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Kurzfassung

Obwohl mit variabler Bitrate komprimierte Bildformate wie JPEG weit verbreitet sind
und eine effiziente Komprimierung ermöglichen, spielen sie im Bereich des Echtzeit-
Renderings bislang kaum eine Rolle. Der Hauptgrund dafür sind spezielle Anforderungen
wie direkter Zugriff auf einzelne Texel. In dieser Arbeit untersuchen wir, ob und wie sich
JPEG als Format für Texture Kompression mit variabler Bitrate auf modernen GPUs
einsetzen lässt – und wie es im Vergleich zu etablierten, GPU-optimierten Verfahren mit
konstanter Bitrate wie BC1 und ASTC abschneidet.

Unser Ansatz basiert auf einer Deferred-Rendering-Pipeline und einer Pointer-Liste auf
separat kodierten JPEG-Blöcke. So können wir gezielt nur die Blöcke identifizieren und
dekodieren, die für das aktuelle Frame tatsächlich benötigt werden – und anschließend
die entsprechenden Pixel im Framebuffer einfärben. Trotz eines Overheads von ca. 0,5
Bit pro Texel liefert JPEG deutlich bessere Qualität und Kompressionsraten als BC1
und kann sogar mit ASTC mithalten. Beim Dekodieren der Textur erreichen wir zwar
nicht ganz das Niveau von klassischen GPU-Codecs, brauchen aber auf einer RTX 4090
trotzdem weniger als eine Millisekunde pro Frame. Damit zeigen wir, dass mit variabler
Bitrate kodierte Formate auch im Kontext von Deferred Rendering oder Visibility Buffers
durchaus praktikabel sind.
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Abstract

Although variable-rate compressed image formats such as JPEG are widely used to
efficiently encode images, they have not found their way into real-time rendering due
to special requirements such as random access to individual texels. In this thesis, we
investigate the feasibility of variable-rate texture compression on modern GPUs using
the JPEG format, and how it compares to the GPU-friendly fixed-rate compression
approaches BC1 and ASTC.

Using a deferred rendering pipeline and a list of pointers to individually encoded JPEG
blocks, we are able to identify the subset of blocks that are needed for a given frame,
decode these, and colorize the framebuffer’s pixels. Despite the additional 0.5 bit per
texel that we require for our approach, JPEG maintains significantly better quality and
compression rates compared to BC1, and is able to compete with ASTC. Although we
can not fully compete performance-wise, decoding the required texels of a JPEG texture
requires less than 1ms per frame on an RTX 4090, thus demonstrating that variable-rate
encoded image formats are feasible for rendering pipelines that are based on deferred
rendering or visibility buffers.
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CHAPTER 1
Introduction

Although JPEG [Wal92] is over 30 years old, it remains one of the most widely adopted
image compression formats. Its compression efficiency—especially in terms of perceptual
quality versus file size—has ensured its continued relevance across countless applications.
Despite this success, JPEG has historically been considered unsuitable for real-time
graphics applications. The prevailing view in the computer graphics community has
been that "it simply does not work" for this purpose, primarily due to limitations such
as poor random access due to sequential encoding, lack of parallel decode support, and
variable-rate block coding structures that do not map well to GPU architectures.

At the same time, modern texture compression formats such as BCn [INH99] and ASTC
[STS+21] have evolved specifically to meet the needs of real-time rendering—trading
variable compression rates and perceptual flexibility for tightly controlled access patterns
and hardware decode support.

In this thesis, we challenge the long-standing assumption that JPEG is inherently
incompatible with real-time graphics. We present a novel method that overcomes the key
limitations of JPEG, enabling it to be decoded in real-time directly on the GPU. Our
goal is not to suggest that JPEG surpasses traditional texture compression methods, but
to encourage the exploration of new GPU-friendly variable-rate compression strategies.
By revisiting and rethinking a format once considered unfit for graphics, we hope to lay
the groundwork for further innovation in texture compression, particularly in scenarios
where memory efficiency and perceptual quality must be balanced dynamically.

1.1 Problem Statement
The ever-increasing quality of photorealistic rendering is inherently accompanied by a
significant rise in texture data volume, which in turn places growing demands on storage
and memory bandwidth. However, Video Random Access Memory (VRAM) remains
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1. Introduction

both costly and limited, particularly for users on lower-end or ageing hardware. As
illustrated by a hardware survey in Table 1.1, more than 50% of Steam 1 users, one of
the biggest online marketplaces for video games, currently operate with 8 GB of VRAM
or less, underscoring a widening disparity between modern software requirements and
the capabilities of mainstream hardware. Notably, the largest growth in market share is
observed among devices equipped with as little as 512 MB of VRAM, indicating that
increasing VRAM capacity is not always a viable solution, whether due to economic,
technical, or platform constraints.

A promising solution lies in compressing textures, reducing their size, and decoding
only the necessary portions in real-time when needed. This approach necessitates that
compressed textures support random access–the ability to retrieve individual texels
without decoding the entire texture. GPU-friendly compression algorithms address this
challenge by encoding texels in blocks with a uniform number of bits. These so-called fixed-
rate algorithms enable efficient mapping of texel indices to memory locations, allowing
real-time decoding. However, this approach often results in suboptimal utilisation of the
available storage, as Figure 1.1 demonstrates.

Variable-rate image formats, such as JPEG, achieve significantly higher compression
by allocating fewer bits to low-detail regions, thereby avoiding inefficient uniform bit
distribution. Despite this strength, such formats are generally regarded as unsuitable for
real-time rendering, primarily due to several technical limitations:

• Inefficient Texel Access: Variable bit rates mean that texel indices or UV coordinates
cannot be easily mapped to memory locations without creating additional indexing
tables, which increases memory overhead.

• Sequential Decoding: JPEG relies on Huffman coding [Huf52], requiring sequential
decoding and hindering parallelism, which is not GPU-friendly.

• Differential coding: components within JPEG are encoded as differences relative
to preceding values, introducing data dependencies that further obstruct random-
access.

If these constraints can be effectively addressed, it would enable the development of
novel texture compression schemes that leverage the compression efficiency of variable-
rate formats while preserving the random-access capability and decoding performance
necessary for real-time GPU rendering.

1.2 Aim of the Work
This thesis explores the potential of variable-rate compressed image formats for real-time
rendering on modern hardware. The primary objective is to investigate the feasibility of

1https://store.steampowered.com/
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1.2. Aim of the Work

VRAM Size Market Share (%) Change (%)
512 MB 5.86 +0.37
1 GB 3.94 -0.02
2 GB 4.99 -0.04
3 GB 1.08 -0.05
4 GB 7.11 -0.16
6 GB 11.48 -0.04
8 GB 33.67 -0.58
10 GB 2.67 +0.01
11 GB 1.23 -0.03
12 GB 18.83 +0.25
16 GB 5.90 +0.34
24 GB 2.40 -0.06
Other 0.86 +0.04

Table 1.1: Market Share and Change by VRAM Memory Size of Steam Users Mai 2025
[Val25]

Figure 1.1: Comparison of fixed-rate and variable-rate storage for image compression.
The green colour indicates the information density of a block, while the grey parts
demonstrate excess storage usage that does not improve quality. Fixed-rate encoding
uses 8 bits uniformly for each block, leading to inefficiencies such as unused storage (e.g.,
the first block) and loss of information when the required storage exceeds 8 bits (e.g.,
the third block). Variable-rate encoding adjusts the bits per block based on content
complexity, achieving higher compression and better image quality by minimising storage
waste and preserving details in complex regions.

3



1. Introduction

variable-rate texture compression methods, focusing on decoding efficiency and memory
consumption to highlight their strengths and trade-offs. JPEG was specifically chosen
because it is one of, if not the most popular, variable-rate-compressed image format.
By demonstrating the feasibility of a format that was conceived without GPU-friendly
optimisations in mind, this work aims to challenge conventional assumptions about the
viability of variable-rate compression for GPU textures.

Using CUDA, the method will be implemented and integrated into a deferred rendering
framework. This framework will be extended to support JPEG textures and enable
partial on-the-fly decoding of regions of interest, optimising the implementation to further
assess the feasibility of this approach.

1.3 Contribution
The following list details the individual contributions:

1. A method to enable efficient real-time rendering of triangle meshes with JPEG-
compressed textures.

2. A compact indexing structure that enables random access to individual texels
within a variable-rate compressed texture with little memory overhead. Specifically,
we design an index list that maps the starting positions of compressed blocks to
their corresponding texels. This index list is optimised for GPU memory, allowing
textures to be decompressed on the fly directly on the GPU.

3. We present a modified deferred rendering pipeline that seamlessly incorporates
rendering from variable-rate compressed textures while minimising computational
overhead.

4. We provide detailed statistics and visual comparisons against existing state-of-the-
art texture compression methods. These analyses provide valuable insights into
the strengths and challenges of our approach, thereby enhancing our understand-
ing of the practical benefits and trade-offs associated with variable-rate texture
compression algorithms.

5. Based on our results, we evaluate the general applicability and usefulness of variable-
rate texture compression algorithms, and provide guidelines on how to design and
optimise future, more GPU-tailored, methods.

More generally, through this work, we demonstrate how traditional storage-focused
compression formats can be re-engineered to meet the performance demands of modern
real-time rendering, ultimately contributing to advancements in texture compression
techniques and GPU rendering workflows.
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CHAPTER 2
Related Work

Since the debut of the first dedicated consumer graphics card, the 3dfx Voodoo Graphics
in 1996, with only 2 MB of texture memory, GPU memory capacity has expanded
dramatically. Modern GPUs now feature up to 32 GB of VRAM–a significant improvement
over early architectures. However, even this capacity falls short of meeting the needs of
modern graphic applications, where the increasing fidelity of textures and the sheer scale
of graphical assets regularly outstrip available memory.

Therefore, to maximise the utilisation of available storage, researchers have continually
sought to develop ever-improving texture compression algorithms. In the context of
real-time rendering, texture compression algorithms can be broadly categorised into three
groups based on how they process and store data: fixed-rate compression, variable-rate
compression, and the emerging class of neural texture compression techniques. The
following sections will review the most significant works within each of these categories,
including hybrid approaches that fall between them or propose alternative strategies for
addressing VRAM storage limitations.

2.1 Fixed-rate compression
Fixed-rate compression refers to the fact that all segments of the image are encoded with
the same bit rate, making individual texels or blocks of texels randomly accessible. GPU-
based algorithms also make an effort to keep the decoding computationally inexpensive.

One of the earliest references to a fixed-versus-variable compression strategy is found
in the work of Beers et al., who pioneered an approach using vector quantisation to
compress textures and render directly from the compressed data [BAC96]. Although
developed decades ago, this method continues to hold significance as a foundational
concept, shaping the evolution of modern texture compression techniques and influencing
advancements in graphics rendering and hardware-accelerated compression technologies.

5



2. Related Work

Building on these early concepts, one of the most enduring and widely adopted texture
compression algorithms is S3 Texture Compression (S3TC) [INH99]. Despite being over
two decades old, S3TC—also known as DXT or, in its more recent iterations, BC1 through
BC7—continues to play a central role in modern graphics applications. It compresses
images by dividing them into 4×4 pixel blocks and computing two colour endpoints in
RGB space for each block. The algorithm then encodes all pixels within the block as
interpolations between these endpoints. BC1 and BC7 are tailored for colour images,
with BC1 offering lower quality but achieving twice the compression rate at 4 Bits per
Texel (bpt) compared to the more modern and higher-fidelity BC7 at 8 bpt.

Adaptive scalable texture compression (ASTC) [STS+21] builds on this idea but makes
the block sizes adaptive in the sense that we can chose larger block sizes compared to
the fixed size of 4x4 that is used by BC1-7. This enables the method to adapt more
effectively to the characteristics of a texture, resulting in higher and more controllable
compression, ranging from 0.89 to 8.0 bpt, with even better visual quality. However, this
improved compression comes with an increased complexity.

Ericsson Texture Compression (ETC1/ETC2), available in OpenGL ES, targets with its
low complexity lower-end devices and mobile phones [SAM05]. More recently, Neural
Texture Block Compression [FH24] uses a neural network that learns to optimise BC1
compression and therefore achieves better results for the same storage format than the
handcrafted compression algorithms. Chen et al. propose a form of fixed-rate JPEG
where they compress each JPEG block with different quantisation tables until it fits into
the fixed block size [CL02].

Hollemeersch et al. transform a texture with the discrete cosine transform (DCT) and
then only store a fixed and limited number of coefficients for each block [HPLVdW12].
While this only slightly improves the compression rate compared to BC1, they also show
that texture filtering can be done in the frequency domain before decoding, greatly
increasing its efficiency.

2.2 Variable-rate compression
Variable-rate compression formats adjust the bit rate to the content, making some
sections of an image compress better than others. Since they do not cater to real-time
rendering, they also employ complex and computationally expensive algorithms that
sacrifice decoding performance for higher compression rates.

The most famous lossy compression standard for images is JPEG [Wal92], defined in
1992. Since then, many follow-ups have emerged, offering new features and improved
compression, such as JPEG2000 [CES00] and most recently JPEG XL [AvAB+19].
However, despite their advancements, these newer algorithms have not yet achieved the
widespread support and adoption of the original JPEG standard. All of these formats
utilise transform coding, which involves converting the image into the frequency domain
before compression. Since these methods are lossy (with the exception of JPEG XL,
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2.2. Variable-rate compression

Table 2.1: Usage of Image File Formats on Websites [W3T25].

Format Usage (%)
None 3.5
PNG 79.2
JPEG 74.2
SVG 62.1
GIF 17.1
WebP 16.7
AVIF 0.7
ICO 0.2
BMP 0.1
Other formats (TIFF, APNG, JPEG XL): <0.1% usage

which also supports lossless compression, though that feature is beyond the scope of this
thesis), the loss of information primarily affects high-frequency components of the image,
as these are less perceptible to the human eye.

Early innovations included the adoption of a DCT-based variable compression scheme
within Microsoft’s Talisman graphics architecture [TK96, Ran97]. To achieve random
access, the image is split into chunks that can be addressed and decoded individually.
Despite its potential, this concept was discontinued following the termination of the
Talisman project.

JPEG has been successfully applied to offline rendering, as shown by Radziszewski et
al. [RA08]. Because the algorithm is specifically designed for CPU-based processing, its
decoding efficiency is relatively limited. However, it provides a straightforward method
for accessing individual texels in JPEG-compressed images, by also maintaining a list of
offsets to the start of each Minimum Coded Unit (MCU) in the compressed data.

Olano et al. introduce an online variable-rate texture compression technique that also
stores an index list to each MCU and uses it to parallelise and therefore speed up the
decoding process [OBGB11]. They avoid problems related to the missing random access
by completely decompressing the textures on the GPU before rendering. Consequently,
this approach provides storage savings primarily in scenarios where only a subset of
textures is required at any given time, allowing for more textures to be stored in memory,
but it does not reduce VRAM usage for an individual texture while it is used.

As illustrated in Table 2.1, the only image format with a higher usage rate than JPEG is
the lossless Portable Network Graphics (PNG) format [RK99]. Although it is a lossless
algorithm, meaning that no information is lost during the compression and decompression
process, it remains a variable-rate algorithm, as different parts of the image are encoded
with varying bitrates. Despite its widespread adoption for websites due to its lossless
nature, which ensures that the image is presented in the best possible quality, the
relatively low compression efficiency of PNG makes it less suitable for real-time rendering
applications, in addition to the challenges posed by variable-rate formats.

7



2. Related Work

WebP [Goo25], developed by Google with web use in mind, shares its core functionality
with JPEG, as both use transform coding for compression. However, a key distinction
lies in WebP’s use of predictive coding: image blocks are predicted based on the values of
neighbouring blocks, and the residuals (the differences between the predicted and actual
values) are encoded and later used to reconstruct the original blocks. This approach
achieves improved compression efficiency compared to JPEG, but it also increases the
complexity of decoding individual blocks due to the reliance on inter-block dependencies.

The AV1 Image File Format (AVIF) [HLM+21] is based on the AV1 codec, developed
by the Alliance for Open Media. In recent years, AVIF has gained notable traction,
particularly with the introduction of hardware support for encoding and decoding in
APIs such as Vulkan [AG24]. Despite its compression efficiency and growing adoption,
the format presents a key limitation: it requires full image decoding, as partial decoding
or progressive rendering is not natively supported. While AVIF can reduce upload latency
during texture transfer, its ability to minimise VRAM usage is restricted to textures that
are not actively accessed during rendering.

Similar to WebP, the High Efficiency Video Coding (HEVC) format, also known as H.265
[LHVA16], employs predictive coding to enhance compression. Originally designed to
support diverse applications, HEVC offers advanced features such as high bit-depth
support (up to 16 bits), wide colour gamuts (e.g., HDR), and frame-based optimisations
for video. However, like WebP, it faces challenges for texture usage, particularly due to
its reliance on inter-block dependencies and the complexity of partial decoding.

Although far from a real-time application, Fichet et al. demonstrate a method for
compressing spectral images used in spectral rendering by converting them to the JPEG
XL format, and then decoding them while rendering, achieving file size reductions of 10
to 60 times compared to ZIP compressed files [FP25].

2.3 Neural texture compression
Recently, the trend in research has shifted to neural texture compression methods, utilising
neural networks to learn efficient and perceptually optimised compression schemes from
feature vectors. These methods often achieve higher compression ratios and improved
visual quality compared to conventional block-based compression algorithms, but have
reduced decoding efficiency as a trade-off. In Random-Access Neural Compression of
Material Textures (NTC) [VSW+23], the textures are stored as a feature pyramid, with
multiple channels compressed together. Therefore, this method excels in scenarios with
various channels that have a strong correlation. Farhadzadeh et al. [FHL+24] promise
even greater compression rates with their neural compression method, but offer no
indication of the decoding efficiency of their method.

Weinreich et al. [WdOHN24] propose a neural material model using Block-Compressed
features (BCf) that emulate BC6 decompression. This allows for high-resolution features
with a low memory footprint and a simple, efficient decoder. The features are designed to

8



2.4. Other

be decoded continuously in space and scale, allowing for smooth transitions and random
UV sampling without the need for post-filtering.

This method was further improved by [LA25] by using BC1 compression instead of BC6
for even higher compression ratio. They also improve runtime performance by using a
tile-based rendering architecture that leverages hardware matrix multiplication engines
and the cooperative vectors extension.

All these methods benefit from the new tensor cores of modern consumer graphics cards.
However, they always operate under the assumption that these cores are unused for
rendering. With the rise of neural methods in every aspect of rendering, the cost of these
operations on the tensor cores might have to be reevaluated.

2.4 Other
Some unique compression techniques fall outside the main categories discussed above.
Schuster et al.[STS+21] focus on textured point clouds, where textures are significantly
larger than traditional ones. Their method learns a dictionary from the texture and
represents each splat using an average colour along with a variable number of atom
indices and corresponding weights, significantly reducing memory usage. Luo et al. reduce
redundancy by merging all the textures in a scene and remapping the texture coordinates
to eliminate repeated content [LJP+23].

Huffman Decoding is not only used in JPEG, and is often the bottleneck even in other
applications due to its sequential nature. Goel et al. [GSNK24] use a clipped Huffman
encoding for compressing huge point clouds. They limit the maximum codeword length
to a predefined level, while the less common symbols are stored in a lookup table instead.
This allows for faster and more efficient parallel decompression. Other approaches have
looked into different ways to parallelise the decoding. Johnston et al. [JM17] present
a parallel Huffman decoding algorithm that operates by first performing a concurrent
decoding of individual symbols from every potential starting bit position within the
compressed bitstream, populating an intermediate buffer. Subsequently, the algorithm
leverages a pre-computed data structure, derived from the Huffman tree, to efficiently
determine the correct sequence and placement of valid decoded symbols within the
final uncompressed output. Similarly, [WS18] leverages the self-synchronising properties
inherent to most generated Huffman codes. This approach ensures that even if a thread
begins decoding at an incorrect position and produces erroneous symbols, it will eventually
synchronise and decode correctly after a limited number of errors. By overlapping the
decoded sections, the incorrectly decoded segments can be discarded, retaining only
valid codewords. However, these techniques rely on large file sizes to achieve better
performance than sequential decoding, which is impractical in our case due to the need
to decode only a small number of codes at a time.

There is also the field of super-compressed textures [SW11, KPM16], which involves
applying an additional layer of compression to textures that have already been compressed

9



2. Related Work

using standard GPU-friendly formats (such as BCn or ASTC). These supercompressed
textures are stored in a highly compact form and later decompressed at runtime—either
on the CPU or GPU—back into their original compressed state before being sampled by
the rendering pipeline. This technique allows developers to benefit from reduced storage
and bandwidth usage, particularly for distribution and streaming, without sacrificing the
compatibility and efficiency of hardware-accelerated texture formats.

10



CHAPTER 3
JPEG

Our proposed method enables real-time rendering of JPEG-compressed textures. To
fully understand our texture compression approach, it is necessary to first review how
the JPEG standard is defined. Accordingly, this chapter presents the fundamental
design principles of the JPEG algorithm, followed by a detailed explanation of the key
components that make up a standard JPEG file.

JPEG is a standardised image compression algorithm developed by the Joint Photographic
Experts Group. It supports multiple operating modes, each tailored to specific use cases
and varying in their compression strategies. Among these, the most widely adopted
variant is baseline JPEG, which serves as the de facto standard in numerous applications
due to its broad compatibility and balance between compression efficiency and image
quality. An example of a JPEG-compressed image is shown in Figure 3.1.

Figure 3.1: Example JPEGS at quality levels 90, 50 and 5. When the quality becomes
too low, artifacts become noticeable.

3.1 Algorithm
An overview of the JPEG algorithm can be seen in Figure 3.2. To compress an image
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3. JPEG

Figure 3.2: JPEG encoding pipeline: The image is divided into 16×16 pixel blocks,
converted to luminance and chrominance channels, transformed using the cosine transform,
quantised, scanned in zigzag order, then compressed using differential coding, run-length
encoding, and Huffman coding.

using baseline JPEG, the image is first converted from the RGB colour space to YCbCr
using Equation 3.1. Y
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This colour space separates luminance (Y) from chrominance components: blue-difference
(Cb) and red-difference (Cr). An example can be seen in Figure 3.3. The reason for this
is that it allows for more efficient compression by exploiting the human visual system’s
higher sensitivity to luminance detail [PB13]. This is done in two ways: the first is chroma
subsampling. In this thesis, we are specifically focusing on the 4:2:0 sampling scheme.
In this scheme, the Cb and Cr channels are sampled at half the horizontal and vertical
resolution compared to the Y channel, as illustrated in Figure 3.4. These subsampled
channels are later upscaled during the decompression process. The image is then divided
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3.1. Algorithm

Figure 3.3: The Red (R), Green (G) and Blue (B) colour channels are converted to
luminance (Y), Cb (blue difference) and Cr (red difference) channels.

Figure 3.4: The Y, CB and Cr colour channels are subsampled. Top: The original 4:4:4
retains full chroma information for every pixel, resulting in higher colour fidelity, while
the 4:2:0 subsampling reduces the chroma resolution by encoding one value per 2x2 pixels,
conserving bandwidth and storage at the cost of some colour detail.
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3. JPEG

(a) JPEG (b) Minimum Coded Unit (c) Data Unit

Figure 3.5: Baseline JPEG is divided into 16 × 16 pixel blocks, referred to as Minimum
Coded Units (MCUs). Each MCU consists of 6 Data Units (DUs): 4 for the luminance
channel (storing one value per pixel) and 1 each for the blue-difference and red-difference
chrominance channels (storing one value per 2x2 pixels).

into Minimum Coded Units (MCUs) blocks. In the case of 4:2:0 subsampling, each MCU
represents a 16x16 pixel region that is encoded via six 8x8 sub-blocks called Data Units
(DUs): four DUs for the luminance channel (encoding one value per pixel) and one DU
each for the Cb and Cr channels (encoding one value per 2x2 pixels). This subdivision is
illustrated in Figure 3.5.

Each DU undergoes a Discrete Cosine Transform (DCT), representing the block as a
weighted sum of 64 cosine waves with varying frequencies, that can be seen in Figure
3.6. The coefficient at zero frequency in both dimensions (located in the top-left of each
block) is known as the direct current (DC) coefficient. It represents the average value of
all samples in the block. To further reduce the data size, DC coefficients are encoded
using differential coding: instead of storing absolute values, each DC coefficient is stored
as the difference from the previous one. This is done separately for each color channel to
maximise the correlation between consecutive DC values. The remaining 63 coefficients,
corresponding to higher spatial frequencies, are referred to as alternating current (AC)
coefficients.

The DCT coefficients are then quantised using a quantisation matrix, which assigns a
divisor between 1 and 255 to each frequency component. Each coefficient is then divided
by the corresponding value in the quantisation matrix and rounded to the nearest integer.
This step is lossy and plays a central role in JPEG compression. The design of the
quantization matrix is meticulously crafted based on psychovisual experiments, which
aim to determine the Just Noticeable Thresholds (JNTs) of various spatial frequencies
for the human visual system (HVS). Seminal research, such as that by Campbell and
Robson [CR68] on the Contrast Sensitivity Function (CSF), has demonstrated that
the HVS exhibits a band-pass characteristic, meaning it is most sensitive to mid-range
spatial frequencies and significantly less sensitive to very high and very low frequencies.
Consequently, the quantisation matrix is designed with larger divisors for high-frequency
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3.1. Algorithm

Figure 3.6: 8x8 dct basis functions: each square represents a unique 2D frequency
component used in the Discrete Cosine Transform (DCT). Low-frequency components
(top-left) capture coarse image details, while high-frequency components (bottom-right)
represent finer details and edges.

components and smaller divisors for low and mid-frequency components. This strategic
weighting allows for more aggressive removal of high-frequency information, as the HVS
is less likely to perceive its loss, thereby achieving substantial file size reduction with
minimal perceived quality degradation.

In addition, the HVS is more sensitive to changes in contrast than colour. This is
why there are separate matrices for luminance and chrominance channels, where the
chrominance quantisation is much more aggressive.

There is no standardised quantisation matrix in the JPEG specification–it is left to the
implementer to define or adjust the matrix based on desired quality or application needs.
Example quantisation tables for quality setting of 90 and 50 can be seen in Table 3.1.

To maximise the efficiency of run-length encoding, the coefficients are read in a
zigzag pattern, beginning from the top-left corner. This traversal ensures that low-
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Table 3.1: Quantization Tables
(a) Quantization Table luminance (q90)

3 2 2 3 5 8 10 12
2 2 3 4 5 12 12 11
3 3 3 5 8 11 14 11
3 3 4 6 10 17 16 12
4 4 7 11 14 22 21 15
5 7 11 13 16 21 23 18
10 13 16 17 21 24 24 20
14 18 19 20 22 20 21 20

(b) Quantization Table chrominance (q90)

3 4 5 9 20 20 20 20
4 4 5 13 20 20 20 20
5 5 11 20 20 20 20 20
9 13 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20

(c) Quantization Table luminance (q50)

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

(d) Quantization Table chrominance (q50)

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

frequency coefficients, which are less likely to be zero, are read first, while higher-frequency
coefficients—more likely to be quantised to zero—are grouped together. This arrangement
significantly enhances the overall compression rate.

Huffman encoding then assigns each symbol a unique codeword, with more frequently
occurring symbols assigned shorter codewords to minimise overall storage. Each codeword
is prefix-free (no code is a prefix of another), so that the encoded bitstream can be uniquely
decoded. This forms a frequency-sorted binary tree that can be seen in Figure 3.7.

The decoding process in JPEG mirrors the encoding steps in reverse order. Consequently,
to reconstruct the original image accurately, the decoder must have access not only to
the compressed image data, but also to the Huffman tables and quantisation matrices
used during encoding. These components are embedded within the JPEG file itself,
ensuring that the decoder has all necessary information to perform a complete and
correct reconstruction. A detailed description of the file structure will be presented in
the following section.

Compressing a 4K texture with dimensions of 4096 × 4096 texels across three channels
and a 4:2:0 subsampling scheme results in 65,536 MCUs and a total of 393,216 DUs.
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Figure 3.7: In this example, the symbol E occurs much more frequently than all the
others. As a result, it is assigned the shortest possible codeword: 0. Because Huffman
codes must be prefix-free, no other codeword can begin with 0. If the symbol probabilities
were more evenly distributed, the resulting Huffman tree would be more balanced.

3.2 File format
The JPEG standard describes four different settings for the compression format:

• Baseline Sequential

• Extended Sequential

• Progressive

• Lossless

Depending on the compression setting, the layout of the JPEG file differs. In baseline
sequential JPEG, often abbreviated to just baseline JPEG, the MCUs are stored in
sequential order. Each MCU contains an 8 × 8 block of the luminance data, followed by
the chrominance DUs in this specific order. Extended Sequential JPEG builds on this by
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3. JPEG

Figure 3.8: Example of a baseline JPEG file conforming to the JFIF standard. Key
segments such as the Start of Image (FFD8), JFIF header, Quantization Tables (FFDB),
Start of Frame (FFC0), Huffman Tables (FFC4), Start of Scan (FFDA), and End of
Image (FFD9) are annotated. All markers are shown in bold, while portions of the scan
data are omitted for brevity.

allowing the use of up to two additional Huffman and quantisation tables, offering more
flexibility for compression, but is rarely used.

Progressive JPEG, however, uses a fundamentally different approach. Instead of pro-
cessing MCU after MCU, it decodes the image in stages. Initially, the highest-frequency
components of each DU are decoded, followed by progressively lower frequencies. This
method enables progressive rendering: a coarse, blurry version of the image appears
first, which becomes increasingly detailed as more coefficients are decoded. This feature
makes Progressive JPEG particularly useful for web applications where users benefit
from quickly previewing images while the full data is still loading.

Lossless JPEG does not use the DCT for image encoding. Instead, it relies on a predictive
model based on neighbouring pixels. Because no information is discarded, the compression
ratio is significantly lower compared to its lossy counterpart. As a result, Lossless JPEG
has seen limited adoption and is supported by only a few applications.

The JPEG file format is structured around a sequence of markers, which define how the
subsequent data should be interpreted. Each marker begins with a prefix byte of all
1s—represented in hexadecimal as 0xFF—to distinguish it from image data. The byte that
immediately follows determines the type and function of the marker. While the ordering
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of markers is not strictly defined by the JPEG specification, most implementations
conform to the JPEG File Interchange Format (JFIF) standard [Ham04], which was
introduced to ensure greater consistency across applications.

Below is a description of the most essential JPEG markers, presented in the order they
typically appear in JFIF-compliant files.

• 0xF F D8 Start of Image: Marks the beginning of a JPEG file. This marker
verifies that the file is a JPEG file but does not contain any information for decoding.

• 0xF F E0 Application-Specific (APPn) Markers: These markers are reserved
for application-specific data, such as metadata. For example, 0xF F E1 is commonly
used for EXIF metadata, while 0xF F E0 is typically used by the JFIF. Each APPn
marker begins with a 2-byte length field, followed by application-defined data. In
the case of JFIF, this includes the ASCII string "JFIF\0", version information,
resolution units, pixel density values, and optionally, thumbnail image data that is
used in web applications or file explorers.

• 0xF F DB Define Quantization Table: Defines the quantisation tables used
for image data compression. This marker is immediately followed by two bytes
specifying the table’s length. The next 4 bits indicate the target channel (e.g.,
luminance or chrominance), while the following 4 bits denote the precision of the
table values—either 8-bit or 16-bit. The quantisation values themselves are then
listed, ordered from higher to lower frequencies, following the zig-zag scan pattern
that is also applied to DCT coefficients.

• 0xF F C0 Start of Frame (Baseline DCT): Marks the beginning of the frame
header, which defines the image dimensions, colour components, and sampling
factors. It starts with 2 bytes indicating the length of the frame header, followed by
2 bytes for the image height and 2 bytes for the image width. The next byte declares
the number of colour components. For each component, three bytes follow: the
first byte is the component ID, the second byte contains the sampling factors where
bits 0–3 represent the vertical sampling factor and bits 4–7 represent the horizontal
sampling factor, and the third byte specifies the quantisation table number.

• 0xF F C4 Define Huffman Table: Defines the Huffman tables used for entropy
encoding of the image data. This marker is followed by two bytes indicating the
length of the segment. The next three bits specify how many Huffman tables this
marker defines, and the 4th-bit acts as a flag to indicate whether it is an AC or
DC Huffman table. The following 4 bits are unused and must be set to 0. Finally,
the values of the Huffman table are listed.

• 0xF F DA Start of Scan: Signals the start of the image data stream encoded with
entropy coding. The order of the data is dependent on whether it is a sequential or
progressive JPEG.
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3. JPEG

• 0xF F D9 End of Image: Marks the end of a JPEG file. It is optional, so a
decoder can not rely on it, but most encoders do use it.

There are a few additional markers that are not listed as they are not important for this
application and are rarely used. If the entropy-encoded image data contains a sequence
that would result in 0xFF , it is followed by an empty byte to indicate that is, in fact,
data and not a marker. An example of a JPEG file in hexadecimal can be seen in Figure
3.8.
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CHAPTER 4
Method

The proposed method employs baseline JPEG compression for textures due to its
widespread adoption and practical efficiency. Specifically, it uses baseline sequential
encoded files and implements 4:2:0 chroma subsampling. Supporting multiple JPEG
settings would introduce significant implementation overhead without yielding substantial
benefits, as the variants are not inherently superior but rather optimised for specialised
tasks. However, the method is flexible and can be adapted to support other JPEG
settings, such as 4:4:4 subsampling if needed.

4.1 Overview
In this section, we briefly outline the core steps of our algorithm; a more detailed
explanation of each step is provided in the subsequent sections. The main motivation
behind our approach is to enable random access to JPEG-compressed textures, which offer
a superior quality-to-memory trade-off compared to many state-of-the-art compression
algorithms. However, a naive implementation of JPEG decoding is unsuitable for real-time
rendering as it provides no random-access property and is computationally expensive. To
overcome these limitations, we introduce a series of optimisations that reduce decoding
overhead while exploiting the inherent parallelism of the GPU.

To render from JPEG-compressed textures, the data is first preprocessed to compute an
AC-offsets table and extract the Huffman and the quantisation tables. During rendering,
textures are then partially decompressed using a three-step algorithm consisting of a
Mark, Decode and Resolve step, which is integrated into a deferred rendering pipeline to
minimise decoding overhead, as illustrated in Figure 4.1.

In the first step, the G-Buffer that holds all the data required for rendering the scene has
to be created. However, instead of sampling the texture immediately, our approach only
stores the UV coordinates. This enables a more GPU-friendly texture decoding process:
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4. Method

Figure 4.1: Overview of our method, following the construction of a G-Buffer in a deferred
rendering pipeline. a) For every pixel’s UV coordinate, we compute the corresponding
MCU and add it to the decoding queue. If an MCU is required multiple times, it is
still added to the queue only once. b) MCUs in the decoding queue are processed in
parallel by GPU thread blocks. Each block decodes its assigned MCU and writes the
resulting data to a buffer, preserving the order of insertion in the queue. c) The decoded
MCUs are retrieved from the buffer and sampled to compute the colour for each pixel,
completing the rendering process.

by delaying the texture lookup, all textures can be decoded at once while making optimal
use of the available computing resources, which is the key factor behind our method
achieving real-time performance.

Once the G-Buffer is constructed, we check every pixel to determine which Minimum
Coded Units of a texture need to be decoded for correct texturing. This step effectively
marks all MCUs that must be decoded to render the scene. By doing so, only the necessary
MCUs are decoded, while the rest of the texture remains compressed. This not only
reduces storage requirements but also improves performance, since fewer computations
need to be performed.

Next, the marked MCUs of the previous step are decoded. This process is optimised
by exploiting the GPU’s parallelism to accelerate Huffman decoding and colour space
transformations, and by leveraging the separability of the inverse discrete cosine transform.

Finally, the Resolve step gathers the required and now decoded MCUs from the first step
and computes the pixel’s final colour. At this point, scene shading proceeds identically
to a standard deferred rendering pipeline.

4.2 Preprocessing for random access
Although we aim to remain faithful to the original JPEG specification as much as possible,
some preprocessing is necessary before sending the data to the GPU. In addition, certain
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steps—such as parsing the Huffman and quantisation tables—would be redundant at
runtime and would unnecessarily degrade performance.

To mitigate this, JPEG markers are parsed at startup. The Huffman and quantisation
tables are extracted and uploaded to a constant buffer for efficient GPU access. Following
this, the entropy-coded image data is scanned to construct an index list that enables
random access during decoding. To support this design, each data unit (DU) is split
into its AC and DC components: the AC coefficients remain Huffman-encoded, while
the DC coefficients are decoded and stored explicitly, each using a fixed number of bits.
From the buffer now containing only AC components, we record the start position of
each Minimum Coded Unit (every six DUs) and store it in a per-texture AC-offsets table.
The entries to this table follow the natural raster order of the JPEG file: the top-left
MCU is stored at position 0, increasing from left to right and top to bottom. As a result,
given the order of an MCU in the stream, which in the following will be called the MCU’s
ID, we can directly locate the corresponding AC data and, since DC coefficients are
stored at predictable offsets, retrieve the DC value as well—enabling true random access.
Finally, we create a buffer that has one 32-bit entry per MCU. This buffer, referred to
as the decoded-MCU-indices buffer in the following, is used to flag which MCUs should
be decoded in the current frame and to store the index of the decoded colour data for
each MCU. While this layout introduces some overhead compared to the standard JPEG
format, the trade-offs and implications are further discussed in Section 4.7.

4.3 G-Buffer creation

Unlike traditional forward rendering, deferred rendering begins by rendering all geometric
information from the scene – such as positions, normals, diffuse colours, and other
material properties – into a series of textures collectively referred to as the Geometry
Buffer (G-Buffer). Shading is performed only after the entire geometry has been rendered.
This approach offers the advantage of computing the lighting model and other effects
exclusively for objects visible in the final scene, eliminating redundant calculations caused
by overdraw when one object obscures another in a subsequent draw call. This means
that the diffuse colour values from textures are typically stored directly in the G-Buffer.

Our approach deviates from the standard deferred rendering pipeline by storing only the
UV coordinates and the texture ID for each pixel instead of directly sampling the diffuse
texture. This design allows texture lookups – and more importantly, the texture decoding
– to be deferred to a separate stage as well. The key advantage of this strategy is that
multiple threads can collaboratively decode the required MCUs in parallel, rather than
each individual thread performing its own decoding operations, making the process viable
for real-time applications. The details of this optimisation are discussed in the following
section. Figure 4.2 illustrates an example of UV coordinates visualised as colour.
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Figure 4.2: The UV texture of the G-Buffer. The quads on the floor indicate the repeating
texture.

4.4 Mark
We initiate a CUDA kernel with one thread per pixel, where each thread reads its UV
coordinate and calculates the ID of the MCU containing this pixel. The formula for this
can be seen in Equation 4.1.

MCU = (⌊u · width⌋ mod width)
16 + (⌊v · height⌋ mod height)

16 · width
16 (4.1)

We then check its corresponding location in the decoded-MCU-indices buffer of the
specific texture. We use the highest bit of that 32-bit value as an indication if another
thread has already added this MCU to the decoding queue: If the bit is already set, no
further action is taken. Otherwise, the MCU’s ID is added to the decoding queue, and
the bit is set. This approach ensures that if multiple pixels request texels from the same
MCU, the MCU is decoded only once. Additionally, the position of the MCU in the
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decoding queue is written to the decoded-MCU-indices buffer, allowing efficient retrieval
of decoded texture data later.

The queue size for MCUs requiring decoding must be estimated in advance, but it is
highly dependent on the scene and camera perspective. In the worst case, each pixel on
screen maps to a unique 16x16 pixel MCU. In our tests, allocating a queue size of 80k
consistently proved sufficient, even in demanding scenarios.

Algorithm 4.1 illustrates the kernel and how each MCU is marked. The g_buffer is
the geometry buffer from the deferred rendering stage. The actual kernel is a bit more
complex due to managing parallel reads and writes for the bit that flags if an MCU
should be decoded, but the overall structure remains the same.

Algorithm 4.1: Mark algorithm
1 pixel_ID ← Compute the global thread rank;
2 texture_ID ← g_buffer.texture_IDs[pixel_ID];
3 uv ← g_buffer.uvs[pixel_ID];
4 texture_ID ← g_buffer.texture_IDs[pixel_ID];
5 mcu_ID ← uv_To_MCU_Index(uv, texture_ID);
6 if mcu not in decode_queue then
7 decode_queue.add(mcu_ID);
8 decoded_MCU_indices[mcu] ← pointer to mcu in decode_queue;
9 end

4.5 Decode
In this step, we decode all the MCUs identified in the previous step as necessary for
rendering the image. Therefore, we launch a kernel with one block of 64 threads for each
MCU in the decoding queue, allowing us to process its six Data Units. While an MCU
contains 256 texels, we found that using 64 threads provides a good balance for enabling
efficient parallel execution for steps where all 64 coefficients of each Data Unit can be
processed simultaneously, while minimising the number of idle threads during sequential
decoding stages. Increasing the thread count to 256 would speed up the operations that
need to be applied to all texels, but loses performance due to non-optimal usage of the
GPU in other stages, which outweighs the benefits.

Since the starting position of each MCU AC data is stored in the AC-offset Table, and
the DC coefficients have predictable offsets, all MCUs can be decoded independently and
in parallel. Each block retrieves an MCU ID from the decoding queue at the position of
its block ID, reads the starting position in the compressed stream from the AC-offsets
table, and loads the subsequent 384 bytes into local memory to optimise access during
decoding. This reserves one byte per coefficient. While Huffman codes can span more
than one byte, making it theoretically possible that not all necessary bytes are loaded for
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Figure 4.3: A single step of our parallel Huffman decoding process. Sixteen bits are
first loaded from the current position in the bitstream. Each thread then compares the
leading bits against a predefined codeword of the same length. Once a match is found,
the corresponding symbol is returned, and the bitstream position is advanced to decode
the next symbol.

decoding, this scenario is extremely unlikely, to the point that an image would need to
be constructed specifically for this to occur. In practice, it was never an issue in any of
the textures we tested.

The next step, and the main performance bottleneck in MCU decoding, lies in the
Huffman decoding of the AC coefficients. The decoding process is built on two nested
loops: An outer loop that iterates over the AC coefficients one after the other, and an
inner loop that compares the next bits in the stream until it detects a valid Huffman code
for the current AC. The outer loop is inherently sequential, but we can optimise the inner
loop by comparing the next bits in the stream to multiple Huffman codes simultaneously:
Instead of performing traditional Huffman tree traversal – reading one bit at a time and
checking for a match at each step – we prefetch the next 16 bits from the bitstream. We
then parallelise the comparison of bits to codes by assigning each thread of the leading
warp a different code, allowing us to evaluate 32 codes at the same time. Using the
length of its assigned code, the thread extracts the corresponding number of bits from
the prefetched 16 bits and compares it against its code. If it matches, the thread marks
the code as a candidate. A warp-wide reduction is then used to identify the shortest
matching code among all 32 threads, which corresponds to the correct Huffman symbol
and is selected as the decoded result. An illustration of this algorithm can be seen in
Figure 4.3.

The next step, quantisation, is combined with de-zigzagging of the coefficients. A lookup
table determines the order in which coefficients are read from shared memory, mapping
the zigzag scan order back to the original 8×8 block layout while also multiplying the
value by the corresponding quantisation value.

The IDCT implementation is based on the optimised version from NVIDIA for efficient
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execution on parallel GPU architectures by Obukhov et al. [OK08]. To reduce memory
access latency, intermediate data is stored and manipulated in fast shared memory rather
than slower global memory. In addition, the transform is applied in two passes–first
across rows and then across columns–taking advantage of the separability property of
the 2D IDCT. The 2D IDCT is defined in Equation 4.2 from Sung et al. [SSYH06]:

f(x, y) = 2√
MN

M−1∑︂
m=0

N−1∑︂
n=0

C(m)C(n)F (m, n) cos
[︃(2x + 1)mπ

2M

]︃
cos

[︃(2y + 1)nπ

2N

]︃
(4.2)

with the normalisation term:

C(u) =


1√
2 , if u = 0

1, if u > 0
(4.3)

This expression is separable, as shown by rewriting it as nested sums in Equation 4.4:

f(x, y) =
N−1∑︂
n=0

[︄
M−1∑︂
m=0

(︃ 2√
MN

C(m)C(n)F (m, n) cos
(︃(2x + 1)mπ

2M

)︃)︃
cos

(︃(2y + 1)nπ

2N

)︃]︄
(4.4)

Defining an intermediate result as in Equation 4.5:

g(x, n) =
M−1∑︂
m=0

2√
MN

C(m)C(n)F (m, n) cos
(︃(2x + 1)mπ

2M

)︃
(4.5)

leads to the final column-wise computation step in Equation 4.6:

f(x, y) =
N−1∑︂
n=0

g(x, n) cos
(︃(2y + 1)nπ

2N

)︃
(4.6)

This reduces the number of calculations performed from O(N4) to O(N3). In addition,
in separating the transformation, we only need 8 threads to compute the IDCT for a
DU. Since each MCU is processed by 64 threads, this allows us to compute the IDCT
for all 6 DUs in parallel with 48 threads. Precomputed constants are used to eliminate
expensive runtime calculations, and loop unrolling is employed to enhance instruction-
level parallelism. Additionally, memory access patterns are carefully designed to avoid
conflicts and ensure that data can be read and written efficiently by multiple threads in
parallel. The resulting decoded YCbCr colour values are then stored in a buffer in the
same order as the MCUs were added to the decoding queue.
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Finally, we need to convert the image from the YCbCr colour space to RGB. This is
done by applying the transformation formula described in Section 3.1 to each YCbCr
triple. Since the image uses 4:2:0 chroma subsampling, the chrominance channels must
be upscaled in this step. A simple approach is to advance the Cb and Cr channels at
half the rate of the Y channel, effectively duplicating each chroma value for a 2×2 block
of luma pixels. Since a single MCU contains 16 × 16 texels, each thread needs to decode
four values. The final RGB values are then written to a Buffer at the position of the ID
of the MCU.

Algorithm 4.2 shows the decoding. For simplicity, we ignore the upsampling of the
chroma channels in this representation.

4.6 Resolve
This final pass closely mirrors the first and is responsible for mapping uv-coordinates to
the now decoded MCUs in order to texture the scene. As in the initial pass, we compute
the corresponding MCU for each pixel using its UV coordinates. The decoded-MCU-
indices buffer is then referenced to determine the MCUs decoded data location in the
decoded buffer. Since each MCU contains 256 texels, we multiply this index by 256 to
compute the starting position of the MCU. To locate the specific texel within the MCU,
we calculate the intra-MCU offset based on the pixel’s position. Using this offset, we
sample the corresponding colour value for each pixel. Once the colour information is
reconstructed, the standard deferred rendering pipeline proceeds to compute the shading
and final appearance of the scene. This procedure is implemented in the simple kernel
shown in Algorithm 4.3.

4.7 Memory overhead
To enable random access within JPEG-compressed images, we store an index marking the
start position of each MCU block. This introduces a memory overhead, but it remains
minimal, requiring only a single 32-bit index per MCU. To further reduce this overhead,
we store only every ninth index as an absolute 32 bit index, while the subsequent eight
indices store 16 bit offsets relative to this absolute index, reducing the size of MCU
offsets to 17.7 bits each. Additionally, because differential encoding conflicts with random
access, the DC coefficients of each DU are not encoded and are instead stored as 12-bit
values. Since each MCU requires 6 DC coefficients, this results in a total of 72 bits.
Furthermore, 32 bits per MCU are allocated for the decoded-MCU-indices buffer. In
total, this results in 121.7 bits of overhead per MCU, as shown in Figure 4.4. As each
MCU comprises 16 × 16 = 256 RGB texels, our approach introduces an overhead of
approximately 121.7

256 = 0.4757 bits per texel. However, this estimate assumes that the
DC coefficients contribute 0 bits in the original JPEG-encoded image—an assumption
that does not hold in practice. Therefore, this value represents an upper bound on the
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Algorithm 4.2: Decode
1 sh_coefficients[384];
2 block_ID ← Compute the global block rank;
3 thread_ID ← Compute the global thread rank;
4 mcu_ID ← decode_queue[block_ID];
// Load compressed data into shared memory

5 mcu_starting_position ← mcu_indices_buffer[mcu_ID];
6 for i ← 0 to 5 do
7 block_id ← thread_ID + 64 · i;
8 DC_coefficients[i · 64] ← DC_coefficients_buffer[mcu_ID · 6 + i];
9 sh_coefficients[block_id] ←

AC_coefficients_buffer[mcu_starting_position + block_id];
10 end

// Dequantize and de-zigzag
11 for i ← 0 to 5 do
12 block_id ← thread_ID + 64 · i;
13 sh_coefficients[block_id] ← Dezigzag(sh_coefficients[block_id]);
14 sh_coefficients[block_id] ← sh_coefficients[block_id ] × QuantTable;
15 end

// Inverse DCT
16 for i ← 0 to 5 do
17 block_id ← thread_ID + 64 · i;
18 pixels[block_id] ← IDCT8x8(sh_coefficients[block_id]);
19 end

// YUV to RGB conversion
20 for i ← 0 to 3 do
21 block_id ← thread_ID + 64 · i;
22 Y ← pixels[block_id] + 128;
23 Cb ← pixels[192 + thread_ID];
24 Cr ← pixels[256 + thread_ID];
25 R ← clamp(Y + 1.402 · Cr);
26 G ← clamp(Y − 0.344 · Cb − 0.714 · Cr);
27 B ← clamp(Y + 1.772 · Cb);
28 decoded_buffer[block_ID · 256 + block_id] ← (R, G, B, 255);
29 end
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Algorithm 4.3: Resolve
1 pixel_ID ← Compute the global thread rank;
2 uv ← g_buffer.uvs[pixel_ID];
3 texture_ID ← g_buffer.texture_IDs[pixel_ID];
4 width ← texturesData[texture_ID].width;
5 height ← texturesData[texture_ID].height;
6 mcu_ID ← uv_To_MCU_Index(uv, texture_ID);
7 mcu_offset ← decoded_MCU_indices[mcu_ID] · 256;
8 tx ← (int(uv.x · width)) mod 16;
9 ty ← (int(uv.y · height)) mod 16;

10 row_offset ←
⌊︂

ty
8

⌋︂
· 128;

11 col_offset ← ⌊︁
tx
8

⌋︁ · 64;
12 sub_tile_offset ← (ty mod 8) · 8 + (tx mod 8);
13 offset ← mcu_offset + row_offset + col_offset + sub_tile_offset;
14 color = decoded_buffer[offset];

overhead, with the actual overhead likely being lower due to the existing bit cost of DC
coefficients in standard JPEG compression. We exclude the quantisation and Huffman
tables from the overhead calculation for texture decoding, as these tables remain constant
across the entire texture or even across multiple textures, making their contribution to
the overall overhead negligible.
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Figure 4.4: Breakdown of memory overhead per MCU to enable our GPU JPEG rendering.
The primary contributor is the storage of 6 DC coefficients, which constitutes more than
half of the overhead.
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CHAPTER 5
Evaluation

To assess our method, we evaluate both the quality of the compression and its decoding
efficiency. Quality is assessed by comparing visual fidelity and quantitative metrics across
a range of test textures, while decoding efficiency is evaluated through performance bench-
marks using GPU-based random-access decompression. By analysing these two aspects,
we aim to demonstrate the strengths and limitations of our approach in comparison to
widely used texture compression methods like BC1 and ASTC.

5.1 Quality
For the quality evaluation, we select 14 diverse RGB diffuse textures from Poly Haven 1

and ambientCG 2, a high-quality image of Pluto by NASA 3, as well as a few created on
1https://polyhaven.com/
2https://ambientcg.com/
3https://pluto.jhuapl.edu/Galleries/Featured-Images/

Figure 5.1: Overview of all textures used in our evaluation.
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our own. The textures range from natural scenes, such as wood and rocky terrain, to
more structured patterns, including brick walls, environmental photography, and texture
atlases typically created by photogrammetry. An overview of all textures can be seen
in Figure 5.1. The textures span resolutions from 1024 × 1024 up to 8192 × 8192. To
accurately represent the overall memory footprint, we compute the memory overhead
introduced by the pointer structures described in the previous section and include this
in the final file size. In this Section we will first detail the tools that were used to
compress these textures for the comparison, after which we explain the four different
quality metrics, namely Peak signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM), FLIP [ANAM+20] and Learned Perceptual Image Patch Similarity
(LPIPS) [ZIE+18], that were used in our evaluation.

5.1.1 Compression tools
Given the widespread adoption of the JPEG format, there exists a wide range of JPEG
compression tools. As discussed in Section 3, several critical steps in the JPEG encoding
pipeline—particularly the selection of the quantisation matrix—are left to the discretion
of the implementer. To ensure consistency in our evaluation, we conducted a brief
comparison of commonly used JPEG encoders before running our tests. Since our
method requires JPEG images at various quality settings, we specifically focused on tools
that support fine-grained quality control and enforce 4:2:0 chroma subsampling. Our
investigation revealed that the majority of these tools rely on libjpeg 4 as their underlying
encoding library. As a result, there were no notable differences in the quantisation
strategies or output image quality among them, with all producing identical JPEG files
for equivalent settings. Therefore, we are also using libjpeg for our image compression.

We compared the JPEG-compressed textures to two of the state-of-the-art compression
formats. First, we chose BC1 because it remains the most widely used format. To
compress images to BC1 we used NVIDIA’s Texture-Tools-Exporter 5 version 2024.1.1.
We disabled the option to generate mipmaps for a fair comparison and set the compression
effort to "highest". All the other settings were left at their default level.

The second compression format used for our comparison is ASTC. While the hardware
support for it is very sparse on desktop GPUs, it is one of the most advanced algorithms
that generally achieves very good results for block-based compression methods. To
compress it, we used the astc-encoder 6 version 5.3.0 with the "-thorough" quality preset
as well as the low dynamic range colour profile for all our tests.

5.1.2 PSNR
Peak Signal-to-Noise Ratio (PSNR) is a metric used to quantify the similarity between
two images. It is expressed in decibels (dB) and calculated based on the Mean Squared

4https://github.com/winlibs/libjpeg
5https://developer.nvidia.com/texture-tools-exporter
6https://github.com/ARM-software/astc-encoder
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Error (MSE) relative to the maximum possible signal value, as shown in Equations 5.2
and 5.1.

PSNR = 10 · log10

(︄
MAX2

MSE

)︄
(5.1)

MSE = 1
MN

M∑︂
i=1

N∑︂
j=1

(I(i, j) − K(i, j))2 (5.2)

A higher PSNR value typically indicates less loss of information and better visual quality
in the processed image. However, while PSNR is a widely used objective metric, it may
not always reflect human perception, as it does not account for the complexities of the
human visual system in interpreting distortions. To calculate the PSNR we used the
scikit-image python library 7.

5.1.3 SSIM

In contrast, SSIM considers human perception and measures error differently based
on three components: luminance, contrast, and structure. As a result, SSIM is often
considered a more meaningful metric compared to PSNR. However, research has shown
that for JPEG-compressed images, the two metrics behave similarly [SAU19, Mar25].

5.1.4 LPIPS

Despite its advantages, SSIM does not fully model the complex processes underlying
human visual perception. To address this limitation, LPIPS utilises deep features
extracted from pre-trained neural networks to measure perceptual image similarity. By
focusing on high-level semantic features, LPIPS provides a more robust and perceptually
aligned image quality assessment.

5.1.5 FLIP

FLIP, developed by NVIDIA, is a perceptual image quality metric specifically designed
to assess differences between rendered images and their corresponding ground truths in a
way that aligns more closely with human visual perception. Unlike traditional metrics
such as PSNR or SSIM, which often fail to capture perceptually relevant differences,
FLIP takes into account factors like contrast sensitivity and spatial frequency to produce
a more perceptually meaningful evaluation. In addition to computing a global error score,
FLIP generates a visual error map that indicates the severity and spatial distribution
of perceptual differences. In these maps, brighter regions correspond to areas where
deviations from the reference image are more noticeable to the human eye.

7https://scikit-image.org/
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5.1.6 Comparison
In contrast to BC1, JPEG and ASTC provide flexibility in the compression rate applied
to images. Therefore, to guarantee a fair comparison, the JPEG quality settings and
the ASTC block size are adjusted to match the PSNR of the BC1-compressed textures
as closely as possible. Figure 6.2 illustrates the visual differences between the methods.
Additionally, the textures are compressed to utilise an equal number of bits per texel and
are then evaluated a second time. The corresponding results are presented in Table 5.1.
The bits per texel are calculated by dividing the number of bits of the compressed texture
by the number of texels it contains and are therefore for all three channels combined.
Moreover, we conducted a second comparison at only 1 bit per texel in Table 5.2. Since
BC1 compression can only achieve four bits per texel, we did not include it in this
comparison.

Furthermore, we plot the PSNR for each quality setting and compare the results with BC1
and ASTC. The examples include a favourable case in Figure 5.2, average performance in
Figure 5.3, the worst-case scenario in Figure 5.3, and an extraordinary case, as illustrated
in Figure 5.4. We also plot the FLIP and LPIPS comparison in Figure 5.5 and Figure
5.6.

In addition, we plot the FLIP error maps for a mix of high and low frequency textures for
BC1, ASTC and our method. Since the error of FLIP is between 0 and 1, we multiplied
it by 255 to map it to PNG. The error maps can be seen in Figure 5.8.

Figure 5.2: Comparison of the achieved PSNR at various bits per texel between JPEG,
JPEG with the overhead for GPU decoding, BC1 and ASTC demonstrated using the
4096 × 4096 coast sand texture.

36



5.1. Quality

Figure 5.3: Comparison of the achieved PSNR at various bits per texel between JPEG,
JPEG with the overhead for GPU decoding, BC1 and ASTC demonstrated using the
2048 × 2048 tiles texture.

Figure 5.4: Comparison of the achieved PSNR at various bits per texel between JPEG,
JPEG with the overhead for GPU decoding, BC1 and ASTC demonstrated using the
4096 × 4096 paving stone texture.
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Figure 5.5: Comparison of the achieved FLIP at various bits per texel between JPEG
and ASTC demonstrated using the 4096 × 4096 paving stone texture.

Figure 5.6: Comparison of the achieved LPIPS at various bits per texel between JPEG
and ASTC demonstrated using the 4096 × 4096 paving stone texture.
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Figure 5.7: Comparison of the achieved PSNR at various bits per texel between JPEG,
JPEG with the overhead for GPU decoding, BC1 and ASTC demonstrated using the
4096 × 4096 Anita Mui texture.
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(a) ASTC FLIP (↓) (0.0609), 4.27 bpp (b) JPEG FLIP (↓) (0.0439), 4.72 bpp

Figure 5.8: Comparison between ASTC and JPEG using FLIP error maps for the
paving stones texture. Brighter regions indicate areas where visual differences are more
perceptible to the human eye. In the JPEG-compressed images, most of the error is
concentrated in the high-frequency grass regions. In contrast, ASTC exhibits more
uniformly distributed errors, but at an overall lower quality across the image.
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Table 5.1: Comparison of average PSNR, SSIM, FLIP, and LPIPS metrics for all textures,
evaluated at an approximate rate of four bits per texel. Results are shown for BC1,
ASTC and JPEG.

Average anita mui coast sand paving
stones

sky

PSNR (↑) 38.75 39.43 42.14 31.89 44.19
SSIM (↑) 0.95 0.9781 0.9754 0.967 0.9747
FLIP (↓) 0.039 0.0339 0.0308 0.0598 0.0343

LPIPS (↓) 0.027 0.0316 0.0457 0.0278 0.0227
BC1

bpp 4.0 4.0 4.0 4.0 4.0
PSNR (↑) 45.31 53.75 49.12 33.95 50.89
SSIM (↑) 0.989 0.9985 0.9945 0.9776 0.9939
FLIP (↓) 0.024 0.016 0.0171 0.0439 0.0142

LPIPS (↓) 0.008 0.001 0.0048 0.0268 0.0025

JPEG
GPU

bpp 4.33 3.80 4.38 4.72 4.13
PSNR (↑) 42.973 44.30 48.47 35.03 48.63
SSIM (↑) 0.987 0.9939 0.9941 0.9842 0.9906
FLIP (↓) 0.029 0.0210 0.0177 0.0609 0.0207
LPIPS (↓) 0.009 0.0048 0.0048 0.0285 0.0086

ASTC

bpp 4.27 4.27 4.27 4.27 4.27

snow sponza tiles rocky ter-
rain

pluto

PSNR (↑) 42.93 29.75 41.79 40.61 41.76
SSIM (↑) 0.9711 0.9498 0.9719 0.9683 0.9831
FLIP (↓) 0.0381 0.0579 0.0301 0.0343 0.0179

LPIPS (↓) 0.077 0.0112 0.0206 0.0228 0.0246
BC1

bpp 4.0 4.0 4.0 4.0 4.0
PSNR (↑) 47.31 38.38 44.14 45.79 48.44
SSIM (↑) 0.9885 0.9939 0.9828 0.9886 0.9937
FLIP (↓) 0.0311 0.0297 0.0169 0.0187 0.0101

LPIPS (↓) 0.0208 0.0021 0.0066 0.0073 0.0046

JPEG
GPU

bpp 4.49 4.67 4.10 4.69 3.28
PSNR (↑) 48.63 32.23 45.57 44.47 47.17
SSIM (↑) 0.9917 0.9707 0.9873 0.9857 0.9944
FLIP (↓) 0.0207 0.0557 0.0196 0.0255 0.0101
LPIPS (↓) 0.0051 0.0109 0.0071 0.0087 0.006

ASTC

bpp 4.27 4.27 4.27 4.27 4.27
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Table 5.1: Continuation from previous page.

plastic bricks tire tracks alpine fabric
PSNR (↑) 41.89 35.60 40.45 35.92 34.240
SSIM (↑) 0.9681 0.9594 0.9671 0.9739 0.697
FLIP (↓) 0.0363 0.0425 0.0388 0.0388 0.054

LPIPS (↓) 0.0142 0.0216 0.0242 0.0058 0.031
BC1

bpp 4.0 4.0 4.0 4.0 4.0
PSNR (↑) 48.89 37.56 44.36 51.42 40.280
SSIM (↑) 0.9945 0.963 0.986 0.9991 0.991
FLIP (↓) 0.0275 0.0304 0.0296 0.0087 0.039

LPIPS (↓) 0.0022 0.0178 0.007 0.0015 0.008

JPEG
GPU

bpp 4.04 4.84 4.35 4.82 4.36
PSNR (↑) 46.97 37.79 43.18 40.50 38.68
SSIM (↑) 0.9901 0.9744 0.9826 0.9917 0.989
FLIP (↓) 0.0223 0.0369 0.0268 0.0261 0.0397
LPIPS (↓) 0.0032 0.0155 0.0106 0.0114 0.007

ASTC

bpp 4.27 4.27 4.27 4.27 4.27
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Table 5.2: Comparison of average PSNR, SSIM, FLIP, and LPIPS metrics for all textures,
evaluated at an approximate rate of one bit per texel. Results are shown for ASTC
texture compression and JPEG.

Average anita mui coast sand paving
stones

sky

PSNR (↑) 36.41 37.85 41.93 25.07 42.65
SSIM (↑) 0.92 0.9648 0.9748 0.8227 0.9589
FLIP (↓) 0.054 0.0379 0.0339 0.108 0.0275

LPIPS (↓) 0.07 0.039 0.0380 0.2225 0.0304

JPEG
GPU

bpp 1.07 0.96 1.10 1.2 1.2
PSNR (↑) 35.14 34.89 40.65 25.30 42.08
SSIM (↑) 0.916 0.9503 0.9663 0.8271 0.9539
FLIP (↓) 0.057 0.0451 0.04 0.116 0.0323
LPIPS (↓) 0.09 0.0553 0.0637 0.2083 0.0840

ASTC

bpp 1.07 1.07 1.07 1.07 1.07

snow sponza tiles rocky ter-
rain

pluto

PSNR (↑) 42.2 24.52 38.56 38.17 44.09
SSIM (↑) 0.9627 0.8015 0.9441 0.9432 0.9854
FLIP (↓) 0.0499 0.0961 0.0338 0.0466 0.0164

LPIPS (↓) 0.0424 0.105 0.0619 0.0846 0.0226

JPEG
GPU

bpp 1.06 1.08 1.04 1.06 1.05
PSNR 41.56 23.78 38.65 37.91 40.36
SSIM 0.9627 0.7824 0.9439 0.9388 0.9785
FLIP 0.0338 0.1028 0.037 0.0497 0.021
LPIPS 0.051 0.1749 0.069 0.0609 0.05

ASTC

bpp 1.07 1.07 1.07 1.07 1.07

plastic bricks tire tracks alpine fabric
PSNR (↑) 37.99 30.92 34.47 39.05 32.29
SSIM (↑) 0.9211 0.8572 0.8523 0.9867 0.9493
FLIP (↓) 0.052 0.0632 0.0571 0.0468 0.091

LPIPS (↓) 0.0391 0.1329 0.1189 0.03 0.0628

JPEG
GPU

bpp 0.93 1.2 0.94 0.96 1.21
PSNR (↑) 38.68 30.13 34.65 32.64 30.63
SSIM (↑) 0.9279 0.8494 0.8585 0.9488 0.93
FLIP (↓) 0.0452 0.0728 0.0451 0.055 0.097
LPIPS (↓) 0.0482 0.1468 0.1151 0.0767 0.0668

ASTC

bpp 1.07 1.07 1.07 1.07 1.07
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5.2 Performance
To evaluate our method, we implemented the proposed random-access JPEG decompres-
sion algorithm in CUDA and measured kernel execution times on the GPU using two
test scenes. Since the algorithm executes entirely on the GPU, our primary performance
metric is kernel run time, excluding any CPU-side processing.

5.2.1 Scenes
We conducted experiments on two distinct scenes. The first, Crytek Sponza (Figure 5.9a)
[McG17], features 25 textures, each with a resolution of 1024 × 1024. These textures
cover a range of surface types, including patterned rugs, tiled floors, flower pots and stone
columns, spanning both large, flat surfaces and thin or detailed geometry. To further
increase the scene’s complexity, we disabled object instancing to reuse textures, resulting
in a total of 103 textures being uploaded to the GPU.

The second scene is a minimal test case intended to isolate decompression performance.
It consists of a simple textured cube (Figure 5.9b) that uses a single large texture of
resolution 4096 × 4096. Unlike the Sponza scene, which involves decoding smaller and
larger parts of multiple textures, the cube scene forces the decoder to process an entire
texture in full. The texture used for our measurements is the rocky terrain texture, but
other textures compressed at similar bits per texel scored similar results.

5.2.2 Results
Both scenes were rendered at a resolution of 1920 × 1080 using an NVIDIA GeForce RTX
4090 GPU. To assess performance under different compression conditions, each scene was
rendered four times using JPEG textures compressed at quality levels 30, 50, 70, and 90,
all with 4:2:0 chroma subsampling. The resulting GPU kernel execution times for each
configuration are summarised in Table 5.3. For 4:2:0 subsampling, a single MCU consists
of 16 × 16 texels, amounting to 256 texels. This results in approximately 17.6 million
texels decoded per frame for the Sponza scene and 16.9 million texels for the Cube scene.

To compare our method against state-of-the-art texture compression, we implemented
BC1 decompression in software. While modern GPUs natively support BC1 decoding in
hardware, this functionality is not exposed through CUDA. A software implementation,
therefore, also provides a fairer basis for comparison. On the NVIDIA GeForce RTX 4070
Ti, rendering with either multiple textures in the Sponza scene or a single high-resolution
texture in the cube scene took an average of 0.07 ms. We did not compare against ASTC,
as it is unsupported on desktop GPUs and too complex to reimplement efficiently.

To further analyse the impact of MCU complexity on decoding performance, we rendered
the Sponza scene at four JPEG quality levels: 90, 75, 50, and 30. This experiment
was conducted on an NVIDIA GeForce RTX 4070 Ti GPU, which explains the slightly
lower performance compared to the results reported above. For each quality level, we
measured the average number of non-zero DCT coefficients per DU, which reflects the
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decoding workload. At quality 90, the average was 14 coefficients per DU in the Cube
scene and 19 in the Sponza scene, decreasing to only 3 coefficients for both scenes at
quality 30. We then measured decoding time while varying the number of visible MCUs
in the scene, allowing us to directly assess how performance scales with both MCU count
and coefficient complexity across quality levels. The results are summarised in Figure
5.10 and Figure 5.11, where each curve corresponds to one of the tested quality settings.

Additionally, we plotted the average time required to decode a single MCU for varying
numbers of DCT coefficients in Figure 5.12. The average time was calculated by decoding
between 100 and 60,000 MCUs, then dividing the total decoding time by the number
of MCUs. By averaging across this range, we ensure that the reported cost reflects the
actual decoding efficiency of an MCU across all scenarios.

To analyse potential overhead from rendering with multiple textures, we divided the
Cube scene into equally sized regions, each assigned a copy of the same texture. Using
identical textures ensures that any observed differences are solely due to the number of
textures, without interference from texture content. The results for the rocky terrain
texture at quality setting 70 are shown in Figure 5.13.

Table 5.3: Decompression performance and quality (PSNR) for 69,000 and 66,000 MCUs
for the Sponza and Cube scenes with an NVIDIA GeForce RTX 4090.

Scene Compression Quality bpp Size (MB) Decode Time (ms) PSNR (↑)

Sponza
(69k MCUs)

JPEG 90 4.00 51 1.54 38
JPEG 70 2.10 27 0.8 28.4
JPEG 50 1.52 19 0.6 26.3
JPEG 30 1.08 14 0.33 24.5
BC1 – 4.00 51 0.07 29.75

Cube
(66k MCUs)

JPEG 90 1.87 3.72 0.92 41
JPEG 70 0.98 1.95 0.56 38.8
JPEG 50 0.70 1.37 0.43 35.9
JPEG 30 0.48 0.96 0.34 34.1
BC1 – 4.00 8.00 0.07 40.61
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Figure 5.9: Sponza and cube scene rendered with JPEG compressed textures.

(a) Sponza

(b) Cube
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Figure 5.10: Coding efficiency as a function of the number of MCUs for different average
number of Coefficients measured on an NVIDIA GeForce RTX 4070ti for the Sponza
scene.

Figure 5.11: Coding efficiency as a function of the number of MCUs for different average
number of Coefficients measured on an NVIDIA GeForce RTX 4070ti for the Cube scene.
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Figure 5.12: Average MCU decoding time on an NVIDIA GeForce RTX 4070ti as a
function of the average number of DCT coefficients at different quality levels for the
rocky terrain texture.

Figure 5.13: Rendering of the Cube scene on an NVIDIA GeForce RTX 4070 Ti, using
multiple copies of the rocky terrain texture. The scene was divided into equally sized
regions, each assigned to a different texture, while keeping the total number of MCUs
constant.
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CHAPTER 6
Discussion

In this chapter, we evaluate our results in terms of performance and visual quality. The
first section analyses metrics of visual fidelity, comparing JPEG with state-of-the-art
formats. We then explore specific cases where JPEG performs particularly well—so-called
"sweet spots"—especially in the context of pre-compressed textures and photogrammetry-
based assets. Following this, we present a detailed comparison of the visual error
introduced by JPEG and BC1 across a variety of textures, using close-up examples to
highlight qualitative differences. We then discuss the decoding efficiency of our method
for our two test scenes, before concluding with an in-depth analysis of MCU-utilisation.

6.1 Quality
At a target rate of four bits per texel, JPEG consistently outperforms BC1 across all
evaluated textures and quality metrics, as shown in Table 5.1. It also surpasses ASTC in
terms of PSNR, and although the margin is narrower, JPEG maintains an advantage in
perceptual metrics such as SSIM, FLIP, and LPIPS. There are, however, specific textures
where ASTC yields higher PSNR and SSIM scores than JPEG, while still performing
worse or even in perceptual evaluations. A notable example is the paving stones texture.
As illustrated in Figure 5.4, JPEG struggles with this texture, even before factoring in
any overhead introduced by our processing pipeline. Nonetheless, this disadvantage is
less pronounced in LPIPS (Figure 5.6), and JPEG even outperforms ASTC in the FLIP
metric (Figure 5.5).

A closer look at the error map for the paving stones texture (Figure 5.8) shows that JPEG
compression introduces noticeable error in high-frequency regions such as grass. However,
JPEG achieves significantly lower error across smoother areas of the image, leading to
competitive overall perceptual quality. In contrast, ASTC distributes its error more
uniformly across the entire texture, which cumulatively results in a higher perceptual
error. In the more demanding scenario of one bit per texel, JPEG retains its edge over
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ASTC, though the margin narrows. BC1 is excluded from this comparison, as it does
not support compression below four bits per texel.

Moreover, JPEG offers the greatest flexibility in terms of quality tuning. Unlike
BC1 or ASTC, JPEG’s adjustable quantisation matrix and wide range of quality set-
tings—typically up to 100 levels in standard tools—allow for fine-grained control over
the trade-off between size and visual fidelity. This tunability makes JPEG especially
appealing for applications where precise optimisation is required.

6.2 Quality metric anomalies
In general, JPEG’s quality setting scales predictably with perceived image quality, as
measured by standard evaluation metrics. However, for certain textures, the relation-
ship between the quality setting and the actual measured quality exhibits unexpected
behaviour, as the trend is non-monotonic. In these cases, quality metrics show a distinct
peak at a specific JPEG quality value, with noticeably worse results at both lower and
higher settings.

This phenomenon is clearly demonstrated in the Anita Mui texture (Figure 5.7), where a
quality setting of 90 consistently outperforms all others. Surprisingly, settings both above
and below 90 result in a rapid decline in quality across all four metrics evaluated. This
behaviour is caused by double JPEG compression: the texture was previously saved using
JPEG at quality level 90, and recompressing it at any other setting introduces additional
quantisation errors. When recompressed at the same quality level as the original, JPEG
can partially preserve the quantised coefficients, leading to a distinct spike in measured
quality.

However, in the case of the Anita Mui texture, an additional anomaly emerges: despite
being double-compressed at the same quality level, the resulting file size is still noticeably
reduced. This is unexpected—typically, recompressing a JPEG at the same quality
setting yields similar file sizes but reduced visual fidelity. One possible explanation is that
the Anita Mui texture originates from photogrammetry, a process that involves stitching
together multiple photographs to generate a panoramic or 3D surface texture. If the
original source images used in this stitching process were themselves JPEG-compressed,
their compression artifacts may have interacted with the second compression pass in a
way that led to more aggressive quantisation and, consequently, smaller file sizes. This
layered compression history may explain both the unusual quality spike and the reduction
in file size, but needs further investigation.

Notably, this behaviour disappears when the texture is padded with pure white pixels
along the left or top edge. However, once the padding reaches a multiple of 8 pixels—the
size of JPEG’s internal block structure—the quality spike reappears. This pattern
highlights the sensitivity of JPEG’s block-based architecture to image alignment during
recompression. These findings complicate direct comparisons between JPEG and other
compression algorithms, particularly when the input textures have already undergone

50



6.3. Visual comparison

lossy compression. They also point toward the need for careful dataset curation and
preprocessing when benchmarking texture compression methods.

6.3 Visual comparison

Figure 6.2 shows that typical JPEG artifacts are hardly noticeable at the quality levels
commonly used for texture compression. Only for the tiles’ texture, a slight artifact is
visible where the blue hues from the tiles bleed into the separating lines. This occurs in
areas where compression introduces minor colour leakage, but such issues are rare and
typically confined to textures with sharp contrasts or highly detailed patterns.

6.4 Performance

While Table 5.3 shows that BC1 leads in raw decoding speed, our method still decodes
the Cube scene in almost half a millisecond—using only a quarter of BC1’s storage—while
maintaining nearly identical visual quality. For the Sponza scene, our approach reduces
storage by about half compared to BC1, yet remains well below the one-millisecond
decoding threshold. Thus, even in scenes where JPEG offers less benefit from compression,
our method sustains high performance.

Figure 5.10 and Figure 5.11 show that for all four cases, the decoding time increases
approximately linearly with the number of MCUs. This indicates that the decoding
process has a predictable, proportional cost per MCU, with minimal overhead. The slope
of each line is directly related to the average number of coefficients per DU. With 19
coefficients, the decoding time grows the fastest, while with 3 coefficients, it grows the
slowest. This demonstrates that decoding cost is dominated by the number of coefficients
rather than by fixed per-MCU overhead. In the Cube scene at 65,000 MCUs, decoding
with only 3 coefficients takes approximately 0.75 ms, while decoding with almost five
times as many, at 14 coefficients, takes 2.0 ms, which is only 2.6 times slower.

When comparing the decoding efficiency plots of both scenes, we observe that decoding the
same number of MCUs with a similar number of coefficients per DU takes approximately
the same amount of time. This suggests that, in our method, rendering a scene with
multiple textures does not introduce a performance penalty; decoding speed is determined
solely by the number of coefficients per DU and the total number of MCUs to be decoded.

Figure 5.12 shows that the cost of each additional coefficient remains nearly constant.
We attribute the slight polynomial increase to the fact that more coefficients require a
larger Huffman table, since more symbols need to be encoded. As a result, even though
our method can evaluate 32 Huffman codes in parallel, it may still require two or three
extra iterations until it finds the matching codeword. However, besides having to decode
additional coefficients sequentially, all other steps of our algorithm are unaffected by the
number of coefficients, which explains why the plot appears almost linear.
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Our multi-texture comparison shows that rendering from a single texture versus multiple
textures introduces no measurable overhead. The minor fluctuations observed are likely
attributable to GPU variability. This demonstrates that increasing memory usage
from 1.95 MB for a single texture to 117 MB for multiple textures has no impact on
performance.

Summarising, the performance of our method is governed primarily by the number of
coefficients, which directly reflects the chosen compression quality. Higher compression
yields fewer stored coefficients and, therefore, faster decoding. The second determining
factor is the number of MCUs, with decoding time scaling linearly and predictably
with both coefficients and MCUs. Importantly, neither the number of textures nor the
resolution of the render target impacts performance. This is because once an MCU
is decoded, it can be reused across all pixels that reference it with minimal overhead,
ensuring consistent efficiency regardless of scene complexity.

6.5 MCU-Utilization

It is important to note that mipmapping was not implemented for the decoding efficiency
evaluation. Consequently, the number of texels decoded per block is suboptimal in regions
farther from the camera, as illustrated in Figure 6.1. This also explains why the number
of MCUs that must be decoded is so high. For example, in the Sponza scene, we decode
66,000 MCUs (Table 5.3), which corresponds to 16.83 million texels. At a resolution of
1920 × 1080 = 2,073,600 pixels, this means that each MCU contributes, on average, to
only 31.42 pixels. In other words, just 12.3% of the decoded texels are actually utilised
per MCU. For the cube scene, utilisation is even worse, since the cube does not fill the
full screen but still requires a similar number of MCUs to be decoded. Despite this low
utilisation, we still achieve respectable decompression performance, particularly at lower
quality settings, mainly due to the reduced number of coefficients requiring Huffman
decoding.

52



6.5. MCU-Utilization

Figure 6.1: MCU-Utilisation: Each pixel is coloured by how many of the corresponding
MCU’s texels are actually used. Red: This pixel’s colour is sourced from an MCU where
all its texels are used. Blue: Only a single texel of the corresponding MCU made it into
the final image.
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6. Discussion

Figure 6.2: Close-ups of our method and BC1 compression with similar PSNR. In the
best case, our compressed textures are only half the size of BC1.
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CHAPTER 7
Future Work

While the current implementation does not explore every possible avenue—partly due to
constraints of the chosen framework—it successfully lays a solid foundation for future
development. This opens up exciting opportunities to build upon our work, particularly
through the integration of variable-rate compression algorithms. With further refinements
and extensions, both architectural and algorithmic, there is strong potential to achieve
substantial improvements in performance, visual quality, and adaptability in real-time
rendering scenarios.

7.1 Mipmapping
As discussed in the previous section, one of the most significant features currently missing
from our implementation is mipmapping. Mipmapping serves two primary purposes in
texture mapping. First, it helps mitigate aliasing artefacts that occur when rendering
objects at a distance. At such distances, the rate of change in UV coordinates between
neighbouring pixels increases, often leading to undersampling and visible high-frequency
noise. Mipmapping addresses this by progressively downsampling the texture—typically
averaging four texels at each level—until the texture is reduced to a minimal resolution,
often as small as a single 2×2 block. This multilevel representation ensures that the
appropriate texture resolution is sampled based on the object’s screen-space size, effectively
suppressing aliasing.

Secondly, mipmapping enhances rendering efficiency by allowing sampling from smaller
texture levels, which improves the cache coherence of texture lookups. When objects are
far away, the distance between texture lookups of neighbouring pixels can become so large
that some texels are effectively skipped if sampling from the original resolution, leading
to sparse and inefficient texture access. Using coarser levels of detail produces more
localised and predictable memory access patterns, reducing cache misses and increasing
throughput.
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In the case of our JPEG rendering method, mipmapping can provide even more significant
performance improvements, not only by enabling more coherent texture lookups, but also
from more efficient utilisation of MCUs: Currently, an entire MCU comprising 16 × 16
texels may project to a single pixel (as shown by the blue pixels in Figure 6.1) so that
only one of its texels will be visible, yet we still need to decode the entire MCU. With
mipmapping, multiple MCUs projected to a few pixels or even a single pixel may be
replaced by fewer MCUs covering a larger area of the framebuffer, thereby reducing the
number of MCUs that need to be decoded.

For traditional texture compression schemes, the full mipmap chain typically adds about
33% additional memory overhead relative to the original texture. As an alternative to
traditional mipmapping, future work could explore the possibility of generating lower-
resolution representations of JPEG-compressed textures by decoding only a subset of
the AC coefficients, or even just the DC coefficient. This approach would effectively
discard high-frequency content, thereby reducing aliasing artifacts in a manner similar
to mipmapping. However, the relationship between the degree of frequency reduction
and the corresponding mip level would need to be carefully studied and formalised. If
such a mapping can be established, this technique could offer a significant reduction
in computational overhead at lower resolutions—without the need to explicitly store
additional mipmap data.

7.2 Texture filtering
Texture lookups in real-time rendering rarely align perfectly with the centre of a texel.
As a result, texture filtering techniques are employed to interpolate between neighbouring
texels, thereby reducing aliasing artifacts and producing smoother visual results. This
process, commonly referred to as texture filtering, is a fundamental feature that most
texture compression formats must support to ensure high-quality rendering.

In our current implementation, which is based on a CUDA software rasterizer, sub-
pixel precision for UV coordinates is not yet supported. Consequently, texture filtering
is not currently possible within this framework. However, implementing it should be
straightforward, as neighbouring pixels typically reside within the same MCU, avoiding
the need for cross-block data access in most cases. Furthermore, Hollemeersch et
al. [HPLVdW12] propose a technique for filtering directly in the frequency domain, which
could provide an efficient solution for handling border texels, particularly when adjacent
MCUs have not been decoded. This method may offer both performance and quality
benefits in scenarios where spatial-domain filtering is impractical.

7.3 Texture specific quantisation tables
The quantisation tables used in JPEG compression are typically designed to provide a
good balance between compression efficiency and image quality across a wide variety
of images. However, these tables—originally developed decades ago—are now outdated
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in light of modern hardware capabilities, the age of machine learning, and evolving
application demands. Recent research has shown that redesigned quantisation matrices
can improve compression quality by up to 2 dB for the same bitrate [AOS+17, SG25].
While these improvements are promising, we believe that real-time rendering offers
opportunities to push this further.

Specifically, rather than designing quantisation matrices that generalise well across diverse
images, tailoring the matrix to individual textures may yield significant quality gains,
as demonstrated by Choi et al. [CH20] and Reich et al. [RDPC24]. In most graphics
pipelines, texture compression is a one-time operation, making longer preprocessing
times acceptable if they result in higher quality or better compression. Furthermore,
since JPEG allows the quantisation matrix to be swapped independently of the rest
of the encoding and decoding pipeline, this approach integrates naturally into existing
workflows. During development, a standard matrix can be used for rapid iteration, while
in the final production stage, a texture-specific matrix can be baked to maximise quality
and efficiency.

7.4 Reduced memory overhead

The memory overhead introduced by our method could be further reduced. Currently, we
store the DC coefficients using 12 bits each, resulting in up to 72 bits overall or 0.28 bits
per texel. This is more than half of the overhead, as evident in Figure 4.7. One potential
solution is to store only the first DC coefficient for each DU and entropy-encode the
remaining ones, decoding them in parallel with similar to the AC coefficients. This would
reduce the overhead to less than 0.2 bits compared to the standard JPEG compression.

7.5 Non-colour textures

In addition, due to JPEG’s limitations, we currently only deal with three-channel diffuse
textures without alpha. In a follow-up work, we are interested in looking at more modern
standards such as JPEG XL [AvAB+19], which promises far better compression, supports
near unlimited channels and can deal with transparency.

On a similar note, textures that do not store colour information but instead encode
normals, height maps, or other forms of data typically have different requirements for
compression. For example, in BC5, normal maps are stored in only two-channel textures
that have twice the block size of BC1. These types of textures prioritise preserving the
integrity of numerical data rather than perceptual visual quality. It would be interesting
to explore how variable-rate compression techniques, such as those adapted in this work,
can be extended or specialised to handle these non-colour textures.
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7.6 JPEG XL
One promising direction is the JPEG XL [AvAB+19] standard, which builds on JPEG to
not only support an alpha channel but also allows for up to 4099 additional channels.
Moreover, it offers significantly better compression efficiency compared to baseline JPEG.
However, this increased capability comes at the cost of greater format complexity, which
may make an efficient GPU-based decoding implementation challenging. Nevertheless,
the flexibility of JPEG XL makes it a strong candidate for future research on improving
variable-rate texture compression and extending our approach to a broader range of
textures.
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CHAPTER 8
Conclusion

As real-time rendering advances toward photorealism, the size of texture data in graphic
applications will only continue to rise. This creates a growing need for better compression
algorithms that can balance image quality with high levels of compression. Current
fixed-rate solutions do not fully utilise available storage, as they must adhere to the
random-access constraint. In this thesis, we have shown that variable-rate texture
compression is not only feasible but has the potential to challenge or even outperform
state-of-the-art methods.

We have laid out the workings of JPEG—the most common variable-rate compression
standard—and explained why it is typically considered unfit for texture compression.
To address these challenges, we proposed a set of solutions: an indexing scheme to
enable random access, a parallel lookup-based Huffman decoding method, and a modified
deferred rendering pipeline. These solutions, drawing on both established literature and
novel contributions, aim to enable efficient random access and high-performance decoding
directly on the GPU.

Our GPU-optimised JPEG textures outperform BC1 and rival ASTC across several
metrics in compression efficiency, while still maintaining real-time performance with
decoding times under 1 ms per frame. Furthermore, JPEG’s inherent flexibility in
adjusting the compression rate remains unmatched by current state-of-the-art fixed-rate
texture compression methods.

While our method already shows promising results, we have also presented several
improvements that could further enhance the algorithm. The current implementation
lacks support for mipmapping, texture filtering, and alpha channels, and the indexing
structure introduces additional memory overhead. Nonetheless, these are not fundamental
limitations but rather implementation gaps that can be addressed in future iterations.

Ultimately, this thesis challenges a longstanding assumption in computer graphics: that
variable-rate formats, such as JPEG, are inherently unsuited for real-time applications. By
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8. Conclusion

demonstrating real-time performance with a 33-year-old compression standard, this work
opens the door to reimagining texture compression for modern demands. We encourage
keeping an open mind and not ruling out options from the get-go, just because the
consensus is that something is not possible. We hope this work provides critical insights
into which aspects of JPEG are well-suited for GPU acceleration and which present
ongoing challenges, thereby paving the way for the development of novel variable-rate
formats specifically tailored to modern GPUs.
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Overview of Generative AI Tools
Used

Grammarly v1.2.189.1739 was used to correct spelling mistakes and refine the wording of
some sentences. No paragraphs were fully rewritten; only the spelling and suggestion
features were applied.

Chat GPT 4 and 5 were used to improve the formatting of tables and to convert CUDA
code into pseudo-code snippets.
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