity in
the reconstruction process by using the spatial relationships between data points to infer
the underlying structure of the data being represented.

1.2 Problem Statement

The common denominator to all the goals this thesis tries to address is represented by
extracting meaningful information from point cloud data. Our primary research question
is whether proximity-based methods can be beneficial in this regard, and if so, which of

2



1.3. Contributions

these methods yield the most effective results. We briefly define the type of input we use
and the possible outputs we aim to obtain, from reconstruction to feature extraction.

Point clouds are collections of discrete points that represent a spatial distribution of
data in two-dimensional (2D), three-dimensional (3D), or even higher-dimensional spaces,
sometimes embedded on manifolds of lower dimensionality. These points are typically
generated by sampling the contour or surface of objects, capturing the geometry and
structure of the underlying space. In 2D, point clouds might represent contours or edges
in images, while in 3D, they are often obtained from LiDAR scans or photogrammetry,
defining the surface of physical objects and environments. On manifolds, point clouds can
represent data distributed across complex, curved spaces, such as surfaces embedded in
higher-dimensional spaces. The challenge of data reconstruction is to extract meaningful
information from these raw data points—whether it is reconstructing the original shape,
detecting patterns, or analyzing the spatial relationships between points.

In the case of planar curve reconstruction, the objective is to recover, from a set of
scattered points in a two-dimensional plane, the curve they have been sampled from or
a close approximation [OPP+21]. This task is similar to the connecting the dots game,
where the goal is to find the most plausible curve that passes through or near the points.

Extending the concept to higher dimensions, curve reconstruction involves finding the
most likely path or curve that a set of points would form in a multi-dimensional space,
usually bound to a lower-dimensional manifold. This is significantly more complex than
planar reconstruction due to the increased number of possible connections and patterns
that can exist in higher dimensions. Moreover, not all theoretical guarantees transfer
straightforwardly to higher-dimensional domains.

Spatial point clouds, which consist of large sets of points in three-dimensional space, are
often used in applications like 3D modeling and geographic information systems (GIS).
Encoding connectivity within these point clouds involves determining how points are
related to one another, which is necessary for then creating coherent and accurate 3D
models, or being able to estimate various properties, such as normals.

Clustering is the process of grouping a set of points based on their similarities or
proximity to each other [EIO+22] It is a critical step in data analysis, where the goal
is to identify natural groupings or patterns within the data set. Clustering is widely
used in machine learning, image processing, and many other fields, where the ability to
identify and group similar data points is essential for tasks such as classification, pattern
recognition, and anomaly detection.

1.3 Contributions

The main contributions of this thesis to the state of the art are:

3



1. Introduction

1.3.1 Planar Curve Reconstruction
We improved the state of the art in planar curve reconstruction, obtaining better results for
closed, manifold curves compared to the state-of-the-art. We also relaxed the theoretical
guarantees for reconstruction, requiring fewer samples and less uniformity between
consecutive samples. The initial work towards this contribution was first published and
presented as a poster at Eurographics 2022 [MOW22a], and was later improved and
published as a paper [MOW22b] in the Computer Graphics Forum and presented at
Pacific Graphics 2022.

The idea for this paper came from multiple experiments with proximity graphs and
regular discussions with Stefan Ohrhallinger, who was also the driving force behind the
theoretical contribution. The implementation and most of the writing were done by the
author, with help and supervision from both Stefan Ohrhallinger and Michael Wimmer.

1.3.2 Reconstructing Curves on Surfaces
We extended our work from the planar domain to Riemannian manifolds, overcoming the
theoretical hurdles of such a change and being able to provide a theoretically sound curve
reconstruction algorithm that requires fewer samples than the state-of-the-art [MMM+24].
This paper was presented at the Symposium on Geometry Processing 2024.

This paper’s idea was ignited by a discussion with Filippo Maggioli, whose work is focused
on extending classical concepts to new domains, after the presentation of the first paper.
Development and writing were mainly a shared effort between the first two authors,
helped and supervised by the rest of the paper’s authors.

1.3.3 Connectivity Encoding of Point Clouds
A natural extension to our SIG-based ideas was to move to three-dimensional space,
where we proved new distance bounds for the SIG neighbors and analyzed this graph
as a proximity-encoding graph, comparing it to the classical kNN graphs. This work
was initially published and presented as a poster at Eurographics 2023 [MOW23], being
later transformed into a full paper [MOW24], presented at GRAPP 2024 and published
in the conference proceedings. We have been invited to submit an extended version to
the Communications in Computer and Information Science journal, which is currently in
submission [MIOW24].

For this project, the implementation and theoretical background were done by the thesis
author, while Stefan Ohrhallinger and Michael Wimmer supervised the development and
offered feedback during the writing process.

1.3.4 Extending SIG and Clustering Applications
The idea of adding a parameter to the sphere-of-influence graph to allow for more
flexibility was developed during regular discussions and brainstorming sessions with

4



1.4. Outline

Pooran Memari, during a three-month research stay at École Polytechnique Paris, under
her supervision. Additional discussions with Amal Dev Parakkat unveiled applications
of our idea to stipple art, while talks with Steve Oudot brought forth a connection to
topological analysis. This collaboration resulted in a paper, published and presented as
a conference paper at SIGGRAPH Asia 2024, that introduces a new proximity graph
with a strong theoretical background in topological analysis and various applications in
clustering [MPO+24].

The implementation was done by the thesis author, while the writing was a collaborative
effort between all authors.

1.3.5 Other contributions
During the duration of the doctoral programme, the thesis author has also contributed
to the following publications which have not been included in the thesis:

1. Distributed Surface Reconstruction [MKOW24] is a poster contribution,
accepted and presented at Eurographics 2024, where we extend a newly introduced
surface reconstruction algorithm [POEM24] to work in a distributed fashion on a
local scientific cluster. The implementation was done mainly by Patrick Komon
as part of his bachelor thesis, under the author’s supervision, while writing was a
team effort.

2. SIGnificant Outlier Removal [MIOW24] represents the extended version of
"Parameter-free connectivity for point clouds" [MOW24], which is currently submit-
ted to an issue of Springer Communications in Computer Science. We extend the
spheres-of-influence graph applications in the field of outlier removal by analyzing
the average incident edge length and removing points that are too different from
the rest of the point cloud. We obtain results comparable to or better than other
classical outlier removal methods. The implementation was done by the author,
while the paper writing was a combined effort of the author and of Filip Ilic,
supervised by Stefan Ohrhallinger and Michael Wimmer.

3. Visualizing Group Structure in Compound Graphs: The Current State,
Lessons Learned, and Outstanding Opportunities [EMWR24]: we present
a literature analysis of compound graphs’ visualization, combine taxonomies of
various studies in this field, and extract outstanding research opportunities that
could further improve this sub-field. The author was part of the writing effort for
this paper.

1.4 Outline
The thesis starts with an introduction to point sets, visiting various approaches to
reconstruct the original data from which these points have been sampled in Chapter 2.
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1. Introduction

We focus on connectivity retrieval as it represents an important first step in reconstruction,
and in particular, on the spheres-of-influence graph, which is one way of computing
connectivity from disconnected samples. As we discover in the following chapters, this
graph exhibits promising theoretical properties, which allow us to explore its usage
in curve reconstruction in the planar case (Chapter 3), and in the manifold domain
(Chapter 4). We analyze this graph as a parameter-free alternative to the classically used
kNN graph in Chapter 5, offering new theoretical distance bounds between neighbors.
We then exchange the parameter-free benefits while searching for improvements, and add
a parameter to allow for more flexibility. We explore ways of choosing the right parameter
and various applications of this new graph variant in Chapter 6. We summarize our
contributions and provide a discussion of future directions in the final chapter, Chapter 7.

6



CHAPTER 2
Background and Related Work

In this section, we introduce the background information required to understand the
subset of computer graphics that pertain to this thesis’s contributions, starting from the
input data, the problems we are trying to solve, and the various theoretical building
blocks we use to reach each of the solutions.

Input Curve

R2

Input Surface

R3

Figure 2.1: Examples of point clouds in the plane and in space, together with their
corresponding reconstructions - curve and surface, respectively. Most of the research in
the point cloud realm deals with these two variants, but as we observe in Section 2.5,
point sets can exist in higher dimensions or under specific constraints.

7



2. Background and Related Work

2.1 Point Clouds

Point clouds are collections of unconnected, unstructured data usually described as
coordinates in a given space. The most common variants of point sets live in two or three
dimensions, and are usually used to encode information about the contour or the shape
of some data - Figure 2.1. Point clouds can contain additional information besides the
position, such as color (usually encoded as RGB values), confidence or intensity.

In the wild, planar point sets result from image processing, silhouette information,
stipple data, or medical data, possibly obtained by extracting contour information.
Three-dimensional point clouds are more common, especially due to the increase in laser
scanning devices’ availability, and are usually a representation of real-life objects. Each
point represents a three-dimensional sample on the surface of the scanned object, subject
to possible noise from the scanner. However, point samples are not only bound to these
cases and can also exist in higher dimensions, possibly embedded in lower-dimensional
subspaces, and represent various data, such as encoding measurements of real data at a
specific position, or complex moving patterns in high dimensional spaces.

In any context where point clouds are generated, the presence of noise is inevitable. This
noise may arise from line-of-sight errors, limitations in scanning devices, or inaccuracies
in the generation algorithm. While various methods exist to handle noisy samples for
both curve and surface reconstruction, the majority of theoretically grounded approaches,
including the methods proposed in this thesis, assume noise-free input data. Achieving
such clean input typically involves denoising the point cloud prior to reconstruction.
Nevertheless, in practice, even methods not explicitly designed to handle noise often
demonstrate resilience to small amounts of noise.

We now introduce the formal notation that we use throughout this chapter to refer to
point clouds and some of their properties. We mostly refer to 2D point sets as input sets
for curve reconstruction, and mention explicitly if this assumption does not hold in a
particular context.

Manifold Open Self-intersecting Multiple

Figure 2.2: Various curve types - most methods in the literature focus on manifold single
curves, as they are the most commonly encountered (silhouette data, object contours).

8



2.2. Choosing the Right Samples

Input
� �� �

Possible outputs

Figure 2.3: Given a sparse input that does not capture enough information about the
curve’s features, any of the provided reconstructions could be correct. However, in most
cases, priors are assumed about the expected solution - manifold or non-manifold, closed
or open, resulting in specialized methods that best deal with each type of curve.

Notation. Let C be a smooth planar curve: a closed, compact 1-manifold (loosely
defined as a one-dimensional space that locally resembles a Euclidean space) embedded in
2D space [ABE98]. Most curve reconstruction methods deal with smooth, closed curves
with a single connected component, but there are specialized methods as well, which
are designed to reconstruct open curves, self-intersecting curves, or curves with multiple
connected components - Figure 2.2. Let S be a subset of C, with n elements. The problem
of curve reconstruction aims to obtain C′ - a reconstruction of C from S, an approximation
of the ground truth through geometrical and topological lenses. This objective can be
achieved through exact methods where C′ is a polygonal representation of C, by extracting
an ordering of the samples that matches the ground truth curve. However, in cases where
the input does not offer enough information about the initial curve, multiple outputs are
possible - Figure 2.3, and methods are usually biased for a specific type of boundary to
be able to offer reconstruction guarantees. Another possibility besides explicit methods is
to use approximation methods where the output - C′, is also a smooth curve, that might
include the set S or not, approximating C based on some error metric.

Before we discuss the various methods employed to reconstruct curves from a set of
samples, we need to first describe the properties of sampling techniques, how these
properties influence the reconstruction, and the possible guarantees these algorithms
might offer.

2.2 Choosing the Right Samples
Point clouds represent partial data about the ground truth, where not all information
is available, since we only have access to disconnected samples. Hence, we need to be
able to ensure that the samples that are part of the point cloud contain enough data
for an accurate reconstruction. Furthermore, for a quick computation, we aim to have a

9



2. Background and Related Work

(a) Original curve. (b) Uniform sampling. (c) Non-uniform sampling.

Figure 2.4: Distance-based sampling strategies, where the distance between consecutive
samples is the only condition used to define this type of sampling.

small number of points but we do not want to lose any important features of the ground
truth curves. Thus, the size of the point set and the amount and quality of encoded
information have to be carefully balanced.

As a first approach to conditional sampling, the distance between consecutive samples
can be used to create the subset S - Figure 2.4.

Definition 1. Uniform sampling is achieved if the distance between samples remains
constant.

Definition 2. Non-uniform sampling allows for different distances between consecutive
samples. However, bounding the ratio between consecutive samples by a constant - u,
allows us to still ensure some theoretical guarantees for the reconstruction. The local
non-uniformity ratio u is the ratio between the longer and the shorter distances of a
sample to its neighbors on the curve: u = long

short [OM13].

However, this type of distance-based sampling does not take into account the size of the
curve features (i.e., informally, how much the curve bends in various places, or formally -
the curvature) and hence, features of the curves can be completely missed if they are
smaller than the chosen distance between samples. To be able to sample according to the
various curve features we need to introduce the concept of the local feature size [ABE98],
which in turn, depends on the medial axis [Blu67].

Definition 3. The medial axis is defined as the closure of points in R2 that are closest
to at least two points on the curve C - depicted as the black curve in Figure 2.5a.

An alternative definition of the medial axis is the collection of centers of maximally
inscribed circles in the shape. Informally, the medial axis can be imagined as the skeleton
of the shape.

Definition 4. The local feature size of a point on the curve is defined as the shortest
distance from the point to the medial axis - illustrated as color-coded for each point of the
curve in Figure 2.5a.
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2.2. Choosing the Right Samples

(a) Color-coded distance to the
medial axis of the points on the
curve.

(b) Epsilon-sampling that de-
pends on the local feature size
of each point.

(c) Rho-sampling - local fea-
ture size-based, but sparser
than the epsilon version.

Figure 2.5: Feature-based sampling strategies, where the distance to the medial axis (the
local feature size) is taken into account. Samples are denser around high curvature points
and sparse in the flatter parts of the curve.

By combining the local feature size with the distance between samples on the curve, we
obtain a type of sampling that is able to better encode the curve’s characteristics. Hence,
ϵ-sampling takes advantage of this union of information as follows:

Definition 5. A curve is ϵ-sampled by the point set P if for each point c ∈ C, the ratio
between the distance to the closest sample in P and its local feature size is less than ϵ.

Thus, this type of sampling is able to preserve the features of the curves, allowing for a
number of samples that depends on the size of individual features - Figure 2.5.
We are still only considering the local feature size of individual points, and not using any
information from neighboring samples, which usually encode similar data due to their
proximity on a smooth curve. To relax this type of sampling, reach-based sampling has
been introduced [OMW16], and it is based on interval-wide local feature size, and not
the points’ individual local feature size.

Definition 6. The reach [Fed59] of an interval I ⊂ C is the minimum local feature size
among points in the interval:

reach(I) = inf
p∈I

lfs(p) . (2.1)

Definition 7. A smooth curve C is ρ-sampled [OMW16] by a sample set S ⊂ C if every
point p ∈ C of the curve is closer to a sample than a ρ-fraction of the reach of the interval
I = [s0, s1] of consecutive samples containing it:

∀p ∈ I, min
s∈{s0,s1}

dM(p, s) < ρ reach(I) . (2.2)

Even if these sampling strategies take into account the features of the curve, they still
suffer from limitations - e.g. sharp angles, where the medial axis is extremely close to the
curve and such local feature size-based sampling would require infinitely many closely
spaced samples - Figure 2.6. Hence, there are methods designed to deal specifically with
sharp features [DW00, DW02], and that can deal with curves that are not smooth.
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Figure 2.6: Sharp angles force the medial axis to extend extremely close to the formed
corner, rapidly decreasing the local feature size. Hence, when sharp angles are present,
feature size-based sampling usually fails, as infinitely many samples are required close
to the sharp angles. The medial axis, in red, extends towards the corner as the angle
becomes sharper. Note, that, practice, reconstruction methods achieve results better than
their theoretical guarantee [OPP+21], and are sometimes able to deal with adversarial
inputs.

2.3 Connecting the Dots

The first step in reconstructing the original data (be it curves or surfaces) from point
clouds is to extract the connectivity among the input points - i.e. determining which
samples would be neighboring each other in the original setting. Various proximity
encoding graphs are used to approximate the connectivity. Examples include connecting
points based on distance, imposing a constant number of neighbors for each point,
computing a graph on the points and extracting edges with various properties, or using
more complex distance functions between points.

2.3.1 Preset Parametric Proximity

Parametric proximity graphs are essential tools for defining the neighborhood relationships
between points in point clouds, enabling the analysis of spatial structures and relationships.
Two common types of proximity graphs that depend on specific parameters are the k-
nearest neighbor (kNN) graph and the ϵ-neighborhood graph. The kNN graph connects
each point to its k closest neighbors, where k is a predefined parameter, ensuring that
each point is connected to a fixed number of points - Figure 2.7. On the other hand, an
ϵ-neighborhood graph connects points that lie within a specified distance - ϵ, from each
other, creating edges only between points that are spatially close within that threshold.

However, this type of parameterized proximity is strongly influenced by the choice of
the global parameter - k or ϵ, which could result in too many connections if the covered
area is too large, or isolated areas for too small values of the parameter. Hence, picking
a value depends heavily on the particular type of data and how it is sampled. Being able
to choose k or ϵ usually requires more time to find a suitable value, but it allows the
freedom of dealing with varied data types.
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k = 1 k = 3 k = 6

Figure 2.7: kNN proximity graphs created by setting a predefined number of neighbors
for each node.

2.3.2 Delaunay Subsets

Voronoi Diagram. Delaunay triangulation.

Figure 2.8: Duality of the Voronoi diagram and the Delaunay triangulation of a point set
- any two neighboring Voronoi partitions create an edge in the Delaunay triangulation.

The Delaunay triangulation of a given set of points is a triangulation such that no point
in the set is inside the circumcircle of any triangle in the triangulation. This holds in
higher dimensions by considering simplices and their circumspheres, instead of triangles.
The Voronoi diagram of a plane (or higher dimensional spaces) is a related geometric
structure, where each region around an input sample contains all the locations closer
to the current sample than to any other. The Delaunay triangulation and the Voronoi
diagram are closely related, as the Delaunay Triangulation is the dual graph of the
Voronoi partitioning. This means that the vertices of the Voronoi diagram correspond
to the circumcenters of the triangles in the Delaunay triangulation - as illustrated in
Figure 2.8. These two structures are fundamental in computational geometry [AKL13],
with applications in multiple fields of computer science.
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(a) Starting from the Delaunay triangula-
tion, if the circle centered on each edge does
not include any other samples, the edge is in-
cluded in the Gabriel graph as well - the edge
spanning the purple circle, as it is empty of
samples, compared to the blue one.

(b) Resulting Gabriel graph once all edges
that do not satisfy the empty circle property
are removed from the starting Delaunay tri-
angulation.

Figure 2.9: Gabriel graph creation.

Various subsets of the Delaunay triangulation can be used as connectivity graphs, such as
the relative neighborhood graph [Tou80], the Gabriel graph [GS69], the α-complex [Ede83],
the β-skeleton [KR85] and the minimum spanning tree. For an edge pq to exist in the
relative neighborhood graph, there cannot exist another point r that is closer to p or q
than they are to each other. In the Gabriel graph, two points - p, q, are connected if
the closed disc with diameter pq, passing through p and q, contains no other samples
- Figure 2.9. The α-complex contains all simplices of the Delaunay triangulation that
can be enclosed with a circle of radius 1/α, empty of other samples. The β-skeleton
has been introduced as a scale-invariant version of α-shapes, where the edge pq is part
of the graph if angles prq are bound by a threshold - β. The minimum spanning tree
(MST) is a subset of edges that connects all points with the minimum possible total
edge length, without forming any cycles. These graphs are subsets of the Delaunay
triangulation [JT92], usually computed by pruning the triangulation - Figure 2.10.

2.3.3 Sphere-of-Influence Graph
Parameter proximity graphs and the Delaunay triangulation with its subgraphs are the
most widely used starting steps for curve reconstruction, but throughout this thesis,
we choose to focus on another proximity graph - the spheres-of-influence graph, which
received little attention until now. It benefits from interesting theoretical properties
while encoding connectivity well. This graph ended up being the connecting thread of
the thesis, and of all the mentioned publications, due to its wide applicability and good
results in multiple problems.
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(a) Relative neighborhood graph. (b) Minimum spanning tree.

Figure 2.10: Other subsets of the Delaunay triangulation.

The spheres-of-influence graph - SIG [Tou88] has been introduced as a clustering method
since it encodes proximity without the need for any parameters. The SIG has been
used in implicit surface reconstruction methods [KZ04] to approximate local geodesic
distances, as well as a density function over the input points to adapt the algorithm.
This is an implicit method that uses the local kernels based on SIG to reconstruct the
surface. The same approach, to use the SIG to locally define an implicit function, has
been applied to collision detection between point clouds [KZ05]. Moreover, the SIG has
recently gotten attention in reconstruction methods [dP22] where combined with the
Delaunay graph it showed promising results for region reconstruction.

(a) Spheres-of-influence of each node, where
the radius is equal to the distance to the
node’s nearest neighbor.

(b) Nodes are connected when their spheres-
of-influence overlap to create the SIG.

Figure 2.11: Sphere-of-influence graph (SIG) creation.
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Definition 8. In SIG, two vertices are connected by an edge if the distance between them
is less than the sum of distances to their respective nearest neighbors. More formally, we
connect a and b if

d(a, b) ≤ nn(a) + nn(b), (2.3)

where d(a, b) is the distance between two points a and b and nn(a) is the distance d
between a and its nearest neighbor.

Visually, the SIG can be interpreted as centering a circle at each vertex whose radius is
equal to the distance to its nearest neighbor, i.e., just touching this closest vertex, as
can be observed in Figure 2.11. We then connect with an edge all vertices whose circles
intersect. This relation encodes spatial proximity without requiring a fixed number of
neighbors that the user has to specify, such as the k-neighborhood. Unlike many other
proximity graphs, the SIG is not a subset of the Delaunay triangulation and does not
include a triangulation of the input.

2.3.4 Clustering
Another tangent direction to the current section, Connecting the dots, is represented by
clustering - assigning the same label to samples that exhibit similar features. Even though
clustering is not directly related to reconstruction from point sets, one of our works is
related to clustering. We are using an extended version of the spheres-of-influence graph
to define a clustering method with a strong background in topological data analysis in
Chapter 6.

We recognize the impossibility of providing a comprehensive survey of existing work on
clustering, since this only represents a subset of the thesis, and we choose to focus on
revisiting the concepts most closely related to our context. Data-clustering algorithms
have a rich history since the early works such as [M+67], followed by significant research
advancement, including the introduction of spectral clustering [SM00, VL07], center-
based methods [BMD+05, Teb07], mixture models [FR02], mean shift techniques [CM02],
density-based spatial clustering (DBSCAN) [EKSX96], single-linkage technique [GR69],
affinity propagation algorithms [FD07], various adaptations of K-means clustering [ASI20],
and innovations in feature selection [WT10], among others. Recent literature on learning-
based clustering, such as [CLX+19, AC20], have focused on 3D point clouds, along with
surveys [RPY+22, RXL+23].

As previously mentioned, a popular proximity criterion that considers local density
is the kNN graph. However, it may not always be robust to noise in the data. On
the other hand, the ϵ-neighborhood graph offers stability results and is known for its
resilience to noisy datasets but does not take local density into account. The proximity
formulation that we introduce in Chapter 6 combines the advantages of both approaches
by integrating the local density considerations of kNN with the robustness to noise
inherent in ϵ-neighborhood graph, also leading to a more comprehensive clustering
solution.
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(a) Vietoris-Rips complex: each pair of
points is connected with a black line if the
distance is less than t and each triplet of
points where each pair-wise distance is less
than t is connected with a blue triangle.

(b) Čech complex: each pair of points whose
circles of radius t/2 intersect are connected
with a black edge, and if three circles over-
lap, they are connected with a blue triangle.
Each circle is depicted in purple.

Figure 2.12: Distance-based complexes, which represent one snapshot of a filtration for a
given value of the parameter.

Topological data analysis. In this section, we briefly review some of the material
in Topological Data Analysis (TDA) relevant to our contributions. For a more detailed
introduction to the subject, we refer the reader to standard textbooks such as [EH10,
Oud15].

Definition 9. A filtration F of a topological space K over a totally ordered set T is a
family (Ft)t∈T of subspaces of K that are nested in terms of inclusion, that is:

∀t ≤ t′ ∈ T, Ft ⊆ Ft′ .

The Vietoris-Rips filtration VR is a popular choice of simplicial filtration in TDA appli-
cations. Given a point cloud P equipped with a dissimilarity d, it is a filtration of the
full simplex K = 2P (i.e., the power set of P viewed as a simplicial complex) indexed
over T = R+. For any t ∈ R+, the subcomplex VRt(P, d) of 2P formed by those simplices
that appear before or at t is called the (Vietoris-)Rips complex of P of parameter t.

Similarly, the Čech complex can be defined, where simplices correspond to the intersections
of balls of radius t/2 centered at the points of P . VR(P, d)t generalizes the t-ball graph
of P in the following way: the vertices represent the points of P , and a simplex (not just
an edge) exists if and only if its diameter is smaller than t. Varying the value of t from 0
to +∞ gives the Rips filtration of (P, d). An example of Rips and Čech complexes for a
given value of t using the classical Euclidean distance is illustrated in Figure 2.12.

Such filtrations are powerful tools in TDA, used to identify significant topological features,
such as connected components, loops, and voids, within data and across multiple scales.
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By varying the parameter t, the Rips filtration captures how these features persist or
disappear, allowing for the identification of persistent structures that reflect the intrinsic
geometry and topology of the data. These persistent topological features can then be
used for clustering by grouping data points based on shared topological characteristics,
effectively separating data into clusters that correspond to distinct topological patterns.
However, the parameter t is still an absolute distance and does not incorporate any data
about the point set. We show in Chapter 6 how by replacing the usual distance metric
with a relative neighborhood metric, we are able to capture more information about
various point sets.

2.3.5 Towards Reconstruction

Once the connectivity of a point set has been determined, various properties of the point
set can be estimated before the actual reconstruction happens. Usually, such additional
attributes, such as normals, represent an aid or a requirement of some reconstruction
methods.

(a) Principal component analysis of a point
set as a method to compute normals. The
eigenvectors - the main axes in which data
varies are pictured as arrows. The normal,
in blue, corresponds to the axis of least vari-
ance.

(b) Computed normals of a surface, depicted
in blue on top of each vertex.

Figure 2.13: Surface normals and their computation.

Normal estimation for point clouds has been a heavily researched area of computer graph-
ics, as it usually represents a first step or requirement in surface reconstruction, e.g., for
Poisson reconstruction [KBH06] or data-driven approaches such as Point2Surf [EGO+20].
One of the basic methods for computing normals for unstructured point clouds is using
Principal Component Analysis (PCA). This method considers a local patch of vertices
and finds the axis of least variance since the points should vary the least in the normal
direction - Figure 2.13. This is equivalent to computing the covariance matrix of the local
neighborhood of each point, and choosing the eigenvector corresponding to the smallest
eigenvalue as the point’s normal. It is to be noted that this method does not gener-
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ate a consistent orientation of normals, and that usually happens in a post-processing
step [HDD+92].

The relation between the choice of neighborhood and normal estimation has been exten-
sively studied [MN03]. Other methods improve on the tangent plane estimation by using
a weighted approach when considering the local neighborhood [PKKG03] or by fitting
algebraic spheres [GG07].

Another avenue for estimating normals for point clouds has been developed with the
concept of poles [AB99]. This method is based on computing the Voronoi diagram on the
input points and extracting the normals as the line connecting each sample point and the
farthest Voronoi vertex to their Voronoi cell (the pole). This method is sensitive to noise,
but it has been improved to handle noisy samples [DG06] where it requires additional
parameters.

Recently, multiple data-driven approaches have been developed, which usually take advan-
tage of large data repositories to learn the geometric relations between the point clouds’
structure and their expected normals. Some methods use a Hough transform to estimate
normals [BM16]. PCPNet [GKOM18] builds on the PointNet architecture [CSKG17] and
uses local patches to estimate the properties of point clouds with various noise levels and
sampling densities. However, these types of methods require a long processing time and
possible re-training depending on the type of data.

An alternative to dealing with noise in the existing point clouds is to first denoise them
and then use a connectivity/normal computation approach that works well on clean data.
In this direction, some data-driven approaches deal with noise [RLBG+20] by building on
PCPNet [GKOM18] to classify outliers and then reproject noisy samples on the original
surface. Others use a noisy point distribution model to estimate scores and the direction
of the surface [LH21]. Classical, analytical approaches for denoising include filtering in
various forms, such as the bilateral filter that takes normals into account [DdF17] or
voting schemes for feature detection that later help in normal repositioning [LXZ+20].

Moreover, connectivity retrieval has applications in other data-driven approaches. Meth-
ods that use graph convolutional neural networks on point clouds for various purposes,
such as reconstruction or segmentation, create a graph on the input points (and sometimes
on the data from the deeper layers of the network as well) and use it to learn about the
data and infer the surface or various labels on the input points [LLC+24, SR20, WHH+19].
Usually, they use kNN or a fixed radius neighbor search as their connectivity encoding.

2.4 Plane and Simple
This section provides an overview of existing curve reconstruction methods, which are
generally classified into two main categories - Figure 2.14. The first category encompasses
explicit (interpolatory) methods, where the output is represented by an ordering of the
original input points, resulting in a polygonal reconstruction. These methods usually
use a starting graph, filtering some of the edges based on various criteria. The second
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category includes implicit (approximating) methods, where the curve is defined indirectly,
usually as the level set of an indicator function that separates the inside and the outside
of the curve.

(a) Explicit reconstruction. A graph is com-
puted using the input points, and a subset
of the edges is chosen, subject to various
conditions.

(b) Implicit reconstruction. The curve is
approximated as the zero set of an indicator
function between inside - purple, and outside
- blue.

Figure 2.14: Planar reconstruction.

2.4.1 Explicit Methods
Explicit methods output an ordering of the input points as reconstruction. The Delaunay
triangulation represents a building block for multiple methods in this category due to
its theoretical guarantees that are subject to sampling criteria, as previously mentioned.
One of the first methods to use the Delaunay triangulation was Crust [ABE98], where
the ϵ-sampling, discussed in Section 2.2, was also introduced. By choosing a subset of
Delaunay edges, the reconstruction is guaranteed to be correct for ϵ < 0.252.

Another method to reconstruct a curve was introduced by Dey and Kumar [DK99] – NN-
Crust, and it is a proximity-based method. It uses the edges between nearest neighbors
as a starting crust, and for every leaf vertex, adds the shortest edge situated in the
half-plane defined by the normal on the edge placed at the leaf vertex. Their results show
that proximity-based methods capture the boundary shape, but the sampling limitations
of this method (reconstruction is guaranteed for ϵ < 1/3) suggest the possibility of further
improvements.

The NN-Crust was further improved in HNN-Crust [OMW16] to guarantee recon-
struction up to ϵ < 0.47. This method uses a similar idea to the half-plane but places
the half-plane’s normal as the bisector of the chosen edge.

In Connect2D [OM13], they used an initial graph BC0, representing an approximation
of the boundary, which they augmented by inflating and sculpting to reconstruct the
boundary. The initial boundary graph is a subset of the Delaunay triangulation com-
puted such that the minimum boundary length is approximated, all of the vertices are
interpolated with a degree of at least 2, and are part of a single connected component.
This graph was then processed by inflating, in order to make the curve manifold and
contain all vertices on the boundary or inside of it. Candidate triangles were considered
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for non-manifold vertices and sorted by the increase in total boundary length. Candidate
triangles were then added to the graph to make vertices manifold (i.e. degree 0 or 2) until
all of the vertices had become manifold. The resulting graph was processed by sculpting
next. Sculpting tries to make the boundary interpolate any vertex that is currently
isolated and inside of the boundary. This was done by sorting candidate triangles that are
incident to isolated vertices and adding their edges to the graph to include the vertices
in the boundary. They guarantee reconstruction for ϵ < 0.5 but require a non-uniformity
ratio between distances of consecutive samples of u < 1.609.

GathanG [DW02] introduced a method specialized in reconstructing data sets with
sharp corners. They used the angle and the ratio between edge lengths to filter Delaunay
edges for the boundary and their performance is best for this sub-category of curves.

2.4.2 Implicit Methods

Implicit methods use a function computed over the entire domain of the input and the
curve is usually approximated as the zero-set of that function. Important mentions in this
type of reconstruction are Signed Distance Functions (SDFs) [HDD+92], Poisson-based
reconstructions [KBH06], and radial basis functions [CBC+01] These methods are usually
applied already for surface reconstruction. The signed distance functions compute the
signed distance between the points in the plane and the curve, and reconstruct the curve
as the zero-set of the function. Poisson methods formulate the curve reconstruction as
computing the curve whose gradient field of an indicator function is the most similar to
the normals of the curve. Radial basis functions try to fit a radial basis function to a
signed distance field computed over the input and compute the isoline of this smooth
function. Our works rather fit in the explicit category, as the input points are interpolated
and no function is computed over the domain.

An outlier for the explicit/implicit taxonomy is represented by transport methods. Opti-
mal transport [GCSAD11] reconstructs a curve starting from the Delaunay triangulation
and removing vertices and their incident edges by minimizing a global cost. This method
is efficient for the reconstruction of noisy curves, a group of input that explicit methods
cannot usually correctly reconstruct. Another recent method [CSLV20] tries to solve the
curve reconstruction problem as an optimal homologous chain problem. They construct a
lexicographic ordering on the simplices of the input to find a minimal chain that bounds
the input.

A comprehensive collection of results on multiple types of data sets and different curve
reconstructions can be found in the 2D Points Curve Reconstruction Survey and Bench-
mark [OPP+21]. Their results show that most algorithms tend to perform better than
their theoretical ϵ-sampling guarantee.
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(a) Motion in three-dimensional space, i.e. a
combination of position and rotation, can be
imagined as existing in a higher dimensional
space. Then, a single trajectory of an object
is a curve bound to a manifold embedded in
this higher dimensional space.

(b) Curves can exist on surfaces, as decora-
tive elements on three-dimensional models
or planar elements applied to surfaces. Sam-
ples are marked as red spheres, and the curve
is computed as a black polyline connecting
the samples.

Figure 2.15: Curves on Riemannian manifolds.

2.5 Spatial Upgrades
One might consider curve reconstruction to naturally only evolve into surface reconstruc-
tion while moving to higher dimensional spaces. However, there are multiple directions
this increase in dimensionality can take: reconstructing curves that exist in 3D space,
curves that are bound to manifolds embedded in arbitrary dimensions, or surface recon-
struction. We introduce all these reconstruction variants, with a focus on curves bound
to manifolds, since Chapter 4 introduces a reconstruction method for such inputs. As
surface reconstruction does not constitute a contribution of this thesis, we will limit our
discussion to a brief overview of the topic.

2.5.1 Non-planar Curves
Some curve reconstruction methods can be extended to curves in higher dimensions
with no algorithmic changes [DK99], whereas other methods have been devised to account
for this change in dimensionality. One such approach is based on thinning a point cloud
using moving least square: for each input point, its neighborhood is approximated using
a curve or a surface. Hence, this method is based on a good estimation of the local
neighborhood as well as a good local fitting scheme. The authors choose to approximate
the local neighborhood with an Euclidean minimum spanning tree, and apply a weighted
quadratic function, obtaining a regression plane for each point, on which they reproject
the points to thin the point cloud [Lee00].

The minimum spanning tree is a popular choice for approximating neighborhoods in
unknown domains, being used for curve reconstruction on Riemannian manifolds as
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well [SC13]. These curves are bound to exist on a manifold in any dimension. Intuitively,
we can imagine a manifold as composed of multiple planar-like pieces glued together to
form a continuous space. By using the minimum spanning tree with distance computations
restricted to the manifold, they obtain a guaranteed reconstruction if the sampling follows
some specific, dense rules.

Curve reconstruction on Riemannian manifolds has been approached as an extension
of planar metrics and sampling conditions to Riemannian manifolds [SC13]. However,
they show that the classical definition of the medial axis does not hold on surfaces if the
medial axis is constrained to live on the surface as well. The authors also introduce a
new sampling criterion, based on the minimum value between the distance to the medial
axis and the injectivity radius. We introduce the formal definitions of these concepts and
we relax their dense sampling requirements in Chapter 4 to allow for reconstruction with
fewer samples. To the best of our knowledge, this is currently the only work that extends
the problem of curve reconstruction to Riemannian manifolds - Figure 2.15.

In the same realm of elements that exist on top of surfaces, vector graphics can be utilized
to enhance surface design by acting as decorations, enabling intricate and precise elements
that are not limited to the underlying geometry. Vector graphics on planar surfaces have
been thoroughly researched and are being used in multiple tools [Ink, Ado]. Recently,
editing and importing curves on surfaces have received interest in the graphics field, partly
due to the improvement in computing geodesic paths efficiently [SC20]. Users can interact
with designs directly on the mesh, by either editing splines on a 2D local projection of the
surface [PSOA18], which is usually prone to artifacts due to the projection procedure, as
explored in [YLT19], or editing splines directly on the surfaces, bypassing the projection
artifacts, by using geodesic metrics on the surface [NPP21, MNPP21]. However, these
editing methods require user input or a predefined ordering of the samples to construct
the curves on the surface, which is the missing link we are providing, as a building block
for further editing splines on surfaces, in Chapter 4.

2.5.2 Surface Reconstruction
Surface reconstruction is a fundamental problem in computer graphics, representing the
classical evolution of curve reconstruction to three dimensions. Besides the ill-posedness
of the problem, where not enough data is available for a single and complete result,
additional issues affect this procedure. Common challenges include noise, which can
diminish the accuracy of the reconstruction, and non-uniform sampling, where points
may be irregularly distributed across the surface. Effective reconstruction methods must
address these challenges to accurately represent the underlying surface - Figure 2.16.

Since the field of surface reconstruction deals with the three-dimensional version of curve
reconstruction, we organize the existing methods into a similar taxonomy: explicit and
implicit. Most of the explicit methods rely on the Delaunay triangulation in its three-
dimensional version to extract triangles that define the surface. The Crust for curve
reconstruction has been extended to surface reconstruction [ABK98], where the triangle
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crust of the mesh is computed as a filter over three-dimensional Delaunay triangulation,
and improved to handle noisy inputs, but the output models suffer from many additional
triangles [ACK01]. However, most of the recent works in the surface reconstruction
direction fall in the implicit category, as they allow for more flexibility and a convenient
integration with data-driven methods.

(a) Due to equipment issues or line-of-sight
errors, point clouds can be highly non-
uniform in sampling, and the reconstruction
method has to account for this.

(b) Another common challenge in surface re-
construction is the existence of noise, which
has to be removed for a correct reconstruc-
tion. The noisy samples (grey) are depicted
on top of the correct surface (pink).

Figure 2.16: Various challenges encountered in surface reconstruction.

Implicit surface reconstruction is pioneered by Hoppe’s et al.[HDD+92] method that
uses tangent planes as a local approximation of the surface. The Poisson [KBH06] and
Screened Poisson [KH13] methods are widely used in practice, requiring normals to
compute a signed distance function whose zero set approximates the surface. These
methods have been recently extended to work in a distributed fashion [KH23]. Usually,
the implicit methods generate a signed distance function that is turned into a triangulated
mesh using Marching Cubes [LC87] or similar approaches. An extensive characterization
of the implicit methods in the field of surface reconstruction is presented in [BTS+17],
where methods are organized with respect to input requirements, artefacts and resulting
outputs. More recent methods improve upon the Poisson reconstruction by incorporating
an isovalue constraint into the equation, which aids in achieving consistent normal
orientation and, as a result, enhances the reconstruction quality [XSL+23]. Other
methods use an iterative approach to remove the need for normals from the classical
method [HWW+22].

Recently, learning-based methods are gaining popularity, such as Point2Mesh [HMGCO20],
where they use the input as a self-prior in order to obtain insight in the form of repeat-
ing geometry. Points2Surf [EGO+20] trains on local and global patches at the same
time, using modified variants of PointNet [CSKG17], obtaining a high-quality mesh that
preserves fine details as well. Neural-IMLS [WWW+24] learns a noise-resilient signed
distance function instead of computing in a self-supervised manner. POCO [BM22]
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uses an encoder-decoder network that directly processes points, thereby avoiding the
discretization artifacts associated with voxel-based representations.

For a recent overview of surface reconstruction methods, with a focus on data-driven
approaches, together with a benchmark and thorough evaluation, we refer the reader to
a comprehensive survey [HWW+24].

Having presented all the necessary theoretical tools and explored a range of proximity-based
methods for point cloud reconstruction, we will now present the individual contributions
of this thesis. Each contribution builds upon the foundational concepts discussed in this
chapter, providing a detailed examination of the topics and offering new insights and
advancements in the field.
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CHAPTER 3
SIGDT: Planar Curve

Reconstruction

We introduce our first application of the spheres-of-influence graph - curve reconstruction
in the planar case. The contents of this chapter have been adapted from the paper
“SIGDT2D: Curve Reconstruction”, published in the Computer Graphics Forum and
presented at Pacific Graphics 2022 [MOW22b].

3.1 Overview
Determining connectivity between points and reconstructing their shape boundaries are
long-standing problems in computer graphics. One possible approach to solve these
problems is to use a proximity graph. We propose a new proximity graph computed by in-
tersecting the to-date rarely used proximity-based graph called spheres-of-influence graph
(SIG) with the Delaunay triangulation (DT ). We prove that the resulting graph, which
we name SIGDT, contains the piece-wise linear reconstruction for a set of unstructured
points in the plane for a sampling condition superseding current bounds and capturing
well practical point sets’ properties. As an application, we apply a dual of boundary ad-
justment steps from the Connect2D algorithm to remove the redundant edges. We show
that the resulting algorithm SIG-Connect2D yields the best reconstruction accuracy
compared to state-of-the-art algorithms from a recent comprehensive benchmark, and
the method offers the potential for further improvements, e.g., for surface reconstruction.

3.2 Introduction
Reconstructing a curve based on given samples with no additional information other
than their position is a difficult task, considering that no connectivity information is
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3. SIGDT: Planar Curve Reconstruction

Figure 3.1: Starting from unstructured points (left), our proximity graph SIGDT (center)
already contains the reconstructed boundary (right).

present. As a fundamental problem, with extension to surface reconstruction, it has
received a lot of attention in the field during the last decades. The reconstruction usually
implies generating a graph on the input points and filtering/adding edges to recover
the connectivity. The resulting shape should interpolate all of the input points, and
approximate best the boundary of the shape that the points were sampled from. Ideally,
the reconstruction should be agnostic of the distance between samples and preferably
not depend on parameters. However, in practice, this proves to be difficult, especially
when multiple types of shapes are considered, such as open curves or multiply connected
curves, since a larger distance between samples could mean either a hole in the boundary
or unevenly spaced sampling. Hence, we restrict our main method to manifolds and
curves with sharp corners.

We introduce a new proximity graph, based on the intersection of the Spheres-of-influence
graph (SIG) and the Delaunay triangulation (DT ), which we name SIGDT and present
below. We show its good connectivity property and prove that it contains the piece-wise
linear reconstruction of the samples for an enhanced bound of a sampling condition.
In order to filter the reconstruction edges from the SIGDT, we apply the inflating
and sculpting operations from the Connect2D algorithm [OM13], yielding a manifold
boundary for the input point set.

We present the following three contributions:

• We introduce the graph SIGDT by intersecting the SIG with the DT . SIGDT
represents connectivity well and is parameter-free.

• We show its good connectivity by proving that it contains the reconstruction edges
for an enhanced sampling condition bound that conforms very nicely to point sets
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in practice.

• As an application, we show manifold curve reconstruction by filtering edges from
SIGDT, surpassing the state-of-the-art.

The full source-code is publicly available at https://gitlab.cg.tuwien.ac.at/dmarin/sigconnect2d.

3.3 Method
Here we first present the SIGDT, show its superior connectivity as a proximity graph,
and prove its property of containing the reconstruction. Then, we propose a curve
reconstruction algorithm as an application that filters edges of the SIGDT with operations
from the Connect2D [OM13] algorithm, for which pseudo-code is listed as Algorithm 3.1
and a step-by-step illustration is presented in Figure 3.3.

We will next provide the definition of the terms used in the algorithm. The boundary is
the connected set of edges that includes all edges of the graph G in its interior, e.g., the
non-dashed edges in Figure 3.3f. A non-manifold vertex has more than two incident edges
on that boundary, i.e., there the boundary is pinched together, or the spaces defined by
its incident edges are exterior, see Figure 3.3e. An isolated vertex is not included in the
boundary, see Figure 3.3f.

3.3.1 Boundary-containing Proximity Graph SIGDT
Since the SIG is not contained in the DT but the latter has nice properties such as
representing a decomposition of the plane into triangles (which is useful for applications
such as curve reconstruction), we design a new proximity graph as the intersection of
SIG and DT , which we name SIGDT. This graph combines the advantage of the local
proximity offered by the SIG with the maximization of minimum angle triangles provided
by the DT . Figure 3.2 shows a visual comparison with the BC0 proximity graph, which
is a superset of the EMST constraining vertex degree to ≥ 2 instead of ≥ 1 and is
used for Connect2D curve reconstruction. While SIGDT contains all the edges of the
reconstruction, BC0 misses many of them. We show further quantitative comparisons of
SIGDT with other proximity graphs in the results in Section 3.4.

We compute SIGDT as follows: In order to determine whether a Delaunay edge is in the
SIG, we need to check whether its length is smaller than the sum of the nearest neighbor
distance of both its vertices. For that, we first determine the shortest incident edge per
vertex in the DT and store its length as its nearest neighbor distance. Then, we process
all Delaunay edges in the DT and add conforming edges to the SIG definition in order
to create the SIGDT. This results in O(n log n) time complexity.

The SIGDT graph guarantees containing the reconstruction under some sampling condi-
tions.
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3. SIGDT: Planar Curve Reconstruction

Figure 3.2: Comparison of BC0 (left) and SIGDT (right) in terms of encoding proximity.
SIGDT manages to include all of the required edges of the reconstruction while BC0
misses many edges.
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3.3. Method

(a) SIG: We first com-
pute the Spheres-of-
Influence graph on the
input points (the high-
light is for comparison
with the next steps).

(b) DT : We then com-
pute the Delaunay tri-
angulation.

(c) SIGDT: We com-
pute the intersection
between SIG and DT
as SIGDT - the high-
light showing the dif-
ference.

(d) Find isolated ver-
tices: We determine
vertices with degree 1
(blue) and add their
shortest additional in-
cident Delaunay edge
(dashed).

(e) Inflate: We sort
all triangles (grey)
incident to non-
manifold vertices by
the increase in the
total boundary length.
We add the one that
least increases the
total boundary length
(striped), and repeat
this process until
all vertices become
manifold.

(f) Remove interior
edges: We remove the
edges (dashed) that
are not part of the
boundary. This pro-
cess can create interior
vertices (blue).

(g) Sculpt: We XOR
candidate triangles
(we keep the interior
edges and remove
the boundary one)
incident to isolated
vertices (blue) to
expose them to the
boundary.

(h) Final result: We
have obtained the re-
constructed curve that
correctly interpolates
all the input points as
a polygon.

Figure 3.3: Overview of SIG-Connect2D algorithm.
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3. SIGDT: Planar Curve Reconstruction

Algorithm 3.1: SIG-Connect2D
Data: Input point set P
Result: Output edge set R

1 G = {}
2 Compute Delaunay triangulation DT (P )
3 for p ∈ P do
4 Compute NN as shortest edge incident to p
5 end
6 for p ∈ P do
7 for q ∈ 1 − ring − neighbourhood(p) do
8 Add edge pq to G if pq ≤ NN(p) + NN(q)
9 end

10 end
11 while ∃ non-manifold vertices in boundary(G) do
12 T=triangles ∈ DT exterior to and incident to boundary(G)
13 Add t ∈ T that least increases the length of boundary (G)
14 end
15 G=boundary(G)
16 while ∃ isolated vertices ∈ DT interior to boundary(G) do
17 T=triangles ∈ DT interior and incident to boundary(G)
18 Add t ∈ T that least increases the length of boundary(G)
19 end

Proof for ρ < 1, u < 2: We will now show that SIGDT guarantees to contain the
reconstruction of C if it is sampled with ρ < 1 7 and a local non-uniformity ratio of
u < 2 2 between distances to samples adjacent on C. A ρ < 1-sampling is equivalent to
an ϵ < 0.5-sampling [OMW16]. This improves on Connect2D [OM13], which proves
reconstruction for ϵ < 0.5 as well but requires u < 1.609, and handles a more relaxed
ϵ-sampling than the ϵ < 0.47 for HNN-Crust [OMW16], although the latter does not
require any uniformity. We construct the proof by showing that each edge between
consecutive samples is contained in the SIG as well as in the DT .

We need to repeat two statements [ABE98] for our proof:

Corollary 1. A disk centered at a point p ∈ C with radius at most lfs(p) intersects C in
a topological disk (Corollary 4).

Lemma 1. Any Euclidean disk containing at least two points of a smooth curve in the
plane either intersects the curve in a topological disk or contains a point of the medial
axis (or both) (Lemma 1).

Now we can prove the following theorem for the SIGDT graph:
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3.3. Method

Figure 3.4: The red curve C passes through consecutive samples s0, s1, s2, s3 and contains
the intervals J [s0, t] for t ∈ I[s1, s2] and I[s1, s2]. x ∈ I is the point farthest from the
endpoints of I. The edge e is in SIG because the white disks centered at its endpoints
s1, s2 with radii as nearest neighbor distances overlap. The shaded disk D centered at
edge e must be empty of samples other than s1, s2 to be in DT (by being in the Gabriel
graph).

Theorem 1. SIGDT contains the reconstruction R of a smooth planar curve C from a
set of points P that is sampled with ρ < 1, u < 2.

Proof. See Figure 3.4 for illustration. Let s0, s1, s2, s3 be consecutive samples on C and
we want to show that the edge e(s1, s2) ∈ R. For this, we need to prove both e ∈ SIG
and e ∈ DT .

1. Prove that e ∈ SIG: The non-uniformity ratio u < 2 requires that ∥s0, s1∥, ∥s2, s3∥ >
∥s1,s2∥

2 , yielding ∥s0, s1∥ + ∥s2, s3∥ > ∥s1, s2∥. Thus, the disks centered at s1, s2,
with radii ∥s0, s1∥, ∥s2, s3∥ respectively, overlap. Hence, e is part of SIG, provided
that s0, s3 are the nearest neighbor samples on C to s1, s2, respectively. This is the
case since the disk centerd at s1 with radius ∥s0, s1∥ intersects C in the interval
J [s0, t], with t in the interval I[s1, s2] ∈ C. Thus that disk does not contain any
other samples according to Corollary 1. This is proven similarly for s2, s3.

2. Prove that e ∈ DT : For the point x ∈ I farthest from s1, s2, ∥x, s[1|2]∥ ≥ ∥e∥
2 . Since

the curve is ρ-sampled with ρ < 1, reach(I)>∥e∥
2 and thus lfs(p) > ∥e∥

2 for any
p ∈ I. If the smallest disk D including e is empty of other samples, e is a Gabriel
edge. Since the Gabriel graph ⊆ DT , this would mean that e ∈ DT . We prove
D to contain only I by contradiction: Assume a point q ∈ C \ I to exist in D.
Then, C ∩ D is not a topological disk, and therefore D contains a medial point of
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3. SIGDT: Planar Curve Reconstruction

C (Lemma 1). Since D has radius ∥s1,s2∥
2 and contains a medial point, there exists

a point q ∈ C ∩ D with lfs < ∥e∥
2 which contradicts above lfs > ∥e∥

2 .

Having shown that an edge e between consecutive samples along C under ρ < 1 and u < 2
is part of both SIG and DT , we have proven that the SIGDT contains the reconstruction
under the given sampling conditions.

Corollary 2. Since Theorem 1 [OMW16] proves that any ϵ < r-sampling is also a
ρ < r/(1 − r)-sampling, an ϵ < 0.5-sampling is also a ρ < 1-sampling and contains the
reconstruction of C if u < 2.

The above theorem only guarantees the SIGDT to contain the reconstruction edges but
may contain additional edges in both its interior and exterior.

3.3.2 Using SIGDT with Connect2D’s Dual Operations
We apply two steps from the Connect2D algorithm [OM13] to the SIGDT: inflating and
sculpting, in order to improve our reconstruction. These additional steps are summarized
below, and they greedily minimize the total edge length of the boundary.

Inflating SIGDT to a Manifold

The boundary subset of SIGDT, named B, contains all vertices either on B or its interior.
B may thus not be a manifold as it can be pinched at vertices that have > 2 incident
boundary edges. Inflating transforms such non-conforming vertices into manifold ones by
selecting incident triangles exterior to the boundary and adding their edges to B so that
the triangle becomes interior to the boundary. Candidate triangles for all non-conforming
vertices are sorted in a priority queue in ascending order by the increase in total boundary
length, which is computed by adding the length of new edges and subtracting the length
of edges to be removed. We add candidate triangles to non-conforming vertices until
they become manifold. However, by adding the edges of new triangles to the graph, some
of the edges can become interior to the boundary. Hence, we remove any edge that is not
incident to a triangle marked as outside (i.e. we remove all edges that are not on the
boundary). This procedure is performed in O(n log n) time complexity and guarantees
a manifold boundary B′ as its result. More details on the exact implementation and
proofs of the theoretical guarantee can be found here [OM13]. The inflating procedure is
illustrated in Figure 3.5.

Sculpting the Manifold to Interpolate Interior Vertices

The manifold boundary B′ resulting from inflating contains all vertices either on B′ or
interior to it. These isolated interior vertices have to be connected to the boundary
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3.3. Method

(a) We identify the incident
exterior triangle to a degree
≥ 2 vertex with the least
boundary length change.

(b) Adding its edges to the
boundary creates a new de-
gree ≥ 2 vertex, so we add
another such triangle.

(c) Removing the interior
edges results in a manifold
boundary.

Figure 3.5: Step-by-step inflating procedure on a close-up to make the curve manifold.

(a) We first locate isolated
points such as in this exam-
ple.

(b) We identify its incident
interior triangle with the least
boundary length change.

(c) We XOR the triangle’s
edges to the boundary, inter-
polating that interior point.

Figure 3.6: Step-by-step sculpting procedure on a close-up of a manifold curve to
interpolate interior points.

so that the reconstruction can interpolate all the points. Triangles incident to vertices
interior to B′ are sorted by the same boundary length increase criterion as for inflating.
When a candidate triangle is added to B′, we XOR that triangle’s edges with B′ (i.e.
remove the triangle edge that is already part of the graph and add the other edges that
are not yet part of the graph). This step does not increase the overall complexity of the
algorithm, being performed in O(n log n) time. This step exposes the interior vertices to
the boundary. This fails if the DT does not contain a Hamiltonian cycle. The details
on the procedure and guarantees can be found here [OM13]. The sculpting process is
illustrated in Figure 3.6.
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3. SIGDT: Planar Curve Reconstruction

Eliminate Leaf Vertices (optional)

In the cases where C is not sampled as densely as required, artefacts such as leaf vertices
may appear. In our experiments, we found that this does not affect results in general
but eliminating these further improves reconstruction quality for point sets with sharp
corners. We apply this optional step to the SIGDT before inflating:

We increase the degree of the leaf nodes to two by adding their shortest incident Delaunay
edge to SIGDT, forming SIGDT2, which has vertex degree ≥ 2 everywhere. This step
loops over all the vertices and finds the shortest incident edge to each leaf vertex that
is not part of the graph yet. This takes O(kn) operations, assuming a constant degree
k of vertices, for the average DT , ignoring contrived cases which do not arise often in
practice.

As an overview, we have described SIG-Connect2D as a SIG-based curve reconstruction
method that uses an unstructured point set as input and reconstructs the boundary
of the shape that the points have been sampled from. SIG-Connect2D starts with
the SIGDT graph, and then applies inflating and sculpting on it as in the Connect2D
algorithm - an overview of this algorithm is presented in Figure 3.3. The next section
presents our results compared to state-of-the-art curve reconstruction algorithms.

3.4 Results
We have tested our proposed method, SIG-Connect2D, against 15 state-of-the-art
curve reconstruction algorithms (see names in Figure 3.7) using the 2D Points Curve
Reconstruction Survey and Benchmark [OPP+21], where these are referenced together
with source code and the data sets used for our evaluations below. Note that Opti-
malTransport has been eliminated from their evaluation since the input it aims to
reconstruct is dense, with a high percentage of outliers and noise, and cannot exactly
reconstruct clean, sparse inputs (an example of how it fails can be seen in Table 3.1),
being also highly dependent on the number of iterations. We have then analyzed results
for the reconstruction of manifold curves, curves with sharp corners, and a subset of
well-sampled manifold curves in terms of exact reconstruction, and examples can be seen
in Figure 3.19. Furthermore, we analyzed our method in terms of the root mean square
error (RMSE) to the ground-truth curve for noise-free data sets, noisy data sets, and
data sets with outliers to form a thorough evaluation. Also, we compute the overlap of
sets of edges of the proximity graphs SIG, DT , SIGDT and reconstruction for a large
data set.

Manifold Curves: We have compared our results against the above-mentioned recon-
struction algorithms on 1257 noise-free point sets. These data sets represent a subset
of the original benchmark data set since we have chosen to only use ground-truth data
sets that interpolate all input points. Our algorithm SIG-Connect2D shows the best
accuracy (91.5% compared to second-best Connect2D with 90.3%). Figure 3.7 shows
the improved reconstruction as a visual comparison on manifold data sets, numbers are
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given in Table 3.2. An example of a point set fed to all algorithms is shown in Table 3.1
where only our SIG-Connect2D reconstructs it correctly.

Proximity Graphs Overlap: Using the same data sets, we have computed the
average percentage of SIG edges that are also in the DT and vice-versa, as well as the
average percentage of SIGDT edges that are part of the reconstruction and vice versa.
The results show that SIG is usually mostly contained in the DT - 90.9%, especially
considering that the nearest neighbor graph is contained in both. However, as expected,
DT contains more edges that are not part of SIG - only 47.2% of DT edges are in
SIG. Furthermore, in practice, even without imposing the sampling and non-uniformity
criteria, the reconstruction is contained in SIGDT in almost all cases (99.9%), indicating
that our sampling condition covers practical point sets extremely well. This represents
the best overlap among tested proximity graphs - BC0 achieves to contain, on average,
99.6% of the ground-truth edges, while kNN graphs, for k ∈ {2, 3, 4}, achieve at most
98.6% (2NN - 98.4%, 2NN - 98.5% and 4NN - 98.6%). However, SIGDT usually has
more edges than the reconstruction - only 76.8% of SIGDT edges are part of the correct
reconstruction. These results show that the SIGDT is a good indicator of the proximity
of the graph, as it misses almost no edges.
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Figure 3.7: Reconstruction of manifold curves.

Sharp Corner Curves: We have tested our method on a data set consisting of 47
input sets, comparing it against the same other curve reconstruction methods as above.
The best results are achieved by GathanG [DW02], at 80.9% accuracy of the exact
reconstruction, followed by our method at 70.2% - the complete results are presented
in Figure 3.8 and Table 3.2. However, these results are expected since GathanG is
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Table 3.1: The resulting reconstructions for our algorithm compared to the other 15
state-of-the-art algorithms [OPP+21] on manifold curve input. Our SIG-Connect2D is
the only one to correctly reconstruct this point set.
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specialized for sharp-corner reconstruction, but performs worse in the general case of
manifold curves as seen above.
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Figure 3.8: Reconstruction of curves with sharp corners.

Open and Multiple Curves: Our method is guaranteed to output a manifold recon-
struction of the output through the usage of inflating and sculpting[OM13]. For this
reason, SIG-Connect2D is not suitable for such types of input. However, we provide
the symmetric difference in area (computed using Boost’s boost_sym_difference)
between the output of different algorithms and the correct output. Our method in-
terpolates the input points and does not achieve exact open curves or multiple curves
as expected, but the results are still similar to the expected output, as visible in the
symmetric difference results in Figure 3.9 and Figure 3.10, and examples are presented
in Figure 3.20.
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Figure 3.9: Symmetric area difference for open curves.
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Figure 3.10: Symmetric difference of area for multiple curves.
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3. SIGDT: Planar Curve Reconstruction
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Figure 3.11: Reconstruction accuracy for graph-based ϵ < 1.

Well-Sampled Manifold Curves: Since some of the ground-truth curves in the data
set are sparsely sampled, and therefore cannot be reconstructed well by any algorithm,
we have selected a subset of the 1257 data sets from the manifold curve test set. We
filter 1183 data sets ϵ-sampled with ϵ < 1 based on local feature size computed on graphs
and repeat the above comparison on manifold curves. Our algorithm performs best at
95.8%, followed by the original Connect2D at 95.0%, showing that the SIG captures the
connectivity better for well-sampled curves, and comes quite close to reconstructing all
curves sampled with graph-based ϵ < 1 in practice. Results are presented in Figure 3.11
and in Table 3.2.

Runtime: We have specified the time complexity of all steps of our method in the
respective descriptions, and their upper bound is O(n log n) in terms of the n input
points - typical for the Delaunay-based curve reconstruction algorithms. The average
runtime of each algorithm run on the complete data set of 1257 point sets on an Intel
Core i7-7700HQ processor is presented in Figure 3.12 and in Table 3.2. The empirical
results (≈ 1 ms per point set, with an average of 260 points) confirm the theoretical
bounds on the time complexity and are in line with the other methods except fastest
NN-Crust. We have also tested on a large point set with 9991 points, which takes 75ms
(Table 3.2), indicating runtime is almost linear.

RMS error: We have tested how closely our reconstruction approximates a cubic Bézier
curve by sampling it with different ϵ values and computing the RMS error between the
reconstructed curve and the original (see Figure 3.13). Our algorithm performs similarly
to the majority of evaluated algorithms. Furthermore, for the same setup of ϵ-sampling
a cubic Bézier curve with ϵ = 0.1, 0.2, 0.3, 0.4, 0.5, we have tested our algorithm on 20
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Figure 3.12: Average runtime of manifold curve reconstruction.

differently generated point sets for each ϵ value by varying the starting sample on the
curve. This shows that the theoretical guarantee of the SIGDT includes the accurate
reconstruction in all cases, even without constraining u.
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Figure 3.13: RMSE of reconstructions for varying ϵ-sampling.

Noise: Even if our method is designed for non-noisy input, we have tested its reliability
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3. SIGDT: Planar Curve Reconstruction

against noise by computing the RMS error against the ground truth. We have added
uniform noise to some of the input curves and run the reconstruction algorithms. These
results are visible in Figure 3.15 and indicate that our method performs similarly to
Connect2D, as expected. Another way of testing the resilience to noise was by adding
lfs noise on samples along a cubic Bézier curve. The results are competitive, as shown
in Figure 3.16. We also present the output of running the algorithm on noisy curves in
Figure 3.14, which achieves, as expected, an interpolation of the input points.

Figure 3.14: Reconstruction of data sets perturbed with uniform noise as a percentage of
the bounding box diagonal. The left data set uses 0.01% uniform noise, and the original
shape is correctly reconstructed, while the right one uses 0.03%, thus failing to recreate
the ground truth as the sampling becomes too sparse.
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Figure 3.15: RMSE of reconstructed curves from inputs contaminated with uniform noise.

Outliers: We have tested our algorithm’s reliability when outliers are present by adding
a percentage of outliers to some of our input curves. The results are in line with the
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Figure 3.16: RMSE of curves from inputs with lfs-based noise.

majority of algorithms and are displayed in Figure 3.17.

0.00000
0.01000
0.02000
0.03000
0.04000
0.05000
0.06000
0.07000
0.08000
0.09000
0.10000

sig
-co

nn
ect

2d

con
ne

ct2
d

hn
ncr

ust

fitc
on

ne
ct

str
etc

hd
en

ois
e

cra
wl

pe
el

cru
st

nn
cru

st
ccr

ust

ga
tha

n1

ga
tha

ng len
z
dis

cur vic
ur

RM
S 

Er
ro

r i
n 

te
rm

s o
f b

ou
nd

in
g 

bo
x 

di
ag

on
al

Algorithm

Robustness to outliers
5% 10% 20%

Figure 3.17: Reconstruction of curves with varying outlier share.

Limitations: We present in Figure 3.21 some of the cases where our algorithm fails to
produce the exact reconstruction of the input data. However, most of the points of failure
are represented by multiple components and non-uniform sampling that go beyond the
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3. SIGDT: Planar Curve Reconstruction

theoretical limits of our method. These cause the algorithm to try to create a boundary
interpolating all components together or to fall into local minima when geodesically far
samples become geometrically close. However, for non-manifold curves, we provide an
analysis of the symmetric difference of area between the results of various algorithms and
the ground truth in Figure 3.18. Our method fails to produce exact reconstruction of
such curves, but the results are close to the original curve, as illustrated in Figure 3.20.
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Figure 3.18: Symmetric area difference for non-manifold curves.

3.5 Conclusion and Future Work
We propose a new proximity graph in 2D, SIGDT = SIG ∩ DT , and show that it better
captures connectivity between points than other proximity graphs, and does so without
requiring a specific number of neighbors as a parameter, as kNN would. We prove
that SIGDT contains the reconstruction for planar curves for some enhanced sampling
conditions. Together with filtering steps for redundant edges from an existing method,
our method SIG-Connect2D correctly reconstructs the manifold boundary of the input
set in more cases than the state-of-the-art, and reconstructs almost all well-sampled
point sets. As current results are promising, they encourage further improvements in
this approach. Hence, our future work includes:

• Extending SIG-Connect2D to robustly reconstruct multiple curves, open curves,
and non-manifold inputs;

• Extending SIGDT to 3D and SIG-Connect2D to surface reconstruction.

46



3.5. Conclusion and Future Work

(a) Reconstruction of dense curves -
1712 input points.

(b) Reconstruction of sharp corner
curves.

(c) Reconstruction of curves from sil-
houette images extracted from image
databases.

Figure 3.19: Reconstruction of different types of curves.
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3. SIGDT: Planar Curve Reconstruction

(a) Desired open curve. (b) Our reconstruction.

(c) Multiple curves. (d) Our reconstruction.

(e) Non-manifold curves. (f) Our reconstruction.

Figure 3.20: Reconstruction of open, multiple and non-manifold curves. Our method is
not designed for these categories since we expect the output to be a manifold curve that
interpolates all the input points. However, the results are similar to the expected output.
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3.5. Conclusion and Future Work

(a) Too sparse sampling for close curves
causes the algorithm to fall into local min-
ima.

(b) Nested components fail since Inflate and
Sculpt assume a single boundary interpo-
lating all points if they are spaced closely
enough.

(c) The non-uniform sampling prevents
SIGDT from containing all the required
edges and the multiple disconnected ele-
ments fail.

(d) Some of the input points are not inter-
polated at all, since Sculpt cannot handle
nested components.

Figure 3.21: Failure cases for SIG-Connect2D.
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CHAPTER 4
SIGDV: Reconstructing Curves on

Riemannian Manifolds

We leave the familiar planar setting for our curve reconstruction quest and we move
to more complex domains - Riemannian manifolds. We extend and adapt our work
presented in Chapter 3 to manifolds, extending both the theory and the algorithm
to new applications. The contents of this chapter have been adapted from the paper
“Reconstructing Curves from Sparse Samples on Riemannian Manifolds”, published in the
Computer Graphics Forum and presented at the Symposium on Geometry Processing
2024 [MMM+24].

4.1 Overview

Reconstructing 2D curves from sample points has long been a critical challenge in
computer graphics, finding essential applications in vector graphics. The design and
editing of curves on surfaces has only recently begun to receive attention, primarily
relying on human assistance, and where not, limited by very strict sampling conditions.
In this work, we formally improve on the state-of-the-art requirements and introduce an
innovative algorithm capable of reconstructing closed curves directly on surfaces from a
given sparse set of sample points. We extend and adapt the planar curve reconstruction
method introduced in Chapter 3 to the realm of surfaces while dealing with the challenges
arising from working on non-Euclidean domains. We demonstrate the robustness of our
method by reconstructing multiple curves on various surface meshes. We explore novel
potential applications of our approach, allowing for automated reconstruction of curves
on Riemannian manifolds.
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4. SIGDV: Reconstructing Curves on Riemannian Manifolds

Figure 4.1: Reconstruction of multiple curves on the fertility mesh. The samples (left)
are denser where the local feature size is small - around the serif of the G for example,
matching our sampling condition. Our method is able to reconstruct multiple closed
curves at the same time (right), with sharp features and close sheets.

4.2 Introduction
Vector graphics represents an important research area in computer graphics, and it is
widely applied in many fields, spanning from design and art to engineering. One of the
important reasons for its success is the ability to generate infinite resolution smooth
complex visualizations with relative ease while requiring only little input geometry.

Recently, an increasing interest has been devoted to moving 2D vector graphics onto
surfaces, trying to address certain issues stemming from texturing methods. Texturing
is a well-established approach for defining patterns and decorations on surfaces, but
it generally relies on finite-resolution images and parameterization. The latter is not
always available or could be difficult or expensive to define. Procedural textures try to
overcome these problems, defining patterns via mathematical functions and algorithms.
However, they generally rely on multi-dimensional noise functions that are then sampled
on the surface [EMP+03, Har01, MBMR22]. These algorithms are usually agnostic of
the underlying geometric properties and can incur high computation times.

Besides works generalizing sample-based texture synthesis to triangular meshes [WL01,
Tur01], only in recent years some solutions have been proposed which try to leverage
properties of non-Euclidean metric spaces and define patterns directly on surfaces, either
via recursive structures [NPP21] or simulated behaviors [MMMR22]. Another avenue
of development for texture synthesis is represented by neural networks that generate a
textured mesh in the style of an input image [MG23].

Despite the existence of various solutions for decorating surfaces, the problem of construct-
ing lines and curves on discrete manifolds has not been addressed satisfactorily yet. Defin-
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4.3. Background and notations

ing curves and shapes directly on surfaces is innovative for design applications [PSOA18],
and has a relevant impact in the processing of archaeological data [KST08, GTSK13] by
extracting specific decorations from the models. However, little research has been devoted
to improving the definition and the reconstruction of curves on discrete surfaces, besides
efforts to generalize Bézier curves [MNPP21]. Furthermore, the existing techniques
are generally centered around human interaction, as they are designed to be tools for
artists and end users, and even the most recent solutions require an ordered sequence of
samples [MP23]. To the best of our knowledge, Shah et al. [SC13] provided the first and
only solution for dealing with curve reconstruction on Riemannian manifolds. Still, their
proposed method can only deal with dense uniform samplings and only guarantees to
reconstruct curves in limited settings. By generalizing state-of-the-art theoretical results
and algorithmic solutions for planar curve reconstruction to arbitrary manifold domains,
we introduce a more robust method that, given an unordered collection of points over a
Riemannian manifold that follows our relaxed sampling conditions, always produces an
ordered sequence identifying a closed curve on the surface (see Figure 4.1).

Our contributions are summarized in the following:

• we propose a solution that extends existing state-of-the-art theory and techniques
for 2D curve reconstruction to manifold domains, overcoming the challenges arising
from translating the problem into non-Euclidean spaces;

• we improve the state-of-the-art sampling conditions for curve reconstruction on
Riemannian manifolds [SC13], allowing for sparser sampling for curve reconstruction
on manifold domains;

• we perform a qualitative study of our method on real-world data coming from
established applications, where the previous solution fails due to the sparsity of the
samples.

4.3 Background and notations
Informally speaking, a d-dimensional manifold is a collection of pieces of the d-dimensional
hyperspace that are deformed and glued together to form a continuous smooth domain.
Such domain can be embedded in a higher dimensional space (like in the case of 2-
dimensional surfaces embedded in 3D space), or exist on their own (like the 3D rotation
group SO(3) [HH13]). For a formal and complete definition of Riemannian manifolds, we
refer to the books by Morita and Do Carmo [Mor01, DC16].

To refer to any such d-dimensional manifold (including continuous curves) we use calli-
graphic letters (i.e., M, C), and we denote the geodesic distance function over a manifold
M with dM. Furthermore, we refer to any discrete representation of a manifold M with
the symbol M̂.

Specifically, we represent discrete 2-dimensional surfaces as triplets M̂ = (V, E, T ), where
V is a set of vertices, T is a set of oriented triangles among vertices, and E is a set of
unordered edges induced by the triangles in T . We also represent discrete curves (i.e.,
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4. SIGDV: Reconstructing Curves on Riemannian Manifolds

1-dimensional manifolds) as tuples Ĉ = (V, E), where V is a set of vertices and E is a set
of edges between vertices. Throughout this work, we assume the manifoldness of discrete
surfaces and curves [CDGDS13], and we assume to work with curves made by a single
component and forming a closed non-self-intersecting loop.

4.3.1 Curve sampling
In this section, we mention the definitions related to sampling planar curves that relate
to our contribution, and conclude with our own definitions that extend to manifolds.

Given a smooth curve C and a set of samples S ⊂ C, reconstructing the curve is the
process of constructing a discrete curve Ĉ = (S, E) such that an edge e = (si, sj) is in E
if and only if si and sj are consecutive samples along the curve C.

Sampling techniques include distance-based sampling, such as uniform - Definition 1,
and non-uniform - Definition 2, and local-feature size-based sampling, such as ϵ-sampling
(Definition 5) and ρ-sampling (Definition 7).

4.3.2 Differential geometry
We now lift the definitions required for the local feature size from the plane to manifolds,
to be able to introduce sampling conditions on manifolds in the subsequent sections.

Euclidean disks are widely used in relation to planar curve reconstruction, and they have
a straightforward generalization to arbitrary metric spaces.

Definition 1. Let (M, dM) be a metric space, p ∈ M a point on M, and r ∈ R. The
r-ball centered at p is the region Bp,r of points at a distance less than r from p:

Bp,r = {x ∈ M : dM(p, x) < r} . (4.1)

The closure clBp,r of the r-ball also includes its boundary:

∂Bp,r = {x ∈ M : dM(p, x) = r} . (4.2)

The work of Shah et al. [SC13] identifies the limitations of the local feature size in non-
Euclidean metric spaces, and exploits the notions of cut locus and injectivity radius to
overcome these issues. Informally speaking, the cut locus of a point p on the manifold M
can be seen as the set of all points q such that there are at least two distinct minimizing
geodesics from p to q – see Figure 4.2.

Definition 2. Let M be a d-dimensional Riemannian manifold, possibly with boundary
∂M, and equipped with a connection defining an exponential map expp : Tp(M) → M
at every point p ∈ M. The cut locus of p in the tangent space Tp(M) is defined as
the set CT (M)(p) of all vectors v ∈ Tp(M) such that the parametric curve expp(tv) is a
minimizing geodesic for t ∈ [0, 1] and not minimizing for t > 1.

The cut locus of p on the manifold M is the set CM(p) of all points q ∈ M that are the
image of a vector v ∈ CT (M) under the exponential map.
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4.4. Method

Figure 4.2: Examples of cut locus (in red) given a point (in blue) on different surfaces.
The cut locus can be a single point (left) or an entire curve (right).

Intuitively, the injectivity radius is the maximum size of an r-ball around a point
that preserves injectivity when mapped the Euclidean space – refer to Theorem 1 and
Figure 4.5.

Definition 3 ([DC16]). Let p ∈ M be a point on the manifold M and CM(p) be its cut
locus. The injectivity radius of p is

iM(p) = inf
q∈CM(p)

dM(p, q) . (4.3)

The injectivity radius of the manifold M is thus defined as

IM = inf
p∈M

iM(p) . (4.4)

By using these tools, Shah et al. [SC13] show that curves can be reconstructed using a
minimum spanning tree if they are uniformly ϑ-sampled, with ϑ < min (infp∈C lfs(p), IM).

4.4 Method
In this chapter, we advance the task of reconstructing curves on manifolds, addressing
curves that are sampled more sparsely and non-uniformly compared to the state-of-the-art.

The standard notion of local feature size is not suitable for non-Euclidean metric spaces.
In Figure 4.3 we show two examples of curves where the local feature size presents
undesired behaviors. For instance, we can have r-balls that contain the entire curve
without containing the medial axis, or even curves that do not have a medial axis, making
it impossible to define the local feature size.
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4. SIGDV: Reconstructing Curves on Riemannian Manifolds

Medial
axis

Figure 4.3: Two examples of curves on surfaces (solid black) where the local feature
size exhibits undesired behaviors. Left: an r-ball (shaded in light blue) around p that
contains the entire curve C1, but no point of the medial axis. Right: a curve C2 on the
surface with an empty medial axis (i.e., the local feature size is undefined).

By taking inspiration from Shah et al. [SC13], we exploit the injectivity radius to
strengthen the definition of ρ-sampling, making it suitable for manifold domains and
showing that we can preserve its fundamental properties (Section 4.4.1). Then, we
generalize a proximity graph successfully used for 2D curve reconstruction to arbitrary
metric spaces, proving that analogous sampling conditions apply (Section 4.4.2). And
finally, we present an algorithm that relies on the properties of our graph to reconstruct
curves on Riemannian manifolds (Section 4.4.3).

4.4.1 Non-uniform sparse sampling on surfaces
The solution proposed by Shah et al. [SC13] consists of bounding the local feature size
to the injectivity radius of the entire surface. While this approach effectively solves the
previous issues, it also makes the sampling very dense when the manifold contains very
narrow sections or sharp features: the smallest injectivity radius of the surface affects
the overall sampling conditions, even if the curve might not pass close to these regions.
Instead, we use the local feature size and the reach by considering the injectivity radius
of individual points. In this way, we can define properties inside topologically flat regions
and ensure that they behave similarly to a Euclidean space, avoiding cases where the
topology of the r-ball introduces pathological issues – see the left frame of Figure 4.3,
where the local feature size is larger than the injectivity radius.
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Figure 4.4: A comparison between a dense uniform sampling, with 281 samples, satisfying
the conditions described by Shah et al. [SC13] (on the left) and a non-uniform ρ-sampling
scheme with only 124 samples (on the right).

Definition 4. Let C ⊂ M be a closed curve on the manifold M. For every point p ∈ C,
we define the injective local feature size of p as

ilfs(p) = min (lfs(p), iM(p)) . (4.5)

For every interval I ⊂ C of the curve, we extend the injective reach of I as

ireach(I) = min
p∈I

ilfs(p) . (4.6)

From Definition 4, the extension of ρ-sampling to its injective counterpart follows naturally.
The example from Figure 4.4 shows the difference between the uniform dense sampling
required for the method from Shah et al. [SC13] against a more relaxed non-uniform
ρ-sampling scheme.

The sample sets in Figure 4.4 were computed from a discrete, very dense initial curve by
approximating the medial axis, and implicitly, the local feature size, using the Voronoi
diagram [DZ04]. We then employed a backtracking approach to extract a subset of
samples that satisfy our sampling conditions. Generating an exact and minimal sampling
remains an open problem.

Curve properties. We start from a classical result in differential geometry about the
injectivity radius.

Theorem 1 ([Kli95]). Let M be a d-dimensional Riemannian manifold. For every
point p ∈ M, the restriction of the exponential map expp to U ⊂ Tp(M), such that
expp(U) = Bp,r, Bp,r is injective for all r ≤ iM(p) and it is a diffeomorphism onto its
image.
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4. SIGDV: Reconstructing Curves on Riemannian Manifolds

From this result, we can deduce that if r ≤ iM(p), then there exists a diffeomorphism
between the r-ball Bp,r centered at p and the Euclidean d-dimensional ball Bd, as we can
see in the example depicted in Figure 4.5. We can thus generalize the following important
result that holds in 2D:

Lemma 1 ([ABE98]). Let C ⊂ R2 be a closed curve in the plane. For every point p ∈ R2

and every r ∈ R+, if the Euclidean disk D of radius r and centered at p contains at least
two points of C, then either D ∩ C is a topological 1-disk, or D contains a point of Γ(C),
or both.

For Riemannian manifolds of arbitrary dimensions we get:

Lemma 2. Let C ⊂ M be a closed curve on the manifold M. For every point p ∈ M
and every positive real value r ≤ iM(p), if the r-ball Bp,r centered at p contains at least
two points of C, then then either Bp,r ∩ C is a topological 1-disk, or Bp,r contains a point
of Γ(C), or both.

Proof. We denote the intersection between the r-ball and the curve with F = Bp,r ∩ C.

If F is a topological 1-disk, there is nothing to prove.

If F ̸= C and F is not a topological 1-disk, then F must contain at least two connected
components. Let q1 ∈ F be the closest point in F to p, and let f1 be the connected
component of F containing q1. If q1 is not unique, then p ∈ Γ(C) and the proof is complete.
Otherwise, let f2 ̸= f1 be a second closest connected component of F to p, and let q2 ∈ f2
be the point in f2 closest to p. Let δi(x) = infy∈fi

dM(x, y) be the distance from each
point x to the connected component fi. Let us consider the geodesic shortest path γq2

p ,
which is contained in Bp,r by definition of r-ball. We know that at point p it holds that
δ1(p) < δ2(p) and at q2 it holds that δ1(q2) > δ2(q2). Since the distance functions change
continuously, there must be some point x along the path γq2

p such that δ1(x) = δ2(x),
where the closest connected component of F to x changes. If x /∈ Γ(C), then there must
be another point q3 ∈ C such that q3 /∈ f1, f2 and dM(x, q3) < δ2(x) ≤ dM(x, q2). Using
the triangle inequality, we get that dM(p, q3) < dM(p, x) + dM(x, q3). Hence, we get that
dM(p, q3) < dM(p, x) + dM(x, q3) < dM(p, x) + dM(x, q2). Using the fact that x lies on
the geodesic shortest path between p and q2, we have dM(p, x) + dM(x, q2) = dM(p, q2),
which implies that dM(p, q3) < dM(p, q2), which contradicts our assumption that f2,
which contains q2, is the second closest connected component (since q3 /∈ f1, f2). Thus,
x ∈ Bp,r must belong to the medial axis Γ(C).

If F = C, then the curve C is entirely contained in Bp,r. Let δC(x) = miny∈C dM(x, y)
be the minimal distance from each point to the curve. We consider the ℓ-neighborhood
Tℓ(C) = {x ∈ M : δC(x) < ℓ} of the curve C and the restriction of the neighborhood
Nℓ(C) = {x ∈ Bp,r : δC(x) < ℓ} to the r-ball Bp,r. Since Bp,r is an open set, for small
values of ℓ, the ℓ-neighborhood Tℓ(C) is topologically equivalent to a d-dimensional solid
torus and is entirely contained within Bp,r. Thus Nℓ(C) = Tℓ(C) has genus 1. On the
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4.4. Method

Figure 4.5: Mapping of an r-ball around a point p on a surface (left) to the Euclidean
disk B2 (right). The mapping is possible because r ≤ iM(p).

other hand, Bp,r has finite size, and thus for values of ℓ large enough Nℓ(C) covers the
entire r-ball and hence, Nℓ(C) = Bp,r. Since r ≤ iM(p), the r-ball Bp,r is topologically
equivalent to a d-dimensional Euclidean ball (whose genus is 0), and so must be Nℓ(C).
Since the curve C is immutable during the growing process of Nℓ(C), and no elements are
removed while increasing ℓ, the genus decrease of Nℓ(C) cannot happen via cutting the
solid torus. Thus, for some ℓ there must be a non-contractible curve along the boundary
of Nℓ(C) that collapses in a single point q ∈ Bp,r to achieve a genus decrease. This means
that q must be at a distance ℓ from at least two different points on the curve, and thus,
must be a point on the medial axis.

Corollary 1. For every point p ∈ C, and for r ≤ ilfs(p), the ball Bp,r intersects C in a
topological 1-disk.

Proof. Let Bp,r be a r-ball centered at p, for some r ∈ R+, that does not intersect
C in a topological 1-disk. If that is the case, then either r > iM > ilfs(p) or Bp,r

contains at least one point m of the medial axis (by Lemma 2). This would lead to
r > dM(p, m) > lfs(p) > ilfs(p).

In Figure 4.6 we show an example of a planar curve intersected by Euclidean disks. At
point p1, the disk bounded by ilfs(p1) intersects the curve in a topological 1-disk, as
imposed by Corollary 1. The other points depict the three possible cases imposed by
Lemma 1 and its generalization - Lemma 2: p2 intersects the curve in a topological 1-disk;
p3 does the same, but it also contains part of the medial axis; p4 intersects the curve in
two disconnected components, and thus it must contain a part of the medial axis.
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Figure 4.6: A planar curve (in black) and its medial axis (in red). Given some points
(in dark blue), the disks centered at them (in light blue) either intersect the curve in a
topological 1-disk, intersect the medial axis, or both.

Properties of the sampling. From Lemma 2 and Corollary 1, we can infer information
on how the samples are distributed.

Proposition 1. Let S ⊂ C be a sampling of the curve. For every point p ∈ C, let
s0, s1 ∈ S be the samples such that the interval I = (s0, s1) is the smallest open interval
between samples that contains p. If there exists a point q ∈ C not belonging to the closure
of I that is closer to p than both s0 and s1 are to p, then dM(p, q) ≥ ilfs(p).

Proof. Let us denote δ = dM(p, q), and consider the r-ball Bp,δ of size δ and centered at
p.

Since s0 and s1 lie outside Bp,δ, p lies inside Bp,δ, and Bp,δ touches q, then either the
intersection F = C ∩ Bp,δ has two connected components, or C is tangent to Bp,δ at q.

If F has two connected components, then by Corollary 1 δ > ilfs(p).

If C is is tangent to Bp,δ at q, then for every ε > 0, the ball Bp,δ+ε would intersect C in
two connected components, meaning δ + ε > ilfs(p). Hence, δ ≥ ilfs(p).

Note that the statement of Proposition 1 does not require that p /∈ S. Indeed, if p is a
sample, the two samples that define the smallest interval containing p are its adjacent
samples. This is the reason we use the open interval containing p, and not the closed
version. Given the proper constraints of ρ, we can provide additional guarantees.

Corollary 2. Let S ⊂ C be a sampling of the curve, and s0, s1 ∈ S be two adjacent
samples defining an interval I = [s0, s1] ⊂ C. If S is a ρ-sampling with ρ < 1, then for
every point p ∈ I, the closest sample to p is either s0 or s1.
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Figure 4.7: For a set of points in 2D, the intersection between Delaunay triangulation
(red) and SIG (blue) creates the SIGDT (yellow). The edges removed from Delaunay
triangulation and SIG are shown with dashed lines of the graphs’ corresponding colors.

Proof. Assume the closest sample to p is some si ̸= s0, s1, and let us denote δ =
min(dM(p, s0), dM(p, s1)). Then δ > dM(p, si) ≥ ilfs(p) ≥ ireach(I). But by definition
of ρ-sampling, δ < ρireach(I), which contradicts δ > ireach(I) for ρ < 1.

Proposition 2. Let S ⊂ C be a ρ-sampling, with ρ < 1. For any two consecutive samples
s0, s1, let I = [s0, s1] be the interval between them. Then we have dM(s0, s1) < 2ireach(I).

Proof. Consider a point p in the interval I = [s0, s1] such that dM(s0, p) = dM(s1, p).
That point must be at d ≥ 1

2dM(s0, s1) from s0, and by definition of ρ-sampling with
ρ < 1, d < ireach(I) ≤ ilfs(p). By Corollary 2, the closest samples to p must be s0 and
s1, and we have dM(s0, s1) ≤ 2d < 2 ireach(I).

4.4.2 SIGDV graph on manifolds
In Chapter 3, we introduced the SIGDT proximity graph, obtained by intersecting the
Delaunay triangulation with the Spheres-of-Influence graph, defined in 8.

The SIGDT is proved, in the planar setting, to contain the correct reconstruction of the
curve under ρ-sampling conditions with ρ < 1 and non-uniformity ratio u < 2, and being
a subgraph of the Delaunay triangulation, it is also a sparse graph. These conditions
make it a good starting point for finding the reconstruction of the curve. We provide an
example of the construction of the SIGDT in Figure 4.7.

While the Spheres-of-Influence graph is only defined in terms of distances, lifting the
Delaunay triangulation to manifold domains is less intuitive. The lack of a coordinate
system makes it difficult to generalize classical construction algorithms like the Bowyer-
Watson method [Bow81, Wat81] to non-Euclidean metric spaces. However, we use the
dual graph of the Delaunay triangulation – the Voronoi partitioning of the vertex set,
which is defined only in terms of distances [AKL13]. This duality has already been
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Figure 4.8: Left: a triangular mesh with some surface samples. Center: the geodesic
Voronoi partitioning induced by the samples on the mesh, and its dual graph (white)
obtained by locating the shortest geodesic paths between samples in adjacent partitions.
Right: the SIGDV (black) obtained by removing the edges not in the SIG.

exploited for lifting the Delaunay triangulation to surfaces and has proved to maintain
many properties of the 2D triangulation, such as providing angle stability and containing
the nearest neighbor graph [Wan15, LFXH17]. Furthermore, it can be shown that
computing the Voronoi partitioning of discrete manifolds is an efficient operation that
can be achieved in time O (|V | log |V | log k), being |V | the number of vertices and k the
number of samples [PC06, MBRM24].

Differently from the Euclidean space, the dual of a Voronoi decomposition does not
always guarantee a valid triangulation of the point set, as there are some additional
constraints that the samples must satisfy [ACDL00, DZM07]. If these are not satisfied,
the dual still forms a sparse graph that encodes the proximity of samples well. In order
to obtain the dual of the Voronoi, we connect samples that generate adjacent partitions,
as shown in Figure 4.8. By removing all the edges from the Voronoi dual that do not
also satisfy Equation 2.3, we obtain the intersection between the Spheres-of-Influence
graph and the dual Voronoi graph, which we denote as SIGDV, and which provides a
generalization for the SIGDT graph.

We prove the following statements about our graph.

Lemma 3. Let s0, s1 ∈ C be consecutive samples from a ρ-sampling S ∈ C, with ρ < 1.
The edge e(s0, s1) belongs to the dual Voronoi graph of S.

Proof. Let I = [s0, s1] ⊂ C be the interval of C connecting samples s0 and s1, and let
p ∈ I be a point such that dM(s0, p) = dM(s1, p). We consider the r-ball Bp,r centered
at p, where r = dM(p, si) is the distance from p to its closest sample si.

By Corollary 2, si must be either s0 or s1, yielding r = dM(s0, p) = dM(s1, p). Then the
boundary between the Voronoi cells of s0 and s1 is not empty (as it contains at least p),
and the edge e(s0, s1) is the dual of their shared Voronoi boundary.
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Lemma 4. Let s0, s1, s2, s3 ∈ C be consecutive samples from a ρ, u-sampling S ∈ C, with
ρ < 1 and u < 2. The edge e(s1, s2) belongs to the Spheres-of-Influence graph of S.

Proof. We split the proof into four cases.

Case 1: If s1 is the nearest neighbor of s2, or vice versa, then the edge e trivially belongs
to SIG.

Case 2: If s0, s3 are the nearest neighbors of s1 and s2 respectively, the non-uniformity
ratio u < 2 imposes dM(s0, s1), dM(s2, s3) > 1

2dM(s1, s2), meaning that dM(s0, s1) +
dM(s2, s3) > dM(s1, s2). Then the edge e belongs to SIG by definition.

Case 3: Now, suppose neither s0 nor s2 is a nearest neighbor for s1, but s3 is a nearest
neighbor for s2. Then, the distance from s2 to its nearest neighbor is d2 = dM(s2, s3),
and let d1 = dM(s1, si) be the distance from s1 to its nearest neighbor si. If d1 + d2 ≥
dM(s1, s2), the edge belongs to SIG by definition.

Otherwise, we must have d1 < dM(s1, s2) − d2. Because of the non-uniformity ratio
u < 2, we know that 1

2dM(s1, s2) < d2 < 2dM(s1, s2), and hence d1 < 1
2dM(s1, s2). By

Proposition 2, d1 < ireach([s1, s2]) ≤ ilfs(s1). However, since si is not adjacent to s1, by
Proposition 1 we have d1 ≥ ilfs(s1), which contradicts the above d1 < ilfs(s1).

Case 4: Finally, suppose neither s0 nor s2 is a nearest neighbor for s1, and neither
s1 nor s3 is a nearest neighbor for s2. If that is the case, a sample si must lie at
distance d1 = dM(si, s1), and Proposition 1 requires d1 ≥ ilfs(s1). We also must have
a sample sj lie at distance d2 = dM(s2, sj) from s2, which is the nearest neighbor of
s2, and Proposition 1 requires d2 ≥ ilfs(s2). If d1 + d2 ≥ dM(s1, s2), then the edge e
belongs to SIG by definition. Suppose then d1 + d2 < dM(s1, s2), and let us denote
r1,2 = min(ilfs(s1), ilfs(s2)). Proposition 2 requires d1 + d2 < dM(s1, s2) < 2r1,2. Since
d1 ≥ ilfs(s1) ≥ r1,2, we have d2 < r1,2, which contradicts d2 ≥ ilfs(s2) ≥ r1,2.

Finally, we prove that SIGDV contains the correct reconstruction under analogous
sampling conditions as the 2D case:

Theorem 2. Let M be a d-dimensional Riemannian manifold, possibly with boundary
∂M, and equipped with a geodesic distance dM : M × M → R. Let C ⊂ M be a curve
on the manifold M, and S = {s1, · · · , sk} ⊂ C be a ρ, u-sampling of C, with ρ < 1 and
u < 2. The edge connecting any pair of consecutive samples is part of the SIGDV of S.

Proof. By Lemma 3 the edge e belongs to the dual Voronoi connectivity, and by Lemma 4
the edge e belongs to SIG. Then the edge also belongs to their intersection SIGDV.

In Figure 4.9 we illustrate an example application of Theorem 2 to a curve on a 2-
dimensional surface. The smooth curve wrapping around the head of the dog shape is
sampled with a set of points, which are then connected with SIGDV. If two samples are
adjacent on the curve, they share an edge inside SIGDV.
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Figure 4.9: Left: a smooth closed curve (red) sampled at some vertices (black). Middle:
the vertices are connected using SIGDV (black), including the edges between consecutive
samples. Right: the shortest Hamiltonian path (red) inside SIGDV.

4.4.3 Curve reconstruction as a Traveling Salesman Problem

While Theorem 2 guarantees that SIGDV contains the correct reconstruction, it may
contain additional edges. This problem was also addressed in Chapter 3, for the SIGDT
planar curve reconstruction algorithm. In the SIGDT pipeline, we propose to apply a
series of inflating and sculpting operations until they obtain a manifold curve. In this
case, this is not applicable, as in non-Euclidean spaces, such as manifolds, it is not always
possible to define the notions of “inside” and “outside” of a curve.

To overcome this issue, we note that the edges of the correct reconstruction should create
a cycle such that each sample is visited only once. Various ways of extracting these edges
exist in the literature, such as the identification of a Hamiltonian cycle [IN07, Bjo14]
or the solution to a Traveling Salesman Problem (TSP). While we are not guaranteed
that the TSP solution encodes the ground truth ordering in general, it has been shown
that outputting a shortest path adheres to the Gestalt principles and provides a good
heuristic in the planar case [AM00, OM13, OPP+21].

In our experiments, this heuristics proved to generalize well on manifold domains, as
shown in the example from Figure 4.9.

The Traveling Salesman Problem is a fundamental problem in computer science, and it
is at the very core of many optimization problems. Given a set of points, TSP requires
finding the shortest path that connects all the points, thus solving the problem of curve
reconstruction as well. The problem can be formulated in different spaces and with
different connectivity constraints, but all of them have been shown to be NP-hard [Kar75].
However, the importance of the TSP led many researchers to deploy approximate solutions,
especially relying on a nearest-neighbor approach [JM97, RBP07] – even though these
solutions tend to have a large approximation factor. Other techniques [DMC96, SM15]
proved to be much more effective, while paying a small price on time efficiency.
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Most of the research related to the TSP assumes complete graphs (i.e., each node is
connected to every other node). While we can accept solutions containing edges not
belonging to SIGDV, we know that this graph contains the correct reconstruction under
some sampling conditions, and hence we want to bias the algorithm to use SIGDV edges,
while at the same time guaranteeing an efficient solution.

We start from a solution that exploits the Minimum Spanning Tree of a graph to produce
a 2-optimal approximation to the problem (i.e., a solution that is at most two times as
expensive as the optimal one) [CLRS22]. Our method is summarized in Algorithm 4.1,
where the input graph G is the SIGDV graph and the matrix D contains in the entry
Dij the geodesic distance dM(i, j) between the i-th and the j-th samples.

Algorithm 4.1: Algorithm for solving the TSP biased towards SIGDV edges.
Data: G = (V, E), D ∈ R|V |×|V |

Result: Ordered set of samples P
1 T ← minimum spanning tree of G w.r.t. D
2 P ← ordering of V following a pre-order DFS visit of T
3 while P is unchanged do
4 Find (i, j), (ℓ, h) ∈ P s.t. Dij + Dℓh > Diℓ + Djh

5 P ← P \ {(i, j), (ℓ, h)}
6 P ← P ∪ {(i, ℓ), (j, h)}
7 end
8 return P

We first compute the minimum spanning tree T of the graph G and via a pre-ordered
Depth-First Search (DFS) visit of T we find an ordering of the nodes in V that we use to
build an initial cycle P (Lines 1-2). Since the metric dM respect the triangular inequality,
the cycle P is guaranteed to be a 2-optimal approximation of the TSP [CLRS22]. However,
P does not offer any guarantee for the cycle to be a local minimum of the problem.
Thus, we post-process the ordering by searching for any pair of edges (i, j), (ℓ, h) such
that if we swap them into (i, ℓ), (j, h) we obtain a shorter cycle, and we iterate this
process until no new pairs of edges are found (Lines 4-8). This edge-swap procedure was
originally proposed by Croes [Cro58] for solving the TSP with an approximation factor
of O (log n/log log n) on Euclidean instances (being n the number of vertices) [BHZ23].

Relaxed sampling conditions. The sampling conditions imposed by Theorem 2
allow for a sparser sampling compared to the state-of-the-art. However, when these
conditions are not met, we do not have the guarantee that SIGDV contains the correct
reconstruction or any other Hamiltonian cycle. Intersecting the dual Voronoi graph with
the SIG could even produce a graph with multiple disconnected components. In some
applications (see Figure 4.1) the input could be known to include samples from distinct
closed loops and the clustering can be used to identify multiple curves. If the user desires
to reconstruct only a single curve, we alter the graph to produce a single connected
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component. First, we build the complete graph G = (V,E) of the connected components,
where each node Ni ∈ V represents a single component of SIGDV, and the length of the
edge (Ni, Nj) ∈ E is given by minu∈Ni,v∈Nj dM(u, v). Then, we compute the minimum
spanning tree T of this graph. For every edge (Ni, Nj) ∈ T, we add to SIGDV the edge
(u∗, v∗) = arg minu∈Ni,v∈Nj

dM(u, v). This pre-processing guarantees that we obtain a
single connected component, while, at the same time, adding non-SIGDV edges with
minimum total edge length. The choice between single and multiple curve reconstruction
is left to the user for full flexibility.

4.5 Applications
We investigate several diverse applications of our method. We first compare it to the
approach proposed by Shah et al. [SC13] (MST) for motion tracking applications, where
we show that we are able to reconstruct complex paths with far fewer samples. We
show how our method can be applied in processing archaeological data, and how it can
improve contour matching results, and we discuss the applicability of our solution to
isoline extraction from sparse samples for scientific visualization.

Our method has been implemented in C++, using Eigen [GJ+10] and Geometry Cen-
tral [SC+19]. The implementation is available at https://github.com/filthynobleman/curves-
surf. For computing Voronoi diagrams in high-dimensional spaces we use Qhull [BDH96],
and for computing the geodesic paths used in our visualizations we use the Flip Geodesics
algorithm [SC20].

4.5.1 Motion tracking
In their work about curve reconstruction on Riemannian manifolds, Shah et al. [SC13]
propose, as an application, the reconstruction of curves in the space of rigid motions
SE(3) to track the motion of an object from position and rotation samples. To apply our
method to this task, we first need to define how to compute a Voronoi diagram in SE(3).

As discussed by González-López et al. [GLR95], the group SE(3) can be expressed as
the product SO(3) × R3, SO(3) being the group of rotations in 3D space. The authors
propose a method for computing the Voronoi decomposition in SO(3) relying on the
following result.

Proposition 3 ([GLR95]). Given a set of rotations R = {ri}k
i=1 in SO(3) and a set of

rotation matrices R′ = {Ri}k
i=1 in R3×3 such that Ri represents the rotation of ri, the

Voronoi decomposition Vor(R, dSO(3)) of SO(3) w.r.t. the rotations R can be obtained as

Vor(R, dSO(3)) = Vor(R′, dR9) ∩ SO(3) . (4.7)

We improve this result for an easier computation of the Voronoi diagram in the group
SO(3).
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Proposition 4. Given a set of rotations R = {ri}k
i=1 in SO(3) and a set of quaternions

Q = {qi}k
i=1 in H such that qi represents the rotation ri, then the Voronoi decomposition

Vor(R, dSO(3)) of SO(3) w.r.t. the rotations R can be obtained as

Vor(R, dSO(3)) = Vor(Q, dR4) ∩ SO(3) . (4.8)

Proof. Let rp, rq ∈ SO(3) be two rotations, and let p = (pw, px, py, pz), q = (qw, qx, qy, qz) ∈
H be the two quaternions representing them. Let q∗ be the conjugate of q. We
know that the angular distance between rp and rq can be expressed as the angle
of rotation of the quaternion t = (tw, tx, ty, tz) = pq∗, which in turn is given by
2 arccos(tw) = 2 arccos(⟨p, q⟩).
We also know that the squared Euclidean distance between p and q is given by ∥p − q∥2 =
∥p∥2 + ∥q∥2 − 2⟨p, q⟩. Since the quaternions express rotations, they have unitary norm,
meaning ∥p − q∥2 = 2 − 2⟨p, q⟩. Thus, the angular distance between rp and rq can be
expressed as

dSO(3)(rp, rq) = 2 arccos(⟨p, q⟩) = 2 arccos


1 − ∥p − q∥2

2


.

Since ⟨p, q⟩ is bounded by −1 and 1 (⟨p, q⟩ = ∥p∥∥q∥ cos(θ) = cos(θ), as p and q are
unitary), and since arccos(·) is a decreasing function on [−1, 1], then for any rotation
rw ∈ SO(3) and its corresponding quaternion w ∈ H we get that dSO(3)(rp, rw) <
dSO(3)(rq, rw) ⇐⇒ ⟨p, w⟩ > ⟨q, w⟩, but we also know that ⟨p, w⟩ > ⟨q, w⟩ ⇐⇒
∥p − w∥2 < ∥q − w∥2. Thus, it must be true that

dSO(3)(rp, rw) < dSO(3)(rq, rw) ⇐⇒ ∥p − w∥ < ∥q − w∥ .

This proves that the distance functions dSO(3) and dR4 preserve the distance relation-
ships between rotations in SO(3), meaning that Vor(R, dSO(3)) = Vor(Q, dR4) ∩ SO(3).
Although our result is partially connected to the theory of the Riemannian center of
mass [Kar77], we aimed to provide a precise and tailored proof for the specific case of
rotations in SO(3) and their Voronoi decomposition.

As proven by González-López et al. [GLR95], this result does not generalize to SE(3),
and we must only rely on the Voronoi decomposition of the embedding space. However,
by reducing the dimensionality of the embedding space of SO(3) from R9 to R4, we also
reduce the dimensionality of the embedding space of SE(3) from R12 to R7. Thus, we
can use the Voronoi decomposition in R7 as a reasonable approximation of the Voronoi
decomposition in SE(3).

In Figure 4.10 we present an example of motion reconstructed using MST and our solution,
and we show the minimum number of samples required by each method to correctly
reconstruct the motion sequence – 21 for MST and 9 for our method. While our method
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MST Ours

Figure 4.10: Minimal number of samples for reconstructing the motion of an airplane
along a path using MST - left (21), and our approach - right (9). The curve shows the
ground truth path of the airplane.

The airplane model has been created by Kemal Çolak and distributed by Sketchfab
under the license CC BY 4.0.

can deal with sparse non-uniform sampling and still correctly recover the ordering of the
samples, it is evident here that MST requires a more dense and uniform sampling scheme.
Indeed, the path presents a challenging shape, as the two close turns in the bottom half
are very close in space, and the adjacent samples on the curve are very different in terms
of rotations. Such curves can be adversarial for MST, as the distance in SE(3) between
non-adjacent samples is small, preventing their method from finding a closed curve.

4.5.2 Virtual cultural heritage
Scientific visualization and 3D shape analysis are already prevalent in archaeological
applications as instruments for handling the always-increasing amount of data available
to cultural heritage research [Tal14].

Successful applications of computational geometry to the analysis of archaeological data
include the identification of demarcating curves on low reliefs, statues, and other various
kinds of cultural heritage artifacts [GTSK13, TBF16], curve matching tasks in 2D and
3D for solving the problem of fragment reconstruction [MK03] and pattern extraction of
culturally significant patterns [YP20].

The problem of reconstructing curves on surfaces is closely related to these applications,
as there can be cases where missing information from lost pieces could be inferred by
knowing the structure of the underlying artifact (e.g. partial designs on vases that could
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MST Ours

Figure 4.11: Reconstruction of complex curves (white) on the surface of a clay vase from
a set of manually chosen samples (blue). The MST algorithm (left) fails to reconstruct
meaningful contours, while ours (right) correctly identifies the two shapes. The vase
model has been created by Laura Shea and distributed by Sketchfab under the license
CC BY-NC-SA 4.0 DEED.

be reconstructed from still existing pieces). In Figure 4.11 we show that our method
can faithfully reconstruct complex shapes on the surface of a vase, precisely contouring
the black drawings from a sparse sampling. We also compare our result against the
MST algorithm, which is unable to find a closed shape due to the presence of multiple
connected components and the large distance among some of the samples.
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Ground
truthSketch Elastic2D3D Elastic2D3D

ordering MST Ours

Figure 4.12: Examples of how our curve reconstruction method is applied to refine a
contour. Given a contour obtained with Elastic2D3D [LRS+16], we sample it sparsely
and reconnect the samples using the ordering of the contour, MST, and our algorithm.

4.5.3 Contour matching
Contour matching is a novel task in computer graphics and vision applications that has
recently achieved high attention [LRS+16, RLB23]. The problem this field is concerned
with is how to meaningfully relate a surface to the curve defining its contour, even under
non-rigid deformation of the surface [WSSC11].

While the existing approaches reliably compute non-rigid correspondences between shapes
and their contour, the task is still new and even state-of-the-art methods do not always
provide high-quality guarantees, producing self-intersecting and locally degenerate curves.
We show that our curve reconstruction technique can be exploited as a refinement step
to improve the contour quality.

For our evaluation, we use the method proposed by Lähner et al. [LRS+16] (Elastic2D3D),
selecting some instances from the dataset that the authors derive from the FAUST shape
collection [BRLB14] where the method produces many degeneracies. From the curve
obtained with Elastic2D3D, we randomly extract 3% of the vertices, and we run our
algorithm for reconstructing the contour over the target shape.

Even if Elastic2D3D may produce self-intersections and locally degenerate curves, it
captures the overall shape of the contour. Thus, a sparse sampling of the curve should
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give a good sparse contour. As shown in the examples from Figure 4.12, with our
algorithm we can smooth the results of Elastic2D3D, resolving the self-intersections
and producing non-degenerate curves. For reference, we also connect the samples with
their original ordering, proving that our method’s reordering of the samples improves the
overall result.

MST cannot produce a valid closed curve in any of the tested cases, as the conditions
imposed by the algorithm require the sampling to be denser and more uniform for the
minimum spanning tree to result in a chain. This is primarily due to the presence of
degeneracies in the curve produced by Elastic2D3D in the form of jagged edges. Hence,
two points sampled from a degenerate section of the curve would very likely result in a
branch on the minimum spanning tree. We validate this argument by running the MST
algorithm on different sampling densities spanning from 1% to 100% of the curve vertices
produced by Elastic2D3D, and the minimum spanning tree never results in a chain.

4.5.4 Sparse data visualization

Having shown that our method can improve contours already computed by reordering a
sparse set of their samples, we now move onto another definition of contours, namely
their existence as isolines (i.e., lines connecting data points with the same value). We
show how our method can be used to visualize large data by only using a sparse subset
of it.

Analyzing large datasets and being able to extract meaningful visual information is a
challenge for various scientific visualization fields. We choose to focus on meteorological
data in this application, and considering the increase in computational power and available
tools, the information we can obtain has increased exponentially. Methods to quickly
process massive amounts of data are required to allow scientists to interpret and extract
the most relevant information. One method to deal with very dense data is to choose
a subset that acts as an overview, and then use this global view of data to find and
focus on a specific area of interest at a higher resolution [KW19, MHS+20]. In the case
of prohibitively large datasets, such as hourly records of multiple weather parameters,
processing solely a subset of the data might be the only way to manipulate information
at such a scale. This facilitates a quicker understanding of the data at different levels
while using less data and hence, less computational power.

In the field of visualizing meteorological data, an important problem arises from the
numerical issues of projecting information that exists on the Earth’s surface onto a plane,
where at least one of the following properties has to be sacrificed: distances, angles,
or areas. We bypass this challenge by working with samples directly on surfaces and
allowing for a three-dimensional interaction and visualization of data. A common way
of visualizing various properties of meteorological data is presented by contour lines (or
isolines) where data points with equal or similar (up to a threshold) values are connected
to represent all the possible points that have similar data [RBS+17].
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OursMST

Figure 4.13: Samples (black) with approximately the same temperatures connected using
the MST algorithm (left) and our method (right) to form a contour line (white) for a
region with a temperature of 230±0.3K on the globe, for a single timestep.

Meteorological datasets, such as the ones provided by the European Centre for Medium-
Range Weather Forecasts [fMRWFE], contain massive amounts of data for every recorded
timestep, at a resolution of 0.25 degrees in both latitude and longitude, with up to 90
parameters such as temperature, humidity, pressure. Analyzing the entirety of the data at
a global level is a tedious and complex task, and we propose to combine the deformation-
free surface representation with a sparse sampling of the dataset to reconstruct contours
for an easier understanding of global information.

In Figure 4.13, we use the global temperature values recorded on 31st of March 2024,
at midnight, and use a subset of the values (a quarter of the initial array, by skipping
every second and fourth row) to minimize the amount of data. The texture of the
mesh represents the ground truth temperatures. We then extract the points with a
temperature of 230±0.3K and connect them to obtain the corresponding contour line,
only requiring 63 samples to reconstruct the isoline. In contrast, the MST algorithm is
unable to reconstruct the curve due to the non-uniformity of the samples. The data we
used is based on data and products of the European Centre for Medium-Range Weather
Forecasts (ECMWF), under CC BY 4.0. license.

4.6 Conclusions
We have generalized the sampling requirements of closed curves from the Euclidean plane
R2 to Riemannian manifold domains of arbitrary dimension. By taking inspiration from
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the literature on planar curve reconstruction, we designed a new method for recovering
the original connectivity from a sparse sampling by biasing an instance of the traveling
salesman problem with a coarse graph, which exhibits strong theoretical guarantees. We
have proved the effectiveness of our method by testing it in different scenarios and various
applications involving real-world data, showing that it outperforms the existing previous
solution and that it provides a correct result, while in many cases the state-of-the-art
method fails.

As for future directions, we intend to explore possible relaxations of the starting graph
to offer stronger theoretical guarantees even under adversarial samplings. Furthermore,
we notice that when the sampling conditions satisfy our constraints, the original recon-
struction forms a Hamiltonian cycle inside the SIGDV graph. Since this path is not
guaranteed to be the shortest tour, an algorithm for the TSP could be a sub-optimal
strategy and more sophisticated techniques for identifying such a cycle could be worth
future investigation. Another possible avenue of future development could involve a more
compelling approach for handling multiple closed loops and the exploration of techniques
for dealing with more general classes of curves, as these could provide an important tool
in pattern extraction, where not all elements are closed smooth curves. Finally, as the
reconstruction of curves in non-Euclidean domains is a barely explored topic, we identify
the absence of a unified validation benchmark for quantitative analyses and we intend to
fill this gap in the future.
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CHAPTER 5
SIG3D: Encoding Connectivity for

Point Clouds

We analyze the properties of the SIG in proximity encoding of point clouds. We prove
the existence of a distance bound on SIG neighbors, using it to improve our performance.
The contents of this chapter have been adapted from the paper “Parameter-Free Connec-
tivity for Point Clouds” [MOW24], presented at GRAPP 2024 - the 19th International
Conference on Computer Graphics Theory and Applications, published in the Conference
Proceedings, and invited for an extended submission to the Communications in Computer
and Information Science Springer journal, currently in submission [MIOW24].

5.1 Overview
Determining connectivity in unstructured point clouds is a long-standing problem that
has still not been addressed satisfactorily. In this chapter, we analyze an alternative to
the often-used k-nearest neighborhood (kNN) graph - the Spheres of Influence Graph
(SIG). We show that the edges that are neighboring each vertex are spatially bounded,
which allows for fast computation of SIG. Our approach shows a better encoding of the
ground truth connectivity compared to the kNN for a wide range of k, and additionally,
it is parameter-free. Our result for this fundamental task offers potential for many
applications relying on kNN, e.g., parameter-free normal estimation, and consequently,
surface reconstruction, motion planning, simulations, and many more.

5.2 Introduction
In recent times, point clouds have gained popularity as a data representation, owing to
advancements in scanning technology. However, the initial state of disorganized points
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necessitates further processing to reconstruct the original surface’s connectivity from
which they were sampled. This connectivity allows for the estimation of surface properties
such as neighborhoods or normals. Various methods are available for estimating the
intrinsic properties of point clouds, but they often rely on selecting the appropriate
parameters tailored to the specific data type. For instance, this includes determining
neighborhood connectivity using the user-specified ‘k’ in k-nearest neighbor (kNN)
calculations. Additionally, point cloud sampling can be non-uniform due to the acquisition
method or tainted by artifacts like noise and outliers. These conditions make the process
of parameter selection for scanned data a challenging and time-consuming endeavor.

Extracting connectivity from point clouds is a significant research challenge, not only
due to its essential role as a first step in surface reconstruction but also because it forms
the foundational input for graph-based learning tasks involving point clouds. Regarding
surface reconstruction, connectivity graphs serve as the fundamental structure on which
triangles are constructed, and as a computation base for normals, which are sometimes
required as part of the reconstruction process. For learning-based tasks, establishing a
method for connecting the input points that closely aligns with the original surface is
imperative, since the creation of an actual surface is not necessary.

We propose a fast computation of the spheres-of-influence graph (SIG) and we analyze
its properties as a proximity graph. This graph recovers the original connectivity of
the surface better than the widely used kNN graph, as it can be seen in Figure 5.1,
while dropping the need for users to search for a suitable parameter that typically varies
depending on the input and its local properties. Our method achieves the best results on
various models with different features. Hence, our method offers a good scaffolding for
further processing of point clouds, such as normal estimation, surface reconstruction, or
graph convolutional neural networks. We show that our method not only encodes the
original connectivity better than kNN but, as an application, provides a good base for
normal estimation, while remaining parameter-free.

We present the following contributions:

• We introduce an effective method for constructing the spheres-of-influence graph,
proving novel spatial constraints for this parameter-free graph.

• Our method is evaluated against ground truth meshes, demonstrating superior
connectivity representation with a reduced space requirement when compared to
traditional kNN graphs.

• As an application, we offer an analysis of normal computation on point clouds,
highlighting our method’s ability to deliver competitive results.
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5.2. Introduction

SIG. 6NN.

10NN. 20NN.

Figure 5.1: Results of our SIG and the kNN graphs for k = {6, 10, 20} for the connectivity
of the Buddha statue from the Stanford repository. Our graph captures the connectivity
well, without many redundant edges, and without the need for a parameter compared
to the kNN graphs. The original surface is shown in light gray, with the various graphs
overlaid in black.
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5.3 Method
We define a mesh as a collection of vertices - V = {p ∈ R3} and triangulated faces -
T = {(a, b, c)|a, b, c ∈ V, a ≠ b ̸= c ̸= a}. Using only the set of unstructured points
V = {p ∈ R3}, we aim to recover a set of edges that connect the given samples as similar
as possible to the original connectivity of the mesh which is encoded in T . We define
similarity here as edge connectivity, instead of the exact triangulation of the original mesh.
Our method uses the spheres-of-influence graph, and we provide an improved algorithm
to efficiently compute this proximity graph. We are using the vertices of triangulated
meshes as our input in order to have access to a ground truth connectivity to which we
can compare our results.

Spheres-of-influence graph. The SIG, defined in 8, encodes the spatial proximity of
vertices well, without the need for a parameter. It contains the Nearest Neighbor graph
[Tou88], as the edge between points and their respective nearest neighbor will always
satisfy the condition.

Various properties of the sphere-of-influence graph have been investigated, such as
the bound on the size of the graph [Dwy95] or its behavior under different metric
spaces [MQ99]. However, even if the number of edges has been proven to be linear,
algorithms to efficiently compute the graph have not yet been researched, especially
considering that SIG is not included in the Delaunay triangulation and hence, the latter
cannot be used as a starting point for pruning [JT92]. We show that the neighbors of
each vertex in SIG are bounded inside a fixed radius - Figure 5.2, and we use this spatial
constraint to improve the speed of the computation.

Theorem 2. For all vertices a ∈ V , all SIG edges (a, b), b ∈ V, a ̸= b, are contained in a
radius of at most 2nn(a) from a or in a radius of at most 2nn(b) from b, where nn(v) is
the distance between v and its nearest neighbor, for v ∈ V .

Proof. We will prove the statement by contradiction. Let us compute the distance to
the nearest neighbor for each vertex and store the result as nn(v) for all vertices v ∈ V .
For each vertex v, retrieve all the vertices within 2nn(v) distance of v and only store the
edges that satisfy the SIG criterion. Let us call the obtained graph FastSIG (FSIG).

Since we are trying to prove Theorem 2 by contradiction, we assume that there exists at
least an edge that is outside the range boundaries we have defined (within 2nn(a) for
each vertex). This means that there has to exist an edge (a, b) which is in SIG but not
in FSIG. Hence,

∥a, b∥ ≤ nn(a) + nn(b), (5.1)

since (a, b) ∈ SIG, and:

∥a, b∥ > 2nn(a) and ∥b, a∥ > 2nn(b), (5.2)
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a

b

c

Figure 5.2: We illustrate the spheres of influence of vertices a and b in 2D as outlined
circles, with a radius equal to the distance to their respective nearest neighbor. The
bounding radius of the incident SIG edges are colored disks with dashed borders of radius
equal to twice the SIG radius. We can observe that even if b is not in the incidence
radius of a, a is contained in b’s radius, showing that SIG edges are contained in at least
one of the endpoints’ incidence radii.

from (a, b) ̸∈ FSIG. Processing these inequalities further, we get:

∥a, b∥ > nn(a) + nn(b), (5.3)

which contradicts our assumption of (a, b) ∈ SIG. Since we arrived at a contradiction, we
have proved that all SIG edges are also in FSIG.

Having proved that SIG edges live in a fixed boundary from every node, we use this
information to retrieve all the neighboring nodes within the given radius using a kdtree,
as presented in Algorithm 5.1.

5.4 Results
We are aiming to provide an alternative for kNN that is parameter-free, fast to compute,
efficient to store, and achieves better or similar surface properties to kNN for a wide
variety of data. In this section, we will show how SIG satisfies all these requirements,
representing a good, parameter-free alternative to kNN for estimating unstructured point
clouds’ connectivity.

We have tested our method on a varied dataset of points clouds exhibiting various features,
such as various types of non-uniform sampling and sharp edges. We compared our results
to the kNN neighborhood for connectivity recovery, for usual values of k = {6, 10, 20}.
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Algorithm 5.1: Fast SIG computation.
Data: V = {v ∈ R3}
Result: SIG={(a, b) : a, b ∈ V, a ̸= b, ||a, b|| ≤ nn(a) + nn(b)}

1 SIG={};
2 create kd-tree KT of V ;
3 for v ∈ V do
4 find nn(v) using KT ;
5 end
6 for v ∈ V do
7 N = KT .findNbrInRange(2nn(v));
8 for u ∈ N do
9 if ||u, v|| ≤ nn(u) + nn(v) then

10 SIG += (u, v);
11 end
12 end
13 end

We did not use k-values lower than 6 since this is the average degree of vertices in
triangulated meshes, as can be shown using Euler’s formula. As an application, we
have also computed normals using PCA from our graph and from the kNN graphs and
compared these with the face-based normals of the original meshes.

Dataset. We have used a subset of the Thingy10K [ZJ16] dataset of meshes that are
manifold and have less than 1k vertices for our quantitative results, consisting of around
3k different models. Most of these meshes exhibit CAD-like features in the form of having
samples mainly along edges, with thin and long faces. This type of sparse sampling
affects the results of our connectivity measures, as, on average, none of the investigated
connectivity graphs can perfectly capture the original connectivity, but we have chosen
to include this type of data as well to test the resilience of our method in the presence
of sparse sampling. For qualitative results, we have included some of the meshes from
the Stanford repository (https://graphics.stanford.edu/data/3Dscanrep/) - the resulting
graphs using the Stanford bunny are presented in Figure 5.3.

Connectivity. The connectivity of the ground truth is what our graph aims to recon-
struct. However, the original edge set is not a unique representation of the intrinsic
connectivity of points, as it is highly dependent on the chosen triangulation, e.g., edges
may flip, as can be visible in Figure 5.4. Hence, we do not aim to reproduce the exact
edges of the ground truth meshes (i.e., comparing the 1-ring of each vertex), but to create
a good approximation of the connectivity of the entire surface.

In order to quantify how close our graph is to the original connectivity, we used the
DeltaCon metric [KSV+16], where a value of 0 means the graphs are completely different
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5.4. Results

(a) SIG edges computed for the Stanford bunny.
The edges mostly follow the original triangu-
lation, with additional diagonals, but without
any edges that incorrectly connect the input
samples.

(b) 6NN graph of the Standford bunny. The
close-up shows that not all edges of the face
are captured, but additional edges appear close
to the ears.

(c) 10NN graph of the input samples. Redun-
dant edges are visible around the ears.

(d) 20NN graph of the input points. Many
redundant edges are visible on the ears and the
body.

Figure 5.3: Results of our graph and kNN for k = {6, 10, 20} on the Stanford bunny,
where the original surface is presented in gray, with various connectivity graph edges
overlaid in black.

and a score of 1 implies identical graphs. DeltaCon computes a matrix of node-to-node
influence for each graph and the final score is a difference between these two n2 matrices.
This is equivalent to using m-ring neighborhoods (m ∈ [1, n]) for each vertex with
decreasing weights as we move farther from the current node. Moreover, this metric
benefits from edge awareness - disconnecting changes are penalized more than removing
an edge from a complete graph, and this is a property that highly influences the type of
connectivity we want to measure for our method. For a detailed definition of the metric
and its implementation, we direct to the original works [KSV+16].

We have computed DeltaCon for the initial 3431 meshes from Thingy10K, with various
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Figure 5.4: Local changes in the triangulation choice - such as edge flips, do not affect the
overall connectivity of the mesh. The four highlighted vertices create the same connected
surface in both figures.

Figure 5.5: DeltaCon graph similarity metric - a higher value corresponds to a closer
similarity to the original graph.

numbers of vertices and different sampling densities. The results are presented in
Figure 5.5, where SIG consistently obtains higher scores than the kNN graphs. The
results are clustered in equally sized buckets depending on the number of vertices. For
each bucket, we present the averaged DeltaCon measurement over all inputs with the
total number of vertices in the specified range. Even if the metric does not achieve 1, as
the graphs are not identical (as we do not aim for this), our graph manages to encode
the original connectivity better than the kNN graphs. The maximum DeltaCon value
achieved by all methods is also lower than 1 due to the sparse sampling of the dataset,
as mentioned previously.
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5.4. Results

Figure 5.6: Number of edges in graphs plotted against the number of vertices. We
consistently obtain the smallest number of edges by a large margin, while still correctly
preserving the original connectivity.

Storage. Low storage represents another requirement for our method, since we try to
use the minimum amount of edges that preserve the connectivity by making use of the
spatial proximity properties of SIG. The total number of edges for each graph can be
seen in Figure 5.6, where the results are presented with respect to the number of vertices.
Our method achieves the lowest number of edges and hence, has the lowest storage
requirement. Our number of edges is lower than the ground truth since the ground truth
number of edges is extracted from triangulated meshes, which contain some redundant
edges with respect to connectivity.

Surface approximation - geodesic. We are also comparing the distance between pairs
of nodes in our graph to the geodesic distance over the ground truth surface, computed
using the Heat Method [CWW17]. This way, we measure how close the graph edges
follow the surface. For all pairs of nodes in the original mesh, we compute the ratio
between the geodesic distance over the original mesh and the shortest distance between
the same nodes in SIG and between the same nodes in the kNN graphs. The results are
shown in Figure 5.7, where we present the ratio of distances in relation to the number of
vertices in the input. The differences between buckets are due to the varying number of
input datasets in each bucket, as well as the type of meshes - a single mesh with close
sheets and sparse sampling, such as the one presented in Figure 5.8 highly increases
the error for the connectivity graphs. We aim to obtain a resulting ratio of 1, as values
lower than 1 indicate longer paths in the proximity graphs, while values higher than 1
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Figure 5.7: Ratio of the geodesic distance traced on the surface to the shortest path in
the computed graph, ideally 1.

would imply the existence of shortcuts (too many edges) in the connectivity graphs. Our
method is consistently close to the desired ratio of 1 across the tested meshes, without
the need to tune any parameters. Even if for some of the tested input ranges some of
the kNN graphs have better results, these are not universal and the user would need to
adjust k depending on the usage, which is an issue solved by our method.

Application: normal estimation. We propose SIG as a connectivity graph that
encodes surface properties well, and can act as an alternative for the commonly used kNN
graphs. One usual application is normal computation for unstructured point clouds using
PCA. Even though more advanced normal computation methods have been developed,
constructing them using PCA on a connectivity graph still represents a widely used
method and good results in this direction indicate an overall good representation of the
underlying surface. Moreover, we are not aiming to improve the normal computation in
general, but to show that our graph can be used in similar applications as kNN.

For each vertex, we computed the covariance matrix using its neighbors and extracted
the normal as the normalized eigenvector corresponding to the smallest eigenvalue. We
do not consistently orient the normals, as this can be done in a post-processing step
and we are only interested in the angle difference when compared to the ground truth,
which can be computed without the consistent orientation. For the original meshes,
we used the triangulated faces to compute the normals. We do not use the ground
truth edge graph since that would bias the normal computation in the direction of a
specific triangulation. Instead, face-based normal computation takes into account more
information about the surface, and not only a specific 1-ring. Then, we computed the
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5.4. Results

Figure 5.8: Sparse sampling of close sheets (the parallel tower-like structures in the center)
generates edges across the surface. These skew our measurement of the geodesic ratio to
the shortest distance, as the surface originally follows the U -structure, while our graph
shortcuts it through the edge connecting the two towers, highlighted in blue. However,
similar behavior is exhibited by the kNN graphs, since all of them are distance-based.

Figure 5.9: Angle variation between normals computed using PCA over connectivity
graphs and original, face-based normals. We compute the mean and the standard
deviation of the angle difference, and the root mean square error. All of the methods
achieve similar deviations. The overall error is high due to the sharp angles in the input
dataset.
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(a) Ground-truth normals computed using
the incident faces of each vertex.

(b) Normals computed with PCA using the
SIG connectivity.

Figure 5.10: Example of how CAD-like models with sparse sampling affect the computed
connectivity, and hence, the normal computation. The sparse sampling creates parallel
layers and normals are oriented accordingly since the top vertices do not get connected
across layers. However, this is an issue encountered by distance-based methods in general.

(a) Ground-truth normals computed using
the incident faces of each vertex.

(b) PCA normals computed using SIG are
very close to the ground truth.

Figure 5.11: Improved normal computation of our method for more uniformly sampled
meshes. Normals are computed for every vertex, but since we do not orient them
consistently, some of them are facing the other way and are not visible. Note that for
our evaluation, orientation does not matter, and consistency is usually achieved with a
post-processing step.
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5.4. Results

(a) 6NN creates bridges between the two
hemispheres, since the graph does not con-
sider local densities. Increasing the k value
only aggravates the issue, as more bridge
edges will be constructed.

(b) SIG only creates edges on each hemi-
sphere, without crossing the gap between
the two surface sheets.

Figure 5.12: Different sampling densities on two surface sheets that are close together -
the two hemispheres are not connected as ground truth.

average angle deviation for SIG and the kNN graphs when compared to the ground truth
normals. Results are presented in Figure 5.9, where the difference among the various
tested graphs is less than 1 degree for all the metrics. Since the chosen dataset contains
surfaces that are sparsely sampled, the normal computation achieved high errors for all
graphs. Thus, for this metric, we resampled the chosen dataset (adding new vertices
along edges longer than a specified threshold and retriangulating), obtaining models
with up to 7k vertices. An example of how sparse sampling, which is also an issue in
LIDAR scans, can cause problems, is presented in Figure 5.10, where there is not enough
information for the vertices placed on edges to have their normal computed correctly.
However, for well-sampled models, the normals are close to the ground truth - Figure 5.11.
The overall angle deviation is still high for all methods, since some of the meshes exhibit
sharp angles, for which the normal computation is also erroneous for all graphs.

Timings Due to the proved bounded radius in which SIG neighbors are found, our
method’s timings are comparable to kNN, as can be observed in Figure 5.13. We observe
a linear increase in the computational time with the number of vertices, which is expected
due to the linear nature of our algorithm. Our method is only slightly slower than 6NN,
but achieves better results overall and manages to do so with many fewer edges.

All experiments have been performed using an AMD Ryzen 7 5800 processor. Both
kNN and SIG graphs have been implemented using the scipy.spatial.KDTree in
python, which uses Cython as the backbone, mimicking C++ performance. We be-
lieve the performance can be further increased for our code, but our current aim was
to fairly compare the two methods in the same environment, showing similar performance.
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Figure 5.13: Timings of our method compared to kNN graphs for inputs with various
numbers of vertices.

Limitations. Since our method depends on distances, non-uniform sampling may
negatively affect the result, as is commonly the case with connectivity reconstruction.
An example can be seen in Figure 5.14, where the spider’s legs and top of the body are
uniformly sampled along parallel layers. For real-world point clouds, LIDAR scans can
produce such artifacts. These configurations are difficult to handle for all methods, as
they may fail to connect subsets of the point cloud. Such issues could be mitigated by
employing an incremental SIG - using the next nearest neighbors until a specific vertex
degree or average neighbor angle has been reached for the current graph.

However, in the case of different sampling densities on distinct parts of the same object,
our method has an advantage over kNN. Our method is less likely to create edges between
surface sheets that are geometrically close, but geodesically distant (Figure 5.12).

Our method is not robust to noise by design, as it computes a distance-based neighborhood,
exhibiting similar drawbacks as kNN graphs. Noisy point clouds could still be used with
our method, provided they have been cleaned in a pre-processing step using, for example,
PointCleanNet [RLBG+20], the Bilateral Filter [DdF17] or Score-Based Denoising [LH21],
as demonstrated in Figure 5.15.
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Figure 5.14: Parallel layers of sampling result in disconnected ring-like structures as can
be observed on the spider’s body and legs. However, kNN graphs exhibit similar issues if
the sampling is too sparse and nodes are clustered in layers.

(a) Noisy. (b) Denoised. (c) SIG.

Figure 5.15: Denoising pipeline that would allow our method to give good results on noisy
point clouds. The noisy point cloud of a cube is denoised in 5.15b using the Bilateral
Filter [DdF17], and then used as input for our SIG computation, resulting in a graph
that closely approximates the original cube.
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5.5 Conclusion
We present an alternative to the commonly used kNN graphs for establishing the con-
nectivity of point clouds: the SIG, a parameter-free proximity graph. In our work,
we introduce novel spatial constraints for the extent of SIG edges, leveraging this new
property to enhance its computational efficiency. We demonstrate the SIG’s improved
connectivity representation that is parameter-free. Moreover, as a sparse graph, it has a
lower edge count, thus minimizing storage requirements. Consequently, it offers three key
advantages over kNN: no need for parameter tuning, sparsity, and improved connectivity
encoding. As an incidental application, we have shown that computed normals are of
competitive quality to kNN.

Future work. We aim to utilize the advantage of parameter-free improved connectivity
for surface reconstruction. Moreover, we are planning to use the SIG neighborhood (with
possible extensions to nth nearest neighbor) in graph-convolutional networks for learning
from 3D point cloud data. We also plan to investigate how our method can create an
advantage in other fields, such as motion planning and simulations.
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CHAPTER 6
SING: Stability-Incorporated

Neighborhood Graph

The final SIG exploration in this thesis deals with adding a parameter to the neighboring
condition to allow for more flexibility. We observe that our approach can be considered
a symmetrization of the neighborhood graph, and we analyze this new variant using
topological data analysis tools. The contents of this chapter have been adapted from
the paper “SING: Stability-Incorporated Neighborhood Graph” [MPO+24], accepted as a
conference paper, and presented at SIGGRAPH Asia 2024.

6.1 Overview

We introduce the Stability-Incorporated Neighborhood Graph (SING), a novel density-
aware structure designed to capture the intrinsic geometric properties of a point set. We
improve upon the Spheres-of-Influence graph by incorporating additional features to
offer more flexibility and control in encoding proximity information and capturing local
density variations. Through persistence analysis on our proximity graph, we propose a
new clustering technique and explore additional variants incorporating extra features
for the proximity criterion. Alongside the detailed analysis and comparison to evaluate
its performance on various datasets, our experiments demonstrate that the proposed
method can effectively extract meaningful clusters from diverse datasets with variations
in density and correlation. Our application scenarios underscore the advantages of the
proposed graph over classical neighborhood graphs, particularly in terms of parameter
tuning.
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Input ε = 0.2 ε = 0.6 ε = 0.9 Output

Increasing Epsilon

Figure 6.1: Left - a disk distribution input; middle - SING results, utilizing a disk distance
from [ENMGC19], without any prior class information nor post-processing. Increasing ε
(left to right) yields nested proximity graphs and diverse clustering effects, represented in
random colors; right - output clusters.

6.2 Introduction
Context and motivation Clustering serves as a fundamental algorithmic procedure
in data analysis, extensively employed in extremely diverse fields such as biology, astron-
omy, art, medicine, as well as computer graphics and vision. Despite these important
applications, existing clustering algorithms suffer from a variety of drawbacks, and no
universal solution has emerged. In this work, we propose an intuitive proximity criterion,
leading to a stable and efficient clustering algorithm which consistently achieves accurate
grouping across diverse data types. Experimental results demonstrate that our method,
characterized by its simplicity and elegance, matches or exceeds the performance of
state-of-the-art clustering algorithms across multiple application scenarios. It effectively
handles density variations and multi-class data while robustly extending to noisy datasets
using stable persistence-based parameter tuning.

Key Idea The proximity criterion introduced in this chapter represents a generalization
of the classical neighborhood graph concept. Instead of simply connecting each point
to its nearest neighbor, we utilize the distance to the nearest neighbor as a feature to
determine its proximity to other points. This approach elegantly incorporates local
density information into the proximity measure in a formal manner, offering an intuitive
improvement to traditional methods.

Validation via Clustering Leveraging our proximity measure between element pairs
allows for the application of various clustering techniques that depend on element
similarities in different manners.

For instance, in center-based algorithms like k-means, a small set of potential cluster
centers is initialized from the data and iteratively refined. In affinity propagation, data
points interact via a graph structure to select a subset of points as representatives. Our
proximity criterion based on local density offers computational efficiency, flexibility in
terms of similarity constraints, and stability advantages derived from the persistence
analysis approach.
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Stability via TDA tools To better interpret our proximity criterion and to incorporate
stability and robustness of the induced clustering with respect to noise on the overall
data, we employ a common tool in topological data analysis (TDA): Persistent Homology.
Specifically, we focus on order-one homology and the analysis of connected components,
which simplifies the process. Persistent diagrams allow us to capture topological features
of our proximity graph across different scales, leading to optimal parameter values and
offering proven stability in the resulting clusters.

Highlights of Contributions The proposed proximity graph is characterized by
its intuitive simplicity, ease of use, and adaptability to high-dimensional spaces and
non-Euclidean metrics. Unlike many existing clustering methods, our SING clustering
algorithm does not require prior knowledge of the number of clusters, as it optimizes the
clustering outcome based on the stability of the created clusters in terms of parameters
and persistence lifespans. Its stability is demonstrated based on the existing stability
results of persistent homology. It has remarkable flexibility in terms of the type of
distance that can be fed into it, opening up interesting avenues of research for proximity
adaptation. This includes consideration for anisotropic metrics, surface curvature, or
user-defined local constraint encoding via distance prescription for interactive analysis.
We showcase the flexibility of our method via various application scenarios employing
different metrics or analytical approaches. While we mainly focus on applications related
to stipple clustering, our method finds broad applicability across different domains,
such as data segmentation, multi-class disk distribution analysis, shape reconstruction,
and network topology analysis. We briefly investigate these tangent directions, and
we leave further exploration and research into metric choices as a potential source of
inspiration for future work in the CG community. The source code is available online -
https://github.com/dianam76/SING.

6.3 Method: proximity criterion & TDA
6.3.1 Context: Extending the SIG criterion
The foundation of our method is represented by the Spheres-of-Influence Graph (SIG) -
Definition 8. We mention that its proximity criterion exists in any dimension and can be
modified to account for different types of data, such as disks, since the definition of the
graph is purely based on distances.

This definition can also be viewed as a symmetrization of the nearest neighbor graph
since the existence of an edge relies on the properties of both endpoints. While this
definition manages to encode proximity well, as shown in Chapter 5, it cannot adapt to
varying properties of the data, such as different densities or correlations. In this work,
we consider an extension of this definition from two aspects: by considering generalized
distance functions d, as well as by adding a parameter ε to Equation 2.3’s inequality:

d(a, b) ≤ ε(nn(a) + nn(b)). (6.1)
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This allows us to change the connectivity of the proximity graph, capturing features with
varying levels of significance. This parameter offers a novel degree of flexibility on top of
the distance function d in defining the graph structure, allowing users to explore various
cluster configurations. In Section 6.4.3, we also explore the possibility of employing local
parameters. However, enabling users to select a parameter (even at the global level) for
each dataset type poses challenges. Therefore, we offer an automatic parameter-tuning
procedure based on tools from topological data analysis. As the creation of edges and
their regrouping in our proximity graph relies on ε, we employ persistent homology to
identify meaningful values for this parameter. We observe the formation of clusters
(connected components in the SING graph) and analyze their duration. In the next
sections, we first revisit key principles of Topological Data Analysis before presenting our
contributions.

6.3.2 Background in TDA
In this section, we briefly repeat and review some of the material in TDA that will be
used in this chapter. For a more detailed introduction to the subject, we refer the reader
to standard textbooks such as [EH10, Oud15].

A filtration F of a topological space K over a totally ordered set T is a family (Ft)t∈T of
subspaces of K that are nested in terms of inclusion, that is:

∀t ≤ t′ ∈ T, Ft ⊆ Ft′ .

F is simplicial if K is a simplicial complex and if every Ft is a subcomplex of K.

The (Vietoris-)Rips filtration VR is a popular choice of simplicial filtration in TDA
applications. Given a point cloud P equipped with a dissimilarity d, it is a filtration
of the full simplex K = 2P (i.e., the power set of P viewed as a simplicial complex)
indexed over T = R+, in which each simplex σ = {p0, · · · , pm} ⊆ P appears at index
t = max0≤i≤j≤m d(pi, pj). For any t ∈ R+, the subcomplex VRt(P, d) of 2P formed by
those simplices that appear before or at t is called the (Vietoris-)Rips complex of P of
parameter t.

VR(P, d)t generalizes the t-ball graph of P in the following way: the vertices represent
the points of P , and a simplex (not just an edge) exists if and only if its diameter is
smaller than t. Varying the value of t from 0 to +∞ gives the Rips filtration of (P, d).

When K is a finite simplicial complex (as is the case, e.g., for the Rips filtration and
throughout this chapter), applying homology in degree r with coefficients in some fixed
field k to the filtration F yields a family of finite-dimensional k-vector spaces connected
by k-linear maps. This family is called a persistence module. It is known to admit in
this setting a complete algebraic invariant called the persistence barcode of F in degree r,
denoted Br(F), which takes the form of a finite multiset of intervals [ai, bi), each of which
encodes the lifespan of some topological feature of degree r appearing in the filtration.
Note that multiple features can have identical lifespans, hence the multiset structure of
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0.0 0.2 0.4 0.6 0.8 1.0

Persistence barcode

0

0.0 0.2 0.4 0.6 0.8 1.0

Persistence barcode

0

Figure 6.2: Persistence Barcode. The zoomed-in region shows the stable region we are
interested in. In a stable region, the number of connected components does not change
in the specific interval, meaning that, most probably, those clusters carry some geometric
meaning since ε needs to change a lot before collapsing connected components.

the barcode. Topological features can be, for instance, connected components (r = 0),
handles/tunnels (r = 1), enclosed voids (r = 2), or many other things. See Figure 6.2.

The persistence diagram of F in degree r, noted PDr(F), is an alternative graphical
representation of the barcode as a multiset of points above the diagonal y = x in the
plane. More precisely, every copy of the interval [ai, bi) in Br(F) becomes a copy of
the point (ai, bi) in PDr(F), and vice-versa. We will let r = 0, focusing on connected
components in the filtration, and we will henceforth omit the parameter in our notations.

As multisets of points in the plane, persistence diagrams can be viewed as discrete
measures in which each diagram point has unit mass. Such measures may have different
total masses, therefore using classic distances between probability measures requires
some adaptation. Typically, one enriches each diagram with infinitely many copies of
the diagonal y = x to even out the total masses, making no distinction between different
infinite values. In this context, the bottleneck distance is the Wasserstein distance W∞

between the enriched diagrams:

db(PD(F), PD(G)) := W∞(PD+(F), PD+(G)),

where PD+(·) denotes the persistence diagram enriched with infinitely many copies of
the diagonal y = x.

95



6. SING: Stability-Incorporated Neighborhood Graph

The persistence barcode or diagram of the Rips filtration exhibits the consistency (or
lack thereof) of topological features hidden in the dataset across scales, thus it helps
identify relevant scales at which to analyze or process the data. This methodology is
backed up by a sound stability theory, in particular by the fact that the map sending
a point cloud P to the persistence diagram of its Rips filtration is provably Lipschitz
continuous. In our proofs, we will use a more generic version of this stability theory,
phrased as follows:

Theorem 3 (stability [CSEH07]). Let K be a finite simplicial complex, and let f, g : K →
R assign a real value to each simplex in K. Then, the two families of sublevel-sets
f−1((−∞, t]) and g−1((−∞, t]) for t ranging over R define two simplicial filtrations F , G
of K such that:

db(PD(F), PD(G)) ≤ max
K

|f − g|.

6.3.3 Key notion: density-sensitive semimetric
The proximity criterion introduced in Equation (6.1) can be interpreted as measuring
the dissimilarity d̂P (a, b) between the points a, b against a threshold ε as follows:

d̂P (a, b) := d(a, b)
nn(a) + nn(b) ≤ ε. (6.2)

Observe that d̂P is a density-weighted version of the original metric d: consider indeed the
1-dimensional nearest-neighbor density estimator [Sil18, §5.2], which is defined inversely
proportional to the distance to the nearest data point. Dividing the distance d(a, b) by
nn(a) + nn(b) as in Equation (6.2) is equivalent, up to a constant factor, to multiplying
d(a, b) by the harmonic mean of the 1-dimensional nearest-neighbor density estimates at
a and b.

We also note that d̂P is defined only when P has at least 2 points, otherwise nn(·) itself
is undefined. Note also that d̂P is a semimetric, not a metric, as it may not satisfy the
triangle inequality. For instance, taking P = {−η, 0, 1/2, 1, 1 + η} on the real line gives
d̂P (0, 1) = 1/2η and d̂P (0, 1/2) + d̂P (1/2, 1) = 2/(1 + 2η), which infringes the triangle
inequality as soon as η < 1/2 (and in fact makes the infringement as bad as it can be
since d̂P (0, 1) → +∞ while d̂P (0, 1/2) + d̂P (1/2, 1) → 2 as η → 0). However, the triangle
inequality will not be needed in the following derivations.

6.3.4 SING and its connection to TDA
The Stability-Incorporated Neighborhood Graph (or SING for short) of (P, d) of param-
eter ε is defined as the ε-neighborhood graph of P in the semimetric d̂P . By design,
its connectivity adapts to the local density of the data. Moreover, it coincides with
the 1-skeleton graph of VRε(P, d̂P ), so one can use the Rips filtration of (P, d̂P ) and its
persistence diagram to determine a suitable value for parameter ε.
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(a) SING clusters (with ε = 0.9) (b) Rips with distance = 1

Figure 6.3: Connected components of SING compared to the Rips complex.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Persistence barcode

0

(a) Barcode for SING.
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Persistence barcode

0

(b) Barcode in the Euclidean distance.

Figure 6.4: Barcodes of the Rips filtrations for SING and for the ε-neighborhood graph
in the ambient Euclidean distance, respectively, on the data of Figure 6.3. The barcode
for SING indicates the possibility of having 3 or 4 clusters, while the other barcode only
indicates the possibility of having 3 clusters.

Thus, the SING enjoys the same ease of use and flexibility as ε-neighborhood graphs
in general while addressing their lack of sensitivity to the local density. Besides, as
shown in Section 6.4.5 (Proposition 1), the Rips filtration associated with SING comes
with theoretical stability guarantees, as does the Rips filtration in the ambient metric d,
although in a weaker form.

Figure 6.4 illustrates the benefit of replacing the metric d by the weighted semimetric d̂P

in the ε-neighborhood graph construction, in terms of the expressivity of the persistence
barcode of its associated Rips filtration, missing the possibility of the four clusters.
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We note that for some contexts, we might be interested in defining the SING complex
accordingly as the VRε(P, d̂P ), whose 1-skeleton, as mentioned before, corresponds to
our introduced SING graph. This is nicely illustrated in our example of Figure 6.3.
Interestingly, the left-hand side figure shows both SING and the ε-neighborhood graph in
the Euclidean distance, which coincide but for different parameter values. However, the
range of values that produce this "good" graph with SING is larger than its analog with
the ε-neighborhood graph in the Euclidean distance—hence the interest in the SING.

As a last remark, let us once again highlight the flexibility of SING in terms of the input
metric. In a configuration similar to the one in Figure 6.3, if the desired clusters are
indeed the ones presented on the right, incorporating an anisotropic metric favoring
the diagonal direction would also enable us to achieve this clustering while maintaining
stability.

6.4 SING Features and Advantages

We will now further analyze the graph and its properties, especially in comparison with
other proximity graphs or other clustering techniques, highlighting the benefits of using
such a stability-incorporated neighborhood graph.

6.4.1 Intrinsic Geometric Features

The graph naturally encodes proximity, and even with a global ε parameter for the entire
dataset, the graph definition still inherently captures local density. Moreover, this graph
is unlikely to suffer from long edges, spanning the entire input or extremely high-degree
nodes (except for adversarial cases – samples on a circle with the center of the circle).
Unlike kNN graphs, we do not impose strict bounds on vertex degrees or distances
between points. We compare our graph to popular proximity graphs in Figure 6.5.

SING can effectively capture both complex and regular geometric patterns, which are
typically challenging to analyze and generate. Figure 6.6 illustrates such a configuration,
which finds motivation in various contexts such as simulation. For example, in a spring
system aiming to preserve a specific shape, our proximity graph seems more relevant to
be employed for construction. Also, as expected, in the presence of noise (as long as the
extent is not too large), our graph still captures the original shape of the data, Figure
6.9.

6.4.2 Other distances

Since the definition of our graph only depends on distance computations, it can be
used in any metric space and with various distance metrics. The persistence analysis
benefits from the same advantages of only requiring distances between vertices for the
computation.
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SING (ε = 1.0) SING (ε = 1.5) SING (ε = 2.0)

NNG kNN (k = 2) DT

Figure 6.5: As a proximity graph, SING encodes the evolution of various clusters without
being limited by a predefined number of neighbors (as kNN) and offers more flexibility
compared to Delaunay Triangulation (DT).

(a) SING with a sin-
gle connected com-
ponent. Using ra-
dius information, we
further extract the
types of disks in the
distribution.

(b) SING for ε =
0.55, where the main
clusters are already
forming - the main
disks, along with
grid elements.

(c) Nearest Neigh-
bor Graph does not
manage to capture
enough information
to fully encode the
geometric features of
the data.

(d) KNN for k =
6 does not man-
age to capture all
the large disk con-
nections, even if
the grid pattern is
almost fully repre-
sented.

Figure 6.6: Structured pattern data connected using various proximity graphs.
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This flexibility allows us to compute the SING for other metrics, such as the disk-based
distance of [ENMGC19], applied to disk distribution clustering. For two disks with radii
r1 and r2, let d be the distance between the disks’ centers, assuming, without loss of
generality, that r1 ≥ r2. Their disk distance is:

ddisks =

����
f/(4r1 − 4r2) d ≤ r1 − r2

(f − 4r1 + 7r2)/(3r2) r1 − r2 < d ≤ r1 + r2

f − 4r1 + 2r2 + 3 otherwise,
(6.3)

f = max(d + r1 + r2, 2r1) (extent) (6.4)
− clip(r1 + r2 − d, 0, 2r2) (overlap) (6.5)
+ d + r1 − r2. (6.6)

We feed this distance to our proximity criterion and conduct experiments for disk
distribution clustering. The original data includes information about the class of each
disk. However, in the absence of such information, the SING is perfectly able to extract
similarities between different disks and output the relevant classification.
This is done by analyzing the persistence barcode of the data and using the stable
intervals as guidance for meaningful ε choices, leading to relevant clustering of data,
Figure 6.1. As can be seen in the final result, the large disks are only connected to the
smaller ones, which they overlap, while the outer smaller disks are all connected in a
single component, which exactly matches the input behavior. By using further details
from the distance metric (i.e., classifying edges by the type of overlap they encode),
we can easily extract the three classes present in the input. However, this dataset also
showcases the limitations of a method that is only based on proximity – the single disk
in the top-left corner, which is too far away from disks of the similar class to be easily
clustered with them.

6.4.3 Local density adaptation: flexible variant
Density constraints. In some point patterns, differentiating between different areas
is not encoded by geometrically separating the points from different sections but by
changing the density of the pattern (e.g., sparse points to represent the background of
a stipple art image). To allow for different density encodings in our graph, we propose
introducing a new parameter that enables edge creation only if the density is similar
enough. We implement this by multiplying by the ratio between the nearest neighbors -
Algorithm 6.1. We raise this ratio to a user-defined power, enforcing dissimilar densities
to increase the measurement between points - Figure 6.7. Setting the density parameter
to 0 brings us back to the original formulation.

6.4.4 Complexity analysis
Nearest neighbor search complexity Note that achieving sub-linear query time for
nearest neighbor search in arbitrary dimension is a notoriously hard problem, especially in
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Figure 6.7: On the left, clustering results without the incorporation of the density
parameter, where samples are linked based on our proximity criterion. On the right,
results incorporating the density parameter, effectively clustering the spots on the giraffe.
Following a connected-component-based splitting, we can further refine the clustering.

Algorithm 6.1: Density SING computation.
Data: P = {p1, . . . , pn} ⊂ R2, density ρ
Result: SING = {(a, b) : a, b ∈ P, a ̸= b}

1 SING := {};
2 Find nn(p)∀p ∈ P ;
3 for each pair (a,b) | a, b ∈ P, a ̸= b do
4 d̂P (a, b) := ∥a−b∥2/(nn(a)+nn(b))×(max(nn(a), nn(b))/ min(nn(a), nn(b)))ρ

5 end
6 PD := ComputePersistenceDiagram(d̂P );
7 ε := ExtractOptimalValue(PD) ;
8 for each pair (a,b) | a, b ∈ P, a ̸= b do
9 if d̂P (a, b) ≤ ε then

10 SING := SING ∪{(a, b)}
11 end
12 end
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0.0 0.2 0.4 0.6 0.8 1.0

Birth

0.0

0.2

0.4

0.6

0.8

1.0

D
ea
th

∞

Persistence diagram

(a) Confidence interval for given dataset. (b) Example of noisy results for ε = 0.5, within
the noise interval.

Figure 6.8: Stability: extracting a confidence interval for our method using TDA. On the
left, the red diagonal band spans the noisy values of our parameter, while on the right,
we showcase clustering results for a noisy value. Small variations around this value result
in multiple changes in terms of the number of clusters and no clear cluster structure is
visible.

high dimensions where the concentration of measure phenomena occur. In low dimensions
there are classic data structures that allow for nearest neighbor search in sub-linear time.
For instance, in 2D, one can build a hierarchical Delaunay triangulation in O(n log n) time
and then use it for O(log n) time nearest neighbor queries. In 3D, this approach already
has quadratic time complexity for the construction step in the worst case. Lastly, in
arbitrary dimensions, locality-sensitive hashing allows achieving quasi-linear construction
and then sub-linear query time.

SING Complexity For ε ≤ 1, the number of edges in SING is linear in the input size,
resulting in an efficient algorithm in terms of space complexity. Regarding time complexity,
the current O(n2) implementation of the SING algorithm, outlined in Algorithm 1, may be
reduced to sub-quadratic construction time and even O(n log n) time in small dimensions
(typically 2D), using classic data structures.

6.4.5 Stability and Robustness

Let (X, d) be a metric space. Given a point cloud P in X, i.e. a finite subset P ⊆
X, we write |P | for its cardinality and δP for its minimum pairwise distance: δP :=
minp ̸=q∈P d(p, q) > 0. We equip the set of point clouds in X with the Wasserstein
distance W∞, which is valued in R+ ∪ {+∞} and is finite whenever the two point clouds
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NNG SING

Figure 6.9: Proximity graphs on pattern data perturbed with noise – SING still captures
the original connectivity, showcasing the stability of the method.

under consideration have the same cardinality:

∀P, Q ⊆ X, W∞(P, Q) :=������
min

γ : P →Q
bijection

max
p∈P

d(p, γ(p)) if |P | = |Q|

+∞ otherwise.

(6.7)

This turns the set of point clouds into an extended metric space. Meanwhile, we equip the
space of persistence diagrams with the bottleneck distance db. Our stability guarantees
are stated as follows:

Proposition 1. The map P �→ PD(VR(P, d̂P )) is continuous on the subspace of point
clouds of cardinality at least 2 in X.

The condition that |P | ≥ 2 in the statement is not an artifact: it comes from the fact
that d̂P is not defined when |P | < 2—see Equation (6.2). The proof of Proposition 1
relies on the stability theorem for persistence diagrams (Theorem 3) and is provided in
the following subsection. Note that it requires the triangle inequality for the ambient
metric d in X. However, in practice, as in the disk distance experiments, the proximity
criterion is perfectly definable for semimetrics on X, leading to relevant graphs and
desirable clusters - Figure 6.9.

Remark The stability guarantee offered for SING by Proposition 1 is weaker than
the one known for ε-neighborhood graphs in the ambient metric d [CDSO14]. Primarily
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because it is only a continuity result, not a Lipschitz continuity result: our proof, although
is not tight, exhibits enough of the structure of d̂P to suggest that d̂P itself is not globally
Lipschitz continuous but only locally Lipschitz continuous, with a local Lipschitz constant
that grows with 1/δP – see Equation 6.12. Secondarily, our stability guarantee is expressed
in terms of the Wasserstein distance on point clouds in X, not in terms of the usual
Hausdorff distance: in fact, there is no analog of Proposition 1 when the space of point
clouds in X is equipped with the Hausdorff distance. Here is a counterexample. Given
any positive ε ≤ 1/3, consider two point clouds P = {0, 1} and Q = {0, 1, 1 + ε} on
the real line R. Their Hausdorff distance is ε. Meanwhile, we have d̂P (0, 1) = 1/2 so
PD(VR(P, d̂P )) = {(0, +∞); (0, 1/2)}, whereas d̂Q(0, 1) = 1/(1 + ε), d̂Q(1, 1 + ε) = 1/2
and d̂Q(0, 1 + ε) = 1 so PD(VR(Q, d̂Q)) = {(0, +∞); (0, 1/2); (0, 1/(1 + ε))}, hence
db


PD(VR(P, d̂P )), PD(VR(Q, d̂Q))


= 1−ε

2(1+ε) . This quantity goes to 1/2 while the
Hausdorff distance between P and Q goes to zero as ε → 0+. As a consequence, the map
P �→ PD(VR(P, d̂P )) is not continuous in the Hausdorff distance.

Stability Proof

In this section, we provide proof for Proposition 1. Let (X, d) be a metric space. For
clarity, since the proof involves different point clouds in X equipped with different (semi-
)metrics, we always write nn(x) explicitly as the distance of x to its nearest neighbor
in its point cloud. For this, we use the notation NNP (x), which refers to the nearest
neighbor of x in P in the ambient metric d.

Proof. Let P ⊆ X be of size n ≥ 2. Given any point cloud Q ⊆ X such that W∞(P, Q) <
δP /4 (this implies in particular that Q has the same cardinality as P since δP /4 < +∞),
let us write η for the distance W∞(P, Q) and γ : P → Q for a bijection that realizes this
distance as per (6.7). By the triangle inequality, we have for all p ∈ P :

d(γ(p), NNQ(γ(p))) ≤ d(γ(p), γ(NNP (p)))
≤ d(γ(p), p) + d(p, NNP (p))

+ d(NNP (p), γ(NNP (p)))
≤ d(p, NNP (p)) + 2η.

By symmetry (γ being a bijection), we obtain:

|d(γ(p), NNQ(γ(p))) − d(p, NNP (p))| ≤ 2η. (6.8)

In particular, we have:

1
2 δP < δP − 2η ≤ δQ ≤ δP + 2η <

3
2 δP . (6.9)
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With this being established, we can now compute for all p, q ∈ P :

d̂Q(γ(p), γ(q)) (6.2)= d(γ(p), γ(q))
d(γ(p), NNQ(γ(p))) + d(γ(q), NNQ(γ(q)))

(6.8)
≤ d(p, q) + 2η

d(p, NNP (p)) + d(q, NNQ(q)) − 4η

= d̂P (p, q) 1
1 − 4η

d(p,NNP (p))+d(q,NNQ(q))

+ 2η

d(p, NNP (p)) + d(q, NNQ(q)) − 4η

(6.9)
≤ d̂P (p, q)


1 + 8η

d(p, NNP (p)) + d(q, NNQ(q))



+ 2η

d(p, NNP (p)) + d(q, NNQ(q)) − 4η

(6.9)
≤ d̂P (p, q)


1 + 16η

3δP


+ 4η

3δP − 8η
.

Thus, for all p, q ∈ P we have:

d̂Q(γ(p), γ(q)) − d̂P (p, q) ≤ 16η

3δP
max
P ×P

d̂P + 4η

3δP − 8η
. (6.10)

The same calculation yields for all γ(p), γ(q) ∈ Q:

d̂P (p, q) − d̂Q(γ(p), γ(q)) ≤ 16η

3δP
max
Q×Q

d̂Q + 4η

3δP − 8η
. (6.11)

By combining (6.10) and (6.11), we get:

maxP ×P

���d̂P − d̂Q(γ(·), γ(·))
��� ≤ ε

where ε = 16η
3δP


1 + 16η

3δP


maxP ×P d̂P +


1 + 16η

3δP


4η

3δP −8η .
(6.12)

Notice that the right-hand side of the inequality depends only on P , which is fixed, and
that it goes to zero as η → 0, i.e., as Q converges to P in the metric W∞. We can then
use this inequality in conjunction with the stability theorem for persistence diagrams
(Theorem 3), to show that the bottleneck distance between the persistence diagrams of
the Vietoris-Rips filtrations of (P, d̂P ) and (Q, d̂P ) goes to zero as Q converges to P . We
now formalize this argument.

The bijection γ : P → Q induces an isomorphism of simplicial complexes between the full
simplex over P (noted 2P ) and the full simplex over Q (noted 2Q), that is, a bijection
Γ: 2P → 2Q that preserves the dimensions of the simplices and their incidence relations.
By pulling back the dissimilarity d̂Q onto P via γ, we make Γ preserve also the appearance
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time of each simplex in the Rips filtration and thus become an isomorphism of simplicial
filtrations between VR(P, d̂Q(γ(·), γ(·))) and VR(Q, d̂Q). Hence,

PD(VR(P, d̂Q(γ(·), γ(·)))) = PD(VR(Q, d̂Q)). (6.13)

Now, by (6.12) the two filtrations of P × P given by the families of sublevel-sets of the
maps d̂P and d̂Q(γ(·), γ(·)) are ε-interleaved. It follows that the extensions of the two
maps to the full simplex 2P , defined on each face σ = {p0, · · · , pr} ⊆ P by maxσ×σ d̂P

and maxσ×σ d̂Q(γ(·), γ(·)) respectively, also have ε-interleaved sublevel-sets filtrations.
By construction, these filtrations are precisely VR(P, d̂P ) and VR(P, d̂Q(γ(·), γ(·))), re-
spectively. Therefore, by Theorem 3:

db

PD(VR(P, d̂P )), PD(VR(P, d̂Q(γ(·), γ(·))))


≤ ε. (6.14)

Combining (6.13) and (6.14), we get:

db

PD(VR(P, d̂P )), PD(VR(Q, d̂Q))


≤ ε = 16η

3δP


1 + 16η

3δP


maxP ×P d̂P +


1 + 16η

3δP


4η

3δP −8η .

Since P is fixed here, the right-hand side of the inequality goes to zero as η → 0, i.e., as
Q converges to P in the metric W∞. This shows that the map P �→ PD(VR(P, d̂P )) is
continuous at this particular P . Since this is true for any P ⊆ X of size n ≥ 2, the proof
is complete.

6.5 Results and Validation
Parameters In order to take advantage of the connection to TDA, we employ further
analysis to extract stable intervals for our parameter. In persistence analysis, components
that disappear shortly after creation are considered noise. Visually, the persistence
diagram encodes this as points very close to the diagonal. We aim to extract a stable
interval for our parameter, where we are certain, up to a confidence ratio, that we will
not encounter noisy components. We do this by subsampling our input set multiple times,
with repetition, and computing the persistence diagram of each subset. We compute
the distance from each of these subsampled diagrams to the original full input diagram
and extract a band of possible noise around the diagonal (Figure 6.8). We then consider
viable ε values the ones outside the computed noise band around the diagonal.

Performance & Implementation Details All experiments were performed using
an AMD Ryzen 7 5800 CPU. We implemented our method in python, using the Gudhi
library for TDA and various packages from scikit and sclearn for data structures and
the methods we compared to. The runtime of our current, non-optimized implementation
spans from 1.5s for an input size of 500 points to 130s for 50k points. The source code is
available online - https://github.com/dianam76/SING.
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6.5. Results and Validation

Figure 6.10: Our clustering results (top) compared to DBSCAN (bottom). Our method
connects similar densities in a single connected component due to the density-based
proximity definition. The independent structures within the same density clusters can
further be decomposed into distance-only connected components using a post-processing
step.

Applications In addition to introducing our proximity criterion, we provide a category-
based representation of its applications. Our analysis and validation of this method span
various applications, including clustering and data segmentation, reconstruction (with a
specific focus on 2D), stipple art coloring or editing, and network topology analysis, while
briefly discussing potential advantages for anisotropic clustering, which falls outside this
chapter’s scope.

6.5.1 Clustering and Data Segmentation
Clustering based on the SING-connected components integrates local density consid-
erations into the ϵ-neighborhood graph and, consequently, into the Rips complexes,
providing a significant generalization, as discussed for the example of Fig. 6.3. Moreover,
throughout our experimentation, we explored the most relevant clustering methods in
terms of local density consideration, including k-means, density-based spatial clustering of
applications with noise (DBSCAN), as well as the clustering induced by ϵ-neighborhood
graphs. Among these, DBSCAN yielded the most optimal grouping outcomes in general,
and we compare our results to their clusters in Figure 6.10. We analyze the evolution
of our clusters compared to Single Linkage [GR69] in Figure 6.11, showing how our
proximity encoding captures more information about the input.
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6. SING: Stability-Incorporated Neighborhood Graph
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Figure 6.11: Dendrograms representing single linkage clustering of the dataset presented
in Figure 6.3. The single linkage connects components with minimal distance, and the
dendrogram illustrates the merging pattern. We observe that by using our semimetric,
an additional large cluster (in blue) is formed. Thus, our semimetric captures cluster
formations that would be missed by the Euclidean one.

6.5.2 Multi-Class Disk Distribution Analysis
Distributions can also be represented through disk distribution, where the radius of the
data can encode additional information. For example, the ecosystem examples presented
in [ENMGC19] encode the size of the natural elements such as vegetation types. Such
types of distributions are commonly used in artificial ecosystem generation in tools such
as Ecobrush [GLCC17]. For such disk distributions, the class of each disk has to be
known in advance to be able to extract intra- and inter-class relationships. In Figure 6.1,
we are able to extract the classes (as individual clusters) given only the input coordinates
and radii. We compute the persistence barcode of our data by varying the ε parameter
(as in Figure 6.2). We then use the stable intervals in the diagram to guide the parameter
choice in the direction of the most meaningful clusters (Figure 6.1, right). We could
further group all large disks in the same class using the topology of our SING graph (in
this case, by observing they all have the same type of connections), considering filters on
the disk distance if needed (in this case, the distance values reflect the fact that all of
their neighbors are placed inside the disk).

6.5.3 Stipple Art Manipulation
Stipples are patterns of points where the visual information is encoded through density and
correlation. Clustering stippling patterns into visually meaningful regions is challenging
and does not necessarily align with our visual perception. Despite this lack of ground
truth, SING clustering provides promising results, as showcased by Fig. 6.12. For
challenging density-varying stipples, we use the SING variation that accounts for the
density parameter. Some examples are shown in Figure 6.10, where our results for
layer extraction are similar to DBSCAN [EKSX96]. However, selecting parameters for
DBSCAN relies only on data properties, lacking an easily inferred optimal parameter
value, in contrast to our method. Note that connecting samples by local density may
form small, packed clusters, as seen in the cherry example. This can be adjusted via
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Ours DBSCAN

Figure 6.12: A point pattern synthesized from an image, using the method in [HRS+23],
is segmented using the SING and DBSCAN clustering.

Figure 6.13: Left to Right: Input stipples, Result of DBSCAN [EKSX96], Our clustering
result, Result after replacing our clusters with stamps.

the ϵ parameter or interpreted as a feature in post-processing, given the absence of a
ground-truth segmentation in stipple art. Moreover, in Figure 6.13, the slight variation
in density is not captured by DBSCAN. Having such a layered representation allows
for easy and meaningful manipulation of the art, like editing the distribution [HRS+23]
and representation (see Figure 6.14). Automatically generated stipple patterns that
exhibit varying density require more parameter tuning, as the difference between distinct
portions of the input image is not sharp, and changing density across an area is used to
illustrate various visual effects – Figure 6.15.

6.5.4 2D Reconstruction
Shape reconstruction is the process of identifying the shape induced by a set of points [TPM20,
TPM21, MPM15]. This is a well-known ill-posed problem in Computational Geometry,
with applications in GIS and WSN. Thanks to SING, as shown in Figure 6.16, we can
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6. SING: Stability-Incorporated Neighborhood Graph

Figure 6.14: Left to Right: Input stipples, clustering result, the result after varying color,
the result after editing stipple size, replacing stipple with pattern.

Figure 6.15: Despite variations in density, our method (right) successfully extracts the
bird’s body as a single component, unlike DBSCAN (left), which separates it based on
density fluctuations. Additionally, our method effectively distinguishes different parts of
the feet into meaningful clusters. However, certain dense regions pose challenges for our
method to cluster in a meaningful semantic way. Input point pattern from [DGBOD12].
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6.6. Discussion and Perspectives

(a) Boundary extraction on
stipple data.

(b) Boundary extraction after
our clustering.

(c) Boundary extraction after
DBSCAN clustering.

Figure 6.16: Boundary extraction of stipple art using Discern [TPM21]. All boundary
methods we have tested fail on inputs with multiple densities. However, running them
on clustered input results in meaningful boundaries.

easily group points in a meaningful manner and then extract their boundary to determine
the shape. Additionally, with our SING variant, we can further extend the traditional
shape reconstruction problem by considering density variations and approaching a level
of efficiency closer to human perception in this context. Extracting the boundary directly
from our graph is promising as well and worth future investigation.

6.5.5 Network Topology Analysis

Network graph analysis and classification involves understanding the overall structure of
the graph and making predictions based on that structure [KGB19]. In our geometric
context, we experiment on spatial networks, which have a clear positional embedding.
Leveraging our persistence-based proximity criterion, which effectively captures topologi-
cal characteristics across different scales, enables us to gain a comprehensive understanding
of the graph’s shape and connectivity. As a result, our approach encodes, under the same
edge budget, a more meaningful simplification of original data compared to the Rips
complex, capturing the original shape of the road network better - Figure 6.17.

6.6 Discussion and Perspectives
Limitations Figure 6.15 shows various clustering imperfections produced by our
method. This is due to variations in the density information and the fact that the
current version of our method does not incorporate explicit part labels or “semantic”
knowledge. It also motivates a semantic extension of our work in order to disambiguate
such cases. Additionally, while the selection of a suitable value for ε is largely guided
by TDA, a comparable approach for determining the density parameter is currently
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6. SING: Stability-Incorporated Neighborhood Graph

(a) Original road network G. (b) Rips complex restricted to
G.

(c) SING filtration on the in-
put graph.

Figure 6.17: Network simplification under a fixed edge budget, utilizing the Oldenburg
road network [MXA04]. Our results enable improved overall connectivity in the generated
network graph (decreasing the connected components count – 1751 compared to 1839).

lacking in our current implementation. For further efficiency improvement, optimizing
our bottleneck distance computation could also lead to better runtime.

Future work Subsampling and point set simplification both seem to be natural contexts
in which our proximity criterion can be formalized and employed. Surface curvature and
anisotropic metrics incorporation were already mentioned as promising inspirations for
future work. Another theoretical future direction would be to investigate whether the
SING is a spanner and to characterize the corresponding stretch factor. This is based on
the fact that for ε tending to infinity, SING approaches the complete graph – a 1-spanner
from a threshold ε value. Since our similarity metric extends straightforwardly to higher
dimensions with low computational cost, it would also allow for the analysis of group
behavior in animal swarms based on object detection input, for example. Furthermore,
the improved connectivity can assist in creating richer features in images or point cloud
data, such as for photogrammetry or for training networks on point data. This extension
to higher dimensions and related application scenarios are left for future work due to our
current unoptimized implementation and its being beyond this chapter’s scope.
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CHAPTER 7
Conclusion

We have presented various methods to reconstruct or extract important information from
point clouds. We used the spheres-of-influence graph and its extensions to explore various
goals related to point cloud reconstruction through the lens of proximity.

7.1 Summary
In Chapter 3, we proposed a new proximity graph computed by intersecting the spheres-
of-influence graph (SIG) with the Delaunay triangulation (DT). We showed that the
resulting graph, termed SIGDT, encompasses the piecewise linear reconstruction for a set
of unstructured points in the plane, under a sampling condition that surpasses existing
bounds and effectively represents the characteristics of point sets. As an application,
we implement post-processing steps, adapted from the Connect2D algorithm, to remove
redundant edges. Our findings indicate that the proposed algorithm, SIG-Connect2D,
delivers superior reconstruction accuracy when compared to state-of-the-art algorithms
from a curve reconstruction benchmark.

We expand the curve reconstruction process to Riemannian manifolds in Chapter 4,
where we relax the existing state-of-the-art sampling requirements and introduce a novel
algorithm capable of reconstructing closed curves directly on surfaces from a sparse set of
sample points. We adapt and extend the SIG-Connect2D planar reconstruction method
to operate within a new domain, addressing the challenges of non-Euclidean spaces. The
robustness of our approach is demonstrated through successful reconstructions of multiple
curves on various surfaces. Additionally, we explore new potential applications of our
method, enabling automated curve reconstruction on Riemannian manifolds.

We tackle the problem of connectivity encoding for point clouds in Chapter 5, by using
SIG as a parameter-free alternative to the commonly used kNN graph, serving as an
initial step towards surface reconstruction and a strong base for normal estimation. We
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7. Conclusion

demonstrate that the neighboring edges in the SIG are spatially bounded, facilitating
fast computation. Our approach provides a more accurate representation of the ground
truth connectivity compared to the kNN graphs across a wide range of k values, while
also being parameter-free.

Chapter 6 explores the extension of the SIG into SING (Stability-Incorporated Neigh-
borhood Graph), which leverages thorough topological data analysis to capture the
intrinsic geometric properties of a point set. By building on the spheres-of-influence
graph and incorporating additional features, we offer greater flexibility and control in
encoding proximity information and accounting for local density variations. Through
persistence analysis of our proximity graph, we introduce a new clustering technique and
explore additional variants with enhanced proximity criteria. Our detailed analysis and
comparisons across various datasets show that the proposed method effectively identifies
meaningful clusters, even in the presence of density and correlation variations. The
evaluated application scenarios highlight the advantages of our graph over traditional
neighborhood graphs, particularly in terms of minimizing the need for parameter tuning.

7.2 Future directions
Throughout our exploration of proximity-based methods for point cloud reconstruction, we
discovered multiple directions that could be further explored, related to our contributions,
or to concepts encountered during the research.

Surface reconstruction A natural direction that needs to be explored in depth is
surface reconstruction. Firstly, our work on distributed surface reconstruction [MKOW24]
would benefit from a more thorough evaluation for a stronger contribution. Considering
the recent work extending Poisson Reconstruction to work in a distributed fashion [KH23],
we can better place our result in the literature. Secondly, another avenue of development
in the surface reconstruction direction is using SIG directly for an explicit surface
reconstruction method, similar to extending SIG-Connect2D, our curve reconstruction
algorithm, to surfaces. However, recent works in the wide domain of surface reconstruction
mainly target implicit methods, especially since they can easily be adapted to work as
part of learning approaches, and that is an important factor that should be considered
as well.

Machine learning-based methods We aim to investigate the usage of the SIG or
other proximity graphs (different from the commonly used kNN graphs) in graph neural
networks with the aim of feature detection, noise removal, or surface reconstruction.
Exploring how to modify existent architectures to work with the degree-varying SIG
could lead to promising results, since we have shown that SIG encodes proximity better
than kNN. However, it might encode too little information for meaningful learning results,
which could be mitigated by using nSIG - using the distance to the nth nearest neighbor
instead of the closest one as the sphere of influence of each point.

114



7.2. Future directions

Outlier and noise detection We started investigating outlier detection in our under
review work [MIOW24], where we statistically analyze the length of SIG edges to detect
outliers, which are usually isolated compared to inliers. Using similar tools to detect
and remove noisy samples could represent an interesting avenue for future development.
However, since the graph is still purely distance-based, a noise removal method would
have to be more complex and include more information about the data to be able to deal
with varying amounts and distributions of noise.

Curves on surfaces dataset While working on our Riemannian manifold curve
reconstruction method, we observed the lack of an available dataset in this direction.
Even though curves can naturally exist on surfaces, as decorations or boundaries of
various sections of the mesh, there is no such dataset that could help in creating a general
and available benchmark for curve reconstruction or related tasks. We aim to investigate
this direction, at least as a qualitative manner to evaluate the reconstruction methods in
the field.

Theoretical developments Developing the SING, which we have described in Chap-
ter 6, as a stability-incorporated neighborhood graph, and analyzing its properties as
TDA tool, we observed this graph becomes a spanner of the point set when ε approaches
infinity (i.e. there is a path between every pair of points, of length equal to a multiplier
of the Euclidean distance between the ends; the stretch factor is 1 as ε approaches
infinity, as all points are connected). We would be interested in the threshold where
SING becomes a spanner, or when each independent cluster becomes a spanner and what
is the stretch factor of these structures.

General outlook After investigating the role and effects of proximity in point cloud
reconstruction, I am able to observe the attraction of simplicity - basic tools, such as
new distance formulations or little-explored graphs can contain a varied collection of
useful properties. They are often able to encode complex information and can be used as
strong building blocks in more complex reconstruction methods. I hope this trend will
only continue and we will observe more simple, seemingly obvious, but powerful ideas.
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Overview of Generative AI Tools
Used

Generative AI tools were only used as an aid for grammar mistakes, possible rephrasing,
and the translation of the Abstract, as a non-German speaker.
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