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Kurzfassung

Die Visualisierung großer Graphen ist aufgrund von visueller Unübersichtlichkeit, die
wichtige Muster verdeckt, oft eine Herausforderung. Obwohl S-EPB eine effektive Technik
zur Minderung dieses Problems ist, ist ihre CPU-basierte Implementierung für die
interaktive Nutzung zu langsam, insbesondere in Web-Umgebungen. Diese Bachelorarbeit
stellt einen P-EPB-Algorithmus vor, der diese Leistungseinschränkung behebt, indem er
die massiv parallelen Verarbeitungsfähigkeiten moderner GPUs über die WebGPU-API
nutzt.

Der vorgeschlagene Algorithmus überarbeitet die S-EPB-Technik für die parallele Ausfüh-
rung, wobei der Fokus auf dem Finden und der anschließenden Optimierung der rechenin-
tensivsten Aufgaben liegt: Spanner-Konstruktion und Kürzeste-Pfade-Berechnungen. Ein
parallelisierter Floyd-Warshall-Algorithmus wird zusammen mit verschiedenen Spanner-
Konstruktionsmethoden (Greedy und Theta-Graph) verwendet, um den P-EPB-Algorithmus
als interaktive Webanwendung zu implementieren.

Eine detaillierte Auswertung vergleicht den WebGPU-basierten P-EPB-Algorithmus mit
der CPU-basierten S-EPB-Implementierung. Die Ergebnisse zeigen, dass der P-EPB-
Ansatz, insbesondere bei Verwendung eines Theta-Spanners, erhebliche Geschwindigkeits-
steigerungen bei dichten Graphen liefert. Diese Arbeit unterstreicht das Potenzial von
WebGPU, hochleistungsfähige, interaktive Graphvisualisierung und -analyse in webba-
sierten Umgebungen zu ermöglichen.
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Abstract

Visualizing large graphs is often challenging due to visual clutter, which obscures important
patterns. While Spanner-based Edge-Path Bundling (S-EPB) is an effective technique
for mitigating this issue, its CPU-based implementation is too slow for interactive use,
particularly in web environments. This thesis presents a Parallel Edge-Path Bundling
(P-EPB) algorithm that addresses this performance limitation by utilizing the massively
parallel processing capabilities of modern Graphics Processing Unit (GPU)s through the
WebGPU API.

The proposed algorithm reengineers the S-EPB technique for parallel execution, with
a focus on finding and then optimizing the most computationally demanding tasks:
spanner construction and shortest-path calculations. A parallelized Floyd–Warshall
algorithm, together with different spanner construction methods (greedy and theta-graph),
is employed in implementing the P-EPB algorithm as an interactive web application.

A detailed evaluation compares the WebGPU-based P-EPB algorithm to the CPU-based
S-EPB implementation. Results show that the P-EPB approach, particularly when using
a theta-spanner, delivers substantial speedups on dense graphs. This work highlights the
potential of WebGPU to enable high-performance, interactive graph visualization and
analysis in web-based environments.
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CHAPTER 1
Introduction

Graphs are a fundamental structure for representing and analyzing complex systems.
Visualizing these graphs is crucial for data analysis, as it allows researchers and analysts
to uncover patterns, identify outliers, and comprehend the underlying structure of
the data. However, as datasets grow in size and complexity, their corresponding graph
visualizations often become overwhelmingly dense [VLKS+11]. This visual clutter renders
the visualization illegible, obscuring the very insights it is meant to reveal. The screen
becomes a tangled mass of edges, making it impossible to trace connections or identify
important pathways. An example of what is sometimes called a Hairball can be seen
in Figure 1.1. To address this critical issue of visual clutter, various automated graph
layout and simplification techniques have been developed, with edge bundling being one
of the most prominent and effective.

Figure 1.1: Visualization of a Hairball.
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1. Introduction

Edge bundling techniques aim to reduce visual clutter by grouping geometrically similar
edges into bundles, creating a cleaner, more abstract representation of the graph’s
connectivity [WAA+21, WAA+23, HVW09]. An example of such a bundled graph can be
seen in Figure 1.2. However, many traditional methods, such as force-directed bundling,
can introduce significant independent edge ambiguities by merging edges that are not
structurally related in the underlying graph [BRH+17]. This can mislead the viewer and
compromise the faithfulness of the visualization to the original data.

Figure 1.2: Visualization of a bundled graph.

The Edge-Path Bundling (EPB) algorithm introduced by Wallinger et al. [WAA+21]
was developed to address this specific issue. It ensures that all bundled edges follow
the shortest paths within the graph’s network structure, resulting in a less ambiguous
and more truthful representation. Despite its advantages in quality, the original EPB
algorithm is computationally intensive, making it unsuitable for interactive applications.
Wallinger at al. [WAA+23] introduced a significant performance improvement by using
graph spanners. This S-EPB algorithm dramatically reduces computation time, claiming
a 5-256 times speed up depending on the dataset.

Although this advancement makes S-EPB viable for static visualizations, it still fails
to deliver the performance required for truly interactive applications, especially in a
universally accessible environment like the web browser. True interactivity, where users
adjust parameters and observe updates at real-time frame rates (e.g., >30 fps), demands
per-frame computations under 33ms. The current CPU-based S-EPB implementation
cannot reliably meet this target for large graphs.

To bridge this performance gap, this thesis proposes the design and implementation of
a P-EPB algorithm based on the S-EPB algorithm, specifically tailored for execution
on a GPU. By leveraging the massively parallel architecture of modern GPUs, the
computationally expensive components of the algorithm can be executed simultaneously,
offering the potential for a substantial performance increase.
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This work utilizes WebGPU, the modern web standard [WEB25b] for GPU computing.
WebGPU provides a lower-level, more efficient API that unlocks advanced capabilities,
most notably compute shaders. This allows for general-purpose GPU computing directly
within the browser, eliminating the need for complex workarounds and enabling the high-
performance parallel processing required to accelerate the S-EPB algorithm [Sca24, SP24].
The primary goal is to achieve performance gains significant enough to enable interactive
frame rates for large graph visualizations directly in a standard web browser.

This thesis seeks to answer the following research questions:

1. To what extent can the computationally expensive components of the S-EPB
algorithm, such as spanner construction and shortest path searches, be effectively
parallelized for a GPU architecture?

2. How does the performance of a WebGPU based implementation compare to the
Central Processing Unit (CPU) based S-EPB implementation across graph datasets
of varying size and density?

3. What are the primary challenges and architectural trade-offs involved in adapting
and implementing graph algorithms for in browser GPU execution?

The main contributions of this thesis are:

1. The design of a parallel algorithm for S-EPB Bundling, specifically adapted for the
massively parallel architecture of modern GPUs.

2. An open-source implementation of this algorithm using modern web technolo-
gies, namely JavaScript and the WebGPU API [WEB25a], made available as an
interactive web application.

3. A comprehensive analysis and discussion of the performance, quality, strengths,
weaknesses, and limitations of the proposed P-EPB parallel algorithm when com-
pared to the baseline CPU-based S-EPB algorithm, supported by evaluations on
multiple real-world datasets.
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CHAPTER 2
Background and Related Work

2.1 Edge-Path Bundling
EPB is a technique introduced by Wallinger at al. [WAA+21] that reduces visual clutter
while avoiding the independent edge ambiguities common in other bundling methods
like Force-directed Edge Bundling (FDEB) or CUDA-based Universal Bundling (CUBu),
which are described in section 2.3. These approaches often cluster edges based on
geometric proximity and orientation, which can result in visually implying connections
between structurally unrelated edges. EPB fundamentally avoids this by clustering
independent edges. The algorithm bundles each edge along the existing weighted shortest
path between its endpoints. Given a graph with a fixed layout, the algorithm iterates
through edges, typically from longest to shortest. For each edge (u, v), it computes a
shortest path in the graph between u and v that does not include the edge (u, v) itself.
The pathfinding is weighted to penalize long detours from the straight-line drawing. If a
path is found whose length is within a user-defined distortion threshold, the original edge
is redrawn as a curve following the vertices of that path. By definition, this ensures that
all visual bundles correspond to actual pathways in the graph, creating a more faithful
representation and eliminating a key source of visual ambiguity.

2.2 Faster EPB with Graph Spanners (S-EPB)
To address the high computational cost of the original EPB algorithm, Wallinger et al.
[WAA+23] later proposed an improved method, S-EPB. The primary bottleneck in the
original algorithm is the repeated execution of Dijkstra’s shortest path algorithm on the
entire graph, leading to a practical runtime that scales poorly. S-EPB accelerates this
process by fundamentally changing the graph on which pathfinding is performed.

The fundamental change of the S-EPB algorithm is the use of graph spanners. The
algorithm first constructs a sparse t-spanner H of the input graph G. A t-spanner is a
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2. Background and Related Work

subgraph that preserves the approximate shortest path distances of the original graph,
guaranteeing that the distance between any two vertices in H is at most t times their
distance in G, where t is the stretch factor [PS89]. The edges from the original graph
G that are not included in the spanner H become the candidates for bundling. The
algorithm then searches for bundling paths for these candidate edges, but crucially, it
confines the search to the much sparser spanner H. This significantly reduces the number
of edges that need to be explored during each shortest path computation, resulting in a
substantial speed-up of 5 to 256 times in practice. While the resulting bundling is not
identical to the original, it maintains a comparable visual quality and, most importantly,
upholds the same guarantee of avoiding independent edge ambiguities.

2.3 Alternative edge bundling techniques

Besides the path-based approach of EPB and S-EPB, other techniques exist that bundle
edges based either on geometric properties or use an image based approach. rather than
the underlying graph topology. A common drawback to these approaches is that they
group edges based on visual proximity alone, which can create misleading bundles that
do not represent actual structural paths in the data.

2.3.1 Force-directed Edge Bundling

A prominent geometric bundling techniques is FDEB, proposed by Holten and van Wijk
[HVW09]. This method treats edges as flexible springs in a self-organizing system. It
works by subdividing each edge into a series of points and then applying attractive
forces between corresponding points on nearby edges, pulling them together into bundles.
To prevent the bundling of unrelated edges, the attraction strength is weighted by
compatibility metrics that consider factors like angular similarity, length, and proximity,
allowing for more nuanced control over the bundling process.

The primary difference from EPB is that FDEB is purely geometry-based, bundling edges
that are close to each other in the visualization regardless of their structural relationship
in the graph. This can introduce independent edge ambiguities where visually bundled
edges do not represent actual paths, a problem EPB is specifically designed to avoid.
While FDEB excels at simplifying the visual representation based on layout geometry,
EPB prioritizes topological faithfulness by ensuring all bundles correspond to valid paths.
Furthermore, FDEB’s iterative, force-based simulation can be computationally intensive.
However GPU-based implementations like the one proposed by Delu et al. [ZWGC12]
exist, speeding up the algorithm depending on the edge count up to 11 times.

2.3.2 Winding Roads

The Winding Roads edge bundling technique proposed by Lambert et al. [LBA10], is
a geometry-based edge bundling technique that reduces visual clutter by routing edges
along a grid structure. The method discretizes the drawing space into a grid, often using
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2.3. Alternative edge bundling techniques

a hybrid of quad-trees and Voronoï diagrams to adapt to varying node densities. Edges
are then rerouted along the shortest paths on this grid. To encourage bundling, grid
segments that are part of many shortest paths have their weights reduced, attracting
more edges to follow these common routes.

This approach is effective at reducing edge crossings and can be configured to avoid
node-edge overlaps, resulting in a cleaner and more readable layout. However, a significant
drawback of the Winding Roads technique lies in its bundling primitive. Because edges
are bundled based on geometric proximity on an auxiliary grid rather than the underlying
graph structure, it can group edges that are not structurally related. This can create
the same independent edge ambiguities found in FDEB. Furthermore, according to
[WAA+23], this approach is also slower compared to S-EPB.

2.3.3 CUBu

CUBu is a high-performance, alternative approach that operates in image-space rather
than on the graph’s structure. Introduced by van der Zwan et al. [VDZCT16], the
technique calculates a density field from the 2D edge layout and iteratively pulls edges
toward denser areas, causing them to form bundles. As a fully GPU-based algorithm,
its primary advantage is exceptional speed, enabling the real-time bundling of graphs
with millions of edges. However, similar to FDEB and Winding Roads, this approach
can introduce independent edge ambiguities.

2.3.4 Pixel-Based Edge Bundling (PBEB)

PBEB is a modern framework proposed by Wu et al. [WSX+23] designed to visualize
large graphs effectively on web-based platforms. It utilizes an image-based approach,
employing Kernel Density Estimation (KDE) to compute edge similarities on a pixel grid.
By leveraging the parallel processing capabilities of GPUs through WebGL, PBEB’s
performance is tied to image resolution rather than the number of edges, making it highly
scalable. This method excels at reducing visual clutter to reveal high-level patterns
in complex data, and its web-native design ensures portability across devices. While
powerful, the technique can produce visual artefacts that necessitate additional smoothing
and resampling steps to refine the final output.

In comparison to geometry-based methods like FDEB, PBEB demonstrates a significant
performance advantage. While FDEB operates by manipulating the control points
of edge paths, PBEB’s image-space calculations are inherently more suited for GPU
parallelization. However, similar to the other discussed techniques, PBEB can introduce
independent edge ambiguities.
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CHAPTER 3
S-EPB Parallelization

In this chapter, both the EPB and the S-EPB algorithms are analyzed to identify potential
parts that can be parallelized. After potential optimizations have been identified, different
approaches for optimizing the algorithms are discussed, leading into the next chapter
where these approaches are then implemented.

3.1 Code Analysis
As a starting point, both the EPB and the S-EPB algorithms were analyzed to find parts
that could be adapted for parallel execution. According to Gebali [Geb11], for-loops and
while-loops often signal potential parallelism. In both algorithms, the most expensive
computations occur within such loops.

The original EPB algorithm iterates through all edges in descending order of weight. In
each iteration, the shortest path between the start and end points of the current edge is
computed using Dijkstra’s algorithm. Initially, Dijkstra’s algorithm is applied to the full
graph, but with each iteration, bundled edges are removed. Since each iteration updates
which edges are excluded, the order of execution is important, requiring the loop to be
executed sequentially.

Algorithm 3.1 describes the S-EPB algorithm. To summarize, it takes a graph and two
parameters: the maximum distortion threshold t and an edge weight parameter k as
input. First, a t-spanner is constructed from the original graph. Next, each spanner edge
e has its weight updated to ∥e∥k. Finally, every edge in the original graph, that is not in
the spanner, is bundled if the shortest-path distance between its endpoints is at most
t · ∥e∥.

The algorithm can be divided into two main steps: spanner construction and edge bundling.
The algorithm uses the greedy algorithm 3.2, which, similar to the EPB algorithm, iterates
over sorted edges and performs shortest-path calculations on a dynamic graph. This
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3. S-EPB Parallelization

means the loop must be executed sequentially. However, the bundling step, shown
in Algorithm 3.1, does not have this constraint. In each iteration, the shortest path
between two points is computed. The key difference, however, is that these shortest-path
calculations are carried out on the precomputed spanner, which remains fixed.

Algorithm 3.1: Spanner-Edge-Path bundling algorithm [WAA+23]
Input: Graph = (V, E), maximum distorition t > 1, edge weight parameter k
Output: Control points for an Edge-Path bundled drawing controlPoints

1 // Greedy t Spanner construction step 3.2
2 Spanner = (V, E′)← constructGreedyTSpanner(G, || · ||, t)
3 // Bundling step
4 for edge ∈ E′ do
5 edge.weight ← ||e||k
6 end
7 for edge = (start, end) ∈ E \ E′ do
8 path← shortestPath(Spanner, start, end)
9 if path.length ≤ t ∗ ||e|| then

10 controlPoints(edge) ← path.getVertexCoordinates()
11 end
12 end
13 return controlPoints

To summarize these findings, both the EPB and S-EPB contain inherently sequential
components. For the EPB algorithm, the entire process consists of a single sequential
loop. The S-EPB algorithm is similar, but it has one key difference: if there is an efficient
way to calculate a t-spanner, the bundling step can be parallelized. Therefore, the S-EPB
is chosen as the basis for further optimizations.

3.2 Parallel Algorithms
Several approaches could speed up the runtime, such as replacing Dijkstra’s algorithm
with a faster shortest-path method. Because this thesis focuses on taking advantage of
GPU parallelism, it instead aims to make each loop iteration independent for parallel
execution or to move expensive computations like the spanner construction or the edge
bundling, out of loops so they, too, can run in parallel.

3.2.1 GPU Computing for Shortest Path Algorithms

Initially, Dijkstra’s algorithm was considered for the shortest path calculations, as it
is a standard and efficient method often used CPU-based bundling implementations.
However, an early GPU-based prototype of Dijkstra’s algorithm proved to be a significant
performance bottleneck. The algorithm’s greedy and inherently sequential nature poses
a challenge for parallelization. At each step, it must identify the unvisited node with the
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3.3. Adapting S-EPB for Parallel Execution

minimum current distance, which would require a synchronization across all processing
threads. This dependency prevents the kind of massive, independent computation at
which GPUs excel, leading to suboptimal performance as many cores remain idle while
waiting for the next node to be selected.
Given the limitations of a parallel Dijkstra implementation, the Floyd-Warshall [Tor23,
DTC+14] algorithm was chosen as a more suitable alternative for the GPU architecture.
Although its theoretical time complexity of O(|V |3) is higher than the repeated Dijkstra
runs on sparse graphs, its matrix-based structure is exceptionally well-suited for parallel
execution. The algorithm’s iterative process can be mapped directly to compute shaders,
allowing the workload to be distributed across thousands of GPU cores to be processed
simultaneously. Consequently, the practical runtime is significantly reduced, and more
importantly, it scales with the number of vertices (|V |) rather than the number of edges
(|E|). This makes the implementation’s performance predictable and particularly effective
for dense graphs, which can be processed in nearly the same amount of time as sparse
graphs with an equivalent number of nodes.

3.3 Adapting S-EPB for Parallel Execution

3.3.1 Parallel t-spanner construction

The S-EPB algorithm uses the greedy spanner algorithm of Althöfer et al.[ADD+93]
depicted in Algorithm 3.2. However, this algorithm is inherently sequential and thus
difficult to parallelize without drawbacks or resorting to approximations. Furthermore,
the S-EPB algorithm depends on the particular t-spanner edge set that the greedy
algorithm produces. This means that different spanner constructions can create different
bundling results. Therefore, the following two options seem reasonable:

1. Optimize the greedy spanner construction.

2. Find an alternative t-spanner algorithm that produces comparable bundling quality.

Some time was invested in trying to improve the greedy spanner construction, but this
did not yield significant results. Therefore, option 2 was chosen for this thesis.

Naive Greedy Spanner

The algorithm 3.2 constructs a t-spanner from a weighted graph. It begins by initializing
the spanner with all vertices of G but without edges. The edges of G are then processed
in non-decreasing order of weight.
For each (u, v) with weight w, the algorithm checks if the shortest path distance between u
and v in the current spanner is greater than t·w. If this (condition, shortestPath(S, u, v) >
t ·w), holds, the edge is added to the spanner. This iterative process guarantees that the
final subgraph not only satisfies the t-spanner property but also only contains edges that
were in the original graph.

11



3. S-EPB Parallelization

Algorithm 3.2: Greedy t-spanner algorithm [ADD+93]
Input: Graph G = (V, E), stretch factor t > 1
Output: t-spanner S = (V, E′ ⊆ E)

1 S = (V, ∅)
2 sortedEdges ← sortAscendingByWeight(E)
3 for edge = (u, v) ∈ sortedEdges do
4 path← shortestPath(S, u, v)
5 if path.length > t ∗ edge.weight then
6 S.addEdge(edge)
7 end
8 end
9 return Spanner

Improved Greedy Spanner

Although the greedy algorithm in Algorithm 3.2 is inherently sequential, certain compo-
nents can be accelerated. For instance, the shortest-path computations can be performed
in parallel. As mentioned by Liang and Brent [LB96], one way to speed up the greedy
spanner construction is to employ an all-pairs shortest-path algorithm instead of repeat-
edly invoking a single-source shortest-path algorithm. A prerequisite for this approach to
be faster than its sequential counterpart is that at least n2/ log n processors are available,
where n denotes the number of vertices in the graph.

At first glance, this strategy may seem counterintuitive, since computing all-pairs shortest
paths after each edge insertion involves significantly more work than computing a single-
source shortest path. However, in environments with massive parallelism, such as when
running on a GPU, the additional work can be executed concurrently, potentially yielding
overall time savings.

Theta Graph Spanner

Another approach to computing a t-spanner is to use a geometric spanner algorithm,
such as the Theta-graph. Although a geometric spanner is fundamentally different from
a greedy spanner, both methods can guarantee a spanner with stretch factor t.

A geometric spanner is constructed over a set of points by adding a minimal set of edges
such that, for any two points, the graph distance is at most a constant factor times their
Euclidean distance. In the Theta-graph construction, the plane around each point is
partitioned into k equal-angle cones, and for each cone, an edge is added to the closest
point within that cone [GNS08, VR14]. An example of such a cone is shown in Figure
3.2. The red point in the center is connected to the closest point in each of its cones, and
this process is repeated for all vertices in the graph.

One drawback of using a geometric spanner in the S-EPB algorithm is that the Theta-
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3.3. Adapting S-EPB for Parallel Execution

Figure 3.1: Visualization of a greedy graph spanner for the Airliens dataset 5.1.2.

Figure 3.2: Visualization of a theta cone.

graph may introduce edges that are not present in the original graph, leading to ambiguity.
Moreover, the overall structure of the resulting spanner differs between the greedy and
geometric approaches, as seen in Figures 3.1 and 3.3.

3.3.2 Parallel edge bundling

The edge-bundling phase of the algorithm, illustrated in Algorithm 3.1, relies on single-
source shortest-path calculations. It is called single-source because such methods calculate
the shortest distance to every node in the graph, starting from a source node. One
approach is to execute each iteration of the main loop in a separate thread, which makes
the algorithm well-suited for parallelization and can deliver substantial performance
improvements with relatively little additional effort. Another approach, similar to the
method used in section 9, replaces single-source shortest-path computations with all-pairs
shortest-path calculations. The difference from single-source shortest paths is that, in
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3. S-EPB Parallelization

Figure 3.3: Visualization of a theta graph spanner for the Airlines dataset 5.1.2.

all-pairs shortest paths, the shortest distances between every pair of nodes in a graph
are calculated. Each pair consists of a source node and a target node. In this case,
all shortest paths are precomputed prior to the loop and subsequently retrieved during
each iteration. In processing environments with sufficient computational resources, this
precomputation strategy can lead to additional performance gains [LB96].

As discussed in Section 3.2.1, computing single-source shortest paths on the GPU proved
to be inefficient. Therefore, since the Floyd–Warshall algorithm is well-suited for GPU
computation, the all-pairs shortest path method was chosen for this thesis.
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CHAPTER 4
Implementation

This chapter details the technical implementation of the P-EPB algorithm as a web
application. The core of this implementation involves parallelizing the Floyd-Warshall
algorithm on the GPU to compute all-pairs shortest paths efficiently. The chapter also
describes the implementation of two spanner construction methods: an adapted greedy
algorithm and a geometric Theta-graph algorithm. The P-EPB implementation and the
online demo can be found in this public GitHub repository: https://github.com/
YannicEl/edge_bundling_webgpu

4.1 Technology Stack

The technical implementation of this thesis is a web application built with the SvelteKit
framework [SVE25] and written in TypeScript to ensure type safety and maintainable
code. The development and build processes are managed by Vite [VIT25b], chosen for
its fast performance and efficient module handling. At the heart of the visualization
is the native WebGPU API [WEB25b], which provides direct, low-level control over
graphics hardware for high performance. All compute and rendering shaders are written
in WebGPU Shading Language (WGSL). The edge-bundling algorithms and the data
parser were implemented from scratch. The user interface is styled using the utility-first
css framework UnoCSS [UNO25].

4.2 System Architecture

4.2.1 Data Ingestion

To begin, the user chooses which graph to visualize. The web application presents several
prepared datasets for easy access. The predefined datasets include those from the original
paper, namely the airlines, airtraffic, and migration graphs. On the CPU side, the graph
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4. Implementation

is represented as an adjacency list. This representation is more memory efficient than
an adjacency matrix because it only stores the actual edges rather than all possible
edges. Furthermore, this enables fast, index-based node and edge lookups. A visual
representation of such an adjacency can be seen in Figure 4.1.

Figure 4.1: Visualization of a small graph (left) and its adjacency list (right).

4.2.2 WebGPU

WebGPU is a modern web API designed to be the successor to WebGL, offering high-
performance access to a computer’s GPU for both graphics rendering and general-purpose
computation. Most relevant for this thesis is that WebGPU has support for compute
shaders, which were not directly available with WebGL and enable general-purpose
computations on the GPU directly in the browser.

4.3 Implementing the P-EPB algorithm

As mentioned earlier, the EPB algorithm is structured in a way that the method for
calculating a t-spanner can be swapped out. In the following sections, the technical
implementation of both the greedy and the spanner algorithms, as well as the edge
bundling algorithm, are explained.

Starting from the JavaScript S-EPB algorithm, performance monitoring in the form of
flame graphs was used to identify and optimize bottlenecks. These flame graphs can
be generated within the development tools of most browsers and are a handy way to
determine, down to the exact line of code, how much time is spent on computation.
Figure 4.2 shows such a flame graph. Each block represents a function that is executed.
Clicking on a block takes you to the source code, where each line is annotated with the
number of milliseconds it took to run.
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Figure 4.2: Visualization of a flame graph.

4.3.1 Floyd-Warshall

The Floyd–Warshall algorithm is used in both the greedy t-spanner algorithm and the
edge-bundling step to compute shortest paths between all pairs of vertices in a graph.
The graph is represented by an n× n adjacency matrix, where n is the number of nodes.
The algorithm iterates over three nested loops, over indices k, x, and y, resulting in a
time complexity of O(n3).

The outer loop runs on the CPU. For each k, n2 compute shader threads are launched
on the GPU, each responsible for a single matrix cell (x, y). Each thread compares the
current distance dxy with the path length dxk + dky via vertex k, updating dxy if the
latter is smaller. To enable path reconstruction, we maintain a second n × n matrix
next[i][j] that records, for every pair (i, j), the index of the next vertex on the shortest
path. This matrix is initialized prior to the main loops and updated in tandem with the
distance matrix within the compute shader.

4.3.2 Spanner construction

Both of the following spanner algorithms take the original graph as well as a stretch
factor t as input parameters. The output is a t-spanner, which is then used in the edge
bundling step.

Greedy Spanner

The greedy t-spanner algorithm employs an adapted version of the Floyd–Warshall
algorithm. First, a n× n distance matrix is initialized and the graph’s edges are sorted
in descending order of weight. Then, for each edge e = (u, v), n2 compute shader threads
are launched similarly to the outer loop in Algorithm 3.2. The distance of a cell is
only updated if the spanner condition dxy > we · t is true. Furthermore, whenever the
condition is true, the edge e is added to the spanner.
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Theta Spanner

The θ-graph algorithm builds a geometric spanner by partitioning the plane around each
vertex into b equal cones with an angle of θ = 2π/b. For each vertex u and each cone i,
the distance ℓ of all vertices that lie within cone i is calculated and the vertex with the
smallest ℓ is kept. If such a vertex v exists, the edge (u, v) gets added to the spanner.
In practice, n× b compute shader threads, one for each pair (u, i), are launched. Each
thread atomically tracks the minimum distances and the corresponding neighbor. The
resulting graph is a t-spanner with:

t = 1
1− 2 sin(θ/2) .

Because this approach can result in a spanner that includes edges not present in the
original graph, an additional preprocessing step is applied to eliminate those edges.
However, this may lead to situations where the resulting spanner is no longer a spanning
tree. Conceptually, the edge bundling algorithm does not require a spanning tree to
function. The potential drawbacks, such as increased ambiguity and a different graph
structure compared to a greedy spanner, are discussed in Chapter 9.

4.3.3 Edge Bundling

The first step is to compute the set of edges present in the original graph but absent
from the t-spanner. Next, the Floyd–Warshall algorithm is applied to the t-spanner to
compute shortest paths between all pairs. For each edge (u, v) in this difference set, its
precomputed shortest-path distance d(u, v) is retrieved. Since these distances are already
available, this lookup is efficient and can be done on the CPU. If

d(u, v) ≤ t ∗ w(u, v)

where t is the maximum-distortion parameter and w(u, v) the original edge weight, the
edge gets bundled. The coordinates of all vertices along that path then serve as control
points for a Bézier curve.

4.3.4 Rendering Edges

For the sake of simplicity, once the edges are bundled and control points are calculated,
they are rendered with the 2D Canvas API [CAN25]. Rendering the edges directly with
WebGPU would be the obvious and faster solution, but at the same time, also be more
complex. As the goal of this thesis was to speed up the edge bundling algorithm rather
than the drawing, this compromise was taken.

In the UI one can choose between two rendering modes, fast and quality. The fast
mode tries to approximate the bundled edge into multiple quadratic curves. Because
the canvas API has a native method for drawing such curves, it is fast but also not as
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accurate. The quality rendering mode, on the other hand, uses the same approach to how
edges are drawn by Wallinger et al. [WAA+23]. It approximates the bundled edge as a
Bezier curve with 50 segments. Depending on the dataset, calculating and drawing these
segments is generally five to eight times slower compared to the fast rendering mode, but
the end result is a much smoother curve. The quality rendering mode was used for all
visualizations shown in this thesis.
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CHAPTER 5
Evaluation and Results

The goal of this chapter is to compare the original S-EPB algorithm to the proposed P-
EPB algorithm using various performance and quality metrics. Multiple variations of the
P-EPB algorithm, each employing different implementations of the spanner construction,
are evaluated against the fastest variation of the S-EPB algorithm without biconnected
component decomposition

5.1 Experimental Setup
Experiments were conducted on a MacBook Air, equipped with an Apple M4 chip
featuring a 10-core CPU and a 10-core GPU, along with 24 GB of unified memory and
running the operating system version 15.5 Sequoia. It is important to note that the GPU
core count on modern (post circa 2020) Apple machines cannot be directly compared to
the thousands of CUDA cores typically found in dedicated GPUs from manufacturers
like NVIDIA, as their architectures differ significantly. For both performance and quality,
except for the interactivity experiment, the values for maximum distortion and the edge
weight factor were chosen to be 2, as these values produced visually appealing output.

5.1.1 Performance Measures

The P-EPB algorithm was evaluated on Chromium v138 using the Vitest [VIT25a]
framework with Playwright [PLA25] for browser integration. Each metric calculation
was implemented as a separate test. Tests were executed sequentially, and all buffers
were disposed of after each run. Vitest executes tests in a real browser, isolating each
test in its own iframe to ensure independent browser contexts and prevent unintended
resource sharing.

The C++ implementation of the S-EPB algorithm from Wallinger et al. [WAA+23] was
used for the performance experiments because this version is tuned for performance.
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Source code and compilation instructions are provided by Wallinger et al. in an open
source repository [Wal21]. This implementation requires the OGDF library [OGD25].
OGDF version 2022.02 (Dogwood), the latest compatible release, was compiled according
to the official documentation.

Furthermore, as a baseline, a JavaScript CPU implementation of the was also tested.
This implementation, however, is very slow and does not include the same optimizations
as the original version by Wallinger et al. [WAA+23]. Since the goal of this thesis is to
run the S-EPB algorithm on the GPU, it was not considered necessary to optimize the
JavaScript CPU implementation.

The following results, unless otherwise noted, are the average values obtained by running
each test 25 times. To mitigate the potential impact of thermal throttling, the entire
experiment suite, each test executed 25 times, was repeated three times consecutively,
and the results from the final run are reported in the next section. The rationale behind
this approach is that the system warms during prolonged testing, which could unfairly
degrade the performance of tests that were run later in the suite. By selecting the
potentially worst results from the last of the three runs, a fair comparison can be ensured.

Additionally, a two second pause was inserted between successive test runs to ensure that
all allocated hardware resources were released and that each test began under identical
initial conditions.

Quality Measures

All quality metrics were computed using the experimental suite provided in Wallinger
et al. [WAA+23]. This approach ensures direct comparability of results and avoids
errors that may arise from differences in metric implementations. The experimental
suite is written in Python, and version 3.11.13 was used to produce the results. The
Python implementation of the S-EPB algorithm was used because the C++ version does
not support quality metric calculation. Apart from the programming language used
and performance differences, both implementations should produce the same results.
The performance difference, however, can be ignored for the quality experiments. The
JavaScript implementation of the algorithm produces the exact same output as the
P-EPB (greedy) variant. Therefore, the quality experiments were only run for the P-EPB
(greedy) implementation.

5.1.2 Datasets

Table 5.1 shows the six datasets that were used for testing. For the sake of comparability,
three of the six datasets were taken directly from Wallinger et al. [WAA+23] [WAA+21].
The other three datasets are synthetic and were not created to test visual clarity but
to test how the new algorithm scales in dense graphs. These synthetic datasets are
fully connected graphs with 256, 529 and 1024 nodes, respectively. Because of the
limitation that the whole graph needs to be contained in a single WebGPU buffer, the
two larger datasets, Amazon200k and PanamaPapers, with 192,976 and 743,253 vertices,
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respectively, were not tested. The minimum buffer size supported by all WebGPU-enabled
browsers is 256 MiB, as described in the WebGPU specification [WEB25b], which is
rather small but large enough to fit graphs with up to around 8200 vertices. It is up to
the operating system and the browser to determine this limit. For example, the maximum
buffer size on the machine where the experiments are run, which is described in chapter
5.1, is around 4 GB. The implications of this limitation are discussed in chapter 5.5.

Dataset |V | |E|

Airlines 235 2101
Migrations 1702 9,726
Airtraffic 1533 16,494
FC 256 256 32,640
FC 529 529 139,656
FC 1024 1024 523,776

Table 5.1: All six datasets with their vertex and edge counts.

5.2 Performance Evaluation

5.2.1 Runtime Comparison

Table 5.2 presents the average runtime in milliseconds over 25 iterations, excluding the
time spent rendering. Due to the long runtime of this implementation, the experiments
were run only five times for the airlines dataset and once for the migration and airtraffic
datasets. The FC256, FC529, and FC1024 datasets were not tested at all because their
runtimes were excessively long. It is clear that the P-EPB algorithm with the greedy
spanner implementation is slower across all datasets compared to the other two algorithms.
This is likely due to the fact that both, the spanner construction and the edge bundling
steps, involve a three-level nested loop, which increases computational complexity. On
the other hand, the P-EPB algorithm with the theta spanner implementation produces
comparable results for the airlines and migration datasets compared to the S-EPB
algorithm. However, this implementation excels with dense graphs, such as the airtraffic
dataset, where it achieves nearly a 2x speedup. Notably, the speedup factor appears to
increase with the graph’s density. For instance, the FC1024 dataset, which contains over
half a million edges, runs more than seven times faster than the S-EPB algorithm. The
naive S-EPB JavaScript implementation is orders of magnitude slower than any other
implementation.

5.2.2 Interactivity

Because the P-EPB algorithm requires setting up GPU buffers and transferring data—operations
that introduce latency—the time measured to recompute the bundling after each parame-
ter change is measured. Depending on which parameter is modified, some buffers can be
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Algorithm Airlines Migration Airtraffic FC 256 FC 529 FC 1024
S-EPB (Wallinger) 16 292 563 185 1250 6607
S-EPB (JavaScript) 15,8 sec 44 min 75 min / / /
P-EPB (greedy) 116 1,224 1,236 1,262 5,664 24,388
P-EPB (theta) 38 348 287 34 150 924

Table 5.2: Average runtime, unless otherwise noted, in milliseconds.

reused, reducing the recomputation time. This metric is critical because the outcome of
this thesis is an interactive web application in which users adjust parameters on the fly,
making render latency far more important than in a scenario where just one visualization
is generated.

Tables 5.4 and 5.3 show the runtime results after modifying the edge weight factor and
maximum distortion parameter, respectively, each adjusted twice. Additionally, Table
5.5 presents the runtime results when both parameters are changed simultaneously.

From the tables, the general trend that initial computation time is typically longer than
the subsequent re-computations can be observed. However, there are notable outliers.
For instance, in the case of the P-EPB algorithm combined with the greedy spanner,
applied to both the migration and airtraffic datasets, recalculations, particularly when
the maximum distortion parameter is set to one, take longer than the initial computation.

Airlines Migration Airtraffic
Algorithm init dist1 dist2 initial dist1 dist2 init dist1 dist2

P-EPB (greedy) 120 86 84 1242 1341 463 1243 2812 807
P-EPB (theta) 36 12 15 346 35 51 288 43 54

Table 5.3: Interactivity, maximum distortion.

Airlines Migration Airtraffic
Algorithm init wght1 wght2 init wght1 wght2 init wght1 wght2

P-EPB (greedy) 115 13 6 1229 216 13 1241 170 23
P-EPB (theta) 38 17 7 348 214 19 285 165 28

Table 5.4: Interactivity, edge weight factor.

5.3 Quality Evaluation

The following section describes the quality metrics used. For the sake of comparability,
ink reduction, distortion and ambiguity metrics are taken from [WAA+23].
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Airlines Migration Airtraffic
Algorithm initial dist weight initial dist weight initial dist weight
P-EPB (greedy) 117 94 87 1232 1536 466 1252 3000 819
P-EPB (theta) 37 24 14 346 234 53 286 182 55

Table 5.5: Interactivity, maximum distortion and edge weight factor.

5.3.1 Visual Comparison

Figure 5.1 shows the visual outputs of the P-EPB algorithm, both greedy and theta-
spanner versions, alongside those of the S-EPB algorithm. The P-EPB images were
produced with the web implementation, while the S-EPB images use the Python imple-
mentation by Wallinger et al. [WAA+23].

Both methods were run with the same parameters—maximum distortion = 2 and edge-
weight factor = 2, yet the visualizations differ noticeably. In the S-EPB visualization,
edges form much tighter bundles than in the P-EPB versions. A possible explanation for
this is that the P-EPB algorithm implements edge path bundling incorrectly. However,
since the JavaScript S-EPB implementation produces the same output while being
fundamentally different in its code, this seems unlikely. The more probable reason for
the differing visualizations is the way each implementation renders Bézier curves.

5.3.2 Ink Reduction

“Ink reduction” is a quality metric for edge bundling that measures how much less “ink” a
bundled drawing uses compared to an unbundled one. To calculate it, the “active pixels”
are counted, pixels whose color is above a specific gray threshold, in both drawings. The
ink reduction Rink is then given by the ratio

Rink = Pb

Pu

where Pb is the number of active pixels in the bundled drawing and Pu is the number
in the unbundled drawing. A smaller Rink indicates better bundling, as it reflects less
visual clutter.

The results in the Tables 5.6, 5.7, and 5.8 show that the P-EPB implementations generally
achieved comparable or superior ink reduction versus the S-EPB algorithm, especially on
denser datasets. However, on the airlines dataset, other methods like CUBu and Winding
Roads resulted in the greatest reduction.

5.3.3 Distortion

The quality metric distortion quantifies how much edge-bundling elongates connections
compared to their original straight-line distances. For each edge e, one measures the
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(a) P-EPB (greedy) (b) P-EPB (greedy)

(c) P-EPB (theta) (d) P-EPB (theta)

(e) S-EPB (Wallinger) (f) S-EPB (Wallinger)

Figure 5.1: Comparing the different bundling algorithms. (a) (b) P-EPB (greedy), (c)
(d) P-EPB (theta) and (e) (f) S-EPB (Wallinger).

bundled length ℓb(e) and the Euclidean straight-edge length ℓs(e), then computes the
average ratio

D = 1
|E|

∑︂
e∈E

ℓb(e)
ℓs(e)

where |E| is the total number of edges. A distortion value D close to 1 indicates that
bundling has preserved the original geometry, whereas larger values reveal increasing
detours and potential visual artefacts introduced by the bundling process.

The results in the Tables 5.6, 5.7, and 5.8 show that across most datasets, the P-EPB
algorithms produced distortion values similar to S-EPB and other methods. For the
migration dataset, the CUBu and Winding Roads algorithms yielded the lowest distortion.
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5.3.4 Ambiguity

The ambiguity of a bundled layout measures the proportion of false neighbors to all
visually implied neighbors in the graph, capturing how many incorrect adjacencies
are perceived due to ambiguous edge renderings. For each edge e = (u, v), reachable
neighbor sets N(u, e) are defined based on intersections and flat angles between edges.
True neighbors (Nt(u, e)) are those within a graph distance threshold δ, while false
neighbors (Nf (u, e)) are the remaining vertices. The ambiguity metric calculates the
ratio of false neighbors to total neighbors, with lower values indicating less ambiguity and
therefore being better. Theoretically, a value of 0 would be ideal, but even a straight-line
drawing—as shown in Tables 5.6, 5.7, and 5.8—has an ambiguity greater than 0. In the
tables, the ambiguity is denoted as ambn, where n is the value of δ. The P-EPB (theta)
version often achieved the lowest ambiguity, significantly outperforming others on the
airtraffic dataset. On the migration dataset, traditional algorithms like Winding Roads
and Force-directed Edge Bundling produced better ambiguity scores.

5.3.5 Summary

The Tables 5.6, 5.7, and 5.8 show the quality metrics for the airlines, migration, and
airtraffic datasets. Furthermore, as a lower bound comparison quality metrics for the
CUBu, Winding Roads and FDEB algorithms were taken from Wallinger et al. [WAA+21].
Overall, both P-EPB implementations and the S-EPB algorithm yield comparable results.

Notably, for the airtraffic dataset, both P-EPB implementations achieve better ink reduc-
tion, and the theta-spanner implementation even has a smaller ambiguity value. However,
for the airlines dataset, the P-EPB theta-spanner implementation has a noticeably worse
ink reduction score.

When comparing the edge path bundling results to traditional algorithms, one might
expect the traditional methods to yield higher ambiguity values. This is generally true,
except in the migration dataset, where the Winding Roads and FDEB algorithms achieve
better ambiguity scores. In the airlines dataset, the CUBu and Winding Roads algorithms
show the greatest ink reduction compared to other methods. Finally, for the migration
dataset, CUBu and Winding Roads yield the lowest distortion values. Interestingly, the
CUBu algorithm has a distortion value of 1.00 for the airtraffic dataset, which is the
same as a straight-line drawing of the graph.

5.4 Discussion

The evaluation results highlight the potential of WebGPU to enhance the performance
of complex graph visualization algorithms, such as edge path bundling. The proposed
P-EPB algorithm, particularly the theta-spanner variant, demonstrated promising results,
significantly improving upon the CPU-based S-EPB implementation on dense graphs.
This section explores these findings, delves into the factors contributing to the observed
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Algorithm ink dist amb1 amb2

Straight 1.00 1.00 0.66 0.03
S-EPB (Wallinger) 0.58 1.08 0.80 0.05
P-EPB (greedy) 0.59 1.13 0.77 0.04
P-EPB (theta) 0.70 1.02 0.62 0.04
CUBu 0.47 1.08 0.86 0.05
Winding Roads 0.47 1.08 0.86 0.05
Force-directed 0.77 1.04 0.73 0.04

Table 5.6: Quality metric comparison Airlines.

Algorithm ink dist amb1 amb2 amb3 amb4 amb5

Straight 1.00 1.00 0.67 0.39 0.13 0.05 0.038
S-EPB (Wallinger) 0.59 1.07 0.69 0.34 0.10 0.05 0.03
P-EPB (greedy) 0.51 1.13 0.77 0.04 0.00 0.00 0.00
P-EPB (theta) 0.56 1.21 0.46 0.25 0.09 0.06 0.05
CUBu 0.64 1.06 0.77 0.43 0.15 0.06 0.04
Winding Roads 0.58 1.06 0.42 0.15 0.07 0.06 0.05
Force-directed 0.77 1.12 0.44 0.15 0.07 0.06 0.05

Table 5.7: Quality metric comparison Migration.

Algorithm ink dist amb1 amb2

Straight 1.00 1.00 0.54 0.10 0.00
S-EPB (Wallinger) 0.63 1.10 0.58 0.14 0.00
P-EPB (greedy) 0.44 1.13 0.77 0.04 0.00
P-EPB (theta) 0.44 1.10 0.35 0.07 0.00
CUBu 0.71 1.00 0.59 0.11 0.01
Winding Roads 0.56 1.06 0.58 0.12 0.01
Force-directed 0.79 1.06 0.54 0.10 0.00

Table 5.8: Quality metric comparison Airtraffic.

performance gains, identifies areas where bottlenecks persist, and reflects on the trade-offs
involved in the chosen approach.

The success of the P-EPB (theta) algorithm can largely be attributed to its effective
utilization of the GPU’s massively parallel architecture. The decision to use the Floyd-
Warshall algorithm for all pairs shortest path computation played a key role. While
its O(|V |3) time complexity is theoretically high, its structure lends itself well to GPU
execution. Each of the n2 distance updates in the innermost loops can be processed
independently by separate GPU threads. This turned a complex task into a data-parallel
problem, using thousands of GPU cores to process the graph’s adjacency matrix at the
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same time. By comparison, the CPU-based S-EPB implementation relies on sequential
single-source shortest path calculations using Dijkstra’s algorithm.

The choice of spanner construction also played a pivotal role. The greedy spanner
algorithm, while effective, is inherently sequential, as each step depends on the results
of the previous one, making it difficult to parallelize. This limitation is reflected in
the relatively poor performance of the P-EPB (greedy) variant shown in Table 5.2. In
contrast, the theta-graph spanner is a geometric construction that can be built in a
highly parallel manner, making it a better fit for GPU execution and a key factor in the
observed performance improvements.

An interesting finding is that, for the migration dataset, the Winding Roads and al-
gorithms achieve the best and second-best ambiguity scores for δ = 1, outperforming
the S-EPB algorithm. Overall, in terms of ambiguity, the non edge path and edgepath
bundling algorithms perform very similarly. In some cases, the non edge path bundling
algorithm even achieves a better ambiguity score.

A glaring shortcoming of the current P-EPB algorithm is that the visual output differs
significantly from the visualization generated by the original S-EPB algorithm. This is
likely due to differences in how both implementations render Bézier curves. Unfortunately,
this means that the P-EPB algorithm cannot act as a drop-in replacement for the S-EPB
algorithm in situations where visual output similarity is important. On the upside, this
does not invalidate the technical improvements made to the algorithm, as rendering
performance was not factored into the performance measures of either this thesis or
the paper by Wallinger et al. [WAA+23]. Theoretically, once this visual discrepancy is
resolved, the result would be a comparably fast edge path bundling algorithm on sparse
graphs and a multiple-times-faster algorithm on dense graphs that runs entirely in the
browser.

5.5 Remaining Bottlenecks and Limitations

Despite the notable speedup, several bottlenecks remain that constrain performance,
particularly during the initial computation phase:

1. CPU-GPU Data Transfer: Before computation begins on the GPU, the graph
data must be formatted into matrices and transferred from CPU memory to GPU
buffers. While this is a preprocessing step, it represents a significant portion of the
initial load time, as evidenced by the differences between initial and subsequent
runtimes in Tables 5.4 5.3 5.5.

2. Sequential CPU-side Logic: The implementation is not fully GPU-based. The
main loop of the Floyd-Warshall algorithm is still managed by the CPU, which
dispatches a new compute shader for each of the n iterations. Additionally, after the
shortest paths are computed, the resulting matrix is read back to the CPU, where
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the final path reconstruction and bundling logic are executed. This round-trip and
CPU-side processing introduce overhead.

3. Rendering: The final rendering of the Bézier curves is handled by the 2D Canvas
API. While this approach is convenient, it is not the most performant. A full
WebGPU rendering pipeline could potentially improve performance, but would
require significant additional implementation effort.

4. Processing large graphs: Currently, processing larger graphs is constrained
by the requirement that the entire graph must fit into a single WebGPU buffer,
whose maximum size depends on the system running the program [WEB25b]. The
minimum buffer size supported by all WebGPU-enabled browsers is 256 MiB, which
is sufficient for processing a graph with up to around 8,200 vertices. However, this
limit can be higher on certain machines. For example, on the machines used to
run the experiments described in Section 5.1, the buffer size could be increased to
around 4 GiB. Depending on the use case, this limitation can become problematic.
For instance, the datasets Amazon200k and PanamaPapers from Wallinger et al.
[WAA+23] each contain over 100,000 vertices. Furthermore, in other fields, graphs
with millions of vertices and edges, such as the social graphs studied in Zhao et
al. [ZLK+25], are not uncommon. For such large-scale graphs, the current P-EPB
implementation is not suitable.
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CHAPTER 6
Conclusion and Future Work

In conclusion, this thesis showed that the web based P-EPB algorithm achieves compa-
rable results in both performance and quality compared to the highly optimized C++
implementation of the S-EPB algorithm. However, even though the quality metrics of
both algorithms, when tested on the same dataset, are comparable, the visual output is
quite different.

1. To what extent can the computationally expensive components of the S-
EPB algorithm, such as spanner construction and shortest path searches,
be effectively parallelized for a GPU architecture?
The core components of the S-EPB algorithm can be effectively parallelized, but
it requires substituting the original algorithms with alternatives better suited
for a GPU architecture. The thesis demonstrates that the inherently sequential
Dijkstra’s algorithm for shortest-path calculation can be successfully replaced by
the Floyd-Warshall algorithm, which is highly parallelizable. Similarly, while the
original greedy spanner construction performs poorly on a GPU due to its sequential
dependencies, an alternative geometric method like the theta-graph spanner can be
constructed in a highly parallel manner, enabling significant performance gains.

2. How does the performance of a WebGPU-based implementation compare
to the CPU based S-EPB implementation across graph datasets of
varying size and density?
This thesis showed that, in terms of performance, both the S-EPB and the P-
EPB algorithms produce similar results on smaller graphs such as the Airlines
and Migration datasets. Although the P-EPB algorithm performed slightly worse
on these datasets, the performance gap was not significant. Where the P-EPB
algorithm truly shines is with dense datasets. From the Airtraffic dataset up to
the FC1024 dataset, the P-EPB algorithm consistently outperforms the S-EPB,
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achieving a speedup of more than eight on the FC529 dataset. The goal of achieving
computation times as low as 33ms, however, was not met. No silver bullet for
eliminating the many inherently sequential parts of the EPB and S-EPB algorithms
was found.

3. What are the primary challenges and architectural trade-offs involved
in adapting and implementing graph algorithms for in-browser GPU
execution?
Key challenges stem from data management and architectural constraints. The
initial overhead of transferring graph data from the CPU to the GPU is significant.
Furthermore, the need for the entire graph to fit within a single CPU memory
buffer limits the maximum graph size. Finally, many established algorithms like
Dijkstra’s are inherently sequential and ill-suited for GPU parallelization, which
restricts the available choices.

There is still plenty of room to speed up the P-EPB algorithm as discussed in 5.5. Some
parts of the algorithm still run on the CPU. Moving them all to the GPU should give a
big speed boost by cutting extra data transfers and synchronization between CPU and
GPU.

Another interesting topic is handling graphs of arbitrary size. To do this, the algorithm
must process the graph in smaller chunks rather than all at once. This would overcome
the WebGPU buffer size limit, though it may introduce new challenges.

WebGPU only became available in most browsers in 2025, so it’s still very new. Shared
graph processing libraries for WebGPU are needed so experiments like the ones in this
thesis are easier to run. Everything from memory management to basic algorithms
like Dijkstra had to be implemented from scratch, which takes a lot of time away from
focusing on the actual algorithmic problems. However, all code from this thesis is open
source.

WebGPU is a powerful new technology that has the potential to enable new ways of
interactive data visualization on the most portable and shareable platform in existence,
the Web.
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Overview of Generative AI Tools
Used

The used generative AI tools can be categorized into three groups:

1. Research: Various LLMs from OpenAI and Google, such as o4 and Gemini 2.5
Pro, were used initially to gain a broad understanding of the field and identify
potential algorithms and data structures. For more detailed literature research, the
tool Consensus [CON25] was used.

2. Implementation: The Integrated development environment (IDE) Cursor [CUR25]
was used in two ways. First, as a general AI-assisted autocompletion tool and
second, for more mundane tasks such as blueprinting page layouts or generating
shader boilerplate.

3. Writing: Finally, o4 and Gemini 2.5 Pro were used as writing assistants to
proofread text and improve sentence structure.
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Acronyms

CPU Central Processing Unit. xi, 3, 10, 15, 17, 18, 22, 27, 29–32

CUBu CUDA-based Universal Bundling. 5, 7, 25–27

EPB Edge-Path Bundling. 2, 5, 6, 9, 10, 16, 32

FDEB Force-directed Edge Bundling. 5–7, 27

GPU Graphics Processing Unit. xi, xiii, 2, 3, 6, 7, 10–12, 14–17, 21–23, 28, 29, 31, 32

IDE Integrated development environment. 33

P-EPB Parallel Edge-Path Bundling. xi, xiii, xv, 2, 3, 15–17, 19, 21–32

PBEB Pixel-Based Edge Bundling. 7

S-EPB Spanner-based Edge-Path Bundling. xi, xiii, xv, 2, 3, 5–7, 9–14, 16, 21–23,
25–27, 29, 31, 32

WGSL WebGPU Shading Language. 15

37





Bibliography

[ADD+93] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José
Soares. On sparse spanners of weighted graphs. Discrete & Computational
Geometry, 9(1):81–100, January 1993.

[BRH+17] Benjamin Bach, Nathalie Henry Riche, Christophe Hurter, Kim Marriott,
and Tim Dwyer. Towards Unambiguous Edge Bundling: Investigating
Confluent Drawings for Network Visualization. IEEE Transactions on
Visualization and Computer Graphics, 23(1):541–550, January 2017.

[CAN25] Canvas API. https://developer.mozilla.org/en-US/docs/Web/
API/CanvasRenderingContext2D, 2025.

[CON25] Search - Consensus: AI Search Engine for Research. https://consensus.
app/search/, 2025. Accessed: 2025-08-04.

[CUR25] Cursor - The AI Code Editor. https://cursor.com/en, 2025. Accessed:
2025-08-04.

[DTC+14] Hristo Djidjev, Sunil Thulasidasan, Guillaume Chapuis, Rumen Andonov,
and Dominique Lavenier. Efficient Multi-GPU Computation of All-Pairs
Shortest Paths. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pages 360–369, Phoenix, AZ, USA, May 2014. IEEE.

[Geb11] Fayez Gebali. Algorithms and Parallel Computing. John Wiley & Sons,
March 2011. Google-Books-ID: 3g6lrxrd4wsC.

[GNS08] Joachim Gudmundsson, Giri Narasimhan, and Michiel Smid. Geometric
Spanners: 2002; Gudmundsson, Levcopoulos, Narasimhan. In Ming-Yang
Kao, editor, Encyclopedia of Algorithms, pages 360–364. Springer US, Boston,
MA, 2008.

[HVW09] Danny Holten and Jarke J. Van Wijk. Force-Directed Edge Bundling for
Graph Visualization. Computer Graphics Forum, 28(3):983–990, June 2009.

[LB96] Weifa Liang and Richard P Brent. Constructing the spanners of graphs in
parallel. In Proceedings of International Conference on Parallel Processing,
pages 206–210, 1996.

39

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://consensus.app/search/
https://consensus.app/search/
https://cursor.com/en


[LBA10] A. Lambert, R. Bourqui, and D. Auber. Winding Roads: Routing edges
into bundles. Computer Graphics Forum, 29(3):853–862, June 2010.

[OGD25] Open Graph Drawing Framework. https://github.com/ogdf/ogdf,
2025. Accessed: 2025-07-27.

[PLA25] Playwright. https://playwright.dev/, 2025. Accessed: 2025-08-04.

[PS89] David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph
Theory, 13(1):99–116, March 1989.

[Sca24] Matthew Scarpino. The WebGPU Sourcebook: High-Performance Graphics
and Machine Learning in the Browser. CRC Press, Boca Raton, 1 edition,
August 2024.

[SP24] S. Sarathi and P. S. Varshiga. Unleashing the Power of Graphics: A
Comprehensive Exploration of WebGPU. International Research Journal
on Advanced Engineering and Management (IRJAEM), 2(05):1785–1791,
May 2024.

[SVE25] Svelte • Web development for the rest of us. https://svelte.dev/,
2025. Accessed: 2025-07-13.

[Tor23] Ismail H. Toroslu. The Floyd-Warshall all-pairs shortest paths algorithm
for disconnected and very sparse graphs. Software: Practice and Experience,
53(6):1287–1303, June 2023.

[UNO25] UnoCSS. https://unocss.dev/, 2025. Accessed: 2025-07-13.

[VDZCT16] Matthew Van Der Zwan, Valeriu Codreanu, and Alexandru Telea. CUBu:
Universal Real-Time Bundling for Large Graphs. IEEE Transactions on
Visualization and Computer Graphics, 22(12):2550–2563, December 2016.

[VIT25a] Playwright. https://vitest.dev/, 2025. Accessed: 2025-08-06.

[VIT25b] Vite. https://vite.dev, 2025. Accessed: 2025-07-13.

[VLKS+11] T. Von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J.J. Van Wijk,
J.-D. Fekete, and D.W. Fellner. Visual Analysis of Large Graphs: State-
of-the-Art and Future Research Challenges. Computer Graphics Forum,
30(6):1719–1749, September 2011.

[VR14] Andre Van Renssen. Theta-Graphs and Other Constrained Spanners. Doctor
of Philosophy, Carleton University, Ottawa, Ontario, 2014.

[WAA+21] Markus Wallinger, Daniel Archambault, David Auber, Martin Nöllenburg,
and Jaakko Peltonen. Edge-Path Bundling: A Less Ambiguous Edge
Bundling Approach, August 2021. arXiv:2108.05467.

40

https://github.com/ogdf/ogdf
https://playwright.dev/
https://svelte.dev/
https://unocss.dev/
https://vitest.dev/
https://vite.dev


[WAA+23] Markus Wallinger, Daniel Archambault, David Auber, Martin Nöllenburg,
and Jaakko Peltonen. Faster Edge-Path Bundling through Graph Spanners.
Computer Graphics Forum, 42(6):e14789, September 2023.

[Wal21] Markus Wallinger. Edge-Path Bundling. https://osf.io/t4h6j/, Au-
gust 2021.

[WEB25a] WebGPU API. https://developer.mozilla.org/en-US/docs/
Web/API/WebGPU_API, 2025. Accessed: 2025-07-13.

[WEB25b] WebGPU Specification. https://www.w3.org/TR/webgpu/, 2025. Ac-
cessed: 2025-08-06.

[WSX+23] Jieting Wu, Jianxin Sun, Xinyan Xie, Tian Gao, Yu Pan, and Hongfeng
Yu. Accelerating Web-based Graph Visualization with Pixel-Based Edge
Bundling. In 2023 IEEE International Conference on Big Data (BigData),
pages 6005–6014, Sorrento, Italy, December 2023. IEEE.

[ZLK+25] Tong Zhao, Yozen Liu, Matthew Kolodner, Kyle Montemayor, Elham Ghaz-
izadeh, Ankit Batra, Zihao Fan, Xiaobin Gao, Xuan Guo, Jiwen Ren, Serim
Park, Peicheng Yu, Jun Yu, Shubham Vij, and Neil Shah. GiGL: Large-Scale
Graph Neural Networks at Snapchat, 2025.

[ZWGC12] Delu Zhu, Kaichao Wu, Danhuai Guo, and Yuanmin Chen. Parallelized force-
directed edge bundling on the gpu. In 2012 11th International Symposium on
Distributed Computing and Applications to Business, Engineering Science,
pages 52–56, 2012.

41

https://osf.io/t4h6j/
https://developer.mozilla.org/en-US/docs/Web/API/WebGPU_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGPU_API
https://www.w3.org/TR/webgpu/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background and Related Work
	Edge-Path Bundling
	Faster EPB with Graph Spanners (sepb)
	Alternative edge bundling techniques

	sepb Parallelization
	Code Analysis
	 Parallel Algorithms
	Adapting sepb for Parallel Execution

	Implementation
	Technology Stack
	System Architecture
	Implementing the pepb algorithm

	Evaluation and Results
	Experimental Setup
	Performance Evaluation
	Quality Evaluation
	Discussion
	Remaining Bottlenecks and Limitations

	Conclusion and Future Work
	Overview of Generative AI Tools Used
	Acronyms
	Bibliography

