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Figure 1: Automatic optimization of the location and orientation of a building within a rectangular construction site in order to minimize its
average surface temperature. The left image shows the initial plan, the plot shows the convergence of the relative objective-function value

and the temperature, and the right image shows the optimized building layout. In addition to the visualization of the temperature distribution,
we also display the city plan on the ground plane and indicate highly specular facades using a glossy material.
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Abstract

The early phase of urban planning and architectural design has a great impact on the thermal loads and characteristics of
constructed buildings. It is, therefore, important to efficiently simulate thermal effects early on and rectify possible problems.
In this paper, we present an inverse simulation of radiative heat transport and a differentiable photon-tracing approach. Our
method utilizes GPU-accelerated ray tracing to speed up both the forward and adjoint simulation. Moreover, we incorporate
matrix compression to further increase the efficiency of our thermal solver and support larger scenes. In addition to our dif-
ferentiable photon-tracing approach, we introduce a novel approximate edge sampling scheme that re-uses primary samples
instead of relying on explicit edge samples or auxiliary rays to resolve visibility discontinuities. Our inverse simulation system
enables designers to not only predict the temperature distribution, but also automatically optimize the design to improve ther-
mal comfort and avoid problematic configurations. We showcase our approach using several examples in which we optimize the
placement of buildings or their facade geometry. Our approach can be used to optimize arbitrary geometric parameterizations
and supports steady-state, as well as transient simulations.

CCS Concepts
e Computing methodologies — Ray tracing; Physical simulation; * Applied computing — Physics; Computer-aided design;

1. Introduction et al. [FHR*23]: they efficiently simulate steady-state as well as
transient radiative thermal transport, using photon tracing to pre-
Thermal simulations play a crucial role in urban planning and ar- compute a transport matrix, which encodes radiative transport be-
chitectural design; however, they often do not receive the attention tween all pairs of surface patches. Their approach enables designers
they deserve. As a result, in practice, issues can be overlooked that to quickly and interactively evaluate the temperature distribution
may be difficult to address later in the design process [DNW24]. across the whole surface of a scene. However, once a problematic
State-of-the-art solutions allow for design evaluation but still re- heat distribution has been identified, the design must be corrected
quire manual adjustments from the user to fix problems. In this manually, which is often non-trivial.
paper, we introduce an inverse simulation method leveraging dif-
ferentiable rendering. Our method allows for automated design op- In this work, we present an approach to automatically opti-
timization to reduce thermal loads and correct problematic config- mize building-geometry parameters, introducing a novel differen-
urations. We build upon the radiative thermal simulation by Freude tiable heat transport simulation. We use gradient-based optimiza-

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which CGF 44_2 | 670048
permits use, distribution and reproduction in any medium, provided the original work is properly
cited. delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://orcid.org/0000-0002-4224-4105
https://orcid.org/0000-0002-1110-0707
https://orcid.org/0009-0006-8938-8751
https://orcid.org/0000-0002-1559-0993
https://orcid.org/0000-0002-9370-2663
https://orcid.org/0000-0002-7617-5523
https://doi.org/10.1111/cgf.70048

2 of 14 C. Freude, L. Lipp, M. Zezulka, F. Rist, M. Wimmer, & D. Hahn / Inverse Simulation of Radiative Thermal Transport

tion methods to minimize user-defined objective functions with re-
spect to arbitrary geometric parameters, e.g., the location, orienta-
tion, or facade shape of a building. Furthermore, we also include
heat transport by surface conduction in our simulation model. Fig-
ure 1 shows an example in which the placement of a building inside
a city block is optimized to reduce its average surface temperature.

Building a differentiable simulation model for radiative heat
transport poses two major challenges: first, as all materials emit
radiation proportional to the fourth power of their temperature,
the simulation model is inherently non-linear. While recent work
has shown that automatically constructing a corresponding adjoint
linear system is possible [BBC*22], currently popular automatic-
differentiation tools do not include this functionality yet. We there-
fore derive the adjoint equation analytically. The second challenge
is that radiative transport, including indirect radiation and poten-
tially specular reflections, causes strong global coupling between
temperatures throughout the scene. Simulating and differentiating
this transport efficiently requires GPU-parallel Monte Carlo inte-
gration. Here, we present a differentiable photon-tracing approach,
which allows us to compute the gradient of our minimization ob-
jective. We formulate this process such that we only need one ad-
ditional photon-tracing pass regardless of the number of time steps
taken during the simulation, so long as the parameterization of the
scene geometry is time-independent.

Furthermore, we also show how the forward simulation can be
accelerated by a low-rank compression of the transport matrix, in
order to support scenes with a higher mesh resolution. Addition-
ally, we implemented a Blender plugin for easy scene authoring,
including optimization targets and free parameters, as well as so-
lar irradiation from publicly available sky data sources. We verify
the correctness of our approach on various test scenes and compare
our gradients to finite-difference approximations. Additionally, we
demonstrate the practical utility of our system on larger scenes, in-
cluding concurrent optimization of multiple scene objects. In sum-
mary, our contributions are:

e a differentiable heat transport simulation method, supporting
both steady-state and transient simulation, including a differen-
tiable photon tracing step for the radiative transport component,

e anovel approximate edge sampling scheme for efficient discon-
tinuity handling during differentiable photon tracing, and

e an evaluation of low-rank transport-matrix compression ap-
proaches for accelerating the transient forward simulation.

We first summarize related work in §2 and introduce the theory
of heat transport and the finite-element discretization underlying
our formulation in §3. We then describe our inverse thermal solver
and our differentiable photon-tracing approach in §4, providing de-
tails and evaluating matrix-compression methods in §5. We present
several examples in §6, including thermal optimization of object
placements and mitigation of a problematic heat concentration by
deforming a reflective facade.

2. Related Work

Heat transport can be classified into three distinct modes: con-
duction within the material, convection along a moving fluid, and

radiation between surfaces. Heat conduction is one of the classi-
cal second-order partial differential equation (PDE) models and
many simulation methods have been developed in this context over
the years. Convection transports heat along with the motion of a
fluid; while this transport mode is beyond the scope of this pa-
per, approaches based on simplified flow models for urban design
[LRPM22] could be incorporated in the future. The main challenge
posed by radiative heat transport is the highly non-linear emissive
term, i.e., any material emits radiation with a total power propor-
tional to T#, where T is the surface temperature (Stefan-Boltzmann
law [Ste79; Bol84]).

The most widely used approach to simulating heat transfer, in-
cluding radiation, is the finite element method (FEM), which dis-
cretizes the computational domain into small, often tetrahedral or
triangular elements [LB13], and forms the basis of radiosity meth-
ods in computer graphics [Wie66]. Goral et al. [GTGB84] first
applied this idea to compute diffuse-only light transport in com-
plex scenes. Nevertheless, handling non-diffuse reflections in FEM
is challenging. Conversely, Freude et al. [FHR*23] recently intro-
duced a simulation method for radiative heat transport that utilizes
a FEM discretization in combination with GPU-accelerated photon
tracing, enabling both transient and steady-state simulation of sur-
face temperatures including diffuse and specular reflections. Build-
ing upon their work, in this paper, we present the first differentiable
heat simulation that includes radiative transport, especially the non-
linear emissive term.

In general, Monte Carlo (MC) methods are a powerful tool for
numerically approximating integrals via random sampling. This
idea is the foundation for modern ray-tracing methods in physics-
based rendering, i.e., solving the rendering equation [Kaj86] by
tracing random rays that transport visible light through a 3D scene
[Arv86; Jen96; PJH23]. In the last few years, differentiable ren-
dering has received a lot of attention in the computer graphics
community. Especially differentiable ray tracing has seen many
applications, from shape or texture optimization to lighting de-
sign [LADL18; NVZJ19; ZMY *20; LHE*24]. One recurring prob-
lem in differentiable rendering is how to handle discontinuities
caused by geometric occlusions (silhouette edges or hard shad-
ows). This issue is typically addressed in rasterization by blurring
the edges [LLCL19], whereas, for ray tracing, multiple solutions
have been proposed. One option is to first detect and then sepa-
rately sample these edges [LADL18], while other methods sug-
gest to re-parameterize the discontinuous integrand near an edge
[LHJ19; BLD20], directly start paths from them [ZRJ23], or apply
Markov-Chain-Monte-Carlo perturbations on discontinuous edges
[XBLZ24]. To reduce computational overhead compared to these
methods, we build on the general edge-sampling idea, but make
simplifying assumptions on the local irradiance field, which al-
lows us to efficiently re-use primal samples and only trace one
additional shadow ray for each primal sample that lies near a dis-
continuity edge. In the future, concurrent work on differentiable
photon mapping [XLLX24] could also be considered for our ap-
plication. Contrary to us, Liu and Hasegawa [LH23] address ther-
mal inverse simulation with a grid-based differentiable immersed-
boundary method.

Recently, exploiting the (generalized) mean value property of
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harmonic functions [SC20], Monte Carlo (MC) methods have also
been used to solve linear second-order PDEs. Earlier works, such
as “Walk on Spheres” [Mul56; SC20] have focused on Dirichlet
problems, while “Walk on Stars” and similar methods [SSJC23;
MSCG24b] are capable of solving mixed boundary value prob-
lems; they have also been extended to exterior problems [SCJ*23].
Sawhney et al. [SSJC23] simulate diffusive-convective heat trans-
fer between objects by solving Laplace’s equation with mixed
boundary conditions (Dirichlet and Neumann), while Miller et al.
[MSCG24b] extend this approach to include Robin boundary con-
ditions. Similarly, recent methods [BBC*23; PBC*23] couple a
MC heat advection-diffusion model to a ray-tracing renderer to di-
rectly simulate and render thermal imaging. These MC-based PDE
solvers have recently also been extended to differentiable simu-
lation and inverse problems [YVI24; MSCG24a; YWZZ24]. Ap-
plications include shape optimization [MSCG24a] and electrical
impedance tomography [YVJ24]. Similarly, Mann et al. [MFS*22]
developed an end-to-end differentiable model to optimize the en-
ergy absorption rate of photovoltaic installations. In all cases, exter-
nal (temperature-independent) radiation sources may be included,
as they fit within the underlying linear PDE model. However, cur-
rently, these MC methods cannot handle the full radiative coupling
due to the non-linear emissive term, which we include in our dif-
ferentiable simulation model.

3. Background

In this section, we briefly summarize relevant background and the-
ory, starting with the well-known heat transport equation and de-
scribing our discrete simulation model. The main components of
our discretization scheme are a diagonally lumped (thermal) mass
matrix, surface conduction building on the cotangent formulation
of the Laplace-Beltrami operator, and a radiative transport matrix
following the formulation of Freude et al. [FHR*23].

The continuous volumetric heat transport equation assuming
isotropic conduction and without convective transport is :

pCp%—KVZTZO in Q, 1)

where T is the temperature, p is the mass density, cp the heat
capacity (at constant pressure), and ¥ the thermal conductivity
[RMR#*24]. We consider either standard Dirichlet boundary condi-
tions, i.e., prescribing temperature data at the boundary I'p C 9€,
i.e., T =T, on I'p, or radiative heat exchange

oT 4
—Ka =¢g(cT"—E) onTyg, 2)

where € is the surface emissivity, E is the irradiance (i.e., incident
flux per area over the entire wavelength spectrum), n is the outward
unit surface normal, and G is the Stefan-Boltzmann constant.

We derive the common finite-element discretization for this
model as described in our appendix. Collecting per-vertex temper-
atures into the vector of unknowns T, writing its time derivative as
T, and denoting the component-wise fourth power as T*, we can
write the spatially discretized system as

MT + LT+ 7 T =0, 3)

where M denotes the diagonally lumped (thermal) mass matrix, £
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is the Laplace-Beltrami operator discretizing the conduction term,
and T is the radiative transport operator. We either solve for a
steady state by setting T = 0, or apply backward Euler integra-
tion for time-dependent (transient) simulations. For each time step
i (of size As) from fy = 0 to fmax, we solve the following non-linear
system for the next temperatures T;:

(M+AL)Tip +AT T = MT;, )

respecting the (potentially time-dependent) Dirichlet boundary
condition T;|r, = Tp(;), which also models external (solar) ir-
radiation. The initial condition Ty could be specified by the user
explicitly, or given as the solution to the steady-state problem

LTy+T T =0 s.t.Tolr, =Tp(t =0). )

Finally, note that the irradiance E results from radiation being
emitted by other surfaces and propagating according to the radia-
tive transport equation. In practice, we construct the discrete ra-
diative transport operator 7 in a parallel photon-tracing step on
the GPU, using the publicly available implementation by Freude et
al. [FHR*23]. In addition, in §5.2 we also discuss how to speed up
the forward simulation by approximating the transport operator us-
ing adaptive cross approximation (ACA) [Beb00; Gra04]. We com-
pute solar irradiation data using Ladybug [Lad24] in conjunction
with Radiance GENDAYMTX [WS98] and freely available weather
tapes from EnergyPlus [CPLWO00], which provides data for many
locations around the globe. In the future, more recent sky models
developed for rendering [HW12; HW13; GGJ18; WVB*21] could
also be used.

3.1. Problem Statement

In this paper, our goal is to solve optimization problems where the
objective function measures the temperature distribution (in space
and time) resulting from Eq. (3) (or the corresponding steady-state
problem) and where the optimization parameters p define a static
(i.e., time-independent) parameterization of the surface geometry.
Formally, we aim to minimize an objective function & that mea-
sures the temperature at all time steps:

P’ = argmin(® -+ C(x(p))),

D= tr;alx Zi A;(p(t,',Ti(p)),

where all T;(p) satisfy Eq. (4) for i > 0 and Eq. (5) for i = 0 (ex-
cept for explicitly defined initial conditions). Here, ¢ denotes the
part of the objective function that evaluates the resulting tempera-
ture at each time step #;. Finally, C encapsulates all regularization
and (soft) constraint terms that directly measure the geometric con-
figuration, where x(p) refers to the list of all (parameterized) vertex
positions. In order to find solutions to this problem efficiently, we
use gradient-based optimization algorithms, which means we must
compute the gradient of the objective function with respect to the
optimization parameters, Vp(® + C). Note that for soft constraints
and regularization terms, VpC is usually easy to compute because
these terms do not include the simulated temperature data. There-
fore, we focus on computing Vp® in the following section.

(6)

Our approach builds on the photon tracing method of Freude
et al. [FHR*23] because of its guaranteed energy conservation in
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the discrete setting and support for global illumination effects. We
then formulate a differentiable counterpart, including an approx-
imate edge-sampling scheme in order to minimize the computa-
tional overhead of differentiating discontinuous integrands. Our ap-
proach uses only one shadow ray, whereas alternative methods typi-
cally require multiple additional samples. Another advantage of the
photon tracing framework is that it allows for an intuitive physical
interpretation of our approximate edge sampling. In the context of
this work, we consider design optimization for buildings that do not
undergo time-dependent deformations, i.e., our parameterized ge-
ometry defines a static shape, rather than a motion. While we focus
on optimizing the geometry of these buildings, in principle, mate-
rial parameters, such as heat capacity or emissivity, could also be
considered and would fit directly into our theoretical framework.

4. Differentiable Thermal Radiation

Having outlined the physical model of heat transport and our core
optimization problem in the previous section, we now derive ad-
joint equations in order to compute the objective function gradient.
In the following, we assume that the entire scene geometry is given
as a triangle mesh, and each vertex position in that mesh is (or
could be) an independent optimization parameter. In the following
derivation, we consider the “full” parameterization x = p. In prac-
tice, restricting the gradients derived here to some arbitrary smooth
parameterization x(p) can be easily done afterwards by projecting
with the Jacobian of the chosen parameterization (dx/dp).

Following the derivation of Bradley [Bra24], the time-
continuous adjoint of Eq. (3) is

M = (£ +diag(4T*)T)"A + (3¢/dT)", 7

where A is the adjoint state. Applying the same backward Euler
time discretization as in the forward simulation yields

SIA =M"Ay —A(99/3T)), ®)

where the system matrix S; = M + AL + A, diag(4T;*)T cor-
responds to the Jacobian of Eq. (4). The boundary conditions
are always A = OonI'p, and the adjoint “initial” condition is
A(t = tmax) = 0. Starting from the adjoint initial condition, we first
solve Eq. (8) for #; = fmax — Ar and then proceed backward in time
until all A; have been computed. The gradient of the objective func-

tion is then
Vp® = tmax ' (OpLTo+0pTTy)
-1 T ; 4 ©)
it Y A (x,- (0pMT; + 3p LT; +3pTT; )) :

where S{u=MT"Aq and Sy = (£ + diag(4T5) 7). Here, we use the
shorthand notation dp(-) = 9(+)/dp. Note that in the time-discrete
setting, T; = (T;41 — Ti) /A

In case we only solve for steady-state temperatures T, and there-
fore & = @(T), these equations simplify to

S™A = —(3¢/dT)", and (10)
Vp® = AT (0pLT +3pTT™). (11)

Once we have completed the forward simulation (solving Eq. (4)
or (5) respectively) as well as the adjoint simulation (solving Eq. (8)

or (10) respectively), the remaining step to complete the gradient
calculation according to Eq. (9) or (11) is to evaluate the products
of the form v'(dA/op)u. Because M and £ are sparse matrices
resulting from a standard finite-element discretization, products in-
volving these terms can be computed using the usual FEM assem-
bly implementation and computing the required derivatives with re-
spect to parameters locally, per element. Note that in our results, we
omit these terms, as they typically have a much weaker influence
on the resulting gradients than the changes to the radiative trans-
port configuration. The main reason for this behavior is that we
typically consider either rigid motions or (almost) isometric defor-
mations that have no (or negligible) influence on the thermal mass
or heat conduction.

Consequently, we are left with the most challenging terms to
compute, which involve derivatives of the thermal transport oper-
ator 07 /0p. Note that 7 is a dense matrix of size n x n (where
n is the number of vertices in the scene). Furthermore, each ver-
tex could, in principle, move independently during optimization,
resulting in up to 3n parameters. Therefore dp7 is a dense tensor
of derivatives of size (up to) n X n X 3n; hence, we want to avoid
storing this tensor in (GPU) memory.

For the forward simulation, we construct 7~ via GPU-accelerated
photon tracing as in Freude et al. [FHR*23], where each entry 7 |
results from a summation over many photon paths (connecting the
mesh vertices j and k). In our differentiable photon-tracing step, we
consequently compute products of the form VTapTu alongside the
required derivatives also on a per-path basis, as we describe in the
remainder of this section. We then directly accumulate the results
of the per-path products into the final gradient.

4.1. Differentiable Photon Tracing

The transport operator 7 follows from discretizing the radiative
transport term in Eq. (20). It consists of an emissive part ceT* (on
the diagonal) and an absorptive part €E, which is computed by pho-
ton tracing: We emit N photons around each vertex j with power
p1 =0€;Aj/N, where A; is the vertex-associated area. Note that
due the sign convention in Eq. (20) and (3), we then add p; to
the diagonal 7;;. We trace the photon through the scene, includ-
ing indirect scattering, until it is absorbed near some other vertex k,
where we subsequently subtract p; from 7y ;. Please refer to Freude
et al. [FHR*23] for details on this construction, which they derive
from a path-integral formulation. In summary, the discrete form of
this path integral results in

Tij = 8x0eA;— Y, pilj — K, (12)

where the Kronecker delta §; = 1if j = k, 0 otherwise; and
pilj — k] refers to any photon that was emitted near vertex j and
absorbed near vertex k (including via indirect scattering paths).

While this photon-tracing approach might not appear amenable
to differentiation on first glance, we use the key ideas of path-space
differentiable rendering [ZMY *20] to find the required derivatives.
Specifically, we first compute the continuous part, as suggested in
§6.1 of Zhang et al. [ZMY*20], by always differentiating the ge-
ometric term (which is implied but not explicitly evaluated during
photon tracing) without differentiating any sampling probabilities.

© 2025 The Author(s).
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Algorithm 1 Differentiable thermal simulation: blue text indicates
code that runs on the GPU.
Input: objective function @, scene data (mesh and materials).
Input: initial and boundary conditions. // Ty can be given explic-
itly or computed as a steady-state solution
Initialize 7 = 0 // Begin photon tracing.
for each mesh vertex j do
trace N photons (in cos-weighted random directions),
at each photon-surface intersection (near vertex k):
reflect or absorb randomly proportional to emissivity €.
if photon absorbed near vertex k then
accumulate absorption in transport operator:
Tij —=0Aje;j/N. [/ Note the sign convention in Eq. (20):
positive for emission, negative for absorption.
Emissive diagonal term:
/Tjj += GAij.
Assemble L // conductivity-scaled cotan-Laplacian
and M // diagonally-lumped thermal mass (Mj; =A; p;j cp;j hj).
if T not explicitly given then
solve Eq. (5) for Ty,
D = fmax A (0, Tp).
else
o =0.
/l Transient forward simulation — skip for steady-state only:
Initialize T; = Ty.
for time #; = 0 to fmax (time step A;) do
solve Eq. (4) for T4 .
Evaluate objective function: ® += tgale,(p(tH 1, Tiv1).
/I Adjoint simulation:
Initialize A = 0.
/I Note for steady-state only: solve Eq. (10), skip for-loop.
for time #; = tmax — A to O (time step —A;) do
compute objective derivative: 0¢/dT;.
Solve Eq. (8) for A;.
if T( not explicitly given then
solve SE/J =M" A for u.
Initialize Vp® = 0 // Begin differentiable photon tracing.
for each mesh vertex j do
re-trace all photon paths
for each path segment do

compute d/ﬁf, i.e, the one term of the transport derivative
corresponding to this segment, Eq. (14) and (15), where p
refers to the six vertices of the two triangles containing the
segment’s start and end points.
If applicable, add edge derivatives, §4.2, to cgﬁ/j, where p
also includes the shadowed vertex.
/I Accumulate the objective function gradient, Eq. 16:
for time #; = 0 to tmax do
Vo += (M) dpTry (T))}
Output: temperature data for all time steps {T;}, objective func-
tion value ® and gradient Vp®.

Consider a photon p; emitted near vertex j and absorbed near
vertex k, travelling along a path consisting of n; segments (so
n; = 1 refers to direct transport from j to k). Following Pharr et
al. [PJH23], but accounting for the absorption at k, resulting in one

© 2025 The Author(s).
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fewer BRDF term than path segments, the throughput along this
path is

n = H, 1 lel 18is (13)

where f; is the material’s bidirectional reflectance distri-
bution function (BRDF) at intermediate path vertices, and
gi = |cosBcos®’|/d? is the geometric term per path segment of
length d; (assuming visibility). Here @ and 8’ are the exitant and
incident angle relative to the local surface normal at the two end-
points of each segment. When constructing the transport operator
during photon tracing, we sample paths such that dividing by the
product of all sampling probabilities cancels out this throughput
term, resulting in Eq. (12). This means that m; /([T P;) = 1 for sam-
pling probabilities P;. Therefore, we can consider photon tracing,
Eq. (12), as a specific discretization of the path integral and follow
Zhang et al. [ZMY*20] in differentiating the throughput but not the
sampling probabilities.

We now consider the general case, where the parameter vector p
contains per-vertex displacements for all mesh vertices. (Projecting
the resulting per-vertex gradient to other differentiable parameter-
izations of mesh deformation later is straightforward). The deriva-
tive of Eq. (12) with respect to p is then

dTyj dn, dA; 1
dp 5k1°€J dp Z,( ’A pilj =k, (14

where the derivative of the vertex-associated area follows directly
from the triangles adjacent to the vertex. Note that A j always refers
to the area around the emitting vertex, so dA ; /dp is only non-zero
at the vertices of the triangle containing the photon path’s start-
ing point. Finally, the derivative of the throughput follows from the
product rule:

ang _ -1 dfi n M dgi
dp _Zizl f: dp +Zz lg dp (15)

Following the “material-form differential path integral” idea
[ZMY*20], we always keep the barycentric coordinates of each
path vertex constant as the vertices of the containing triangles are
displaced by p to compute the derivatives df/dp and dg/dp. Note
that for each segment of the path, we only need to compute those
derivatives relating to the local BRDF and geometric term, which
are non-zero only at the vertices of the triangles containing the seg-
ment endpoints. In this way, we compute one term of the sum over
photon paths and sum over path segments at a time, resulting in
one summand c% of the derivative of the transport matrix en-
try kj with respect to those parameters that affect only the cur-
rently processed segment. We then immediately evaluate the prod-
ucts de/lﬁ:kju, where v represents all adjoint states, u all tempera-
tures (coefficient-wise raised to the fourth power), and accumulate
the result into the objective gradient vector

Vp®  Vpd+v'dpT;u. (16)
In summary, we accumulate these updates into Vp® independently

for each path segment, and for each pair of adjoint state and tem-
perature (i.e., for each time step and/or the (initial) steady-state).
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4.2. Approximate Edge Sampling

For the discontinuous part, where Zhang et al. [ZMY *20] suggest
a separate boundary integration step, we employ an approximate
edge sampling that re-uses photons sampled in the primal pass,
which we explain in the following. In this way, we avoid the com-
putational overhead incurred by other methods that rely on separate
edge samples of auxiliary rays.

The main approximation we make in our approach is to assume
that in a small neighborhood of a discontinuous edge, the local irra-
diance remains constant across the edge. In a nutshell, we assume
that the local derivative of the integral computing the absorbed ra-
diative power, when offsetting the edge in a direction orthogonal
to the edge by a small distance 7 is of the form (d/d7) [jcdx =c
for some constant ¢ representing the local irradiance. Consequently,
we first detect photons that intersect a triangle close to one of this
triangle’s bounding edges based on the barycentric coordinates of
the intersection point (in our results we always use a 5% margin,
i.e., the minimal barycentric coordinate must be < 0.05). For each
such near-edge photon, we check if the edge casts a shadow onto
any other triangle (if so we will refer to it as the occluding edge).
For this check, we trace an additional shadow ray starting at the
closest point on the edge (plus a tiny offset to avoid intersecting the
same triangle again) in the same direction as the incident photon.

If we find a shadowed triangle, there is a dis-
continuous change in the power density from the
occluding edge to the shadowed triangle, pro-
portional to the local irradiance. We estimate
this irradiance as E; = p;/A., where p; is the
photon’s power and A, is the area of the trape-
zoidal strip of the triangle as illustrated in the g
inset image, i.e., Ae = rhe(1 —r/2)le, with r = 5%, he the height
of the triangle orthogonal to the occluding edge, and /. the length
of that edge. We now need to find the direction d in which the inci-
dent photon path needs to shift in order to move across the occlud-
ing edge. Clearly, this direction must be orthogonal to the direction
the photon is traveling in (dp,) and also orthogonal to the occlud-
ing edge (€, where both d, and € are unit vectors). Consequently,
this direction is d = & x d, / ||€ x dp, ||. Finally, the differential ir-
radiance transfer from the occluding to the shadowed object is then
dE; =d |d-ng| [, E;, where the projection term |d - n.| diminishes
the effect if the incident photon arrives at a shallow angle (n. is the
outward unit normal vector to the edge in the plane of the occlud-
ing triangle). This differential irradiance is an additional derivative
contribution to d/lﬁij, where j refers to the vertex where the pho-
ton was emitted and k refers to the shadowed vertex (i.e., the vertex
closest to the intersection point of the shadow ray on the shadowed
triangle). The parameters p where this contribution is non-zero are
the displacements of the endpoints of the occluding edge, as well as
of the vertex where the photon path segment started (origin vertex)
and the shadowed vertex.

Finally, we distribute the differential irradiance to the parameters
moving either the occluding edge, the origin of the photon’s current
path segment, or the shadowed object. Due to energy conservation,
these contributions must sum to zero. Consequently, we distribute
the differential irradiance among the origin and shadowed vertex
based on their relative distance to the occluding edge: Let doe de-

5 100 MR TR B BN B 1 1
o
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) default T ==
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Q9 edg. 1e-4
e edg. 1e-6
— - = —grad. magn.
o 10710 ‘ ‘ ‘ ‘
50 100 iteration 200 250

Figure 2: Ground-truth recovery test as in Fig. 5: ablation study on
gradient descent using different edge-detection margins in our edge
sampling scheme. Default (5%, dark blue), 0.1% (medium blue),
107° (light blue), without edge sampling (red). Dashed lines show
corresponding normalized gradient magnitudes.

note the distance from the photon’s origin (start of the path seg-
ment) to the occluding edge and d,s the distance from the occlud-
ing edge to the shadowed object, as illustrated in the inset image.
For the occluding edge, we have d;vﬁj = —dEj, and con-
sequently for the origin: cﬁ =dE; des/(doe + des),

and c% = dE] doe/(doe + des) for the shadowed ver- p
tex. With these edge derivative terms, we again directly “0€¢
update the objective gradient as in Eq. (16). Figure 2
compares different configurations of our edge sampling \
scheme on gradient descent optimization. Reducing the
edge-detection margin from the default » = 5% (dark
blue) to r = 0.1% (medium blue) delivers similar re-
sults when the overall number of traced photons is sufficiently high.
Please also refer to Fig. 12 for a similar comparison with a lower
number of photons. Reducing the margin even further (r = 1076,
light blue) introduces too much gradient noise and leads to unsatis-
factory convergence behaviour, while disabling edge sampling alto-
gether fails to converge (red). Per-vertex and parameter-space gra-
dients are shown in Fig. 13.

des

In summary, we re-use regular photons that intersect triangles
near an edge in order to avoid detecting and sampling edges that
cause shadows explicitly. In this way, we only need to trace one ad-
ditional ray to find the occluded object and compute the differential
power transfer based on the photon’s original power.

5. Implementation Details

So far, we have considered the parameters p to refer directly to
vertex positions in the mesh. In order to control the free parame-
ters for the optimization on a per-scene basis, we implement var-
ious parameterization functions for the scene geometry, such that
vertex positions x are specified as x(p), and we project the ob-
jective gradient by the Jacobian of the parameterization: Vp® =
(dx/dp)"Vx®. We implement this parameterization and gradient
projection on the CPU after receiving Vx® from the differentiable
photon tracing shader. In this way, the parameterization can be eas-
ily exchanged for different scenes without affecting the GPU im-
plementation. For most results, we parameterize the geometry such
that individual objects can translate relative to the ground plane
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and rotate around the vertical axis. Additionally, we implement soft
constraints on the vertex positions C(x). In particular, we confine
objects within a pre-defined polygon on the ground plane. We also
prevent collisions, using object’s circumcircles in the ground plane
as collision proxies.

We have implemented a plugin for Blender [Ble24] that allows
us to specify optimization settings and constraints as well as mate-
rial parameters and the sky dome representing the main heat source.
To transfer the scene between Blender and our framework we use
the GLTF format. After optimization in our framework, we export
the scene back into Blender again, including per-vertex tempera-
tures, for visualization. We rendered most of our results using the
Cycles rendering system. For the visualization of the per-vertex sur-
face temperature distribution, we applied linear interpolation and a
custom colormap.

In the remainder of this section, we discuss derivatives for ideally
specular materials and options to speed up the forward simulation
using matrix compression.

5.1. BRDF Derivatives

We use a mixture of ideally diffuse and ideally specular materials;
in the former case, the bidirectional reflectance distribution func-
tion (BRDF) is constant and its derivatives vanish. In the latter case
(ideally specular reflection) the BRDF is technically a Dirac dis-
tribution, which in practice means that we only sample the ide-
ally mirrored outgoing direction during path construction. Xing et
al. [XHL*23] suggest handling this constraint during differentia-
tion by allowing the path vertex at the specular reflection to shift in
the plane orthogonal to the surface such that the constraint always
remains satisfied and include an additional term in the derivative of
the path throughput accounting for this shift, instead of differenti-
ating the BRDF itself. We follow this approach, however, in our ex-
periments (Fig. 11) we found that the additional term has relatively
small influence compared to the derivative of the throughput on the
final results, while introducing more numerical noise to the gra-
dients. Consequently, we do not include this constraint-derivative
term in most of our results, although it could be added if required
for specific applications in the future. Nevertheless, we are able to
consistently reduce heat islands due to specular reflections in our
optimization, as shown in Fig. 8 and 16.

5.2. Transport Matrix Compression

The adjoint problem and gradient calculation are linear, which al-
lows us to implement the summation in Eq. (16) on a per-ray ba-
sis in a matrix-free way. The forward problem, Eq. (4) however,
contains a strong non-linearity in the radiative component, 7~ T,
where storing and re-using the transport operator 7 is preferable
over repeated photon tracing during the non-linear solver. Never-
theless, this operator is (potentially) dense and grows quadratically
with the number of vertices (degrees of freedom) in the mesh. In or-
der to speed up the forward solver, we have investigated approaches
for compressing the transport matrix via a low-rank approxima-
tion. In particular, we implement the adaptive cross approxima-
tion (ACA) algorithm, initially presented by Bebendorf [Beb00],
as well as the improved ACA+ algorithm [Gra04]. The general
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Table 1: Overview of transport operator compression results.
Columns: scene name, number of vertices n, total runtime for un-
compressed reference solution ty, total runtime with compression
te, relative temperature error ‘err’, rank of compression r, type of
compression algorithm (‘+’ indicates ACA+, otherwise standard
ACA, selected by which produced the lower error).

Scene n tu [s] te [s] err. r (+)
FHR-5 1067 2.25 2.09 0.7% 90 +
(Fig. 5 in 3769 25.40 16.20 1.2% 200 +
[FHR*23]) 5089 47.17 35.16 1.6% 250 +

10483 20449 17589 43% 220 +

Rings 771 2.13 196 43% 25
o 3687 39.77 9.01 54% 90 +
=, 9927  382.92 99.23 44% 180 +

14535  992.33 99.23  5.8% 200

Blocker 214 0.40 1.00 14% 20
(Fig. 5) 2168 50.66 30.56  1.2% 80 +
5180 306.55 14857 22% 150 +
6772 552.62 33565 25% 300 @+
Reflector 307 0.39 047 02% 25+
707 1.81 151 02% 60 +
’ 2035 18.43 10.63 02% 200 +
6803 312.12 170.64 03% 650 +

- 8403 59745 257.68 0.8% 550

idea of ACA is to approximate a m X n matrix A ~ A by a sum of
outer products of columns and rows selected from the input matrix,
ie,A=UV= Y i1 ug Vi, where r is the rank of the approximation,
and vy and vy, are the selected columns and rows of A respectively
(the latter must be divided by the pivot element where the selected
row intersects the corresponding selected column). Note that in our
case n = m where n is the number of vertices in the mesh. The goal
of the ACA algorithm is, therefore, to choose an appropriate sub-
set of r columns and rows from the input matrix, where a common
expectation is that r & log(n) [Gra04].

To make this selection, we consider the residual R and iteratively
expand the selection U, V until error threshold e is reached:

IR =||A—Al <, (17)

where || - || is the Frobenius norm. A key feature of ACA is that this
residual matrix is never fully computed, but updated one row or col-
umn at a time, while iteratively adding one column or row to U or V
respectively, depending on where the largest error in the known part
of R currently occurs. Similarly, the input matrix A does not need
to be fully computed, so long as the selected rows or columns can
be retrieved as needed. The ACA+ variant (see Grasedyck [Gra04]
for details) differs from standard ACA primarily in the formulation
of the row and column selection criteria.

In our case, the system matrix in each non-linear solver iteration
isSi=M+ALA+A diag(4T,'~3)7', and the inner linear solver re-
quires matrix-vector product evaluations for this matrix. Note that
M is a diagonal and L is a sparse matrix, so we only need to com-
press the (potentially dense) transport operator 7. This operator is
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Figure 3: Comparison of matrix compression methods: adaptive cross approximation (ACA) and ACA+ [Gra04] (marker color) on four
different test scenes (marker shapes) and varying mesh resolution. Left: total runtime for uncompressed vs. compressed variants for the
forward simulation, including matrix assembly, compression, and non-linear system solving. Right: relative errors in the final temperature
distribution compared to the uncompressed reference solution. All errors are on the order of a few percent or less, while the maximal error

is 5.8%. Please also refer to Table 1 for an overview of these results.

composed of emissive and absorptive parts, describing how radia-
tive power emitted near any one vertex is transported to any other
vertex. We can therefore decompose 7 into these two components,
T = Tem + Tap, Where the emissive part is a diagonal matrix. As
(non-zero) diagonal matrices have full rank, the diagonal domi-
nance resulting from 7em would cause significant error for a low-
rank approximation. We therefore apply ACA(+) to compress only
the absorptive part of the transport operator: 7o, ~ Uy, Vap. Us-
ing the shorthand notation D; = diag(4T;>) and the decomposition
of the transport operator, we can write the linear system matrix as
Si = M+ AL + AD;(Tem + Tap). Approximating the absorptive
part by ACA(+), the required matrix-vector products S; x for an
arbitrary vector x can then be computed as

S; x &~ (M+ AL+ AD;Tem) x+ AD;Uyp Vo, X, (18)

where the first term on the right-hand side is sparse and the sec-
ond term contains the “thin” matrices Uy, and Vy, (size n X r
and r X n respectively), which can be computed efficiently as a
sequence of matrix-vector products from right to left. Apart from
the reduced memory cost for the transport matrix, this formulation
significantly increases performance for matrix-vector products (as-
suming r < n). In our implementation, we use a wrapper class to
represent this compressed system matrix and implement its matrix-
vector product operation, building on the open linear algebra library
Eigen, in particular their EigenBase<...> class. In this way, we can
immediately use Eigen’s iterative linear solvers [GJ*10] with the
ACA-compressed format.

In Fig. 3, we compare the total runtimes and errors for various
test scenes, and we also summarize these results in Table 1. De-
pending on the complexity of the scene and the mesh resolution,
the transient forward simulation can achieve up to 10x speed up,
with a relative temperature error of a few percent compared to the
uncompressed reference solution. While we currently only imple-
ment ACA(+) on the CPU side, in the future, it may be possible to
integrate ACA(+) into the ray-tracing shaders so as to evaluate only
the columns and rows requested by the compression algorithm.

6. Results

In this section, we first present some geometrically simple test cases
to verify the correctness of our approach before demonstrating the
applicability of our method to various design tasks. For basic test
cases, we emit 256k photons per triangle by default; for larger
scenes the triangle and total photon numbers are listed in Tbl. 2.

6.1. Validation Tests

We first compare the optimization convergence of a basic gradient-
descent method using our gradients to a finite-difference (FD) ap-
proximation in Fig. 4. Here, the optimization parameters allow the
temperature sensor to move and rotate freely until a constant target
temperature is achieved at the sensor. Initially, our gradients and
the FD approximation converge equally well. Later on, our gradi-
ents allow the optimizer to converge more precisely to the target
temperature, whereas the approximation error in finite differenc-
ing prevents convergence. Similarly, in the appendix, Fig. 10, we
compare gradients to FD approximations at varying FD-step sizes:
the error between our gradient and the FD approximation for the
optimal step size is below 1%. Instead of optimizing towards a
uniform constant temperature (which cannot be achieved exactly),
in Fig. 5 we aim to recover a ground-truth temperature distribu-
tion. We compare gradient descent and Adam optimization on this
test case, where the blocking object (3/4-disk) must be translated
and rotated (in-plane horizontally) to return to its original place.
In Fig. 2 we also show that this test case fails without consider-
ing discontinuous edges in the gradient calculation, but converges
accurately when using our edge sampling scheme. In Fig. 6, we re-
peat the ground-truth recovery test for a time-dependent simulation
with the number of photons for both forward and adjoint simula-
tion reduced by a factor of 80. The increase in noise due to the
smaller number of sampled photons causes the FD-based optimiza-
tion to fail, while our gradients robustly lead the gradient-descent
optimizer to the correct solution. Finally, in Fig. 11, we test the ef-
fect of additional gradient terms for ideally specular reflections, as
suggested by Xing et al. [XHL*23], on a simple 2D test geometry,
observing only a slight improvement with these additional terms.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



C. Freude, L. Lipp, M. Zezulka, F. Rist, M. Wimmer, & D. Hahn / Inverse Simulation of Radiative Thermal Transport 9 of 14

£ 10° ‘ ‘ ‘ obj. val
o » . fotate + translate J. val.
S N\ — — —grad. magn.
© N obj. val. FD
=2 S ; — — —grad. magn. FD
G>.) 1 Ay S \ A
= 107"k IV / SN 1
] 10 \ \w//\( Tt N Y /\\ // \ // \
Q0 A
o v ’ o
o
® ‘ ‘ ‘ ‘
—

20 40 iteration 80 100

Figure 4: Optimization convergence using our gradients compared
to using finite-difference approximation for constant-step-size gra-
dient descent. Finite-difference step is twice the descent step size.
The task is to translate and rotate the receiving plate such as to
reach a predefined constant temperature (note that all plates con-
sist of only two triangles).

0 , ,
10 ‘(\/,\c\g N obj. val. GD
ST YA

UMV v — — —grad. magn. GD
A obj. val. Adam
— —/~grad. magn. Adam

VTR

<D
translate

-~
10-10 L

+ rotate N

50 100

rel. objective (gradient)
>

iteration 200 250

Figure 5: Ground-truth recovery test with gradient descent (step
size 0.001) compared to Adam (step size 0.1), optimizing in-plane
translation and rotation of a blocking object. The blocking 3 /4-disk
is initially rotated by 50° around the vertical axis and translated by
1/2 radius to the left, and must then return to the central position
shown in the inset image.

Consequently, our current implementation does not include these
terms for 3D scenes, although they could be added if required.

6.2. Example Applications

Having validated our method on basic test cases, we now move on
to potential applications and more complex scenes, such as opti-
mizing the location and rotation of buildings, trees, or the shape
of a highly specular reflective facade. We create these scenes in
Blender [Ble24] and then transfer the scene data into our software
for optimization. Once the optimal configuration has been found,
we then export all data back into Blender for high-quality render-
ing and overlaying of the color-coded temperature distribution on
the surface textures. Please refer to Table 2 for an overview of basic
scene properties and timings, as well as Table 3 for more detailed
scene parameters.

City Block In Figure 1, we show a small city block. In this sce-
nario, a new building is to be constructed inside a vacant area
between already existing buildings. The goal is to find the posi-
tion and orientation of the new building which minimizes its av-
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Figure 6: Ground-truth recovery as in Fig. 5, here for a time-
dependent simulation instead of the steady-state solution and 80x
fewer traced photons. Top: our method recovers the original rota-
tion and position of the blocking 3 /4-disk, whereas optimizing with
finite-difference approximations fails to converge due to sampling
noise. Bottom: the average temperature of the 3/4-disk over time
before and after optimization (matching the ground-truth data).

Table 2: Overview of the mesh size (top), and corresponding opti-
mization step timings (bottom) for the example scenes City Block
(Fig. 1), Hot Spot (Fig. 7-8), and Village with Trees (Fig. 9).

Example Fig. 1 Fig. 7-8  Fig. 9
= Vertices 5014 2974 2488
2 Triangles 8964 4734 3114
©  Photons (Millions) 2349.85 62049  816.31
4 Transp. Matrix (avg.) 0.93 0.45 0.33
€ Opt. Step (avg.) 12.84 8.30 4.89
¢ Total Opt. Time 872.81 1161.70  880.81
Opt. Method Adam GD GD
Nr. of Steps 64 140 180

erage surface temperature. For this optimization, we parameterize
the horizontal location (XY-plane) and the vertical rotation (Z-axis)
of the building. Additionally, we ensure that the optimization does
not place the building outside of the construction site by a con-
straint that penalizes positions outside the bounds of the property.
During optimization, we use the average solar irradiation over one
day and compute steady-state solutions. As a result, the optimiza-
tion moves the building closer to the two taller buildings on the
right and adjusts its orientation to decrease its average temperature.

Hot Spot In our second example scene, shown in Figure 7, we
consider three cars parked in front of a tall building with a con-
cave and highly reflective (e.g., glass) facade. This facade focuses
the sun’s energy directly onto the cars, causing their temperature to
spike around midday. This example is inspired by the 20 Fenchurch
Street skyscraper in London, which similarly created problematic
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Figure 7: Transient simulation of a building with a highly specu-
lar reflective, concave facade, which creates a problematic hot spot
around three cars parked in front of it (a). The images (b)—(d) show
the temperature distribution (heat map) of the scene at three se-
lected times during the day; note how the radiation is focused on
the three cars and the temperature peaks around noon. To mitigate
this concentrated thermal radiation, we optimize the building’s fa-
cade (shape) to move the hot spot away from the cars (see Figure 8).
We plot the average temperature of the three cars over the course
of 24 hours (e) before and after this optimization.

hot spots in the streets that damaged a car. To resolve this prob-
lematic scenario, we parameterize the facade of the building such
that it can be skewed. The goal of the optimization is to adjust this
skewness such as to minimize the temperature of the cars. During
optimization, we simulate steady-state temperatures due to full-day
average solar irradiation. The optimization (Fig. 8) skews the build-
ing’s facade to the right, which successfully moves the focal point
away from the cars, thus reducing their average temperature. We
then compare the time evolution of the cars’ temperature before
and after optimization in Fig. 7.

Village with Trees In Figure. 9, we optimize the position (XY-
plane) and the vertical rotation (Z-axis) of eight trees surrounding
a small village to minimize the temperature of the buildings. Cur-
rently, our simulation does not model the evaporative cooling of
the trees. We instead mimic the cooling effect of trees by consid-
ering them as black bodies with a constant moderate temperature,
causing them to act as heat sinks in the scene. To prevent the trees
from moving into the buildings during optimization, we implement
a collision constraint that penalizes overlapping circumcircles for
all pairs of objects. As a result of the optimization of all 24 param-
eters, the trees move closer to the buildings, which significantly
reduces the average temperature of the buildings.

7. Discussion and Limitations

In summary, this paper presents a differentiable heat transport
simulation, considering both surface conduction and radiative
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Figure 8: Optimization of the heat spot problem shown in Fig. 7.
In the initial state (top left) the tall building reflects the solar ir-
radiation onto three cars parked in front of it. The temperature is
visualized as a heat map overlay. In the optimized result (top right),
the facade is skewed back to remove the focal point from the cars.
The plot shows the convergence of the objective function relative to
the initial state and the average temperature (in Kelvin) of the three
cars, which has been reduced by 12 degrees.

exchange between all scene surfaces. We compute both time-
dependent and steady-state temperature distributions in virtual
scenes, taking solar irradiation and temperature-dependent emis-
sion into account. Deriving the adjoint simulation and a differen-
tiable photon-tracing method, including a novel approximate edge
sampling scheme, allows us to efficiently compute derivatives of
objective functions with respect to arbitrary parameterizations of
the scene geometry.

Our forward simulation builds upon the publicly available frame-
work by Freude et al. [FHR*23] and inherits a few limitations re-
garding the physical model. Specifically, the solar irradiation data
source provides no data during the night. We, therefore, set a con-
stant and uniform temperature for the night sky to model ambient
nightly thermal radiation. While the simulation is directly derived
from the well-known continuous heat transfer model, for accurate
predictions, proper calibration of all parameters of heat sources and
building materials would be necessary. We see such calibration and
evaluation via real-world measurements as an interesting opportu-
nity for future work.

Employing gradient-based optimization generally approaches a
local minimum near the initial parameter values. In some cases, the
momentum added by the Adam algorithm can increase the robust-
ness to spurious local minima. Furthermore, noise in the transport
operator and its derivatives computed by MC photon tracing can
lead to noisy gradients, which sometimes have a detrimental effect
on the convergence behavior. Nevertheless, our examples show that
our approach delivers cleaner gradient data than a finite-difference
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Table 3: Material properties, simulation settings and optimization parameters used for the examples in Fig. 1, 87, and 9. Emissivity e,
diffuse reflectivity r, specular reflectivity rs, mass density p [kg / m], specific heat capacity cp [J/ (kg K)], conductivity X, shell thickness
h [m], temperature T : free (determined by the simulation), constant (fixed uniform value) or data (fixed, possibly time-dependent, per-vertex
values); optimization parameters: T (translation along axes), R (rotation around an axis), Skew (along an axis), or fixed (static geometry);
optimization target: none or cold (minimization of T ); and active optimization constraints: Collision (penalizing intersecting circumcircles),
Polygon (penalizing parts outside of a polygonal boundary), or free (no constraint).

Figure  Scene Element € rq Ts P cp K h T Parameters  Target Constraints

1 Ground 0.8 0.2 0.0 2000 1000 0.5 20.0 free fixed none free
Two Skyscrapers 0.2 0.1 0.7 2000 1000 0.1 0.5 free fixed none free
Other Buildings 0.8 0.2 0.0 2000 1000 0.1 0.5 free fixed none free
Center Building 0.8 0.2 0.0 2000 1000 0.1 0.5 free T(xy), R(z) cold Polygon
Sky Dome 1.0 0.0 0.0 1.0 1.0 00 1.0 Data fixed none free

7,8 Ground 0.8 0.2 0.0 100 200 0.5 2.0 free fixed none free
Building 0.0 0.05 095 2000 500 1.0 20 free Skew(x) none free
Car 0.6 03 0.1 100 100 0.1 0.2 free fixed cold free
Sky Dome 1.0 0.0 0.0 1.0 1.0 00 1.0 Data fixed none free

9 Ground 05 05 0.0 1000 500 0.2 50 free fixed none free
Trees 1.0 0.0 0.0 200 100 0.0 0.1 const. T(xy),R(z) none Collision
Houses 0.6 04 0.0 2000 1000 3.0 1.0 free fixed cold Collision
Sky Dome 1.0 0.0 0.0 1.0 1.0 00 1.0 Data fixed none free

linitial state I Optimized state
Opt. 1 L ok
0.951 L 320
0.90 —— Rel. Obj. Val.
—— Avg. Temp. 315
0-851 - 310
0.80

Iter. 25 50 75 100 125 150 175

Figure 9: In this small village, we optimize the positions of trees to
reduce the average temperature of the buildings. Initially (top left)
the trees are evenly spaced around the buildings. The optimization
then moves the trees closer to the buildings to cool them down (top
right). The plot shows the relative objective value, and the average
temperature (in Kelvin) of the small chapel during the optimization.

approximation. In the future, initial sampling of the objective func-
tion to find good parameters to start from, as well as more sophis-
ticated optimization schemes, could help to find the global mini-
mum. In our current implementation, we compute only the radia-
tive transport operator on the GPU, while the rest of the solver
runs on the CPU. In the future, a GPU-parallel solver could provide
further performance improvements. Finally, we currently simulate
heat conduction and radiation. However, depending on the appli-
cation, convection may play an important part, for instance in the
design of convective cooling devices. Therefore, coupling or uni-
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fying our approach with a fluid flow simulation could broaden the
applicability of our inverse thermal simulation framework in the fu-
ture. Overall, to our knowledge, we present the first differentiable
thermal radiation model built on GPU-accelerated photon tracing,
enabling gradient-based optimization of the scene geometry to sup-
port the thermal design process.
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Appendix

Spatial Discretization Following the standard finite-element ap-
proach, we first derive the weak form of Eq. (1) by multiplying
with a test function v and integrating over the domain €, then inte-
grating the Laplacian term by parts to obtain:

/ vpCp at dx / v-kV dx A VKa dx 0 ( 9)

In this paper, we consider thin-shell geometries and assume con-
stant temperature orthogonal to the shell surface. Therefore, we
split the volume integrals on the left-hand side into a surface in-
tegral over the outer shell surface I', while integrating along the
thickness A directly. We set the test function v to zero on surfaces
where the temperature is known (Dirichlet boundaries, or the in-
ner shell surface, assuming no interior radiative transport), while
substituting Eq. (2) for the remaining surfaces. We now have

/hvpc,,a—T di+/hKVv~VT di+/ ve(oT* —E) dx = 0.
r ot r Tk

(20)
Applying a standard (piece-wise linear) finite-element discretiza-
tion to the first two integrals yields the (thermal) mass matrix
M, which we lump to the diagonal, and the conduction (dis-
crete Laplace-Beltrami) operator £. For the radiative exchange
term, we apply the discretization scheme described by Freude et
al. [FHR*23], obtaining the radiative transport operator 7, which
then results in the form stated in Eq. (3).

Further Test Cases In Fig. 11 and 10, we show two additional
test cases, related to the ideally specular derivative formulation by
Xing et al. [XHL*23] and a validation against finite-difference ap-
proximation for a basic test scene respectively. In Fig. 10, we com-
pare our gradients, including approximate edge sampling, to finite-
difference (FD) approximations over a range of FD step sizes. The
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Figure 10: Gradient error relative to finite-difference approxima-
tion of various step sizes for a simple test case where the blocker is
scaled uniformly to adjust the resulting temperature on the receiver:
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Figure 11: Gradient-descent optimization placing 2D mirror be-
tween a source and sensor. We compare our gradients with (solid)
and without (dashed) the specular constraint derivative suggested
by Xing et al. [XHL*23]. The plot shows relative objective func-
tion values (blue) and gradient magnitudes (red). The marker on
the temperature scale shows the target value for the sensor.

optimization parameter in this case is the uniform scaling factor of
the blocking plate, placed between the heat source (bottom) and
temperature sensor (top). We observe the expected error behaviour,
where large steps cause FD-approximation errors, while small steps
suffer from rounding errors.

In Fig. 12 we extend the ablation study of Fig. 2 to lower num-
bers of primary photons. Reducing both the primary photon count,
as well as the edge-detection margin (and therefore the number of
edge samples relative to the primary samples), shows a progressive
degradation of convergence as the sampling noise increases. Fur-
thermore, we validate our forward simulation model against a well-
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Figure 12: Ablation study for lower numbers of primary photons.
Default configuration (blue) and disabled edge sampling (red) are
the same as in Fig. 2. By default we emit 256k primary photons per
triangle, which we reduce to 32k (‘low’, dash-dots) and then to 3k
(‘vlow’, dashed), while also testing different ratios for the edge-
detection margin (default 5%).
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Figure 13: Visualizing per-vertex (colors, linearly interpolated)
and parameter-space gradients (mapped to vertex motion, arrows)
corresponding to the initial state of the optimization in Fig. 2. De-
Sfault settings (top left), finite difference approximation (top right),
reduced edge-detection margin (bottom left), and disabled edge
sampling (bottom right).

established open-source finite element simulation tool in Fig. 14.
Finally, Fig. 15 shows an additional rendering of the example in
Fig. 1 without the reflective shader for easier readability of the tem-
perature colormap, and Fig. 16 extends the heat-island example in
Fig. 8 with three additional degrees of freedom allowing for sinu-
soidal deformations of the building’s facade during optimization.
In this example we only use 32k photons per triangle, resulting in
noticeable noise in the convergence plot.

C. Freude, L. Lipp, M. Zezulka, F. Rist, M. Wimmer, & D. Hahn / Inverse Simulation of Radiative Thermal Transport

ElmerFEM 300 ours
100

30
10 °K

3
200{2
3
‘é —ours
100/ 3 —ElmerFEM
15
0 :
0 5 time [h] 10 15

Figure 14: Comparison of our transient simulation to the open-
source finite element software ElmerFEM [RMR*24] on the exam-
ple shown in Fig. 6. Even though we work with thin shells instead
of volumetric elements, our radiative heating simulation closely
matches this benchmark. The vertical marker on the plot indicates
the time at which the snapshots above are taken.

initial

Figure 15: Variant of Fig. 1 showing only the temperature col-
ormap with a simple diffuse shader for comparability.

initial
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Figure 16: Extending the parametrization of the building in Fig. 8
by additional sine waves with 2 to 5 periods across the facade area
allowing for more elaborate deformation during optimization.
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