
High-Performance Graphics (2025)
A. Knoll and C. Peters (Editors)

LidarScout: Direct Out-of-Core Rendering of Massive Point Clouds

P. Erler1 and L. Herzberger1 and M. Wimmer1 and M. Schütz1

1TU Wien, Austria

CA13 SAN SIM: 18B Points, 90 GB Laz
Explorable within seconds without any pre-processing

18 Floats 1ms 3k Points 20ms 12k Pixels 3s 15M Points

Bounding Boxes Chunk Points Heightmaps Scan Data

Figure 1: We present LIDARSCOUT, a method to explore huge, compressed point clouds within seconds. The example shown here contains
the Morro Bay area focusing on Morro Rock, rendered with three heightmaps of 640m x 640m.

Abstract
Large-scale terrain scans are the basis for many important tasks, such as topographic mapping, forestry, agriculture, and
infrastructure planning. The resulting point cloud data sets are so massive in size that even basic tasks like viewing take hours
to days of pre-processing in order to create level-of-detail structures that allow inspecting the data set in their entirety in real
time. In this paper, we propose a method that is capable of instantly visualizing massive country-sized scans with hundreds
of billions of points. Upon opening the data set, we first load a sparse subsample of points and initialize an overview of the
entire point cloud, immediately followed by a surface reconstruction process to generate higher-quality, hole-free heightmaps.
As users start navigating towards a region of interest, we continue to prioritize the heightmap construction process to the
user’s viewpoint. Once a user zooms in closely, we load the full-resolution point cloud data for that region and update the
corresponding height map textures with the full-resolution data. As users navigate elsewhere, full-resolution point data that is
no longer needed is unloaded, but the updated heightmap textures are retained as a form of medium level of detail. Overall,
our method constitutes a form of direct out-of-core rendering for massive point cloud data sets (terabytes, compressed) that
requires no preprocessing and no additional disk space.
Source code, executable, pre-trained model, and dataset are available at:
https://github.com/cg-tuwien/lidarscout

CCS Concepts
• Computing methodologies → Point-based models; Mesh models; Neural networks; Reconstruction;

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/hpg.20251170 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-2790-9279
https://orcid.org/0000-0002-9047-065X
https://orcid.org/0000-0002-9370-2663
https://orcid.org/0000-0002-8166-3089
https://github.com/cg-tuwien/lidarscout
https://doi.org/10.2312/hpg.20251170

2 of 11 P. Erler & L. Herzberger & M. Wimmer & M. Schütz / LidarScout

1. Introduction

Many fields require huge terrain scans, including archeology, in-
frastructure, bathymetry, agriculture, forestry, flood and landslide
prediction, geology, climate research, and many more. Improve-
ments in laser scanners and frequent scanning operations (e.g.,
3DEP [Sur18] and AHN [Ned23]) result in country-wide data sets
comprising hundreds of billions to trillions of points. These are
typically stored in a compressed format (LAZ) and can amount
to terabytes. Visualizing these data sets requires out-of-core level-
of-detail (LOD) structures that allow loading only those tiny sub-
sets necessary for a given viewpoint. However, generating these
structures takes hours to days of preprocessing. For example,
AHN2, a point cloud of the entire Netherlands, comprises 640
billion points, and constructing an LOD structure took Martinez-
Rubi [MRVv∗15] 15 days of processing.

With these huge amounts of data, tasks like viewing become
non-trivial. Such supposedly simple tasks include having a quick
overview, searching for obvious problems like outliers and noise,
finding the relevant files for a specific region, and transferring the
data. Compression can reduce transfer and storage problems, but
makes other tasks even slower. With LIDARSCOUT, we reduce the
time it takes to visualize massive data sets from days down to sec-
onds. After a user drops the data set into the application, we quickly
read all tiles’ bounding boxes as the only global operation. After-
ward, we efficiently pick a sparse subsample of the compressed
point cloud, generate rough heightmaps, refine them with a small
neural network, and render them with a CUDA-based software ras-
terizer, all prioritizing the user’s current viewpoint. When zooming
in further, we stream the high-resolution scan data and update the
hightmaps.

Our main contributions are:

1. An interactive point cloud viewer for massive terrain scans that
requires no pre-processing and no additional disk space.

2. Efficient extraction of a sparse subsample from compressed
point clouds (LAZ).

3. A method to predict high-quality heightmaps from this sparse
subsample.

2. Related Work

Related work includes fast point-based rendering approaches, par-
ticularly of massive data sets, and surface reconstruction, especially
those related to constructing heightmaps from sparse point samples.
We also briefly explore neural rendering methods, as several point-
based neural methods reconstruct high-quality images from sparse
point samples, a problem similar to constructing heightmaps from
sparse subsamples.

Surface Reconstruction Surface reconstruction aims to recover
the underlying object that a point cloud was sampled from. Most
surface reconstruction methods work in full 3D to generate a mesh
or distance field. Only a few works target 2.5D and directly output
heightmaps.

Being one of the first 3D reconstruction methods,
BallPivot [BMR∗99] runs from point to point in a point cloud,

connecting them with edges. Screened Poisson Surface Recon-
struction [KH13] is likely the most popular non-data-driven
reconstruction method to date, despite requiring normals for
fitting an indicator field to the points. BallMerge [POEM24] uses
Voronoi balls to recognize the inside and outside of large scans.
PPSurf [EFPH∗24] is a recent data-driven method predicting a
signed-distance field from unoriented points. Many 3D recon-
struction methods aim at single solids and tend to fail in open
scenes.

Reconstructing heightmaps from point clouds has seen little
work in recent years. However, the field of depthmap estimation
is very active, and many results can be adapted to heightmaps.
Moving Least Squares [LS81] interpolates a smooth surface from
scattered data points. The now classic approach for heightmap re-
construction is to generate a Delaunay triangulation and interpolate
it linearly. This is done, e.g., in Las2Dem of the popular LAS-
tools [rG15] suite, which was used for SWISSS3D [Swi20], for
example. Las2Dem also deals with multiple laser returns falling
into the same texel. However, triangulation approaches suffer from
the fundamental problem of interpolating within slender triangles.
Closely related, most 2.5D reconstruction methods that work on
depthmaps are in the context of single-view 3D reconstruction. Re-
cent survey papers [RSL∗24, MRC∗22] describe the advances of
this field from depth-cue-based methods via machine learning and
hand-crafted features to deep learning.

Overall, surface reconstruction from point clouds has seen sig-
nificant advances in recent years, especially on the data-driven side.
However, heightmap reconstruction for aerial LIDAR scans has
been neglected.

Aerial LIDAR Storage The LAS and LAZ formats are specifi-
cally targeted towards aerial laser scanning and thus the two most
commonly used formats for massive, country-wide aerial point
cloud scans. LAZ is a compressed form of LAS that specifically
takes advantage of common patterns in point clouds for efficient
and lossless compression [Ise13]. For example, LAZ predicts the
next position of a point based on the differences of the previous
five points and then entropy encodes the difference between predic-
tion and true position, which takes advantage of the fact that laser
scanners observe points in a line-wise and thus predictable fashion.

Point-Based Rendering Levoy and Whitted [LW85] proposed
points as a meta-primitive that all other surface primitives can be
converted to, or to be directly generated from procedural func-
tions. Since then, point cloud rendering has become a widely
popular field due to the vast amount of point samples gener-
ated by laser scanners, and the resulting need for higher per-
formance and better quality [KB04]. Surfels [PZVBG00] and
EWA-Splatting [ZPVBG02] introduced high-quality rendering ap-
proaches for point-based primitives. Botsch et al. [BHZK05] pro-
pose an efficient GPU-based implementation for high-quality splat-
ting. Günther et al. [GKLR13] and Schütz et al. [SKW22] im-
prove the rendering performance via compute-based solutions that
are faster than the triangle-oriented hardware pipeline. Schütz et
al. [SMOW20] introduce a progressive rendering approach that
renders random subsets each frame and converges towards the
true result over the coarse of several frames. 3D Gaussian Splat-

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

P. Erler & L. Herzberger & M. Wimmer & M. Schütz / LidarScout 3 of 11

ting [KKLD23] proposes 3-dimensional Gaussians as a geometric
primitive for 3D reconstruction and novel-view-synthesis. While
some of the referenced works deal with point-based geometry that
comprises position as well as orientation and size/scale, our method
is targeted toward point clouds from aerial LIDAR scans, whose
geometry is solely described by positions.

Point-Based Levels of Detail Rendering massive data sets re-
quires LOD structures that reduce memory usage and increase
performance. QSplat [RL00] proposes a bounding-sphere hierar-
chy as a means to render large splat models. Sequential Point
Trees [DVS03] introduces a similar hierarchy but sequentializes
it into an array that allows efficient rendering on the GPU by
invoking a draw call for a subset of the array, replacing fine-
grained hierarchy traversal by a draw call to a batch of data.
Instant Points [WS06] suggests a nested octree that allows for
view-dependent LOD. Wand et al. [WBB∗08] and Modifiable
Nested Octree (MNO) [SW11] propose modifiable structures that
enable efficient selection and deletion on large point data sets.
Potree [SOW20] and Lidarserv [BDSF22] improve the LOD con-
struction performance of MNOs. Lidarserv and SimLOD [SHW24]
both propose incremental LOD construction algorithms that build
and display the LOD structure while additional points are loaded.
The former focuses on live-capture of point clouds, while the latter
focuses on GPU-accelerated LOD construction that can build the
structure as fast as points can be streamed from disk.

The largest LOD construction study for point clouds that we are
aware of was made by Martinez-Rubi et al. – 640 billion points
converted to an MNO in 15 days [MRVv∗15].

Neural Point Cloud Rendering Neural rendering uses a neural
network to synthesize images for given parameters, rather than gen-
erating and rasterizing geometry. Tewari et al. [TFT∗20] give an
overview in their STAR. Neural Point Cloud Rendering was just
a side-note in 2020, with Neural Point-Based Graphics [ASK∗20]
being the only mention. First, they compute feature vectors for the
given points. Then, they rasterize them as high-dimensional points
in multiple resolutions. Finally, they feed these raw images into a
U-Net [RFB15], which outputs a rendering. Since then, many meth-
ods have been proposed [KPLD21, NKH∗21, WWG∗21, RFS22,
RALB22, YGL∗23, HFF∗23, FRFS24, HFK∗24], improving vari-
ous aspects of the approach. These methods share one drawback:
they are made for relatively dense point clouds, typically produced
by photogrammetry, and many require camera poses, which are not
available in our application.

3. Method

LIDARSCOUT consists of five stages: Quickly loading a sparse sub-
sample of the entire point cloud; generating heightmaps with tex-
tures; refining them for the user’s viewpoint; loading full-res data in
close-up viewpoints and updating heightmaps with full-res data to
retain a medium level of detail; and rendering them with a CUDA
software rasterizer.

3.1. Data and Data Structures

Massive aerial LIDAR data sets are typically distributed us-
ing the compressed LAZ format (e.g., OpenTopography [Pac13],
AHN5 [Ned23], 3DEP [Sur18], etc.). For this paper’s evaluation,
we selected three point clouds from the USA, one from New
Zealand, and one from Switzerland, as shown in Table 1. The sizes
range from 1.6 billion points (ID15_BUNDS) to 262 billion points
(Gisborne+Addendum). The full Switzerland data set would ex-
ceed Gisborne (estimated 18 TB Zipped LAS), but due to lack of
storage we selected a subset of 18.7 GB. In the context of aerial LI-
DAR scans, a point’s geometry is solely defined by its position, un-
like other point-based primitives such as Surfels or Gaussian Splats.
In many cases, they also lack colors, which is why we include the
data set of Switzerland as a representative example.

In this paper, we will regularly refer to tiles, chunks, chunk
points, and patches, as illustrated in Figure 2. Tiles correspond to
individual LAZ files. Massive LIDAR data sets are almost always
organized in such rectangular tiles, typically covering several hun-
dreds to a thousand meters, and storing several millions of points.
Chunks are an important concept in the LAZ compression algo-
rithm. LAZ compresses points in chunks of 50 000 points. The first
point in each chunk is uncompressed, and subsequent points must
be decoded sequentially. Multiple chunks may be decompressed in
parallel. Chunk Points refer to the first uncompressed point in each
chunk. These are important in our approach since they are the only
ones we can quickly access without the need to set up an expensive
arithmetic decoder. Patches are quadratic 640 meter x 640 meter
regions for which we reconstruct a 64 x 64 pixel heightmap from
the surrounding sparse chunk points.

3.2. Rapidly Creating an Overview for Billions of Points

In the first stage, we initialize an overview of the entire data set
with a sparse subsample, which poses two challenges: File I/O is
optimized for loading sequential data instead of random subsam-
ples. Also, massive data sets are typically compressed sequentially,
which further limits our ability to access random sparse subsets.

On modern SSDs, the first challenge is addressed by investigat-
ing their 4 kB random access performance. Similar to accessing
RAM [Dre07] or GPU memory [Har13], SSDs are also optimized
for coalesced access to a range of bytes rather than a few individ-
ual bytes. In case of SSDs, access is typically grouped into sectors
of 4 kB, i.e., fetching a single point from disk is about as fast as
accessing all points in a sector. However, only the first is uncom-
pressed and thus easily accessible. Modern SSDs are capable of
reading about 1 million random 4 kB sectors per second, so we
are theoretically able to load a subsample of 1 M points of an ar-
bitrarily large data set – an arguably sufficiently large subset for
an overview viewpoint on a 2-megapixel monitor. For example, the
model shown in Figure 1 depicts the heightmap model that was
constructed from that data set’s 18B

50k = 360k chunk points.

The second challenge – the industry standard LAZ compression
format for massive aerial LIDAR data – puts a limit on the way we
can load the initial sparse sample. LAZ uses arithmetic coding to
sequentially compress points one after the other, and in turn we also
need to decompress them sequentially [Ise13]. Fortunately, points

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

4 of 11 P. Erler & L. Herzberger & M. Wimmer & M. Schütz / LidarScout

(a) Tile (b) Chunks (c) Chunkpoints (d) Patches

Figure 2: Massive LIDAR data is stored in rectangular tiles. Tiles store data in compressed chunks of 50k points. Points in a tile are typically
stored by timestamp, in this case indicating circular scanning patterns. Chunk points refer to the uncompressed first point of each chunk.
Patches denote 640x640 meter (10m/pixel) heightmaps, created from the rapidly loaded chunk points.

Data set Image

CA13
OpenTopography
17.7 B Points
80 GB LAZ
20 Points/m2

LIDAR (linear)
Screenshot: 56M points

SWISSS3D
Swisstopo
700 M Points (of 714 B)
18.7 GB LAS (of 18 TB)
17 Points/m2

No colors
LIDAR (linear)
BUND_BORA
OpenTopography
6.5 B Points
40 GB LAZ
574.22 Points/m2

Photogrammetry

ID15_BUNDS
OpenTopography
1.6 B Points
14.8 GB LAZ
387.24 Points/m2

Photogrammetry

GISBORNE+Addendum
OpenTopography
95 + 167 B points
850 + 1 550 GB LAZ
30.25 Points/m2

LIDAR (circular)
Screenshot: 248M points

Table 1: Data sets used for LIDARSCOUT. The table shows close-
up screenshots, the entire map with green outline, and the close-
up’s area marked as red box.

are compressed in chunks of typically 50 k points, and the first point
in each chunk remains uncompressed, thus we are able to quickly
load a sparse subsample made of every 50 000th point. Since LAZ

is variable-rate compressed, byte locations of each uncompressed
chunk point must be obtained by first reading the file’s chunk table.

After all chunk points are loaded, we have a sparse subsam-
ple of the entire data set that is sufficiently dense in an overview
perspective. When zooming in, holes between points will appear.
Since massive aerial LIDAR data sets constitute 2.5D data until
one zooms in closely, we propose to fill these holes by constructing
high-quality heightmaps from the sparse set of chunk points. We
divide the entire map into patches, covering 640x640 meters each,
and for each patch, we construct a 64x64 pixel textured heightmap.

3.3. Interpolated Heightmaps

The goal of this part is to convert a region of chunk points to
rough, textured heightmaps, which we will later refine with a neu-
ral network. For any patch of 64x64 pixels (10m/pixel) we first
construct two 96x96 pixel heightmaps using nearest-neighbor (NN)
and linear interpolation of the triangulated chunk points. The addi-
tional padding is applied to avoid seams between adjacent learned
heightmaps.

We receive Pms, the relevant chunk points for the current patch,
from a grid-based data structure. We transform these points from
model space to patch space as follows: P = (p− c)/r,p ∈ Pms,
where c ∈ R2 is the 2D patch center and r ∈ R is the padded patch
radius. The triangulation and interpolation for the heightmaps and
textures work as described in Algorithm 1, omitting minor imple-
mentation details and optimizations for clarity. At the core, we fill
a face map indicating which triangle of the triangulation covers
which pixel. This is mostly done by performing Flood-Fill from the
triangle centroids. Due to rasterization, some pixels of very slender
triangles may be disconnected. We catch those in a second Flood-
Fill step, started at every pixel inside the bounding box of the trian-
gle. The Flood-Fill works in an 8-connected neighborhood. It fills
pixels if they are inside a triangle by checking their barycentric co-
ordinates. After collecting the triangle IDs, we interpolate linearly,
again with barycentric coordinates. This is only possible inside the
convex hull of the triangulation. Therefore, we fall back to NN in-
terpolation on the outside using a KD-Tree of P for the necessary
speed. The NN interpolation uses the same KD-Tree for all pixels.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://portal.opentopography.org/raster?opentopoID=OTSDEM.032013.26910.2
https://www.swisstopo.admin.ch/de/hoehenmodell-swisssurface3d
https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.052019.6341.1
https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.112020.6341.1
https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.022024.2193.1

P. Erler & L. Herzberger & M. Wimmer & M. Schütz / LidarScout 5 of 11

Algorithm 1 Patch-Space Chunk Points to Heightmaps

Require: Chunk points P = {pi} (with pi ∈ [−1,1]2), height val-
ues h = {hi}, (optional) color rgb = {ci}, grid resolution res

Ensure: Heightmaps hmnn, hmlin, mask face_map
1: // Initialization
2: N← res2

3: K← KDTree(P)
4: Add corner padding points (with NaN values) to P, h and rgb
5: T ← DELAUNAYTRIANGULATE(P)
6: G← generate regular grid of res× res points over [−1,1]2

7: Initialize mask array face_map[1..N]←−2
8: Allocate hmnn[1..N] and hmlin[1..N]
9: // FloodFill from Triangle Centroids

10: for all triangles Ti in T do
11: ci← centroid of Ti
12: gid← index of G-grid point closest to ci
13: FLOODFILL(gid, i, face_map, T , G, res)
14: end for
15: // FloodFill from Disconnected Rests
16: for all triangles Ti in T do
17: Bi← bounding box of Ti intersected with [−1,1]2

18: for all grid points g j in Bi do
19: if face_map[j] =−2 and g j ∈ Ti then
20: FLOODFILL(j, i, face_map, T , G, res)
21: end if
22: end for
23: end for
24: // Remove Face IDs of Padding Triangles
25: for all j = 1 . . .N with face_map[j]≥ 0 do
26: i← face_map[j]
27: if any vertex of triangle T [i] is a padding vertex then
28: face_map[j]←−1
29: end if
30: end for
31: // Linear Interpolation in Convex Hull
32: for all j with face_map[j]≥ 0 do
33: i← face_map[j]
34: T ←T [i]
35: bary← barycentric coordinates of G[j] in T
36: hmlin[j]← interpolate h at triangle vertices of T via bary
37: Optionally: color rgb via barycentric interpolation
38: end for
39: // Linear Interpolation outside Convex Hull
40: for all j with face_map[j] =−1 do
41: hmlin[j]← nearest neighbor interpolation on h via K at G[j]
42: Optionally: color rgb via nearest-neighbor interpolation
43: end for
44: // NN Interpolation
45: for all j = 1 . . .N do
46: hmnn[j]← nearest neighbor interpolation on h via K at G[j]
47: end for
48: // Finish Up
49: Remove padding points from P, h, rgb if needed
50: return hmnn, hmlin, face_map

3.4. Learned Heightmaps

The linearly interpolated patches could be used directly for ren-
dering. However, discontinuities and interpolation across slender
triangles reduce the visual quality. Therefore, we employ a small
neural network that produces accurate and visually pleasing inter-
polations.

The input of our CNN consists of two 96x96 heightmaps and
two 96x96x3 RGB textures, both linearly and NN interpolated. It
outputs a 64x64 heightmap and a 64x64x3 RGB texture. The 16
additional texels in each direction give the network context infor-
mation, so it can produce smooth patch seams. Redundancy in the
outputs could smooth the seams further but is not necessary in prac-
tice. We batch inference calls to avoid kernel overhead and context
switches, increasing efficiency.

Since we need to keep every step of our method local, the model
must not depend on the global context. Therefore, we normalize the
given heights to patch space with z = (zms− cz)/r, where zms is a
height in model space (meters above sea level) and cz is the height
of the patch center. This normalization also helps avoid numerical
problems in the network. Since the patch centers are created from
a grid on the XY -plane, we take cz from the linearly interpolated
heightmap’s center. This means that the network cannot know how
far above sea level a patch is, which makes it more general but also
makes color estimation more difficult.

RGB

HM

53k

650k

650k

131k

131k

524k

98k

98k

98k

98k

Lin HM

NN HM

NN RGB

Lin RGB

Skip-Con OutputsDecodersMergersEncodersInputs

Figure 3: LIDARSCOUT architecture. The network predicts clean
heightmaps and textures from rough ones using a combination of
encoders, fully-connected layers, and decoders.

Our network architecture (see Section 3) is inspired by the U-
Net [RFB15], which is also used in Neural Point-Based Graphics
(NPBG) [ASK∗20]. Unlike NPBG, we encode each input indepen-
dently with several convolution layers, which increases the model
size. However, since we work with dense inputs, we do not need
gated convolutions, making our network smaller. Next, we merge
the produced feature vector with separate, fully connected layers
in two steps. Then, we decode the feature vector with two sepa-
rate CNNs to heightmap and texture. In contrast to NPBG, we only
have one skip connection that concatenates the original inputs and
the decoder outputs along their channel dimension. Another CNN
reduces this tensor again to the final number of channels. Finally,
we take the center 64x64 region for further usage in rendering. In

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

6 of 11 P. Erler & L. Herzberger & M. Wimmer & M. Schütz / LidarScout

Chunk Points Linear InterpNN InterpTriangulation Predicted Ground Truth

Figure 4: Example patch with inputs, processing steps, and network prediction.

total, the network has 2.5M learnable parameters, 500k more than
NPBG. Figure 4 shows one example patch with its chunk points,
triangulation, interpolations, prediction, and ground truth. The GT
cannot be reached from the available sparse chunk points. Com-
pared to linear interpolation, our network prediction is smoother,
usually more accurate, and provides better transitions for our im-
plicit level of detail. Note the red outlier at the middle bottom,
which interpolation and simple smoothing preserve, but our CNN
manages to ignore.

We train LIDARSCOUT only on CA13 and SWISSS3D, while
we evaluate it on all the data sets described in Section 3.1 to show
its generalizability. For each data set, we generate our ground-truth
data for training and evaluation from these scans. We choose the
patch centers randomly from the entire point cloud. 7000 of them
are for training, 3000 for evaluation. For CA13 and SWISSS3D,
we split the patch centers by the 70-percentile of their x coordi-
nates into train and test sets. For each patch center, we sample
a heightmap and a texture by taking the mean of all points that
fall onto a texel, which also removes most of the original scanning
noise. To simulate the chunk points of LAZ, we randomly select a
50 000th of all points.

We train our network with MSE loss, supervised by the ground-
truth patches. We set loss elements corresponding to NaN elements
in the GT (gaps in the original scans) to zero. The heightmap and
texture losses are clipped to (0.0 . . .1.0) and averaged. We tried loss
functions that put more weight on tile seams or gradients, but they
did not make a noticeable difference. L1 loss and SSIM produce
very similar, smoothed results, and LPIPS loss creates stripe arti-
facts. The bad results with LPIPS are likely due to a low number of
top-down landscape images in their data sets and our images having
a very low resolution. Our optimizer is AdamW (lr = 0.0001, betas
= (0.9, 0.999), eps = 1e-5, weight decay = 1e-2, amsgrad = False).
With a step scheduler (gamma = 0.1, steps at 25 and 50 epochs), we
train for 75 epochs. The training on CA13 and SWISSS3D takes
about 25 minutes. Training is done in Python using PyTorch, and
the inference in C++/CUDA using LibTorch.

3.5. Full-Resolution Tiles

Upon navigating close to the surface, we additionally load and dis-
play full-resolution point data from tiles with a sufficiently large
screen-space bounding box. In our test data sets, tiles typically hold
about 1 to 50 million points. Close-range viewpoints such as in Fig-
ure 6 may require loading about 50-300 million points, but nowa-
days, compute-based brute-force software rasterizers are capable

of rendering up to two billion points in real time [SKW22]. Tiles
that are no longer in focus are unloaded to free memory for other
tiles. However, we update the heightmap textures to preserve some
information for medium zoom levels.

3.6. Rendering

We need to render chunk points for any patch whose heightmap
is not yet ready, followed by rendering textured heightmaps, and
eventually by rendering the full-resolution point cloud data upon
zooming in close to a tile. Rendering of points and heightmaps was
implemented in a CUDA-based software rasterizer.

For points, we use the approach by Schütz et al. [SKW22]: We
launch one thread-block comprising 256 threads for each chunk of
50k points. The threads iterate through all points, projecting them
to screen and encoding their depth and color value into a 64 bit
integer. We then use a 64 bit atomicMin to evaluate the point with
the smallest depth value for each pixel. Afterward, a screen-space
resolve pass extracts the color value from the least significant bits
of each pixel’s 64 bit depth and color value, and stores the result in
an OpenGL texture for display.

Heightmaps are rendered with a custom CUDA-based triangle-
rasterizer: We invoke a cooperative kernel with 64 threads per
block. Each block processes 32 triangles at a time, projects them
to screen, and computes the screen-space bounding box. For any
triangle that covers less than 1024 pixels, a single thread of the
group iterates over the pixels, evaluates the barycentric coordinates.
If they indicate that the pixel is inside the triangle, it draws the frag-
ment using the same 64 bit atomic-min logic as the point rasterizer.
If a triangle is larger than 1024 pixels, it is added to a queue. Af-
ter the block finishes rendering the smaller triangles in one thread
per triangle, it continues to render the large triangles utilizing all
64 threads for each triangle, one after the other. The thread blocks
continue to loop until all triangles of all heightmaps are rendered.

4. Results

We evaluate two use cases for our method and compare with several
baselines: exploring large point clouds quickly and estimating the
surface accurately from local subsamples.

4.1. Exploring Large Point Clouds

In order to display massive data sets that do not fit in
GPU memory, state-of-the-art solutions require creating LOD

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

P. Erler & L. Herzberger & M. Wimmer & M. Schütz / LidarScout 7 of 11

Table 2: Time to construct an LOD structure in Potree vs. time
to completely finish each stage in LIDARSCOUT. After loading
all tiles’ metadata, loading the chunk points and the stages of
heightmap construction operate progressively, so users can already
navigate the data set before they are finished.

Data set Potree LIDARSCOUT

Tiles Chunk Points Heightmaps

CA13 28m44s 0.02s 1.9s 23s
Gisborne 19h56m 0.10s 12.8s 159s
Gisborne+Add - 0.19s 53.0s 701s

structures in a preprocessing step. Potential solutions in-
clude Entwine [Ent21], Potree [SOW20], MassivePotreeCon-
verter [MRVv∗15], and Lidarserv [BDSF22]. We will study the
performance of LIDARSCOUT in comparison to Potree, the fastest
of the related approaches. For rendering, we use this test system:
RTX 4090; AMD Ryzen 9 7950X 16-Core; Crucial T700 4TB PCIe
Gen5.

4.1.1. Case Study: CA13 (17.7 billion points).

As shown in Table 2, Potree takes 28m44s until LODs are con-
structed and the data set can be explored. LIDARSCOUT takes 0.02s
to load the metadata of 2336 tiles and another 1.9s until all chunk
points are loaded. Heightmap construction takes 23s to finish, but
construction prioritizes the current viewpoint so users do not need
to wait to see meaningful results.

4.1.2. Case Study: Gisborne (95 billion points).

LIDARSCOUT takes 12.8s until a subsample of 1.9 million chunk
points has been loaded in order to display an overview of the en-
tire data set. Heightmaps are then constructed based on the user’s
current viewpoint. In comparison, users would traditionally have
to wait 19h56m to construct an LOD structure before being able
to explore the data set. The LOD structure that was constructed by
Potree required 1.7TB of additional disk space.

4.1.3. Case Study: Gisborne+Addendum (262 billion points)

We were not able to evaluate Potree’s performance due to lack of
additional disk space for the constructed LOD data. Extrapolating
from Gisborne without Addendum, Potree would presumably re-
quire 2 days and 6 hours to finish LOD construction.

Although LIDARSCOUT takes 53s to load the chunk points of
the entire overview, users can already start exploring the data set
as soon as the tile metadata is loaded. Chunkpoints are loaded pro-
gressively so users may navigate to already prepared regions, and a
list of files/tiles allows users to zoom towards specific tiles, which
are then loaded in full resolution even before all chunk points are
loaded or heightmaps are generated.

4.2. Surface Reconstruction

Few methods for surface reconstruction are applicable to our use
case. Recent and popular global reconstruction methods, such as
BallMerge [POEM24], Ball Pivot [BMR∗99], Screened Poisson

Table 3: Root Mean Square Error (lower is better) of predicted
heightmaps. Best results are in bold, second best underlined.

Data set Cubic HQSplat Linear LIDARSCOUT

CA13 4.36±0.72 5.47±0.69 4.17±0.62 3.81±0.55
SWISSS3D 11.60±2.14 12.58±2.16 9.26±1.44 8.56±1.39
BUND_BORA 1.40±0.82 1.97±0.31 1.00±0.60 1.16±0.17
ID15_BUNDS 0.65±0.19 1.73±0.26 0.89±0.23 1.22±0.21
GISBORNE_A 11.38±4.71 7.43±0.93 6.97±1.12 6.55±0.75
GISBORNE_B 11.32±1.77 6.83±0.41 7.16±0.35 6.26±0.34
GISBORNE_C 7.41±1.95 6.40±0.48 5.51±0.46 5.09±0.33

Mean 6.87±1.76 6.06±0.75 4.99±0.69 4.66±0.53

Table 4: Peak Signal-To-Noise Ratio (higher is better) of predicted
textures. Best results are in bold, second best underlined.

Data set Cubic HQSplat Linear LIDARSCOUT

CA13 66.08±1.26 69.83±1.14 69.38±1.14 70.76±1.09
BUND_BORA 69.57±1.11 78.42±1.19 73.29±0.97 77.45±0.86
ID15_BUNDS 67.60±3.44 78.79±0.80 75.02±0.53 77.89±0.87
GISBORNE_A 66.98±1.15 71.30±1.03 70.80±0.95 72.24±0.77
GISBORNE_B 64.54±0.52 70.86±0.63 68.67±0.54 71.46±0.48
GISBORNE_C 65.84±0.67 70.47±0.68 69.67±0.57 71.22±0.52

Mean 66.77±1.36 73.28±0.91 71.14±0.79 73.50±0.77

Surface Reconstruction [KH13], and PPSurf [EFPH∗24] perform
poorly with our chunk points. Please see the supplementary mate-
rial for images. Figure 5 shows a qualitative comparison of the most
relevant local reconstruction methods. Linear interpolation has hard
discontinuities and noisy colors (see also Fig. 4). Cubic interpola-
tion suffers from overshooting, causing very bright and dark spots,
and sometimes peaks of several hundred meters. High-Quality
Splatting [BHZK05] either creates blobby structures, smoothed
stairs, or gaps due to the fixed-size kernel. NPBG [ASK∗20] with
our inputs is close to LIDARSCOUT in quality but distorts colors
sometimes.

Quantitative Comparison Tables 3 and 4 show the performance
of LIDARSCOUT on all data sets. We report the average over all
patches in the test sets. We use Root Mean Squared Error (RMSE)
in meters to compare heightmap quality and Peak Signal-to-Noise
Ratio (PSNR) in dB for textures.

Our most important baseline is also used as input to our network:
linearly interpolated heightmaps and textures. We perform Delau-
nay triangulation and linear interpolation with barycentric coordi-
nates on the local chunk points, as described in Section 3.3. For
such a simple baseline, it is surprisingly good. It is also an ap-
proximation for Rapidlasso’s Las2Dem [rG15], which takes care
of multiple returns per texels in addition. However, this refine-
ment does not make a noticeable difference with our sparse chunk
points. We also compare with a cubic Clough-Tocher interpolation
implemented in SciPy [SA11], which is accurate in many cases
but occasionally overshoots. Lastly, we compare to High-Quality
Splatting [BHZK05] by treating each chunk point as a large, fixed-
size splat, and using a Gaussian blending function to obtain a

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

8 of 11 P. Erler & L. Herzberger & M. Wimmer & M. Schütz / LidarScout

Table 5: Ablation study main results. Best results are in bold, second best underlined. Note that the Extra Data variant was partially trained
on the test data, so its metrics are positively biased. Please see the supplementary material for the full tables.

Variant NPBG DCTNet Raster HM Only NN only Lin only Extra Data LIDARSCOUT

Heights RMSE [m] _ 4.87±0.64 4.82±0.56 14.91±3.30 4.64±0.55 4.84±0.55 4.71±0.55 4.56±0.52 4.66±0.53
Colors PSNR [DB] ^ 73.30±0.77 73.20±0.77 60.98±1.07 NA 73.50±0.77 73.53±0.76 74.16±0.78 73.50±0.77

Chunk Points

Scan

Linear Cubic HQ Splatting NPBG Lidar Scout

Figure 5: Qualitative comparison of the Morro Rock region in CA13.

smooth transition of heights and colors between overlapping splats.
LIDARSCOUT performs significantly better than the baselines ex-
cept for the much denser BUND_BORA and ID15_BUNDS data
sets.

Computation Time and Memory Consumption Reconstruction
was evaluated on an NVIDIA RTX 3090 and an AMD Ryzen 7
3700X 8-Core. The reconstruction of one patch in our C++/CUDA
framework takes around 20 ms. Single-threaded triangulation and
sampling take 16 ms, inference and buffer copies 4 ms. Batched
inference requires copying data to make the input heightmaps and
textures contiguous in memory, which means a small overhead. In
any case, the timings (see supplementary material) show that batch-
ing always pays off.

Ablation Table 5 shows an ablation that empirically validates
our design choices, comparing different network architectures
and inputs. Other architectures like NPBG [ASK∗20] and DCT-
Net [ZZX∗22] perform worse than ours. Rasterizing points and
filling unknown pixels with zeros does not work well as input for
our image-based network. This means that dense inputs are nec-
essary for viable quality. The model draws information from both
nearest-neighbor (NN) and linear interpolation inputs, especially
for the heights. Linear-only generalizes better across point den-
sities, while NN-only is better with similar densities. Combining
them is a step towards the best of both. Omitting RGB inputs
(HM only) has a negligible impact on heightmap quality. Adding
Extra Data (ID15_BUNDS and GISBORNE in addition to CA13
and SWISSS3D) improves the quality significantly. Note that only
BUND_BORA is completely unseen, making a fair comparison dif-
ficult for this variant. Please see the supplementary material for de-
tailed statistics.

4.3. Discussion and Limitations

Lidarserv [BDSF22] and SimLOD [SHW24] are prior work that
follow similar goals: Exploring large data sets without the need to

preprocess and wait. Lidarserv specifically aims to enable display-
ing arbitrarily large point clouds directly during capture, and is able
to construct out-of-core LOD structures at rates of up to around 1.8
million points per second. SimLOD aims to visualize large point
cloud files quickly and is capable of loading industry standard LAS
files at rates of up to 300 million points per second, or compressed
LAZ files at up to 30 million points per second. Both display points
immediately as they are streamed, without the need to wait until
processing is finished. A major difference in our approach is that
we aim to display massive data sets in their entirety in a matter
of seconds and prioritize more detailed reconstructions towards the
user’s viewpoint, while the prior works operate on local regions
in undefined order without priorization. SimLOD is further limited
to data sets that fit in memory, i.e., about 800 million points per
24GB of memory. Our approach, on the other hand, rapidly dis-
plays arbitrarily large data sets but lacks level-of-detail structures
that would further improve rendering performance, especially for
previously visited regions. In the future, we would like to integrate
and expand SimLOD’s incremental LOD construction in order to
build an out-of-core system that is capable of rendering arbitrarily
large point clouds with instant overviews of the entire data set, and
priorization towards the current viewpoint.

Although we trained LIDARSCOUT only on CA13 and
SWISSS3D, it generalizes well to other regions of the world. The
model has mostly seen colors typical for deserts, small cities, and
beaches from the Morro Bay region in California, USA. Nonethe-
less, it can still reconstruct the colors of the lush vegetation of Gis-
borne, New Zealand, as shown in Table 4 and Figure 6. Further-
more, it generalizes well across scan patterns that may affect the
sparse subsample. It was trained on the line-wise scanning patterns
of the CA13 aerial LIDAR, but it has no issues with the circular
scanning patterns of GISBORNE.

Linear and cubic interpolation are competitive on the much
denser photogrammetry point clouds of ID15_BUNDS and
BUND_BORA for predicting heights. However, only HQ-Splatting

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

P. Erler & L. Herzberger & M. Wimmer & M. Schütz / LidarScout 9 of 11

Figure 6: Screenshots of CA13 (17.7B points, 90GB), Gisborne (262B points, 2.4TB) and CA21_Bunds (8.4B points, 96GB) made with
LIDARSCOUT.

can compete with our method when estimating colors. This indi-
cates that our method does not generalize too well from point den-
sities of around 20 points/m2 in CA13 to almost 600 points/m2 in
BUND_BORA and fails to use the available information. Adapting
the patch size solves this issue.

5. Conclusion

LIDARSCOUT is the first point cloud viewer that allows explor-
ing terabytes of compressed LIDAR scans within seconds without
any pre-processing. We present fast 2.5D surface reconstruction
from sparse, local subsamples with minimal overhead. Our neu-
ral network outperforms the current industry standard of triangula-
tion and linear interpolation. In the future, the local chunk points or
heightmaps could be streamed from a server for only the required
regions, which would drastically reduce data storage on the user
side and data transfer costs for everyone.

Our approach is potentially applicable to any data that allows
at least partial random access with some learnable patterns, such
as huge photographs, volumetric data from CT or MRT scans,
weather forecasts, and astronomy simulations. The neural network
can be adapted for annotation, segmentation, and classification
tasks. With the latter, for example, it could take the number of re-
turns and other extra point properties to detect vegetation. Extend-
ing LIDARSCOUT to 3D for large urban and indoor scans should be
possible by combining our persistent heightmaps with screen-space
approaches like ADOP [RFS22] and TRIPS [FRFS24].

6. Acknowledgements

The authors wish to thank following data set providers: Bunds
at el. and Open Topography for the Bund_Bora [BDG∗19] and
ID15_Bunds [BDG∗20] data sets; PG&E and Open Topography
for CA13 [Pac13]; The Ministry of Business, Innovation and Em-
ployment and Toitū Te Whenua Land Information New Zealand
and Open Topography for Gisborne [MoBE24]; The São Paulo
City Hall (PMSP) and Open Topography for São Paulo [(PM17];
The Bundesamt für Landestopografie swisstopo for swissSUR-
FACE3D [Swi20].

We thank Paul Guerrero, Pedro Hermosilla, and Adam Celarek
for their valuable inputs. Further, we thank Stefan Ohrhallinger for
running reconstructions with BallMerge [POEM24].

This research has been funded by WWTF project ICT22-055 -
Instant Visualization and Interaction for Large Point Clouds.

References
[ASK∗20] ALIEV K.-A., SEVASTOPOLSKY A., KOLOS M., ULYANOV

D., LEMPITSKY V.: Neural point-based graphics. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXII 16 (2020), Springer, pp. 696–712. 3, 5, 7,
8

[BDG∗19] BUNDS M., DUROSS C., GOLD R., REITMAN N., TOKE N.,
BRIGGS R., PERSONIUS S., JOHNSON K., LAJOIE L., UNGERMAN
B., MATHESON E., ANDREINI J., LARSEN K.: Lost river fault zone
near borah peak, idaho, 2019. Distributed by OpenTopography, Accessed
2025-01-17. doi:https://doi.org/10.5069/G9222RWR. 9

[BDG∗20] BUNDS M., DUROSS C., GOLD R., REITMAN N., TOKE

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/https://doi.org/10.5069/G9222RWR

10 of 11 P. Erler & L. Herzberger & M. Wimmer & M. Schütz / LidarScout

N., BRIGGS R., UNGERMAN B., , MATHESON E.: Lost river fault at
doublespring pass rd, idaho 2015, 2020. Distributed by OpenTopog-
raphy, Accessed: 2025-01-17. doi:https://doi.org/10.5069/
G9TH8JWV. 9

[BDSF22] BORMANN P., DORRA T., STAHL B., FELLNER D. W.:
Real-time Indexing of Point Cloud Data During LiDAR Capture. In
Computer Graphics and Visual Computing (CGVC) (2022), Vangorp P.,
Turner M. J., (Eds.), The Eurographics Association. doi:10.2312/
cgvc.20221173. 3, 7, 8

[BHZK05] BOTSCH M., HORNUNG A., ZWICKER M., KOBBELT L.:
High-quality surface splatting on today’s gpus. In Proceedings Euro-
graphics/IEEE VGTC Symposium Point-Based Graphics, 2005. (2005),
IEEE, pp. 17–141. 2, 7

[BMR∗99] BERNARDINI F., MITTLEMAN J., RUSHMEIER H., SILVA
C., TAUBIN G.: The ball-pivoting algorithm for surface reconstruction.
IEEE transactions on visualization and computer graphics 5, 4 (1999),
349–359. 2, 7

[Dre07] DREPPER U.: What every programmer should know about mem-
ory. Red Hat, Inc 11, 2007 (2007), 2007. 3

[DVS03] DACHSBACHER C., VOGELGSANG C., STAMMINGER M.: Se-
quential point trees. ACM Trans. Graph. 22, 3 (2003), 657–662. 3

[EFPH∗24] ERLER P., FUENTES-PEREZ L., HERMOSILLA P., GUER-
RERO P., PAJAROLA R., WIMMER M.: Ppsurf: Combining patches
and point convolutions for detailed surface reconstruction. In Computer
Graphics Forum (2024), vol. 43, Wiley Online Library, p. e15000. 2, 7

[Ent21] Entwine, 2021. https://entwine.io/, Accessed
2021.04.13. 7

[FRFS24] FRANKE L., RÜCKERT D., FINK L., STAMMINGER M.:
Trips: Trilinear point splatting for real-time radiance field rendering. In
Computer Graphics Forum (2024), Wiley Online Library, p. e15012. 3,
9

[GKLR13] GÜNTHER C., KANZOK T., LINSEN L., ROSENTHAL P.: A
gpgpu-based pipeline for accelerated rendering of point clouds. J. WSCG
21 (2013), 153–161. 2

[Har13] HARRIS M.: How to access global memory efficiently in
cuda c/c++ kernels. NVIDIA Technical Blog, 2013. Accessed
2025.01.17. URL: https://developer.nvidia.com/blog/
how-access-global-memory-efficiently-cuda-c-
kernels/. 3

[HFF∗23] HARRER M., FRANKE L., FINK L., STAMMINGER M.,
WEYRICH T.: Inovis: Instant novel-view synthesis. In SIGGRAPH Asia
2023 Conference Papers (2023), pp. 1–12. 3

[HFK∗24] HAHLBOHM F., FRANKE L., KAPPEL M., CASTILLO S.,
STAMMINGER M., MAGNOR M.: Inpc: Implicit neural point clouds
for radiance field rendering. arXiv preprint arXiv:2403.16862 (2024). 3

[Ise13] ISENBURG M.: Laszip: lossless compression of lidar data. Pho-
togrammetric engineering and remote sensing 79, 2 (2013), 209–217. 2,
3

[KB04] KOBBELT L., BOTSCH M.: A survey of point-based techniques
in computer graphics. Computers & Graphics 28, 6 (2004), 801–814. 2

[KH13] KAZHDAN M., HOPPE H.: Screened poisson surface reconstruc-
tion. ACM Transactions on Graphics (ToG) 32, 3 (2013), 1–13. 2, 7

[KKLD23] KERBL B., KOPANAS G., LEIMKÜHLER T., DRETTAKIS
G.: 3d gaussian splatting for real-time radiance field rendering. ACM
Transactions on Graphics 42, 4 (July 2023). URL: https://repo-
sam.inria.fr/fungraph/3d-gaussian-splatting/. 3

[KPLD21] KOPANAS G., PHILIP J., LEIMKÜHLER T., DRETTAKIS G.:
Point-based neural rendering with per-view optimization. In Computer
Graphics Forum (2021), vol. 40, Wiley Online Library, pp. 29–43. 3

[LS81] LANCASTER P., SALKAUSKAS K.: Surfaces generated by mov-
ing least squares methods. Mathematics of computation 37, 155 (1981),
141–158. 2

[LW85] LEVOY M., WHITTED T.: The use of points as a display
primitive, 1985. URL: http://www.graphics.stanford.edu/
papers/points/. 2

[MoBE24] MINISTRY OF BUSINESS I., EMPLOYMENT T. T. W. L. I.
N. Z. L.: Gisborne, new zealand 2023, 2024. Released under Creative
Commons CC BY 4.0 by NIWA, Collected by Landpro, distributed by
OpenTopography and LINZ, Accessed: 2025-01-17. doi:https://
doi.org/10.5069/G9MK6B34. 9

[MRC∗22] MASOUMIAN A., RASHWAN H. A., CRISTIANO J., ASIF
M. S., PUIG D.: Monocular depth estimation using deep learning: A
review. Sensors 22, 14 (2022), 5353. 2

[MRVv∗15] MARTINEZ-RUBI O., VERHOEVEN S., VAN MEERSBER-
GEN M., SCHUTZ M., VAN OOSTEROM P., GONCALVES R., TIJSSEN
T.: Taming the beast: Free and open-source massive point cloud web
visualization. In Capturing reality: The 3rd, laser scanning and LIDAR
technologies forum (2015), MacDonald A., (Ed.), s.n., pp. 23–25. geen
ISBN; Capturing Reality 2015, Salzburg, Austria ; Conference date: 23-
11-2015 Through 25-11-2015. 2, 3, 7

[Ned23] NEDERLAND A. H.: Eerste deel van ahn 5 is beschik-
baar! https://www.ahn.nl/eerste-deel-van-ahn-5-is-
beschikbaar, 2023. [Accessed 17-01-2025]. 2, 3

[NKH∗21] NGUYEN P., KARNEWAR A., HUYNH L., RAHTU E.,
MATAS J., HEIKKILA J.: Rgbd-net: Predicting color and depth images
for novel views synthesis. In 2021 International Conference on 3D Vi-
sion (3DV) (2021), IEEE, pp. 1095–1105. 3

[Pac13] PACIFIC GAS & ELECTRIC COMPANY: Pg&e diablo canyon
power plant (dcpp): San simeon and cambria faults, ca, airborne li-
dar survey, 2013. Distributed by OpenTopography. doi:https:
//doi.org/10.5069/G9CN71V5. 3, 9

[(PM17] (PMSP) S. P. C. H.: Sao paulo, brazil lidar survey 2017,
2017. Distributed by OpenTopography and LINZ, Accessed: 2025-06-
07. doi:https://doi.org/10.5069/G9NV9GD1. 9

[POEM24] PARAKKAT A. D., OHRHALLINGER S., EISEMANN E.,
MEMARI P.: Ballmerge: High-quality fast surface reconstruction via
voronoi balls. In Computer Graphics Forum (2024), Wiley Online Li-
brary, p. e15019. 2, 7, 9

[PZVBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS M.:
Surfels: Surface elements as rendering primitives. In Proceedings of
the 27th annual conference on Computer graphics and interactive tech-
niques (2000), pp. 335–342. 2

[RALB22] RAKHIMOV R., ARDELEAN A.-T., LEMPITSKY V., BUR-
NAEV E.: Npbg++: Accelerating neural point-based graphics. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2022), pp. 15969–15979. 3

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-net: Convolu-
tional networks for biomedical image segmentation. In Medical image
computing and computer-assisted intervention–MICCAI 2015: 18th in-
ternational conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18 (2015), Springer, pp. 234–241. 3, 5

[RFS22] RÜCKERT D., FRANKE L., STAMMINGER M.: Adop: Approx-
imate differentiable one-pixel point rendering. ACM Transactions on
Graphics (ToG) 41, 4 (2022), 1–14. 3, 9

[rG15] RAPIDLASSO GMBH: Generating Spike-Free Digital Sur-
face Models from LiDAR - rapidlasso GmbH — rapidlasso.de.
https://rapidlasso.de/generating-spike-free-
digital-surface-models-from-lidar/, 2015. [Accessed
09-01-2025]. 2, 7

[RL00] RUSINKIEWICZ S., LEVOY M.: Qsplat: A multiresolution point
rendering system for large meshes. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques (USA,
2000), SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co.,
p. 343–352. 3

[RSL∗24] RAJAPAKSHA U., SOHEL F., LAGA H., DIEPEVEEN D.,
BENNAMOUN M.: Deep learning-based depth estimation methods from

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/https://doi.org/10.5069/G9TH8JWV
https://doi.org/https://doi.org/10.5069/G9TH8JWV
https://doi.org/10.2312/cgvc.20221173
https://doi.org/10.2312/cgvc.20221173
https://entwine.io/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
http://www.graphics.stanford.edu/papers/points/
http://www.graphics.stanford.edu/papers/points/
https://doi.org/https://doi.org/10.5069/G9MK6B34
https://doi.org/https://doi.org/10.5069/G9MK6B34
https://www.ahn.nl/eerste-deel-van-ahn-5-is-beschikbaar
https://www.ahn.nl/eerste-deel-van-ahn-5-is-beschikbaar
https://doi.org/https://doi.org/10.5069/G9CN71V5
https://doi.org/https://doi.org/10.5069/G9CN71V5
https://doi.org/https://doi.org/10.5069/G9NV9GD1
https://rapidlasso.de/generating-spike-free-digital-surface-models-from-lidar/
https://rapidlasso.de/generating-spike-free-digital-surface-models-from-lidar/

P. Erler & L. Herzberger & M. Wimmer & M. Schütz / LidarScout 11 of 11

monocular image and videos: A comprehensive survey. ACM computing
surveys 56, 12 (2024), 1–51. 2

[SA11] SCIPY AUTHORS: CloughTocher2DInterpolator
x2014; SciPy v1.15.1 Manual — docs.scipy.org. https:
//docs.scipy.org/doc/scipy/reference/generated/
scipy.interpolate.CloughTocher2DInterpolator.html,
2011. [Accessed 17-01-2025]. 7

[SHW24] SCHÜTZ M., HERZBERGER L., WIMMER M.: Simlod: Simul-
taneous lod generation and rendering for point clouds. Proceedings of
the ACM on Computer Graphics and Interactive Techniques 7, 1 (2024),
1–20. 3, 8

[SKW22] SCHÜTZ M., KERBL B., WIMMER M.: Software ras-
terization of 2 billion points in real time. Proceedings of the
ACM on Computer Graphics and Interactive Techniques 5, 3 (July
2022), 1–17. URL: https://www.cg.tuwien.ac.at/research/
publications/2022/SCHUETZ-2022-PCC/, doi:10.1145/
3543863. 2, 6

[SMOW20] SCHÜTZ M., MANDLBURGER G., OTEPKA J., WIMMER
M.: Progressive real-time rendering of one billion points without
hierarchical acceleration structures. Computer Graphics Forum 39, 2
(2020), 51–64. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1111/cgf.13911, arXiv:https://
onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13911,
doi:https://doi.org/10.1111/cgf.13911. 2

[SOW20] SCHÜTZ M., OHRHALLINGER S., WIMMER M.:
Fast out-of-core octree generation for massive point clouds.
Computer Graphics Forum 39, 7 (Nov. 2020), 1–13. URL:
https://www.cg.tuwien.ac.at/research/publications/
2020/SCHUETZ-2020-MPC/, doi:10.1111/cgf.14134. 3, 7

[Sur18] SURVEY) U. U. G.: Changes in usgs lidar data distribu-
tion announced. https://www.usgs.gov/news/technical-
announcement/3d-elevation-program-distributing-
lidar-data-laz-format, 2018. [Accessed 17-01-2025]. 2, 3

[SW11] SCHEIBLAUER C., WIMMER M.: Out-of-core selection and
editing of huge point clouds. Computers & Graphics 35, 2 (2011), 342–
351. 3

[Swi20] SWISSTOPO: swisssurface3d raster: Das hoch
aufgelöste oberflächenmodell der schweiz. https://
backend.swisstopo.admin.ch/fileservice/sdweb-
docs-prod-swisstopoch-files/files/2023/11/14/
24d12399-72b8-4000-8544-235023c4369f.pdf, 2020.
[Accessed 09-01-2025]. 2, 9

[TFT∗20] TEWARI A., FRIED O., THIES J., SITZMANN V., LOMBARDI
S., SUNKAVALLI K., MARTIN-BRUALLA R., SIMON T., SARAGIH J.,
NIESSNER M., ET AL.: State of the art on neural rendering. In Computer
Graphics Forum (2020), vol. 39, Wiley Online Library, pp. 701–727. 3

[WBB∗08] WAND M., BERNER A., BOKELOH M., JENKE P., FLECK
A., HOFFMANN M., MAIER B., STANEKER D., SCHILLING A., SEI-
DEL H.-P.: Processing and interactive editing of huge point clouds from
3d scanners. Computers & Graphics 32, 2 (2008), 204 – 220. 3

[WS06] WIMMER M., SCHEIBLAUER C.: Instant Points: Fast Rendering
of Unprocessed Point Clouds. In Symposium on Point-Based Graphics
(2006), Botsch M., Chen B., Pauly M., Zwicker M., (Eds.), The Euro-
graphics Association. 3

[WWG∗21] WANG Q., WANG Z., GENOVA K., SRINIVASAN P. P.,
ZHOU H., BARRON J. T., MARTIN-BRUALLA R., SNAVELY N.,
FUNKHOUSER T.: Ibrnet: Learning multi-view image-based rendering.
In Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition (2021), pp. 4690–4699. 3

[YGL∗23] YOU M., GUO M., LYU X., LIU H., HOU J.: Learning a
locally unified 3d point cloud for view synthesis. IEEE Transactions on
Image Processing (2023). 3

[ZPVBG02] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.: Ewa
splatting. IEEE Transactions on Visualization and Computer Graphics
8, 3 (2002), 223–238. 2

[ZZX∗22] ZHAO Z., ZHANG J., XU S., LIN Z., PFISTER H.: Discrete
cosine transform network for guided depth map super-resolution. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition (2022), pp. 5697–5707. 8

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CloughTocher2DInterpolator.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CloughTocher2DInterpolator.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CloughTocher2DInterpolator.html
https://www.cg.tuwien.ac.at/research/publications/2022/SCHUETZ-2022-PCC/
https://www.cg.tuwien.ac.at/research/publications/2022/SCHUETZ-2022-PCC/
https://doi.org/10.1145/3543863
https://doi.org/10.1145/3543863
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13911
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13911
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13911
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13911
https://doi.org/https://doi.org/10.1111/cgf.13911
https://www.cg.tuwien.ac.at/research/publications/2020/SCHUETZ-2020-MPC/
https://www.cg.tuwien.ac.at/research/publications/2020/SCHUETZ-2020-MPC/
https://doi.org/10.1111/cgf.14134
https://www.usgs.gov/news/technical-announcement/3d-elevation-program-distributing-lidar-data-laz-format
https://www.usgs.gov/news/technical-announcement/3d-elevation-program-distributing-lidar-data-laz-format
https://www.usgs.gov/news/technical-announcement/3d-elevation-program-distributing-lidar-data-laz-format
https://backend.swisstopo.admin.ch/fileservice/sdweb-docs-prod-swisstopoch-files/files/2023/11/14/24d12399-72b8-4000-8544-235023c4369f.pdf
https://backend.swisstopo.admin.ch/fileservice/sdweb-docs-prod-swisstopoch-files/files/2023/11/14/24d12399-72b8-4000-8544-235023c4369f.pdf
https://backend.swisstopo.admin.ch/fileservice/sdweb-docs-prod-swisstopoch-files/files/2023/11/14/24d12399-72b8-4000-8544-235023c4369f.pdf
https://backend.swisstopo.admin.ch/fileservice/sdweb-docs-prod-swisstopoch-files/files/2023/11/14/24d12399-72b8-4000-8544-235023c4369f.pdf

