B Informatics

Design and Implementation of an
Al-Based Edge Device for
Automated Traffic Counting

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science
in
Medical Informatics
by

Armin Kazda
Registration Number 11909468

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Projektass. Mag.rer.soc.oec. Stefan Ohrhallinger, PhD

Vienna, October 27, 2025

Armin Kazda Michael Wimmer

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

Erklarung zur Verfassung der
Arbeit

Armin Kazda

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Ich erkldre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss iiberwiegt. Im Anhang
,Ubersicht verwendeter Hilfsmittel* habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Fiir Textpassagen,
die ohne substantielle Anderungen iibernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 27. Oktober 2025

Armin Kazda

iii

Danksagung

Ich méchte mich im Speziellen bei meinem Vater bedanken, der die Konstruktion des
Prototyps durch Lotarbeiten zwecks Kompatibilitdt der Komponenten unterstiitzt hat.

Acknowledgements

I want to especially thank my father, who supported the construction of the prototype
with soldering work to enable compatibility between the used components.

vii

Kurzfassung

Diese Bachelorarbeit préasentiert den Entwurf, die Implementierung und die Bewertung
eines kostengiinstigen, autonomen Prototyps fiir die automatisierte Verkehrszdhlung und
-analyse. Das System nutzt einen Raspberry Pi 5 mit einem HAILO-8-KI-Beschleuniger
und einem Kameramodul, um Fahrzeugerkennung, Richtungserfassung und Datenpro-
tokollierung in Echtzeit direkt auf dem Gerat durchzufithren. Der Prototyp wird iiber
ein Solarpanel und eine Batterie mit Strom versorgt, arbeitet damit unabhéngig von
externen Stromquellen und ist fiir den flexiblen Einsatz im Freien konzipiert. Die Er-
kennungspipeline integriert ein fiir den HAILO-Chip optimiertes YOLOv8n-Modell und
den ByteTrack-Algorithmus fiir die Verfolgung mehrerer Objekte, wodurch eine effiziente
Fahrzeugerkennung und Bewegungsanalyse ermoglicht wird.

Zwei Prototypen wurden in Wien installiert und unter realen Bedingungen getestet.
Die Auswertungsergebnisse zeigen eine hohe Erkennungsgenauigkeit mit einem Gesamt-
F1-Score von 0,95 und einer Richtungserkennungsgenauigkeit von 88,8%. Die Tempe-
raturaufzeichnung zeigt einen stabilen Betrieb mit Temperaturen unter 65 °C, selbst
bei direkter Sonneneinstrahlung. Die Zuverldssigkeit litt unter der begrenzten Batterie-
kapazitat und der Effizienz der Solarzelle, was die Laufzeit einschriankte. Eine spatere
Hardware-Uberarbeitung mit LTE-Konnektivitit verbesserte die Zuginglichkeit.

Die Ergebnisse zeigen, dass die Kombination von Deep Learning und Edge Computing
auf kompakter, energicautarker Hardware eine effektive, skalierbare Losung fiir die Uber-
wachung des stidtischen Verkehrsflusses bieten kann. Zukiinftige Arbeiten sollten sich
auf die Optimierung des Energiemanagements, die Steigerung der Effizienz der Daten-
verarbeitung und die Verbesserung der Konfigurierbarkeit von Erkennungslinien und
Ausgabefiltern konzentrieren.

X

Abstract

This bachelor’s thesis presents the design, implementation, and evaluation of a low-cost,
autonomous prototype for automated traffic counting and analysis. The system utilises a
Raspberry Pi 5 with a HAILO-8 AI accelerator and camera module to perform real-time
vehicle detection, direction tracking, and data logging directly on the device. Powered
by a solar panel and battery, the prototype operates independently of external power
sources and is designed for flexible outdoor deployment. The detection pipeline integrates
a YOLOv8n model optimised for the HAILO chip and the ByteTrack algorithm for
multi-object tracking, enabling efficient vehicle recognition and movement analysis.
Two prototypes were installed in Vienna and tested under real-world conditions. Evalua-
tion results show a high detection accuracy, achieving an overall F1-score of 0.95 and
direction-detection accuracy of 88.8%. Thermal monitoring confirmed stable operation
below 65 °C even under direct sunlight. Reliability suffered of limited battery capacity
and solar charging efficiency, constraining runtime. A later hardware revision adding
LTE connectivity improved accessibility.

The results demonstrate that combining deep learning with edge computing on compact,
energy-autonomous hardware can provide an effective, scalable solution for urban traffic
flow monitoring. Future work should focus on optimizing power management, enhancing
data processing efficiency, and improving configurability of detection lines and output
filtering.

X1

Kurzfassung

Abstract

Contents

1

2

5

Introduction

Related Work

2.1 Miovisionl
2.2 Telraam!
2.3 Al-based traffic counting systems| .
2.4 Other Contributors to this Project

The Prototype
3.1 _Hardware
3.2 Software

3.3 Mounting Locations

Evaluation
4.1 __Model Performance
4.2 Temperature
4.3 Reliability
4.4 Discussion

Conclusion and Future Work

Overview of Generative Al Tools Used

Ubersicht verwendeter Hilfsmittel

List of Figures

List of Tables

Contents

ix

xi

xiii

S O ot ot

\]

10
17

19
19
22
24
25

31

33

35

37

39

xiii

Bibliography

41

CHAPTER

Introduction

For urban planning and statistical analysis, counting and measuring traffic play a crucial
role in understanding traffic flow. For example, this data is collected when redesigning a
street to adapt it to the capacity necessary for the number of vehicles passing through.
Despite the importance, counting the number of vehicles and tracking the direction is
often still done with manual labour by hand-counting passing cars. This method is both
time-consuming and expensive, as well as prone to errors, especially on busy roads.
The solution proposed in this bachelor’s thesis aims to provide approaches for an au-
tomated, inexpensive design, capable of reliably analysing traffic flow. These devices
should be easily deployable and as independent in operation as possible.

The prototype developed utilises a Raspberry Pi 5 with a camera module that, together
with an Al accelerator module, conducts image analysis and statistical evaluation of
traffic flow. Vehicles are counted, and their direction of travel is recorded. Together with
analysis of the license plate (which is stored hashed for privacy reasons), multiple devices
could make traffic flow analysis possible along streets or for measuring through-traffic in
a district.

Automation is achieved by automatically launching the script and controlling the
shutdown and boot times, minimising manual external input. Compared to other existing
approaches to such automatic traffic-flow analysis devices, like ones of the company
Miovision [Inc], the prototype constructed as part of this thesis aims to be as indepen-
dent and easy to deploy as possible, with a solar panel and a battery as power source,
eliminating the need of switching and recharging batteries, or having an external power
source available at the mounting location. This makes the devices more flexible when it
comes to choosing mounting locations. While other devices need to be easily accessible,
this approach can be mounted higher up, reducing the possibility of theft and vandalism.
This project was done in collaboration and is the basis for two other bachelor’s theses
[Har25][Tre25]. The construction and design of the prototype were done together, while
the other thesis work puts the focus on specific image analysis operations inside the

1. INTRODUCTION

detection pipeline. The focus of this thesis is the general construction of the pipeline,
the design of the scripts, and the pipeline running on the Raspberry Pi, as well as the
performance of the prototype and the general vehicle detection model. First, related work
is presented. Then, the hardware and software of the prototype are presented, as well
as the mounting locations of the two devices. Gathered data, like temperature curves
and performance of the model, are analysed and discussed. The last section points out
possibilities for further work on improving the design and construction of the prototype.

Figure 1.1: One of the prototype devices mounted on a light pole

CHAPTER

Related Work

2.1 Miovision

The company Miovision already provides similar types of devices, which can be rented
to analyse various traffic situations. One such device offered is the battery-powered
Scout Plus, which can be used to track and count traffic at intersections, streets, and
roundabouts, and can also be used to measure pedestrian and bike traffic. Further use
cases are speed data analysis and so-called "safety studies" [Ind].

These devices and the company were discovered later during the development process
of the prototype and were unknown before; therefore, any similarities in design and use
cases are a coincidence and not intended.

2.2 Telraam

On the contrary, the Belgian company Telraam developed small devices that are mountable
on windows and then monitor the traffic outside [Telc]. These are marketed mainly
towards private consumers who want to get insight into the traffic situation outside their
home. The device can detect cars, buses, trucks, bikes, and pedestrians. Their approach
was to create a small device that performs image analysis on the device and displays
it on the built-in screen, as well as sending the count data to a server. The data is
then not only available to the owners of the devices, but also published on a map [Telb].
However, Telraam devices don’t have a built-in battery, but have to be connected to a
power source via USB-C. The exact software and detection models used are unknown. In
2023, Telraam claimed to achieve over 90% weighted average for cars and bikes, 74% for
trucks and larger vehicles, and 58% for pedestrians using the Telraam S2 device [Telal.

5

2.

RELATED WORK

2.3 Al-based traffic counting systems

The paper "A YOLO-Based Traffic Counting System" by Lin et al (2018), published at
the International Conference on Technologies and Applications of Artificial Intelligence
(TAATI), proposed a similar approach to this prototype. The authors constructed an
image analysis pipeline utilizing the YOLO framework as a base for traffic counting.
However, the paper puts the focus on the software pipeline and achieving continuous
tracking in a video stream by storing tracking data in a buffer. (Note: The software
pipeline of our prototype utilizes an open-source pipeline published in 2021, see Chapter
3.2.3). The paper did not include the design and construction of a prototype, and does
not mention any performance data of the hardware used, which could limit the overall
performance of the model[LS18§].

Another paper from 2021 proposed an Al-based traffic counting framework designed to
run directly on small computers, addressing the latency and privacy challenges of cloud-
based Intelligent Transportation Systems (ITS) [DNTL21]. The system by Dinh et al.
integrates deep learning-based vehicle detection with tracking and a lightweight counting
method, optimized for constrained hardware such as Nvidia Jetson Nano and Google
Coral Dev Board. To support this, they created a Vietnamese Vehicle Detection Dataset
(VDD), which reflects local traffic conditions dominated by motorcycles. Experimental
results demonstrated real-time performance (26.8 FPS) with high accuracy (92.1%),
showing the feasibility for deployment in smart city traffic management. Beyond traffic
monitoring, the authors noted its applicability to other surveillance contexts, such
as crowd monitoring and visitor counting in public spaces. This work highlights the
effectiveness of combining deep learning with edge computing for scalable, low-cost, and
accurate traffic flow analysis.

2.4 Other Contributors to this Project

Due to the size of this project, two other students have contributed to the construction
of the prototype so far, putting the focus on different parts of the software and hardware.
The bachelor’s thesis of Nicholas Harisch puts the focus on speed calculation based on
image analysis. They designed a speed calculation pipeline that uses different approaches
to estimate the speed of a detected vehicle without the use of radar sensors, using the
bounding boxes of the vehicles detected by the YOLO model[Har25].

Another contributor to the project is Stefan Trenovatz. Their work on the project consists
of designing an extra software pipeline for license plate recognition. In their bachelor’s
thesis, they trained a YOLO model for detecting license plates in a given image, and
then used Optical Character Recognition (OCR) algorithms to get the data of the license
plate, and record it as a hashed value[Tre25|.

CHAPTER

The Prototype

3.1 Hardware

The hardware of the prototypes consists of a Raspberry Pi with an Al accelerator module,
a solar module, and a weatherproof housing for outdoor use. The components and the
estimated price of one prototype are described in detail in this section.

3.1.1 Raspberry Pi

Raspberry Pi computers are a series of small single-board computers distributed by
Raspberry Pi Ltd. The first Pi was released in 2012, with the model used in the
prototype being the 5th version of the Raspberry Pi [Ltda].

The Raspberry Pi 5 is a single-board computer produced by Raspberry Pi Ltd. It is
equipped with a Broadcom 2.4GHz quad-core processor with ARM architecture and
an additional GPU. Further features are dual-band 802.11ac WiF1i, Bluetooth 5.0, four
USB ports, two MIPI camera transceivers, as well as a PCle 2.0 x1 interface to connect
external hardware to [Ltd25].

The version used in the prototype is equipped with 8 GB of RAM. Additionally, the
Raspberry Pi was equipped with the Active Cooler, the Raspberry Pi Camera Module 3
(12MP), and the obligatory microSD card (128GB), as well as the ATl HAT+ accelerator
module described below.

3.1.2 HAILO AI accelerator module

The HAILO-8 module is an Al accelerator module by Hailo Technologies Ltd. For
this project, the Raspberry Pi AT HAT+ is used, which is equipped with the Hailo-8
accelerator module. It is capable of achieving 26 Tera-operations per second (TOPS).
It is connected to the Raspberry Pi via the PCle connector, and is used to process the
image analysis operations in the software pipeline [Ltd24].

3. THE PROTOTYPE

Figure 3.1: Raspberry Pi 5 with mounted AT HAT+ and Raspberry Pi Camera Module 3

3.1.3 Other components

To power the prototype independently from the power grid and make the prototype
easier to mount on poles, a solar panel with a battery was used. The solar panel provides
a maximum power of 25W, and, together with a dedicated controller, charges an 8Ah
battery with 12V current. To power the Raspberry Pi, a converter from 12V to 5V USB
and a USB-C cable were used. The converter is equipped with a coaxial power connector
plug. To make the cable of the solar panel controller compatible, it was necessary to
modify the cable with a compatible connector. Furthermore, the cable connecting the
battery and the solar panel controller needed to be modified with different connectors
due to space reasons. Figure 3.2/ shows how the components are connected in a schematic
drawing of the wiring of the prototype.

Additionally, waterproof housing for all components was needed. The Raspberry Pi with
the camera and the HAILO module was fitted inside a surveillance camera-style housing
together with the battery and the 12V to 5V converter. Due to space reasons, the solar
panel controller needed to be fitted into a separate housing and was mounted onto the
mount for the solar panel. For mounting, mountings to mount the components onto
traffic/light poles were chosen individually to fit the pole.

In a first revision, an LTE-USB modem was added, connected to the Raspberry Pi with
a short cable and, due to space reasons, a USB angle connector.

3.1. Hardware

Camera housing

Solar panel
12V to 5V USB-| 12V
N ——— v
C converler
_ Solar
Raspberry Pi Battery controller

Figure 3.2: Diagram of the wiring setup connecting the solar panel, battery and the
Raspberry Pi

Figure 3.3: One of the two prototypes mounted on a street light pole

3.1.4 Costs

The total cost of one prototype as of the end of August 2025 is around 533 €, without
the mountings, which had to be chosen individually to fit the light/traffic pole they were
mounted onto. These would add around 30€ more to the total cost.

Depicted below in Table 3.1 is the overall cost of one prototype as of the end of August
2025, including the addition of the USB-LTE module, added in the first revision. The
price of the actual prototypes can be different, due to the parts being ordered between
April and June 2025, and the parts of the first revision in August 2025.

3.

THE PROTOTYPE

10

‘ Component ‘ Notes ‘ Price ‘
Raspberry Pi 5 8GB RAM version 84.90 €
Raspberry Pi Camera Module 3 12 MP 28.90 €
Raspberry Pi AT HAT+ Hailo-8 module, 26 TOPS 122.90 €
Raspberry Pi 5 Active Cooler 5.80 €
SanDisk Ultra microSD Card 128GB, 140MB/s 11.50 €
Solar module + Battery 12V, 25W, 8Ah battery, including controller to regulate charging | 100.83 €
Power Converter 12V to USB-C (with USB-PD standard) 3.00 €
Housing for camera, battery, etc. 27.99 €
Housing for Solar Controller Waterproof housing for electric wiring 10.99 €
USB-C cable With angled connector due to space reasons 46.96 €
DeLink USB-LTE module DeLink DWM-222 63.90 €
USB extension with angle connector | Angle connector due to space reasons 23.48 €
SIM-card from HoT (Hofer Telefon), data plan not included 1.99 €

| Total \ [533.14 €]

Table 3.1: Summary of the components used and their price

3.2 Software

This section explains the software used for the prototype, covering the operating system
used and the technology behind the detection pipeline in detail. The software pipeline
and the scripts are contained in a GitLab project [NH].

3.2.1 Raspberry Pi OS

To save processing power, it was necessary to choose an operating system that works
best with the Raspberry Pi. Therefore, Raspberry Pi OS for the Raspberry Pi 5 was
selected. It is a free OS, published by the Raspberry Foundation, and is optimised for
operation on the Raspberry Pi computers [Ltdb]. Being a desktop operating system, it
also has a full Graphical User Interface (GUI), providing easy usability with the option
to have visual debugging, compared to terminal-based operating systems without any
GUI. The most recent version of Raspberry Pi OS is based on Linux Debian Bookworm,
which was released in June 2023 [SitP123].

3.2.2 Scripts

To automate the prototype and start the tracking pipeline automatically, the use of
shell scripts was necessary. In total, two Bash scripts ensure autonomous operation of
the prototype. These are launched on startup by daemon services. These services are
natively integrated into the operating system.

One script is responsible for automatic shutdown and boot procedures, and additionally
launches a Wi-Fi hotspot to provide local remote access. Initially, the script was configured
to boot the Raspberry Pi automatically at 6:00 in the morning and shut it down at 21:00
in the evening, resulting in a runtime of 15 hours per day. This timespan was selected
to restrict system operation to daytime, as insufficient nighttime illumination could
likely degrade the model’s performance. Furthermore, limiting runtime to daylight hours

3.2. Software

helped reduce energy consumption, since the system’s battery could only be recharged
during this period. However, boot and shutdown times were disabled after a week of
operation, due to the clock running on the wrong date and time after a power loss due to
a lack of battery (see Chapter 4.4). With the addition of the LTE-USB stick, permanent
internet access was available, eliminating the problem of incorrect clock times. Therefore,
automatic boot and shutdown times were re-activated in the script, setting the boot time
of the prototype at 8:00 in the morning, and shutdown at 18:00, for a total runtime of 10
hours per day.

The second function of the script is to launch a local Wi-Fi hotspot, to enable local access
to the prototype. When connected to the hotspot, the Raspberry Pi can be accessed over
Virtual Network Computing (VNC) clients. VNC is an open-source protocol, enabling
remote screen access to devices with an IP address. VNC is natively available in Raspberry
Pi OS; connecting from a remote device requires the use of a VNC client.

Figure 3.4/ shows the pipeline for how the scripts are launched after boot in their correct
order, as well as the order of operations inside the script itself.

Raspbemy Pi
0OS boot

h_ J

Automatically after boot

is completed
ff/// \\\\\
~"Run autoboot ™ Set shutdown and
- ",
~._ script //’=—> reboot time — > Launch Hotspot
'\\ //
\.\\ ///
FaN Run detection
PN pipeline
R Ker
<" Run tracker ™. Activate Python ——
‘\\ script v virtual environment —
'\\ //
. Run temperature
~ tracking script

Figure 3.4: Order of launch of the scripts after the boot of the Raspberry Pi

11

3.

THE PROTOTYPE

12

'_ _______ Y
|
| Launchofthe | HAILO ‘ [CPU |
| pipeline | , J
[LT WL Waks e L |
(Pre-configuration of the pipeiine:\"'
» Load Video
+ Prepare CSV
« Load models Parameter: Camera or video input? e
» Load coordinate files
Prepare camera
input
Next v
frame
»
Capture frame
oS e SRS SR >
) » J
|
| No cars
! detected v
)
| Vehicle
L S S e e SE R detection
@ model
One car
Until video b
ends or Ne e | Direction
pipeline is > detedion
stopped \
License plate
Every car i
detected detecion
in frame model
All
detected v
cars — p
analysed Speed
Wiite: CoV calculation

Figure 3.5: Tracking pipeline, showing how the input is handled by the Python script

3.2. Software

3.2.3 Tracking Pipeline

Figure 3.5 shows a graphic representation of the tracking pipeline running on the
Raspberry Pi. The tracking pipeline is implemented as a Python-based script that
interacts with the HAILO module and manages all image processing operations. These
operations include the vehicle speed calculation, license plate recognition, and direction
detection. After the launch of the pipeline, which is usually automatic after boot and
controlled by another script, the pipeline is initialised and pre-configured: The CSV file is
prepared, the models are loaded, and the input source is configured. The pipeline allows
either a live camera stream or a video file as input, providing ways to test the pipeline
when the prototype is not mounted in place. Furthermore, an optional live visualisation
mode can be activated for debugging purposes. However, this feature significantly impacts
performance and is therefore unsuitable for regular operation.

Vehicle detection is performed continuously within a real-time processing loop. Each
captured frame is transmitted to the HAILO module, where image analysis is done using
a YOLOv8n model integrated through the DeGirum library (see Subsection YOLO for
details). The detection model is optimized for compatibility with the HAILO hardware,
and is limited to only detecting cars, excluding other types of vehicles. Detected vehicles
are temporarily stored in a buffer and subsequently tracked across frames using the
ByteTrack algorithm (see Subsection ByteTrack for details) to maintain object consistency.
Direction detection is achieved by comparing the position of each tracked vehicle against
predefined reference lines within the image frame. When a vehicle approaches a reference
line, its entry and exit directions are determined and stored (for details, see section
'Direction detection’ below). Subsequent processing stages include license plate recognition
(as described in Trenovatz’s thesis [Tre25]) and speed calculations (see Harisch’s thesis
for this [Har25]). Finally, all processed and measured data are recorded in a structured
.csv file in the format below. For every frame, one line is written for each detected car,
containing the timestamp, the internal car 1D, and optional recorded data of license
plate, direction, and speed detection. The .csv file is named with the timestamp of the
pipeline’s launch, placing each run in its own file to facilitate better comparison and
statistical analysis later.

["timestamp’, 'car_id’, ’'lp_hash’, ’'entered’, ’'exited’,
"position_bottom_center’, ’'position_tp’, ’speed’]

YOLO

YOLO (You Only Look Once) is a detection architecture developed by Redmon et al. in
2016. Unlike earlier approaches, YOLO treats detection as a single regression problem,
directly predicting bounding box coordinates and class probabilities from the input
image in a single forward pass. This allowed the detection model to be fast and reliable,
outperforming predecessors and competitors [RDGF15].

Since the original YOLO paper, multiple versions have been developed, improving accu-
racy and speed. Ultralytics, an independent research and development company, has been

13

3.

THE PROTOTYPE

14

a key contributor to YOLO’s modern evolution—particularly with YOLOv5 (released
mid-2020) and YOLOVS (released in 2023).

Today, the most widespread models used are YOLOv5, YOLOv8, and YOLO11. Each
of the models differs in features, image processing time, and accuracy. YOLOvVS only
supports object detection, while newer models introduced new features like image classifi-
cation and object tracking. Of the three models mentioned above, YOLOvS8 achieves the
lowest image processing time on some devices of 0.99ms when using the most lightweight
model, while retaining a high mean average precision [Ltdc|. Default ultralytics YOLO
models are pretrained with the COCO dataset, a dataset for object detection, containing
information for 91 different object types, including cars, planes, trees, etc. [LMB™14].
However, YOLO models can also be custom-trained for different use cases. Due to the
efficiency and the widespread availability of YOLOvS8, with optimisations for multiple
platforms and processors, it was chosen as a base model for the detection pipeline on the
Raspberry Pi. Each of the YOLO models comes in different versions, scaling in size and
accuracy at the cost of processing time. For models since YOLOv5, the versions nano
(n), small (s), medium (m), large (1), and xlarge (x) are available. Since the power of
the Raspberry Pi and the HAILO module is limited, we aimed for one of the lightweight
models like YOLOv8n or YOLOvVSs.

55 55
50 1 50 4
& a
58 491 88 451
< E
£ 401 £ 401
o o
o o
S 354 —e— YOLOVS O 35 —— YOLOVS
@ — YOLOVT 2 —_— YOLOVT
304 ‘ﬂ YOLOV6-2.0 30 - & YOLOV6-2.0
YOLOvVS-7.0 YOLOV5-7.0
0 20 40 60 80 1.0 1.5 2.0 2.5 3.0 35
Parameters (M) Latency A100 TensorRT FP16 (ms/img)

Figure 3.6: Diagrams comparing YOLO models to YOLOv8 regarding size/precision and
latency /precision. Source: [Ltdc]

Several approaches are possible to access the HAILO module and provide it with the
YOLO model to do the image processing for the detection. The challenge was the need to
use two different models for one frame: the normal image detection model to detect the
cars, and the license plate detection model trained by Trenovatz. Natively, the HAILO
module only supports the use of one model for one processing task, so a third-party
Python package was necessary to control the pipeline to the HAILO module and make
the use of both models possible. Out of several approaches, the degirum library proved
to be suitable and, while not being the most efficient one regarding performance, easy to
use when using two models.

3.2. Software

Degirum provides cloud-based image processing with models like YOLO through its
"AI hub", but its Python package can also be used to access and run models on local
hardware devices like the HAILOS8 chip. Further, they provide pre-compiled models,
like a YOLOv8n model optimised for car detection, in a format compatible with the
HAILOS chip. This model was used for the detection of cars in the detection pipeline of
the prototype, and is limited to detecting cars only, excluding larger vehicles like trucks
and buses, as well as bikes and other two-wheeled vehicles.

ByteTrack

ByteTrack, introduced in a paper by Zhang et al. in 2022, forms a novel approach to
multi-object tracking (MOT) that focuses on maximizing the use of detection data rather
than discarding low-confidence results. Compared to other MOT systems, which typi-
cally remove detections below a confidence threshold to avoid false positives, ByteTrack
proposed a different tracking strategy that associates nearly all detection boxes, thereby
improving trajectory continuity and reducing identity fragmentation [ZSJ*21].

The proposed method, called BYTE, employs a two-stage association process. In the
first stage, high-confidence detections are matched with existing tracklets using motion
or appearance similarity based on Intersection-over-Union (IoU) or Re-Identification
(Re-ID) features. The second stage re-associates unmatched tracklets with low-confidence
detections, using motion similarity alone to recover missing objects while filtering out
background noise. This dual-stage design enables ByteTrack to recover occluded targets
without significantly increasing false positives. A Kalman filter predicts object motion,
and the Hungarian algorithm performs optimal matching, ensuring both computational
efficiency and accuracy [ZSJ"21].

For implementation, ByteTrack uses the YOLOX detector as its backbone, achieving real-
time tracking performance at approximately 30 frames per second on an NVIDIA V100
GPU. Extensive experiments on major MOT benchmarks, including MOT17, MOT20,
HiEve, and BDD100K, demonstrate its effectiveness. ByteTrack achieved suitable results,
with 80.3 MOTA and 77.3 IDF1 on MOT17 and 77.8 MOTA and 75.2 IDF1 on MOT20,
significantly outperforming previous methods. The results indicate that considering
low-confidence detections improves both identity preservation and tracking robustness,
particularly in crowded or occluded environments. Figure 3.7 shows the performance of
ByteTrack compared to other widespread trackers for multiple-object tracking |ZSJ™21].
The trackers are compared both in achieved frames per second as well as MOTA. MOTA
is short for Multiple-object tracking accuracy, a metric used to evaluate the errors of
object trackers [OEC].

Due to the low performance requirements, compatibility with the YOLO model pipelines,
and open-source availability, ByteTrack proved to be suitable for use on a device with
limited power like the Raspberry Pi. Furthermore, street environments tend to be more
crowded with occluded objects, e.g., cars driving next to each other on two lanes, resulting
in lower confidence scores at detection. Additionally, ByteTrack is natively implemented
into the Ultralytics YOLO Python package for object tracking, therefore suggesting its

15

3.

THE PROTOTYPE

16

ByteTrack
80.0 1
ReMOT TransMOT CorrTracker
¥1.51
75.01 TransTrack ChTRaEk i)
o TransCenter . FairMaT
5 72.51 SOTMOT
= 70.0
B TraDes QuasiDense
67.57 Chained-Tracker CenterTrack
65.0 1
Tube TK
62.5 1 : : : . . :
0 5 10 15 20 25 30 35

FPS

Figure 3.7: Performance of ByteTrack compared to other trackers [ZSJ™21].

use on the Raspberry Pi’s pipeline too.

Direction detection

For detecting the direction the cars are travelling through the frame, a lightweight
algorithm was developed to save processing power for more resource-intensive tasks. The
algorithm receives the coordinates of a point and compares its position to the position of
a given line. The distance between the point and the line is calculated by interpolation.
If the point is within the range of the line, defined by a threshold, the script returns a
string that is given to the algorithm on call. If the point is outside the range, an empty
string is returned. In the main pipeline, each line is one invocation of the algorithm. At
invocation, the algorithm is invoked with the center of the bounding box of the detected
car, the line, and the exit direction. If a non-empty string is returned, the direction
of entering and exiting is put into the variables that are then written into the .csv file.
For each pre-defined line, the algorithm has to be invoked separately, requiring manual
re-configuration of the pipeline for each location the prototype is mounted at.

To define the lines, a separate Python tool can be used. This uses a given image and
allows the user to define points on the image. These points are then saved into a .cfg
text file, and can then be used in the main pipeline for the calls of the algorithm. One
line is made up of one start and one endpoint.

3.3. Mounting Locations

3.3 Mounting Locations

Two locations in the 2nd district in Vienna were chosen as suitable locations for mounting
the prototypes. Both locations are on streets with an assumed high amount of through
traffic. The prototypes were mounted in July 2025.

The first location is located at the intersection of Lassallestrasse and Vorgartenstrasse,
which is equipped with a traffic light. The prototype is facing away from the crossing
towards Praterstern in a southwestern direction. Tracking is possible in two directions:

1. Two lanes towards Praterstern in the southeastern direction

2. Four lanes towards the intersection, three for traffic continuing straight towards
Reichsbriicke or Handelskai, one for turning right onto Vorgartenstrasse

The second mounting location is located on Praterstrasse, next to Nestroyplatz. The
camera is facing in a southwestern orientation towards a crossing with a traffic light.
Tracking traffic is possible in three directions:

1. Towards Praterstern in the northeastern direction
2. Southeastern direction, turning left at Nestroyplatz

3. Turning right at Nestroyplatz, or staying on Praterstrasse, heading towards the
inner city.

Figure 3.8 shows the mounting locations of both prototypes on a map. The locations
are approximately 1.6km apart from each other, and connected by the Praterstrasse and
the Lassallestrasse via the Praterstern, a major crossing in the 2nd district, formed by a
large roundabout around a train and subway station, connecting several big streets in
the 2nd district.

For location Lassallestrasse, a national traffic count from 2020 mentions an average of
around 32,500 vehicles in a period of 24 hours, 31,600 of them being cars [BfK] (section
"Wien’, count location 1075). Another source is counting data of the city of Vienna from
2015, which mentions =~ 200 to = 370 vehicles per 15 minutes towards Praterstern, and
~ 200 to ~ 440 vehicles per 15 minutes towards Reichsbriicke during the daytime [GMB].
For the Praterstrasse location, one article published in 2019 by Georg Scherer on wien-
schauen.at could be found. The source claims an existing study of the Technical University
of Vienna; however, the author does not provide a reference to the study, and the study
could not be found anywhere. Therefore, it is unclear if the data is reliable. The article
mentions that the study, conducted by Ulrich Leth and Harald Frey, speaks of 21,000
vehicles per day [Sch19].

17

THE PROTOTYPE

A = =
Fd & s , "30
N % % %,
? & A “Cke
. 5 o \
(A 2 -, L
B2 L N % | E)
Wt 1 N N, A 2,
BN 2 \ e ol
\ 7 &' 1
'f,..’ % W \ P
, 4 - e G
; P2 < 0 P il
> ; 2° 5
/ r % 2 L=
& s L. R R o
4. % N <
/. o Heizmannhof %
& (S
o Ly % o N
b, i e ® ZEN >
/ 2 kS
N S S N 1
?p v Q e N S 2
e 2.5 kS /
L 2 7
) 24X 2 b
%o S L3 ‘;‘4 "«"p \
” 2 SN \%
$ P j
PF o 4 LY 4 3 \15,“.
Ate \ LPS e -:_’,99,/. S . q
> { kit s XN
T W GRS
AN o5 el ¢ PCA
o 22 & 5 o N
& N e % s A X X & 25
Ly 2%, % & S
7 - O o AL
N AR e, 2 @
4 o o~ S A ()
~ s o K 2
’l o 3

(a) Location Lassallestrasse

Figure 3.8:
https://www.wien.gv.at/stadtplan/

Locations where the

© G v v ce 2
~ e o
!\;?’ o » :{,‘:] > 4,
28 7 el RO P ®° “,
s g i S b, P
=5 M & - 2,
by gchmelzgasse S N6
=,] S SN %o
@ ®
3 2 8 o S o .
- @
¥ ag S o L
ol PR = S 3 O
1 -~ o, Y o o LS
=\ 1 < i [%,
£ = AT ¥ |
C= A AR N A 1
Galaxy 21 . Weit & i
4 . E a8 P2
nope 3% @ %
. R, X e <,
- ~ v'e
- ,‘;-b W P i"’.r' Sk ¥ o’n"
a4l T
43 "55”“ a o 'a"'NRmero' & R (q
estroyhof-
o 'é:* D Mt 4 Czs«rmngassee
S * # DA 12 !
Webster & 5 B ol W
University N A \ | |
v, i, 1 = | o
2.
Ve A4 b - 7 | 203
P "t 22T 2 ! 1 EI‘“\“B“‘
: 2 2 2%
A - AR 2_; &5 Coll ik o
» o N { 1‘5 g @ g ‘l"" \Fa
L |l /
new “ IS Toah &%

(b) Location Praterstrasse

prototypes are mounted. Source:

(a) Location Lassallestrasse

(b) Location Praterstrasse

Figure 3.9: View of the camera of both prototypes

18

CHAPTER

Evaluation

4.1 Model Performance

To evaluate the performance of the model at both mounting locations, two 15-minute-long
videos were recorded on a Friday at around 16:00. These videos were then run through a
similar software pipeline on a Windows computer running a YOLO model, which provides
a video output as an end result. The same model running on the Raspberry Pi could
not be used, since it is in a special format, compatible with and optimised to run on the
HAILO module.

With this video, it was possible to analyse the accuracy of the model by hand-counting
the cars and checking for false positives and negatives. Unfortunately, the video could
not be run through the pipeline on the Raspberry Pi due to the pipeline only providing a
live debug video view and no option to save a video after the pipeline finished analysing
the video. Additionally, enabling the visual output of the pipeline has an impact on the
overall performance, which could have an impact on the performance of the tracking
model.

The videos were recorded with a resolution of 1280x720 pixels, at 30 frames per second,
the same size and frame number that the pipeline receives in regular use. The model
used to detect the cars in the video was the stock YOLOv8n model, configured with
similar parameters to the software pipeline running on the Raspberry Pi. Therefore, only
cars were detected, excluding larger vehicles and two-wheeled vehicles.

True Positive (TP) | False Positive (FP) | False Negative (FN)
Left side 349 S 0
Right side 240 22 0
Total 589 27 0

Table 4.1: Results of the model at location Lassallestrasse

19

4. EVALUATION
True Positive (TP) | False Positive (FP) | False Negative (FN)
Left side 97 16 0
Right side 154 40 0
Total 251 56 0

20

Table 4.2: Results of the model at location Praterstrasse

The data in Table 4.1 and Table 4.2 show the results of the analysis of the YOLO model
and the evaluation by hand counting the cars in the video. This data could be used to
calculate precision and recall of the model, and therefore the F1-Score.

Counting the cars was done by individually counting the left and right sides/lanes for each
location. This enabled the possibility to get a better view of where the False Positives
are located, identify the weaknesses of the model, or possible improvements regarding
camera angle and location. Furthermore, the F1-Score was calculated for both locations
separately, as well as an overall F1-Score with the total numbers.

Precision | Recall | F1-Score
Lassallestrasse 0,9562 1 0,9776
Praterstrasse 0,8176 1 0,8996
Total 0,9101 1 0,9529

Table 4.3: Precision, Recall and F1-Score of the detection results

The evaluation results of the detection method are shown in Table 4.3, which contains
precision, recall, and F1-score for the two test locations as well as for the aggregated
results.

For Lassallestrasse, the model achieved a precision of 0.9562, indicating that less than
5% of the detected instances were false positives. The recall value of 1 demonstrates that
the system successfully identified all true instances, resulting in an Fl-score of 0.9776.
These results suggest that the method performed almost ideally at this location, with a
negligible trade-off between precision and recall.

At Praterstrasse, the precision is lower at 0.8176, meaning that around 18% of the
detections were false positives. However, the recall again reaches 1, showing that no
relevant instances were missed. The corresponding Fl-score of 0.8996 reflects this
imbalance: While the method detects all relevant cases, it produced more erroneous
detections at this location compared to the other one.

Combining the results, the system achieved an overall precision of 0.9101 and a recall
of 1, leading to an F1l-score of 0.9529. This indicates that the method is highly reliable
in identifying all true cases at both locations, with only a small tendency towards false

4.1. Model Performance

positives.

The differences in precision are attributed to environmental factors, the higher presence
of traffic light poles and street signs at Praterstrasse, leading to cars getting "split" and
getting detected twice, resulting in false positives. Additionally, bigger vehicles like buses
were sometimes identified as cars in a short timespan, with bigger bicycles and motorbikes
sometimes also getting misidentified. This is likely a result of the low confidence value of
0.25 as a default threshold for detection; however, this represents the default confidence
value.

Detection line performance

At the location Lassallestrasse, two detection lines were used, one for the lanes towards
Reichsbriicke and the intersection on the left side of the frame, the other covering the
lanes towards Praterstern on the right side. At Praterstrasse, three detection lines were
created, one covering traffic towards Praterstern on the left side, one line for detecting
traffic turning left at the intersection, and the last line for traffic going straight or turning
right. It was not possible to create separate lines for traffic entering from the left or
right side at the intersection, or coming from the inner City and not continuing on
Praterstrasse towards Praterstern, due to the distance to the crossing (see Figure 3.9 for
reference of the camera view at both locations).

The data from the detection lines can be compared to the data from the model per-
formance above to obtain accuracy data of the detection line algorithm. The distance
threshold for the detection lines was set to 10; therefore, a crossing of the line was
recorded if the distance of a detected car to the line was less than 10 pixels.

Detection line data | Model data (TP + FP) | Percentage
To Reichsbriicke 319 354 90,11%
To Praterstern 253 262 96.56%
Total D72 616 92.86%

Table 4.4: Accuracy of the detection lines at location Lassallestrasse

Detection line data | Model data (TP + FP) | Percentage
To Praterstern 68 113 60.18%
To Intersection (left+straight /right) 180 (9+4171) 194 92.78%
Total 248 307 80.78%

Table 4.5: Accuracy of the detection lines at location Praterstrasse

The detection line data presented in Tables 4.4 and 4.5 represent the number of unique
tracking IDs intersecting the respective detection lines. When combining the datasets
from both locations, an overall accuracy of 88.84% is achieved. False Positive detections
were included in the analysis, as erroneously identified vehicles may intersect a detection
line and thus be falsely counted. False Positives may also be detected by the model

21

4.

EvVALUATION

22

without ever crossing a detection line, resulting in their exclusion from the line-based
count. Additional sources of inaccuracy include correctly detected vehicles that do not
enter the threshold of any detection line. This can occur either when vehicles pass
through the frame without crossing a line or when they intersect with the line too rapidly
for the center of the detection bounding box to fall within the predefined threshold.
The accuracy at Praterstrasse is notably lower than at other detection locations. This
discrepancy is primarily attributed to vehicles approaching from the left side of the
intersection but not turning toward Praterstern. These vehicles are detected within
the frame but do not intersect any detection line, preventing the assignment of a travel
direction. In contrast, the reduced accuracy observed at Lassallestrasse is likely due
to vehicles moving too quickly for detection, even though all vehicles have to cross one
of the lines. If only True Positive detections toward Praterstern were considered, the
resulting accuracy would exceed 100%, suggesting that False Positive detections occurred
in proximity to the detection line and were thus also included in the count.

4.2 Temperature

In a first test to estimate the CPU temperature of the Raspberry Pi during operation
in the prototype, the solar panel setup and a stock Raspberry PI 5 with no additional
devices and modifications was used, running a Python script that recorded the CPU
Temperature every ten minutes. As seen in Figure |4.1 below, the components were put
inside a dark grey plastic box and put in direct sunlight, to simulate the conditions the
prototype would likely be exposed to.

The temperature monitoring started at 15:23, with an outside temperature of approxi-
mately 25 °C. The initial goal was to record the CPU temperature data over a period
of 24 hours. However, the measurement ended at 01:43 due to the battery running out
of power, which caused the Raspberry Pi to shut down. As Figure 4.2/ shows, the CPU
temperature was approximately 63 °C at the start of the recording, and remained around
65 °C during daylight, with a maximum recorded value of 68 °C. Following sunset, the
temperature gradually declined, reaching a minimum of 50 °C. The final recorded value
before shutdown was 52 °C.

To obtain continuous data of the temperature from the prototype, a monitoring script
is running parallel to the tracking script, recording the temperatures of the CPU and
the HAILO module at 30-second intervals. Compared to the data of the first test, the
performance regarding temperature turned out better than expected. Despite operating
under load and in a more enclosed space, the temperatures remained roughly similar to
those recorded prior.

Figure 4.3 displays the temperature development of the Raspberry Pi CPU and the
HAILO module at the location Praterstrasse under normal operations, running the
tracking script. The measurements were recorded between 08:35 and 12:10. The y-axis

4.2. Temperature

Figure 4.1: Test setup for temperature monitoring

represents the temperature in degrees Celsius (°C), while the x-axis represents the time
of day. The red line is the temperature curve of the Raspberry Pi’s CPU, the blue line
shows the temperature of the HAILO module.

During the first 30 minutes of the measurement, both the CPU temperature and the
temperature of the HAILO module increased from 26-28°C to around 50-55°C. After
this initial rise, the temperature curves entered a slower growth phase, approaching a
steady-state condition. The Raspberry Pi CPU temperature consistently remained higher
than the HAILO temperature throughout the measurement, with an average offset of
approximately 3-5°C.

Between 09:00 and 11:30, both temperatures stabilized in the range of 55-60°C, with

the HAILO module temperature remaining slightly lower, fluctuating around 54-58°C.
Both curves exhibit small fluctuations, likely due to variations in the overall workload.

The small increase in the average temperature of both devices at around 10:40 could
be explained by an increased exposure to sunlight. Toward the end of the observation
period, the CPU temperature increased again, peaking at approximately 65°C, whereas
the device temperature rose more moderately to around 59°C. This was likely caused by
increased load due to remote access to the device using VNC, with the need to render
the GUI and process input data.

Comparing the data of the prototype with the temperature curve of the first test, it
shows that the mounted prototype turned out to be more temperature efficient than
expected. The recorded peak temperature of the first test was higher than that of the

23

4.

EvVALUATION

24

Pi5 CPU Temp Monitor
B0 fm=mrmreeres e r e r e s e A m e n S e e s e n e

0 10 20 30 40 50 60
Zeit

Figure 4.2: Plot of the temperature curve, ’Zeit’ (Time) on the x-axis refers to the
number of data points (one per ten minutes)

prototype, despite running in idle mode compared to running the tracking script. Of
course, it is possible that the difference in daytime and outside temperature could make
a difference. Both temperature curves were recorded on sunny days with temperatures
ranging from 25 °C to 30 °C, with both devices being exposed to sunlight.

4.3 Reliability

Obtaining accurate data regarding runtime to measure the reliability was not implemented
in the code. However, with the tracking pipeline and the temperature script both recording
timestamps, an estimation regarding runtime can be made to get a view on the reliability
of the prototypes.

Runtime proved to be very mixed throughout the first months of test operation. In the
first week, with the prototypes configured to run from 6:00 to 21:00, power often cut
out early, resulting in a shutdown due to the under-voltage protection of the Raspberry
Pi or the battery voltage being too low to provide sufficient power to boot the system.
With no power, the internal clock stopped, and due to a lack of internet, it could not be

4.4. Discussion

Temperature 'traffic-counting2'

65 4 — RPi CPU Temp (°C)
—— Device Temp (*C)

60

55

Temperature (°C)
=3
wn

30 A

251

T T T T T T T T

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00
Time

Figure 4.3: Plot of the temperature curve of both the CPU of the Raspberry Pi and the
HAILO module while running the tracking script.

updated after booting, resulting in an offset of date and time, making accurate runtime
timestamps impossible, and shifting the times of operation.

A first solution was to run the tracking script continuously until the prototype shut down
due to lack of battery power. This resulted in data regarding total runtime; however, no
information regarding the exact time of boot can be made, due to the date being shifted.
Sometimes, the tracking script ran for several hours, in some instances even more than 12
hours, likely due to good weather charging the battery, making operation even at night
possible. On other days, several short periods of the script running were recorded, with
the script likely stopping due to lack of power, and the Raspberry Pi repeatedly trying
to reboot and start tracking again.

Adding the USB-LTE-Sticks in the first revision eliminated the problem of inaccurate
date and time on the prototypes. Establishing an internet connection on startup provided
the OS with the possibility to synchronise the date and time, resulting in accurate
timestamps when tracking. However, reliability data after the first revision is not in the
scope of this thesis.

4.4 Discussion

The design and construction of the prototype provided valuable insights into the construc-
tion of such devices, and revealed flaws of the chosen components and further trade-offs.
The development of the software pipeline showed the flexibility of the Raspberry Pi and
its operating system, as well as the trade-offs that have to be made when conducting
image analysis on lightweight devices with significantly lower performance compared to
traditional computers.

25

4. EVALUATION

The construction of the prototype faced several challenges, mainly related to making the
chosen components properly compatible with each other. The converter converting the
12V provided by the battery and the solar controller to 5V uses a USB-C port on the 5V
side and a standard coaxial power connector for the 12V input. The cable of the solar
controller provided only small metal rings as connectors; therefore, the cable had to be
modified with a connector to make it compatible with the converter, as shown in Figure

Figure 4.4: The cable connecting the solar controller with the 12V /5V converter in its
unmodified and modified state.

Setting up the solar panel with the controller and the battery was easier than expected and
close to self-explanatory. The biggest challenge with the construction of the prototype was
the size of the hardware in relation to the size of the camera housing. Fitting the battery,
the Raspberry Pi, the controller, and the converter into the housing was impossible due
to the limited space; therefore, it was necessary to fit an additional housing for the solar
controller onto the mount of the solar panel. Furthermore, the initial USB-C cables
that were selected to power the Raspberry Pi did not fit the housing. When the cable
was connected, it was not possible to close the lid of the housing, requiring different
USB-C cables with an angled connector. Apart from the size, the housing proved to be
more reliable than expected. Waterproofness was given as advertised, with the housing
remaining dry on the inside, despite several days of rain during the testing period from
July to September. The biggest concern of the prototype device was the temperature
during operations, especially during summer in direct sunlight, and the fact that the

26

4.4. Discussion

housing has a metal top. The first temperature test in a black plastic box raised this
concern, with quite high temperatures even in idle, with no power-consuming pipeline
running. However, during the test of the actual prototype when the detection pipeline
was operating, the temperature was lower than expected, with a peak of around 60° C,
even in direct sunlight, it remained lower than during the first test.

For the Raspberry Pi itself, valuable insights on how to automate the operation of the
devices using scripts were achieved. Due to the Raspberry Pi 5 having a power button
and the ability to maintain a shutdown mode as long as connected to a power source, it
is the first Pi where it is possible to automatically shut down and reboot the system with
just the unmodified Raspberry Pi and Raspberry Pi OS, without the need for a small
buffer battery necessary on previous Pis. This was useful to save battery during nighttime
when the Raspberry Pi was not running the detection pipeline, as the first temperature
test also showed that running the device during nighttime would drain the battery so
much that the system would run out of power during nighttime, and only power on again
when the battery was charged enough. On the other hand, this power-saving state also
caused some problems related to it, see section 'Problems’ below.

The first approach to a software pipeline was done as a collaborative project on Gitlab
[NH] before the prototype was built, therefore it contained a Python script based on
Python libraries that address GPUs or regular x86 CPUs, like the Ultralytics Python
package. Porting the code onto the Raspberry Pi showed that this package is incompatible
with the Raspberry Pi and especially the HAILO module, requiring special libraries and
model formats.

Installing the HAILO module and its required packages was very easy, and there is
built-in support for running stock YOLO models on the HAILO in the basic packages.
However, it was necessary to run two models for one software pipeline, due to the license
plate recognition model being a specifically trained model for its use-case, and ByteTrack
needed to be integrated too to buffer the detected vehicles between frames and track
their path through the frames. The first two approaches, using a GStreamer pipeline
and direct inference via the HAILO module’s native tools, turned out to be particularly
difficult to implement. Directly addressing the module would have been the most efficient
approach, as there would be no library needed to convert the commands into the right
format. But due to the poor documentation of the code, it was not possible to create a
proper working pipeline in a reasonable time. Therefore, the DeGirum library was used,
simplifying the pipeline and still achieving enough overall performance. Additionally,
DeGirum provides models compatible with the accelerator module that do not require
manually converting models into a HAILO-compatible format. This approach made the
pipeline easily readable, simplifying later adaptations and extensions to the code, as well
as changing the YOLO model.

Putting the prototypes to the real-world test provided the most valuable insights on the
reliability and performance of both the Raspberry Pi itself, the design of the prototype
in general, and the software pipeline. Besides some small problems when fixing the
mountings onto the poles, the design of the prototype proved to be reliable and appealing
regarding both design and functionality. The design looks like a regular CCTV camera

27

4.

EvVALUATION

28

with a solar panel on top; therefore, it blends into the environment seamlessly, as such
cameras are quite common in the context of streets and traffic. One design flaw of the
mounting was the short distance between the solar panel and the housing, requiring the
panel to be removed before it was possible to open the lid of the housing when doing
maintenance. This is caused by the length of the cables connecting the solar controller
with the battery and the Raspberry Pi.

The scripts responsible for booting, shutting down, launching the local hotspot, and
launching the detection pipeline proved to be very reliable; there were no problems
related to their functionality. On some occasions, the remote connection via VNC was
slow and frequently froze with long reloading times. It is unclear if this was related to
Raspberry Pi OS and its performance when running the detection pipeline, or to the
device that made the connection to the prototype. Since the connection problems mainly
appeared on one Windows device, and other devices like a phone with Android or an
Apple MacBook experienced fewer problems, it is likely caused by the connecting device
rather than the Raspberry Pi itself.

As the YOLO models themselves are well-trained and very reliable, there were no problems
with detecting the cars; the statistical evaluation proved this assumption. Difficulties
in configuring the prototypes appeared when setting up the camera, mainly finding the
right focus to have a clear image. Due to the camera lens being mounted very close to
the front window of the camera housing, the auto-focus struggled to find the right focus
point, causing the image to be blurry permanently. This was no problem for the model
when detecting the cars, but of course impacted the license plate recognition significantly.
Therefore, the focus had to be set manually for each of the prototypes. Furthermore, the
direction detection lines have to be implemented manually, not only by picking the points
for the coordinates for a configuration file, but also by editing the code to fit the number
of detection lines, as well as defining the directions the vehicles enter and leave the frame.
The threshold that determined whether a car was crossing a line was configured a bit too
small, so that faster cars could sometimes not be detected as they crossed the line, and
its distance threshold between two frames.

The .csv files also come with some trade-offs, as they are not filtered, and therefore write
a line for every detected car in every frame. This causes numerous lines to only contain
the internal ID and the timestamp, as neither a license plate, a direction, nor its speed
is recorded in the frame. The initial concept was to implement some sort of filtering
during the operation of the pipeline; however, this was discarded to save processing
power, making manual filtering and processing the files on an external device necessary
for proper statistical analysis.

4.4.1 Problems

As the above section put the focus on the insights and trade-offs, this section aims to
point out the major problems that mainly appeared throughout the real-world testing
period and had a severe impact on the performance and reliability of the prototype.

The biggest problem during the testing period quickly turned out to be the battery
capacity in connection with the total power consumption of the Raspberry Pi when

4.4. Discussion

running the detection pipeline. After deployment, the pipeline was set to run from 6:00
until 21:00, and then shut down during the night. Due to the solar panel being the only
power source to charge the battery, operating the prototype was heavily dependent on
weather, and the overall performance of the solar panel was not sufficient to provide
enough energy to both the Raspberry Pi and the battery, causing the Raspberry Pi to
frequently shut down automatically due to a lack of power. These power outages would
not cause problems themselves, as the Raspberry Pi automatically boots when being
reconnected to a power source. But sometimes, the Raspberry Pi’s low voltage protection
activated before the battery power ran out, and it protected the system by shutting down
into a low power mode without automatically rebooting.

Sometimes the low voltage protection would not shut down the system, but reduce
power to external devices like the HAILO accelerator module. This caused the detection
pipeline to crash, but the script controlling the start of the pipeline was configured to
automatically restart the pipeline after crashes. This sometimes caused a loop, where
the script started the pipeline, only to crash after a few seconds or minutes of running,
as the power was cut off to the HAILO module again.

Another problem that was undiscovered and initially not seen as a problem was the lack
of internet access on the Raspberry Pi. Having only local access to the device was a
design flaw, as it required being in proximity of the prototype to connect to it and get
detection data, and make modifications to the code. The problem manifested itself after
the first power outages of the system, as the internal clock of the OS stops, and can 't
be synchronised with the actual time and date after reboot. In the power saving mode,
the clock continued to run, allowing the system to reboot at the right time. However,
after every full power loss of the system, the clock and date were incorrect, which then
caused the boot and shutdown times to be at the wrong time of day. In a first attempt
to eliminate this problem, these planned times were removed, and the system simply
ran until the battery power was too low. This caused more problems related to the
under-voltage protection, as the system was frequently running on low power, and it
likely also put stress on the battery itself, as the prototype booted on low power, only to
quickly shut down again.

Therefore, the decision was made to add a USB-LTE stick with a SIM card in the
first revision, as this would eliminate the problem of the clock being wrong, as it is
synchronised on boot every time. Furthermore, it provided the possibility to remotely
connect to the prototypes and upload and download files from external sources.

29

CHAPTER

Conclusion and Future Work

Conclusion

To conclude, the design, implementation, and testing process of the prototype was
successful, considering it is the first iteration of such a prototype, and the lack of former
experience regarding the construction and design of such prototypes. After finding a
proper library to interface with the HAILO module, the software pipeline was easy to
implement, and the overall performance was better than initially expected. Apart from
the problems with the battery capacity and the performance issues causing reliability to
decrease, the prototype proved to be durable and able to withstand the elements.
Gathering experience with working with image detection tools with YOLO was very
valuable for future work, with them being notably more accurate and reliable than
expected. The usage of a Raspberry Pi as a processing computer proved to be the right
choice, combining both a compact size and a reasonable amount of processing power for
the prototype.

Overall, the prototypes serve as a reliable proof-of-concept, despite suffering some initial
problems and design flaws. Of course, there is still a lot of room to improve the concept,
especially when addressing the battery capacity, and properly filtering and processing
the .csv files.

Future Work

Looking into the future, several flaws and problems of the prototype can be addressed.
The biggest room for improvement could be made by addressing the battery and solar
module. Increasing the battery size would make it possible to run the detection pipeline
for longer periods during the day, or even make test runs during nighttime. Especially
during winter, when significantly less sunlight is available to charge the battery, maxi-
mizing battery capacity is crucial. Eventually, the solar module could be replaced with
one with more charging power, enabling it to properly charge the battery and power the

31

5.

CONCLUSION AND FUTURE WORK

32

Raspberry Pi at the same time.

Concerning the problem of the undervoltage protection of the OS, the pipeline could
be halted before the protection activates, as the system emits an undervoltage warning
before cutting off power to peripherals or shutting down the system. This could eliminate
or reduce the downtime of the prototype in cases where there would be sufficient power
available to power the Raspberry Pi without running under load, but not to run the
detection pipeline. This approach could also reduce the stress on the battery, as there
would be fewer shifts in total power draw.

Lastly, improvements can be made to the software pipeline. The design of the implemen-
tation of the detection lines could be reworked, for example properly modularising the
number of lines and directions, allowing for full configuration of the lines with the point
selection tool without making any adaptations to the pipeline itself, improving usability.
Furthermore, the design of the .csv files could be improved, reducing the number of
almost empty lines with respect to the processing power. This would decrease the size of
the .csv files and make statistical analysis simpler and less time-consuming.

Overview of Generative AI Tools
Used

ChatGPT was used to to rewrite some sentences to improve expression, as well as
assistance for writing the Abstract.

Grammarly was used for finding grammar and spelling mistakes.

DeepLL was used to translate the Abstract from English to German.

33

Ubersicht verwendeter Hilfsmittel

ChatGPT wurde verwendet, um einige Sétze umzuschreiben und den Ausdruck zu
verbessern, sowie Unterstiitzung beim Verfassen des Abstracts.

Grammarly wurde verwendet, um Grammatik- und Rechtschreibfehler zu identifizieren.
DeepLL wurde verwendet, um den Abstract von Englisch nach Deutsch zu iibersetzen.

35

1.1

3.1
3.2

3.3
3.4
3.5
3.6

3.7
3.8
3.9

4.1
4.2

4.3

4.4

List of Figures

One of the prototype devices mounted on a light pole, 3

Raspberry Pi 5 with mounted Al HAT+ and Raspberry Pi Camera Module 3 8
Diagram of the wiring setup connecting the solar panel, battery and the

Raspberry Pi| oo 9
One of the two prototypes mounted on a street light pole] 9
Order of launch of the scripts after the boot of the Raspberry Pi 11
Tracking pipeline, showing how the input is handled by the Python script 12
Diagrams comparing YOLO models to YOLOvS regarding size/precision and
latency /precision. Source: [Ltdc| 14
Performance of ByteTrack compared to other trackers |[ZSJT21]. 16
Locations where the prototypes are mounted. Source: https://www.wien.gv.at/stadtplan/| 18
View of the camera of both prototypes 18
Test setup for temperature monitoring 23
Plot of the temperature curve, "Zeit’ (Time) on the x-axis refers to the number

of data points (one per ten minutes) 24
Plot of the temperature curve of both the CPU of the Raspberry Pi and the
HAILO module while running the tracking script.|. 25
The cable connecting the solar controller with the 12V /5V converter in its
unmodified and modified state 0000000 26

37

3.1

4.1
4.2
4.3
4.4
4.5

List of Tables

Summary of the components used and their price

Results of the model at location Lassallestrassel
Results of the model at location Praterstrasse
Precision, Recall and F'1-Score of the detection results .
Accuracy of the detection lines at location Lassallestrasse
Accuracy of the detection lines at location Praterstrasse

10

19
20
20
21
21

39

[DNTL21]

[GMB]

[Har25]
[Inc]
[LMB™*14]

[LS18]

[Ltda]

[Ltdb]

[Ltdc]

[Ltd24]

[Ltd25]

Bibliography

[BfK] Energie Mobilitat Innovation und Technolo-
gie Bundesministerium fuer Klimaschutz, Umwelt.
https://www.bmimi.gv.at/dam/jcr:daeb6637-66e2-4060-b492-
95¢860£f8301 /ece2020, ationalerberichtiabellenteil .xlsx, accessed24.10.2025.

Duc-Liem Dinh, Hong-Nam Nguyen, Huy-Tan Thai, and Kim-Hung Le. Towards ai-
based traffic counting system with edge computing. Journal of Advanced Transportation,
2021(1):5551976, 2021.

SNIZEK + PARTNER VERKEHRSPLANUNGS GMBH.
https://www.digital.wienbibliothek.at/wbrup/download /pdf/4429234, accessed
24.10.2025.

Nicholas Harisch. Bachelor thesis. Technische Universitdt Wien, Sep 2025.
Miovision Technologies Inc. https://miovision.com/scout-plus/, accessed 06.10.2025.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and C. Lawrence Zitnick.
Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.

Jia-Ping Lin and Min-Te Sun. A yolo-based traffic counting system. In 2018 Conference
on Technologies and Applications of Artificial Intelligence (TAAI), pages 82-85, 2018.

Raspberry Pi Ltd. https://www.raspberrypi.com/about/, accessed 06.10.2025.

Raspberry Pi Ltd. https://www.raspberrypi.com/documentation/computers/os.html,
accessed 06.10.2025.

Ultralytics Ltd. https://docs.ultralytics.com/models/yolov8/, accessed 15.10.2025.

Raspberry Pi Ltd. https://datasheets.raspberrypi.com/ai-hat-plus/raspberry-pi-ai-hat-
plus-product-brief.pdf, accessed 06.10.2025, Oct 2024.

Raspberry Pi Ltd. https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-product-
brief.pdf, accessed 06.10.2025, Jan 2025.

41

[NH] Stefan Trenovatz Nicholas Harisch, Armin Kazda.
https://gitlab.cg.tuwien.ac.at/nharisch/traffic-counting /-
/tree/22c9daab7722973b50dd913bdf87f67adc7c339¢/, accessed 24.10.2025.

[OEC] OECD. https://oecd.ai/en/catalogue/metrics/multi-object-tracking-accuracy-mota, ac-
cessed 24.10.2025.

[RDGF15] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[Sch19] Georg Scherer. https://www.wienschauen.at/praterstrasse-vom-prachtboulevard-zur-
stadtautobahn/, accessed 06.10.2025, Apr 2019.

[SitPI23] Inc (SPI) Software in the Public Interest. https://www.debian.org/news/2023/20230610.en.html,
accessed 06.10.2025, Jun 2023.

[Tela] Telraam. https://github.com/telraam /telraam-s2/blob/main/count-performance-
validation.md, accessed 24.10.2025.

[Telb] Telraam. https://telraam.net/, accessed 24.10.2025.
[Telc] Telraam. https://telraam.net/en/s2, accessed 24.10.2025.
[Tre25] Stefan Trenovatz. Lightweight license plate recognition for traffic flow analysis. Technische

Universitdt Wien, Sep 2025.

[ZSJ*21] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Zehuan Yuan, Ping Luo, Wenyu Liu,
and Xinggang Wang. Bytetrack: Multi-object tracking by associating every detection
box. CoRR, abs/2110.06864, 2021.

42

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Miovision
	Telraam
	AI-based traffic counting systems
	Other Contributors to this Project

	The Prototype
	Hardware
	Software
	Mounting Locations

	Evaluation
	Model Performance
	Temperature
	Reliability
	Discussion

	Conclusion and Future Work
	Overview of Generative AI Tools Used
	Übersicht verwendeter Hilfsmittel
	List of Figures
	List of Tables
	Bibliography

