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Kurzfassung

Diese Arbeit untersucht dateneffiziente Deep Learning Methoden zur visuellen Montage-
verifikation in einer Produktionslinie für hochgradig anpassbare elektronische Schlösser.
Im Mittelpunkt stehen drei datenorientierte Ansätze: Der erste Ansatz nutzt die bekannte
statische Geometrie des Werkstückträgers, um die Objekterkennung auf eine Reihe Klas-
sifikationen auf vordefinierten Bildbereichen zu reduzieren (ROI-basierte Klassifikation).
Der zweite Ansatz erzeugt automatisch Pseudo-Annotationen für die Objekterkennung,
indem Bildbeschrifungen mit den beschränkten Bauteilpositionen kombiniert werden. Der
dritte Ansatz erweitert den Datensatz durch synthetisch generierte Bilder, die durch die
Kombiniation segmentierter Bauteile mit Hintergrundbildern erzeugt werden.

Ziel der Arbeit ist es, das Potenzial dieser Ansätze zur Reduktion des manuellen An-
notierungsaufwands zu bewerten. Hierzu werden alle Methoden unter realen Produk-
tionsbedingungen systematisch verglichen und hinsichtlich ihrer Stärken, Schwächen
und praktischen Einsatzmöglichkeiten analysiert. Die Ergebnisse zeigen, dass durch eine
gezielte Nutzung dieser domänenspezifischen Strukturen eine robuste Modellleistung auch
mit deutlich reduziertem Annotierungsaufwand erreicht werden kann.
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Abstract

This thesis investigates data-efficient deep learning methods for visual assembly ver-
ification in a highly customizable electronic lock production line. We examine three
data-centric strategies. First, ROI-based methods leverage the fixed geometry of the
workpiece carriers by reformulating object detection as a set of classification or regression
tasks over predefined regions. Second, pseudo bounding boxes are created by combining
image-level labels with known part positions to automatically generate object detection
annotations without manual labelling. Third, synthetic training data is produced by
compositing cropped part images with background scenes, thereby increasing dataset
diversity and reducing the need for extensive manual data collection.

These methods are evaluated on a real-world dataset collected during regular production
to assess their effectiveness in reducing manual annotation effort. We provide a compre-
hensive comparison of data-centric approaches, highlighting their respective strengths
and limitations. The results demonstrate that leveraging the structured nature of the
assembly environment enables accurate model performance with substantially reduced
annotation requirements.
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CHAPTER 1
Introduction

1.1 Motivation
Visual inspection plays a critical role in manufacturing, ensuring consistent product
quality and adherence to specifications. It is particularly important in manual assembly
lines, which are prone to human error due to the unsuitability of our cognitive system
for repetitive, monotonous tasks [Arn97]. Automated assembly processes face their own
set of challenges, including calibration issues, machine wear, and software glitches. As a
result, quality control has remained a staple since the early days of industrial production.
However, manual inspection encounters similar issues to manual assembly lines [DS83;
KV15].

As such, automated quality control systems based on traditional machine learning tech-
niques emerged. Given the narrow application domain and controlled environments, it
was possible to achieve satisfactory results based on handcrafted features [Wan+18].
However, these traditional methods were labour-intensive to develop, sensitive to environ-
mental changes, and often struggled to adapt to new or varying product designs [BCV13;
GBC16; NS21]. Consequently, attention has shifted towards deep learning, which has
achieved remarkable results in many areas since its resurgence in 2012 [KSH12; Kon+20;
Geh+17]. With strong generalization, the ability to operate effectively in less controlled
environments, and reduced need for manual feature engineering [KCT20], deep learning
has become a cornerstone of modern visual inspection systems. However, its effectiveness
typically depends on access to large and diverse datasets, which can be an issue in many
scenarios due to the specialized nature of the applications.

Visual inspection tasks generally fall into two categories: defect detection and assembly
verification [Hüt+24] 1. Defect detection aims to identify surface flaws (e.g., scratches,
cracks) and structural defects (e.g., holes, cavities) [Czi+20; Yan+20; JB23]. It dominates

1A more extensive classification will be introduced in Section 2.1.
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1. Introduction

current research due to its relevance in high-volume, standardized manufacturing [Hüt+24;
JB23; Lee+23; Che+23a; Tao+22]. In contrast, assembly verification, the focus of this
thesis, confirms that all required components are present and correctly assembled [Hüt+24;
RL18]. It is especially relevant in the context of configurable or customizable products,
particularly as demand for personalization grows. Assembly verification remains under-
explored, largely due to the lack of publicly available datasets, and the dependence
on proprietary data. These factors limit accessibility for researchers as well as hinder
reproducibility, and comparison across studies [Hüt+24; KCT20]. Additional challenges
include the high costs of data collection and annotation, as well as significant class
imbalance across different variants and configurations.

Despite these challenges, the structured and controlled nature of assembly environments
offers distinct advantages. The placement of individual components is typically con-
strained, such as by a workpiece carrier or by being mounted on a printed circuit board
(PCB). Components of the same type also tend to exhibit a highly uniform appearance.
These characteristics provide an opportunity to reduce data requirements and improve
model performance. As manufacturing continues to shift toward mass customization2,
the increase in product variety makes data efficiency even more critical for ensuring
reliable and scalable assembly verification systems.

1.2 Objective
This thesis explores data-efficient deep learning techniques for visual assembly verification,
with a focus on minimizing annotation effort. The core idea is to fully utilize the specific
characteristics of the assembly environment through data-centric strategies.

We strive to answer the following research questions:

• How can constrained object locations and low intra-class variance reduce
dataset requirements?

• What is the trade-off between increased dataset size and class imbalance
in assembly verification tasks?

• Can synthetic or weakly labelled data be used to reduce the need for
manual annotations without compromising model performance?

To answer these questions, three principal approaches are examined:

• ROI-based methods (Chapter 4) leverage the spatial layout of the workpiece
carrier to reformulate the verification task as a set of independent classification or
regression problems.

2Mass customization is a strategy that involves customers in the manufacturing or assembly process,
delivering customized products at a price comparable to mass-produced items [KH06].
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1.3. Use Case

• Pseudo-annotations (Section 5.1) replace manually annotated bounding boxes
with pseudo-annotations automatically derived from weak supervision.

• Synthetic data generation (Section 5.2) uses a custom image composition
pipeline to increase effective dataset size by increasing diversity and reducing
imbalance.

Together, these approaches are evaluated to understand how annotation effort can be
reduced without sacrificing performance. Finally, we examine the trade-off between
constructing datasets from manually assembled examples and capturing them passively
during production.

1.3 Use Case
The research is based on a case study conducted at an electronic lock assembly line
of EVVA in Vienna. It produces a wide range of highly customizable locking systems,
with variations in length, locking mechanisms, and surface finishes, among other options,
resulting in significant product variability. An example of such a lock system can be seen
in Figure 1.1. Further details on the types of locks and possible configurations can be
found in Section 3.3. The use case is uniquely suitable, as a prior feasibility study by
an external contractor failed to achieve satisfactory results using traditional machine
learning methods.

Figure 1.1: An example of a workpiece carrier on the assembly line holding a partially
assembled lock system.
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CHAPTER 2
Related Work

Given the limited research directly addressing data-efficient deep learning for assembly
verification, this chapter instead discusses the key areas relevant to this thesis. We begin
by situating assembly verification within the broader context of visual quality control.
We then review general strategies for improving data efficiency in deep learning. Finally,
we provide a brief overview of methods for synthetic data generation.

2.1 Visual Quality Control

Visual quality control in production lines encompasses a broad range of use cases, each
with unique requirements and quality criteria [KCT20]. To contextualize our use case, we
consider applications along a spectrum based on how specific the failure cases are defined,
as illustrated in Figure 2.1. At one end lies assembly verification, the focus of this thesis,
where the errors are clearly defined, such as missing, misplaced, or incorrect components
(e.g., a wrong screw or missing battery). At the other end is anomaly detection, which
aims to identify unexpected patterns or events (e.g., foreign objects or damage). This
categorization helps clarify how different tasks place different demands on annotation,
supervision, and generalization capability.

2.1.1 Anomaly Detection

Anomaly detection aims to identify outliers during production, which often indicate
defects, missing components, foreign objects, or other unwanted occurrences [KD19;
Maz+20]. Because the goal is to detect any type of failure, it is infeasible to collect
a comprehensive dataset of all possible failure cases. As a result, anomaly detection
typically relies on large sets of unlabelled data, such as through semi-supervised and
self-supervised methods. These techniques learn what constitutes correct products and
operating conditions from the training distribution, even if the majority of images are

5
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Assembly
Verification

Missing
Component
Detection

Defect
Detection

Anomaly
Detection

Specific Failures Unknown Failures

Figure 2.1: Spectrum of visual quality control tasks categorized by the specificity of
failure cases. Tasks range from well-defined issues such as those in assembly verification
to open-ended problems encountered in anomaly detection.

unlabelled [JB23; Tao+22; Maz+20]. Prominent approaches also include autoencoders
(AEs) [MTM22; UYY21; KB20], generative adversarial networks (GANs) [BEM21;
RMM20], and normalizing flows (NFs) [MTM22].

2.1.2 Defect Detection

Defect detection involves identifying specific surface or structural flaws, such as scratches,
dents, cracks, holes, or soldering issues[Czi+20; Yan+20; JB23; Mig20]. In contrast
to anomaly detection, the types of defects are often predefined, enabling the use of
supervised methods like object detection or segmentation [Hüt+24; JB23; HWZ19;
Al+22; Maz+20]. Detection strategies range from multi-class classification of distinct
defect types to simpler binary classification distinguishing defective from non-defective
instances [Hüt+24; Ben+21; Yan+19; SZ23]. Although the location of defects is generally
unconstrained, certain applications allow for the use of ROI-based classification due to
the fixed positions of components. An example of this is the identification of soldering
defects on PCBs [Met+19; Mig20]. A key challenge in defect detection is the high cost
and effort involved in producing detailed annotations. To address this, weakly-supervised
and semi-supervised methods are increasingly used, as they can learn from image-level
labels and large pools of unlabelled data respectively. Readily available public datasets
further help reduce dataset requirements. Additionally, data augmentation and synthetic
data generation are commonly applied to expand training diversity and improve model
generalization [JB23; Tao+22; Maz+20].

2.1.3 Assembly Verification

Assembly verification, the subject of this thesis, ensures that products meet both quality
standards and order specifications. This typically includes verifying that all required
parts are present and conform to the customer’s order in terms of visual properties such
as dimensions and surface finish [Hüt+24; Sta+23]. A common example is the inspection
of PCBs to confirm correct placement of capacitors, resistors, and integrated circuits
(ICs) before soldering [Ara+24; Kur+20].

The majority of recent work relies on object detection, either directly, treating each
component variant as a separate class, or in two-stage methods, where a detector first

6
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identifies broadly categorized parts and a second model performs finer classification.
Many industrial settings necessitate an object detection-based approach, such as in
domains like aerospace and automotive assembly for verifying fasteners (e.g., screws,
rivets, joints) [DLZ24; AAJ24; Zha+21b]. However, a prominent portion of use cases
involve constrained component layouts, where parts occupy fixed or predictable locations.
In these settings, ROI-based classification offers a more efficient alternative by applying
classifiers to predefined regions rather than performing full detection. To our knowledge,
only Lim et al. [LKP19] apply this method, limited to highly structured PCBs and without
comparison to object detection methods. This thesis considers ROI-based classification in
a broader context, and compares it against standard object detection-based approaches.

Recent works in assembly verification are summarized in Table 2.1. Most approaches
employ transfer learning, typically starting with weights pretrained on ImageNet [Den+09],
and favour lightweight single-stage detectors like YOLO [TC23] and SSD [Liu+16] for
deployment efficiency. Backbone architectures such as MobileNet [How+17], EfficientNet
[TL19], AlexNet [KSH12], and shallow custom CNNs are common due to hardware
constraints in deployments.

Ref. Detection Metric Result
[Sha+24] YOLOv8s Accuracy 0.98
[OK19] ACF (AlexNet) Accuracy 0.9722
[Kur+20] Faster R-CNN (AlexNet) Accuracy 0.883 - 0.9994
[Maz+20] SSD (MobileNet) Accuracy 0.7763
[Liu+19] Mask R-CNN (ResNet-101) Accuracy 0.937
[Ara+24] Custom YOLO-like (MobileNet) AP 0.9997

Ref. Classification Metric Result
[LKP19] Custom FCN + Custom Classification Accuracy 0.98

Ref. Detection Classification Metric Result
[Zha+24b] Hough Transform ResNet-34 Accuracy 0.997
[Sta+23] YOLOv5s EfficientNet AP50 0.993 (wheels)

Accuracy 0.9872 (rims)

Table 2.1: Models used in recent literature for assembly verification

The datasets used in recent assembly verification research (Table 2.2) vary significantly
in size and scope, but most are custom-built and contain hundreds to thousands of
images. Only two works operate with notably small datasets: Liu et al. [Liu+19] use
just 64 training images, but compensate with densely populated scenes and pixel-level
segmentation masks. Aras et al. [Ara+24], in contrast, rely on only 27 original images,
but focus exclusively on a single class. As such, neither represents a general approach to
learning from limited, real-world data across multiple classes. Notably, all other datasets
with more than 10 classes include over one thousand training images, which highlights a

7
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lack of methods explicitly designed for low-data regimes. Additionally, the absence of
standardized benchmarks and inconsistencies in data formatting hinder reproducibility
and cross-study comparison. This thesis addresses these gaps by evaluating performance
under constrained data conditions and providing a direct comparison between object
detection and ROI-based classification approaches.

Ref. Classes Content Training Size Full Size Notes
[Sha+24] 3 Unnamed (base, spring,

piston, cap)
268 338 balanced

dataset
[OK19] 2 Wall clock 320 356 balanced

dataset
[Kur+20] 3 ICs on PCB ≈ 1, 000 unknown
[Ara+24] 1 ICs on PCB 12,000 15,000 27 original

images
[LKP19] 14 SMCs 7,659 12,481
[Zha+24b] 22 Saw Chains 3,094 4,420
[Sta+23] 31 Car wheels 1,000 1,500

Wheel rim 2,100 3,300
Wheel bolts 400 600

[Maz+20] 6 Brake disc and calliper unknown 321
[Liu+19] ≥ 14 Computer chassis ports 64 80

Table 2.2: Datasets used in recent literature for assembly verification

2.2 Data-Efficient Learning

In addition to task-specific strategies for structured inspection, various general-purpose
approaches have been developed to reduce the annotation demands of deep learning.
However, most of these are poorly suited to this use case, as described in this section
and verified in Section A.2.

2.2.1 Transfer Learning

A common approach is to fine-tune models pretrained on larger datasets. Even if the
source and target domains differ, this nevertheless often improves performance or at least
convergence speed [PG22]. TURTLE [GJB24] goes further by requiring no labels through
clustering of feature representations from a pretrained model using only the number of
target classes as input.

2.2.2 Meta-Learning

Meta-learning, or “learning to learn”, enables models to quickly adapt to new tasks
with minimal data by leveraging knowledge acquired from a variety of previous tasks
[Gha+24]. Context-Aware Meta-Learning (CAML) [Fif+24], for instance, reframes visual

8



2.2. Data-Efficient Learning

meta-learning as a sequence modelling task, allowing a fixed pretrained feature extractor
to adapt to new visual tasks without fine-tuning.

2.2.3 Few-Shot Learning

Few-shot learning aims to train models that can generalize from just a few labelled
examples. Despite its theoretical appeal, few-shot learning is often outperformed by
simple supervised approaches, such as those examined in this thesis [NH19; Che+19].

2.2.4 Self-Supervised Learning

Self-supervised learning uses auxiliary tasks that require no human labels, such as
predicting masked regions [He+22] or distinguishing between augmented views of the
same image [Che+20]. While promising in reducing annotation effort, these methods
typically require large and diverse datasets to learn meaningful representations. This
makes them ill-suited for our objective of distinguishing fine-grained, visually similar part
variants with limited data.

2.2.5 Weakly-Supervised Object Detection

Weakly-Supervised Object Detection (WSOD) involves training detectors using only
image-level labels, without the need for manual bounding boxes [Zha+21a]. Common
approaches include:

Multiple Instance Learning (MIL) [Car+18]: Treats each image as a bag of can-
didate regions (instances), and learns to identify which region is responsible for
the image-level label. This allows the model to localize objects without explicit
bounding boxes.

Class Activation Maps (CAM) [Sel+20]: Use the feature maps of trained classifiers
to highlight image regions most relevant to a given class. These heatmaps can be
refined into pseudo-bounding boxes for object localization.

While effective in some domains, WSOD appears ill-suited for structured assembly tasks
with tightly packed, small, or visually similar components, especially in comparison to
the high-quality pseudo bounding boxes that can be directly generated from known part
positions, as described in Section 5.1. WSOD could, however, be used to refine these
pseudo annotations.

2.2.6 Semi-Supervised Detection

Semi-supervised detection uses a small set of labelled images in conjunction with a larger
pool of unlabelled ones. Pseudo-labels are generated on the unlabelled data to guide
further training. A common method is Mean Teacher [TV17], where a teacher model
produces predictions that a student model learns to match.

9



2. Related Work

In the context of lock assembly, this approach faces challenges. Small, tightly packed,
and visually similar components make reliable pseudo-labelling difficult, similar to the
challenges seen with WSOD. In particular, the high dataset imbalance means that
semi-supervised methods appear to offer limited benefit in this use case.

2.2.7 ROI-Based Classification

ROI-based classification reduces detection to a set of classification tasks over predefined
image regions, making it well-suited for structured setups where part locations are fixed
or predictable. This enables simpler models, faster training, and easier annotation, often
requiring only image-level labels. However, limited context and background variation
can lead to overfitting and reduced generalization. It also lacks the spatial precision of
bounding box or segmentation-based methods. Despite its advantages in constrained
settings, ROI-based classification is rarely used in recent literature, with only two
examples: Lim et al. [LKP19] apply it to PCB component classification and Miguel
[Mig20] uses it for solder defect detection in electric toothbrushes. Critically, both of
these applications involve fully fixed positions. This thesis, in contrast, applies ROI-based
classification to a more challenging scenario and additionally incorporates regression
tasks.

2.3 Synthetic Data Generation

Deep learning’s success relies heavily on large, diverse datasets. In specialized tasks like
assembly verification, public datasets are rare, and collecting a custom dataset can be
time-consuming and expensive. Basic augmentation techniques (e.g., rotation, mirroring,
color jitter) help increase diversity, but they fall short of replicating all real-world variation
[Nik21]. Synthetic dataset generation offers a scalable alternative, enabling the creation
of balanced datasets with automatically generated, error-free labels [Son+24b; Wan+23].

Three main synthetic data generation approaches have emerged [Nik21]:

CGI-based generation uses 3D models and game engines to render synthetic images.
This offers complete control over the composition and enables perfect automatic
labelling [Tan+21], but requires extensive setup and access to accurate object
models. Bridging the domain gap to real-world data also remains a key challenge
[Nik21]. This method is employed by Tang et al. [Tan+21], who use Unity3D to
generate images of a complex aero-engine and its components.

Generative methods, such as Variational Autoencoders (VAEs), Generative Adversarial
Networks (GANs), and diffusion models learn to synthesize realistic images from
the dataset distribution. While these methods are effective for common objects,
thanks to large-scale public datasets, they often struggle to generalize to niche
domains without sufficient data. Li et al. [LXJ23] apply GANs to simulate PCB
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2.4. Summary

defects, while He et al. [He+23] as well as Yu and He [YH22] generate defect images
from scratch.

Compositing combines segmented parts with varied backgrounds to cheaply generate
new samples [Zha+24a]. This approach can be enhanced by hybridizing with CGI or
generative techniques [Son+24a]. Compositing is particularly effective with limited
data, allowing for the creation of diverse configurations and balanced datasets
with minimal initial effort. Aras et al. [Ara+24] paste IC cutouts or blank green
rectangles onto PCB images.

Among the three approaches, compositing is the most practical for assembly verification.
It requires minimal setup and is well-suited to structured environments with consistent
part placement. CGI-based methods offer precise control and perfect labels, but require
time-consuming setup and are better suited for occlusion-heavy tasks or for generating
hard-to-obtain ground truths. Generative models demand substantial datasets in the
target domain and can struggle with the complex configuration and imbalanced datasets
found in assembly verification. While generating cropped components with limited data is
feasible, it is only useful if intra-class variance is high. Aras et al. [Ara+24] demonstrate
the potential of compositing with IC overlays on PCBs, though their approach remains
limited in both scope and sophistication. This thesis extends that idea with a more
targeted and robust compositing pipeline for lock assembly.

2.4 Summary
Current research in assembly verification largely focuses on object detection, with limited
exploration of data-efficient alternatives. ROI-based classification has shown potential
but remains under-explored, with only a handful of examples in the literature and
no comparison benchmark. Existing synthetic data methods also often rely on trivial
compositing strategies, such as those used by Aras et al. [Ara+24], which limit realism
and generalization.

This thesis addresses these gaps by:

• Applying ROI-based classification to a more challenging, less constrained use case.

• Introducing a pseudo-annotation approach based on the constrained component
positioning.

• Improving upon the simplistic compositing strategies for synthetic data generation
to enhance applicability.

• Providing a unified benchmark to systematically compare these approaches under
consistent conditions.
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CHAPTER 3
Dataset

This chapter introduces the dataset used in this thesis. It was collected directly from
an electronic lock manufacturing line and reflects real-world conditions, including class
imbalance and product variability. We begin with the data acquisition setup, followed
by the preprocessing steps, and finally we detail the dataset composition, covering the
components and configurations relevant to this study.

3.1 Data Acquisition

The images for this dataset were gathered from the electronic lock manufacturing line at
EVVA Sicherheitstechnologie GmbH in Vienna. This production line assembles electronic
locking systems, such as Airkey and Xesar, across 8 sequential stations. A camera
positioned above the conveyor belt automatically captures images of carriers holding the
lock body, thumbturns, and other components just before packaging. The majority of
the dataset was collected continuously during regular production, accurately reflecting
the real-world product composition. However, parts or variants that appeared very
infrequently were excluded if they had fewer than 15 instances or were supplemented
with additional hand-picked or manually captured production images. Additionally, a
large number of extra images were collected for thumbturns with missing screws, as this
important failure mode was not otherwise captured in the production data. While we
expect the findings of this thesis to generalize to the excluded classes, their low real-world
sample count makes a reliable evaluation infeasible.

The images for the dataset were gathered using a webcam positioned at the second-to-last
station above the conveyor belt, thus seeing the almost fully assembled lock system just
before packaging. Whenever a carrier enters the station, a signal is sent to trigger the
webcam, which then captures an image. The full setup at the station is depicted in
Figure 3.1 with one of the raw collected images shown in Figure 3.2.
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3. Dataset

Figure 3.1: The experimental data acquisition setup at EVVA Sicherheitstechnologie
GmbH in Vienna.

The bulk of the dataset was collected passively during production, with images auto-
matically captured as products move along the assembly line. This approach ensures
that the dataset reflects real-world production conditions without requiring additional
effort beyond the initial setup. However, it introduces a significant imbalance, as certain
product variants appear far more frequently than others due to differences in their
popularity and production frequency.

3.2 Preprocessing

Collected images were filtered to exclude those that are drastically overexposed, sig-
nificantly occluded or feature moving carriers. These issues arise from the temporary
and experimental nature of the data collection setup, and are unlikely to occur in a
proper deployment. They generally also provide little training value, as they either lack
salient features or have ambiguous ground truth annotations. Additionally, images with
misplaced parts are set aside for a separate evaluation dataset examined in Section 7.2.3.
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Figure 3.2: Example of an image from the dataset, captured by the overhead camera
during production.

(a) Overexposed image (b) Occluded and moving car-
rier

(c) Carrier with misplaced parts

Figure 3.3: Example images excluded from the dataset.

After filtering, the corners of each carrier are located in the images. The interior region
is then cropped and warped into a rectangular shape as shown in Figure 3.4. This
eliminates irrelevant features outside the carrier region, homogenizes variations in camera
positioning, and aligns the carrier and its components with the pixel grid, thus removing
the need for oriented bounding boxes in Chapter 5. The final image size is about 995×893
pixels with small variations due to the perspective corrections.

3.3 Composition
This section introduces the various configurations and customizations available for the
cylinders in the manufacturing process. A wide range of lock profiles are produced on the
same manufacturing line according to the varying standards in different countries. Euro-
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3. Dataset

Figure 3.4: Example of dataset preprocessing with the original image on the left and
processed image on the right.

and Swiss round cylinders can be either one-sided or double-sided and have configurable
lengths in 5 mm increments. They can have different cylinder ends, such as a keyway, an
attachment point for an electronic or mechanical thumbturn, an adaptable thumbturn
axis, a blind module (a solid, closed end), or a blind module with an anti-panic function.
The electronic thumbturn plug can be protected by a dust cap and can optionally feature
a length extension. The locking mechanism can be either a standard cam, a cogwheel, or
absent. The SEP cam has a different appearance for one-sided and double-sided cylinders.
Additionally, the lock’s surface finish can be customized as Nickel, Polished Brass, or
Black Patina, depending on the desired appearance. Scandinavian oval cylinders and cam
lock cylinders do not have visible customization, except that the Scandinavian profile
can be either an inside (SKI) or outside (SKA) variant.

Besides the cylinder bodies, one electronic thumbturn should be present for each corre-
sponding cylinder attachment point. Additionally, there is a yellow paper containing
the purchase order, a small tray for holding extra parts, and a set of notes containing
information for the line workers about the order. The full list of components and proper-
ties considered in this thesis is detailed in Table 3.1 with some example images shown in
Figure 3.5. Notably, some exceedingly rare variants, with fewer than 10 instances over
the collection period of a few months, have been excluded from the case study.
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3.3. Composition

Part Property Values
Euro Profile
Cylinder,
Swiss Round
Profile
Cylinder

Presence Yes/No
Type One-/Double-Sided
Length (Left, Right) 27, 31, 36, 41, ...
Endpiece (Left, Right) Electronic thumbturn,

Keyway,
X1K (Inside mechanical thumbturn),
ATA (Adaptable thumbturn axis),
BLIND (Blind module),
BLIND-FAP (Blind module with
anti-panic function)

Elongated outside
thumbturn axis (Left,
Right)

AV05 (5 mm), AV10 (10 mm), AV15
(15 mm)

only available with electronic
thumbturn endpiece

Surface Finish (Left,
Right)

Nickel, Polished Brass, Black Patina

Cam SEP (different versions for single and
double cylinders),
Cogwheel

Oval
Scandinavian
Cylinder

Presence Yes/No
Type SKA (External)

SKI (Internal)
Cam Lock
Cylinder

Presence Yes/No

Electronic
Thumbturn

Presence (Left, Right) Yes/No
Dust cap (Left, Right) Present, Absent
Screws (Left, Right) 0, 1, 2, 3 (Only visible without cap)

Padlock Presence Yes/No
Red Tray Presence Yes/No

Has Content Yes/No
Battery Presence Yes/No
Order Notes Presence Yes/No

Type Order-End, Bulk-Packaging, Flu, Xesar,
Airkey

Table 3.1: Parts and properties to be detected in this case study
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3. Dataset

Order End Note

Electronic Thumbturn
with Dust Cap Batteries

Hybrid Euro Profile Cylinder

Red Tray

Purchase Order

(a) Double-sided hybrid Euro cylinder with electronic thumbturn and keyway

(b) External Scandinavian oval cylinder (c) One-sided Swiss round cylinder

(d) Padlock (e) Top: Long Euro cylinder with cogwheel
cam, extended electronic thumbturn attach-
ment point and adaptable thumbturn axis
(ATA).
Bottom: Swiss round cylinder with Black
Patina finish, standard SEP cam and both
electronic and mechanical thumbturn attach-
ment points.(f) Small cam lock cylinder

Figure 3.5: Dataset excerpt showcasing various lock types and configuration variants.
18



CHAPTER 4
ROI-Based Methods

Object detection is the most widely used approach for automated assembly verification,
enabling both localization and classification of components. However, it typically requires
time-consuming bounding box annotations, which can present a significant bottleneck. To
mitigate the issue, this chapter explores a method that leverages the compartmentalization
of the workpiece carrier. By splitting the image into predefined regions of interest (ROIs),
each corresponding to a specific component, the detection task can be decomposed into a
set of simple, localized classification or regression problems. The ROIs chosen for this
case study are depicted in Figure 4.1.

Since part positions are constrained, each ROI covers only a narrow and consistent input
domain. This simplifies the task and allows for the use of smaller, more data-efficient
models. Unlike object detection, this method only requires image-level labels for training,
reducing annotation time by a factor of 10 to 20 for this dataset. When the assembly line
can track expected products passing through, these labels can be automatically inferred
and assigned to the corresponding regions with minimal human intervention.

A key limitation of this approach, however, is its inability to detect misplaced components.
This limitation is inherent to the approach, with its severity depending on the frequency
of such misplacements. As an alternative, Chapter 5 will examine object detection-based
approaches.

This chapter outlines a categorization of regions, the construction of per-region datasets,
as well as the used model architecture, and training strategies. Considerations for
evaluation and their results can be found in Chapter 6 and Section 7.1 respectively.

4.1 Types of Regions
The workpiece carrier holds many different kinds of components, each subject to its own
set of constraints. Notably, some components do not always occupy a fixed position,
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Figure 4.1: An empty workpiece carrier with the applied ROIs overlaid. The regions for
Euro and Swiss round profile cylinders are further subdivided into left, right and centre.

20



4.1. Types of Regions

some regions may contain multiple parts, and some components are positioned relative to
other components on the carrier. In addition, each part has distinct relevant properties
to detect, necessitating slightly different methods for each region. To address this, we
classify regions based on two main factors: the spatial constraints of the components
within and the specific tasks required for their identification (see Table 4.1).

4.1.1 Spatial Constraints

Regarding spatial constraints, regions fall into three distinct categories:

Tightly Constrained These regions correspond to custom indentations designed to
hold specific components in a fixed position. Since the object’s location does not
vary, the camera consistently captures the component from the same angle and
perspective. This results in the lowest visual variance and data requirements.

Lightly Constrained In these regions, components are not confined to an exact location,
but instead reside within a larger space. Their orientation or location may vary
slightly across different images.

Relative Some regions are not independent, but instead depend on the type and
properties of other components. For example, the positions of cylinder endpieces
are determined by the presence and length of the cylinder halves. If the cylinder
length is misclassified, the endpiece region will also be misaligned, potentially
leading to incorrect classification. As a result, these regions require additional
padding and targeted geometric augmentation during training.

4.1.2 Learning Tasks

Each region is associated with at least one specific learning task, depending on the
properties of the components it may contain:

Presence Detection / Binary Classification Determines whether a region contains
a specific component or is empty. This is used if only the presence or absence of an
item needs to be predicted, without distinguishing between multiple variants.

Multi-Class Classification Applied if a region may contain one of several mutually
exclusive component types. This requires categorical classification to determine
which specific component, if any, is present.

Multi-Label Classification Used if a region can contain multiple components simul-
taneously. As categorical classification is inadequate, this task requires multi-class,
multi-label classification or object detection techniques to identify the components.

Regression Involves predicting a numerical value associated with a region. In this
study, regression is used to estimate the length of cylinder halves, the length of
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4. ROI-Based Methods

Region Positional
Constraint Learning Task

Red Tray Tightly Multi-Class
Electronic Thumbturns (x2) Tightly Multi-Class & Regression
Order Notes Lightly Multi-Label
Batteries (x4) Tightly Presence
Cam Lock Cylinder Tightly Presence
Euro Cylinder Cam Tightly Multi-Class
Euro Cylinder Halves (x2) Tightly Presence & Regression
Euro Cylinder Half Surface Finish (x2) Relative Multi-Class
Euro Cylinder Endpiece (x2) Relative Multi-Label
Swiss Cylinder Cam Tightly Multi-Class
Swiss Cylinder Halves (x2) Tightly Presence & Regression
Swiss Cylinder Half Surface Finish (x2) Relative Multi-Class
Swiss Cylinder Endpiece (x2) Relative Multi-Label
Scandinavian Cylinder Tightly Multi-Label
Padlock Tightly Presence

Table 4.1: Types of positional constraints and learning tasks for each region.

electronic thumbturn extensions, as well as the number of screws on the electronic
thumbturns.

4.2 Datasets

Based on the regions listed in Table 4.1, we construct a total of 18 distinct datasets.
Each dataset generally corresponds to a unique region of the workpiece carrier. Regions
containing identical or symmetric components, such as thumbturns or batteries, are
grouped into a shared dataset. The cylinder endpiece region is considered as four distinct
datasets corresponding to the general type, dust cap presence, extension presence, and
extension length. This allows each model to focus on a narrowly defined objective and
its relevant inter-class distinctions, resulting in superior performance (see Section A.1).

Each dataset consists of the extracted image regions from the base dataset. While we
generally retain the original image resolution, particularly large or small regions are
adjusted to manage computational demands and to ensure appropriate feature scaling:

• Large regions are downscaled to reduce computational requirements.

• Small regions with fine details are upscaled to maintain sufficient resolution in the
feature maps.
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4.2. Datasets

• Regions with large aspect ratios are adjusted to avoid inefficient padding or loss of
information.

During training, each dataset is handled independently. However, the detection process
for cylinders is a multi-step pipeline, as depicted in Figure 4.2. First, the cam and both
halves of the large cylinders are cropped and classified individually. If a cylinder half is
present, its length is estimated. This length is then used to determine the precise crop
regions for the cylinder’s endpiece and surface finish, which are subsequently processed.
Models for the thumbturn extension and the dust cap are only applied if an electronic
thumbturn attachment point was detected. If an extension is detected then a separate
regression model is used to determine its length.

Start

Classify Cam

End

Classify Left
Cylinder Half

Classify Right
Cylinder Half

Classify 
Cylinder Half

Yes

No

Present?

YesNo Is electronic
thumbturn

End

Yes

No Has extension

Estimate Length

Classify 
cylinder end

Classify 
surface finish

Classify 
thumbturn extension

Estimate extension
length

Check dust cap
presence

Figure 4.2: Diagram showing the steps to fully classify a Euro profile or Swiss round
profile cylinder.
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4. ROI-Based Methods

4.3 Augmentation

Data augmentation is critical for improving the robustness and generalization of our
models. We apply distinct augmentation strategies for classification and regression tasks.

4.3.1 Classification

The classification datasets are augmented using AutoAugment [Cub+19], which applies
one of several learned augmentation policies randomly to each image in a batch. We use
the configuration trained on ImageNet, combined with CutOut [DT17] and horizontal
or vertical flipping, depending on the symmetry of the region. Figure 4.3 shows a few
examples of these transformations.

Figure 4.3: Example images demonstrating the classification augmentation pipeline, with
the corresponding original images on the left.

4.3.2 Regression

For regression tasks, a modified RandAugment-based pipeline [Cub+20] is used. Geo-
metric transformations such as rotation, scaling, and translation are disabled to avoid
distorting the numerical relationships being predicted.

To address the highly imbalanced distribution of cylinder lengths, we additionally employ
a custom horizontal shift augmentation. This involves randomly moving the cropped
cylinder half images horizontally with a standard deviation of 30 pixels. The vacated
edge region is filled with repeated border pixels. The effects of this augmentation are
visualized in Figure 4.4.

24



4.4. Model Architecture

Figure 4.4: Augmented cylinder halves for length estimation, shifted in both directions.

To assess the effect of this augmentation on data distribution, we visualize the resulting
cylinder length frequencies in Figure 4.5. The augmented dataset size was made equal to
the original to isolate the impact of the pixel-shift augmentation.

Figure 4.5: Distribution of cylinder lengths in the subsampled datasets before and after
augmentation.

4.4 Model Architecture
We employ a modified ResNeXt-50 [Xie+17] architecture as our backbone, featuring a
Global Average Pooling (GAP) neck and a custom classification head. As illustrated in
Figure 4.6, the classification head consists of a Dropout layer (50% drop probability),
followed by an intermediate fully connected layer with 512 units and ReLU activation,
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4. ROI-Based Methods

and concludes with a variable-width output layer tailored to each task. The choice of
ResNeXt-50 is motivated by its balance of efficiency and performance. It extends the
widely used ResNet-50 by introducing grouped convolutions, which improve representa-
tional power without significantly increasing computational cost (see Figure 4.7). While
other architectures may achieve superior performance on large-scale benchmarks like
ILSVRC [Rus+15], our experiments show that this modified ResNeXt-50 consistently
delivers the best performance on our specific dataset (see Section A.3.1).
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Figure 4.6: Schematic overview of the ResNeXt-50 backbone along with a custom
classification head. Each stage corresponds to the block structure shown in Figure 4.7.

Figure 4.7: A block of ResNet (left) and a block of ResNeXt (right) of similar complexity
from the work of Xie et al. [Xie+17].

4.5 Loss Functions
The choice of loss function depends on the learning task at hand:

• Binary and Multi-Class Classification: We use label-smoothed cross-entropy
loss [Sze+16], which improves generalization by preventing the model from becoming
overly confident in its predictions. Instead of assigning 100% probability to the
correct class, a small fraction ε is distributed uniformly across all classes:

(1 − ε)δi,j + ε

K
, δi,j =

{
1 if i = j,

0 otherwise.
(4.1)

26



4.6. Pretraining Strategy

where ε is the smoothing parameter, K is the number of classes, and δi,j is the
Kronecker delta.

• Multi-Label Classification: We apply a modified version of label-smoothed
cross-entropy that supports multiple correct labels per instance.

• Regression: For continuous outputs, we employ the Smooth L1 Loss [Gir15]. This
loss function robustly handles outliers by behaving like the L2 (squared) loss for
small errors and like the L1 (absolute) loss for larger errors, ensuring sensitivity to
minor deviations while preventing exploding gradients.

SmoothL1(x) =
{

0.5x2, if |x| < 1
|x| − 0.5, otherwise

(4.2)

4.6 Pretraining Strategy
We apply transfer learning with weights pretrained on ImageNet-1K [Rus+15]. Given
the significant domain shift between ImageNet and the target datasets, we anticipate
that most high-level features will have limited utility. Preliminary experiments, shown in
Figure 4.8 and Figure 4.9, support this hypothesis and indicate that freezing the entire
backbone or selectively reducing the learning rate results in either decreased performance
or slower convergence. Consequently, we choose to freeze only the weights of the initial
large convolutional layer, while using the full learning rate for the rest of the backbone.

Figure 4.8: Performance comparison between fully retrained and partially frozen models.

4.7 Imbalance Mitigation
Many ROI-based datasets exhibit significant class imbalance, primarily due to two factors:
unequal product popularity and the inclusion of an “empty” class, which can make up a
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4. ROI-Based Methods

Figure 4.9: Performance comparison using different learning rate multipliers for the
backbone.

significant proportion of the data for rarely populated regions. The degree of imbalance
can be quantified using the imbalance factor (IF), computed as:

IF = −
∑K

i=1 ni log2(ni)
log2(K) (4.3)

where ni is the number of samples in class i, n is the total number of samples, and K is
the total number of classes.

The imbalance factor alongside dataset sizes across all regions is shown in Figure 4.10.
Several datasets display extreme imbalance, requiring mitigation strategies to preserve
model performance. We consider the following techniques:

• Class Weighting [KZ01]: Adjusts the loss function to emphasize minority classes
and reduce the impact of majority classes. The weights are computed as:

wi = min
(

n

K · ni
, 10
)

(4.4)

to avoid excessively large weights for extremely rare classes.

• Dataset Oversampling [GDG19]: Duplicates minority class samples based on a
repeat factor:

max
(

1,

√
t

fc

)
, fi = ni

n
(4.5)

where t is an oversampling threshold and fi is the class frequency.

• Balanced Batch Sampling [SLH16]: Adapts the sampling process to ensure that
each batch contains a balanced combination of all classes.
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4.8. Training Setup

Figure 4.10: Imbalance factor and dataset sizes of all ROI-based datasets. A lower
imbalance factor signifies greater imbalance.

• Undersampling: Reduces the influence of dominant classes by limiting each class
to a maximum of 100 samples.

These methods are evaluated using a subset of region datasets with varying imbalance
levels, as shown in Figure 4.11. The plot reports the average F1-score averaged across all
training epochs, which reflects not only final accuracy but also convergence stability and
consistency.

Among all tested methods, balanced batch sampling consistently yields the best per-
formance across all tested datasets. Undersampling ranks second, highlighting the low
intra-class variance that enables representative training even with fewer examples. The
thumbturn extension dataset, which exhibits higher visual variability, benefits less from
undersampling. In contrast, oversampling can achieve similar performance to subsampling
if the highest thresholds are used, though lower thresholds slow convergence. Class weight-
ing produces the most inconsistent results, even if class weights are clipped. Considering
these findings, balanced batch sampling was selected for all subsequent experiments.

4.8 Training Setup
We use the AdamW optimizer, selected for its adaptability and robust handling of sparse
gradients. The specific hyperparameter configuration for the optimizer and other settings
can be found in Table 4.2. To further mitigate overfitting, we set weight decay to a
relatively high value of 0.1.
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Figure 4.11: Comparison of imbalance mitigation strategies using average F1-score over
training period.

Parameter Value
Iteration 10,000
Batch size 64
Optimizer AdamW
Base Learning Rate 0.001
Weight Decay 0.1

Table 4.2: Hyperparameter configuration used during model training.

We employ a two-phase learning rate schedule: an initial linear warm-up phase gradually
increases the learning rate, followed by a cosine annealing schedule that reduces it over
time. This strategy encourages stable convergence and helps the model escape early
plateaus. The learning rate profile is illustrated in Figure 4.12.

4.9 Summary

This chapter presented ROI-based methods for automated assembly verification, leveraging
predefined regions of interest on the workpiece carrier to transform object detection
into a set of simpler classification and regression problems. By exploiting the spatial
constraints of components, this approach enables the use of smaller models trained with
only image-level labels, significantly reducing annotation effort compared to conventional
object detection.

Regions were categorized based on spatial constraints and associated learning tasks,
enabling tailored training and models for each. We introduced our custom augmentation
strategies and a modified ResNeXt-50 architecture. Among various approaches, balanced
batch sampling proved most effective in mitigating class imbalance, thereby maintaining
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4.9. Summary

Figure 4.12: The learning rate schedule used for training: linear warmup followed by a
cosine annealing schedule.

consistent model performance across diverse datasets.
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CHAPTER 5
Object Detection

This chapter explores object detection as an alternative to the region-of-interest (ROI)
methods discussed in the previous chapter. Object detection does not rely on constrained
object locations, making it more robust to misplacements and variations in positioning.
It also simplifies the process by using a single model instead of one per region. Dedicated
regression models also become mostly unnecessary, as the length of the cylinder halves
and extensions can be directly derived from the predicted bounding boxes.

However, certain challenges arise with object detection. First, it requires precise bounding
box annotations, which are about 10 to 20 times more time-consuming to create than
image-level labels. While object detection can theoretically identify misplaced or rotated
objects, the scarcity of such examples in the dataset means it is far from guaranteed
that these cases will be detected reliably. Additionally, since object detection works at
the carrier level, it limits the ability to resample minority classes or fine-tune models
for specific components. Lastly, some properties, such as the surface finish, are not
straightforward to detect with object detection.

This chapter focuses on optimizing object detection for lock assembly verification. We
explore both standard object detection methods as well as supplemental strategies
involving synthetic data and pseudo bounding boxes. These methods are designed to
improve data efficiency, enhance model resilience, and reduce annotation costs.

5.1 Pseudo-Annotation

Although object detection does not require fixed object positions, the constrained layout
enables the generation of approximate bounding boxes automatically from image-level
labels. However, this method only provides accurate annotations for correctly posi-
tioned components, limiting its effectiveness for parts with variable size, orientation, or
placement.
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5. Object Detection

These pseudo bounding boxes are initially derived from the carrier regions used in the
ROI-based approach and then refined based on typical component dimensions and relative
positioning. Examples of these generated annotations are shown in Figure 5.1.

(a) Image with inaccurate annotations for the
order note and a missing annotation for the
dust cap.

(b) Image with inaccurate order note but cor-
rect dust cap and thumbturn extension anno-
tations.

Figure 5.1: Two example images with pseudo-annotations.

The distribution of IoU values between the pseudo bounding boxes and their corresponding
ground truth boxes is illustrated overall in Figure 5.2 and per class in Figure 5.3. While
the pseudo bounding boxes generally provide a reliable approximation, some component
classes exhibit significantly lower overlap. The order notes placed in the large flat area for
extra parts exhibit greater positional variance, resulting in pseudo bounding boxes that
are often imprecise or inaccurate. Similarly, the yellow purchase orders face comparable
issues due to variability in their extents. In such cases, manual labelling could be used to
improve performance if required (see Table 7.1).

Figure 5.2: Distribution of IoU values between corresponding pseudo and ground truth
annotations across all classes.
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5.2. Synthetic Carrier Generation

Figure 5.3: Distribution of IoU values between corresponding pseudo and ground truth
annotation per class.

5.2 Synthetic Carrier Generation

The primary advantage of object detection over ROI-based methods is its ability to
handle misplaced or rotated parts. However, this strength is limited by the scarcity of
such cases in the training data. Combined with the overall imbalance and low diversity
of the dataset, this makes the model susceptible to overfitting. To mitigate these issues,
we explore synthetic data generation through compositional recombination to create a
more balanced and varied training set.

The synthetic generation process follows the steps outlined in Figure 5.4. We begin
by extracting individual object annotations from the dataset, creating a collection of
individual parts for later use. For each generated image, a background is chosen, consisting
of either a nearly empty image from the source dataset (50%) or a random image from
the COCO dataset [Lin+14] (50%). Two cylinders and up to five randomly chosen parts
are then generated and randomly placed on the background with a chance for a small
rotation of up to 15◦, ensuring that overlap between parts does not exceed 20%.

For the cylinders, we first randomly select a cylinder type, roughly weighted based on
their relative variability. Thus, for each required part a random image is chosen from the
part collection and positioned according to predefined offsets. To avoid hard outlines and
transitions, each part image includes a small margin of surrounding pixels. This margin
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COCO Dataset

Own Dataset Augmented
PartsCutout Parts

Backgrounds

Synthetic
Cylinders

Blur and
Rotation

Synthetic Dataset

Figure 5.4: Overview diagram of the procedure to generate synthetic workpiece carriers.

is used to blend together neighbouring parts and reduce the artificial appearance of the
generated cylinder. The outer contour is similarly gradually faded to transparency over
a 10-pixel width.

(a) Hard Outline (b) Blended outline

Figure 5.5: Comparison of hard and blended outlines of generated lock cylinders.

(a) Hard transition (b) Blended

Figure 5.6: Comparison of outline and part boundary of synthetic cylinders before and
after treatment.

To introduce further diversity, parts are reused across cylinder types and mirrored to
fit either side when applicable. Additionally, all parts undergo augmentation, including
brightness, contrast, and sharpness adjustments, as well as random vertical flipping, when
appropriate. Finally, in addition to the cylinders, five random parts are placed within
the image to help the model learn individual components in different contexts.

The selection process for the cylinder and its individual parts is guided by dataset balance.
Each time a part is chosen, its type is probabilistically determined based on the current
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class imbalance, considering both the base dataset annotations and the parts already
generated. Once the type is selected, a specific part is randomly selected from the
available options within that category.

Figure 5.7 presents several examples of generated images created using this procedure.

Figure 5.7: Examples of synthetic images generated using the described data generation
pipeline.

Our testing has shown that relying solely on generated data is not optimal. For this use
case, we found that combining the synthetic dataset with the original one in a 2:1 ratio
yields the best results.

5.3 Model Architecture

We use a Faster R-CNN [Ren+17] for its strong performance across a wide range of
applications and its ability to generate accurate bounding boxes. Since our application
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does not have strict computational constraints, we can take advantage of Faster R-CNN’s
accurate detections, which stem in part from its two-stage design.

Transformer-based models were not extensively considered due to the limited availability
of training data, which impacts them more than CNN based architectures. Similarly,
single-stage models were not investigated intensively, as this use case does not impose strict
computational constraints. For feature extraction, we selected the ResNet-50 backbone.
Although ResNeXt-50 yielded the best results in our ROI-based methods, ResNet-50
slightly outperforms it in the object detection experiments. This difference is likely
due to the availability of pretrained weights specifically optimized for object detection
with ResNet-50, whereas only image classification pretrained weights are available for
ResNeXt-50. After the feature extractor, we apply Dropout with a drop probability of
20%.

To further enhance performance, we integrate two techniques: Generalized IoU (GIoU)
Loss [Rez+19] and Online Hard Example Mining (OHEM) [SGG16]. GIoU Loss improves
bounding box regression by addressing a key limitation of traditional IoU loss, which
produces zero gradients if there is no overlap between predicted and ground truth boxes.
By considering the area of the smallest box that can enclose both predictions, GIoU
always gives a meaningful gradient, allowing the model to steadily improve its localization
even with slight misalignments. This is crucial for our dataset, where accurate detection
of small parts is required. On the other hand, OHEM prioritizes difficult samples during
training by focusing on those with high loss. This helps the model learn from rare cases
that cannot be easily oversampled, because they do not form distinct classes, such as
misplaced objects.

5.4 Augmentation

To increase the effective dataset size, we use the augmentation pipeline depicted in
Figure 5.8, which is based on the one used for RTMDet [Lyu+22], which itself is based
on the one used for YOLOX [Ge+21]. This pipeline incorporates resizing, cropping, color
jittering, and flipping. For most of the training, except for the last epochs, the pipeline also
includes stronger augmentation: Mosaic (Figure 5.9a) and MixUp [Zha+18] (Figure 5.9b).
In contrast to the original RTMDet pipeline, we introduce several modifications to further
improve augmentation. Specifically, we adapt the resize and crop sizes, apply random
stretching, and increase the resolution of intermediate images to provide more detailed
features for the model to learn. Some examples of augmented images can be seen in
Figure 5.10. Unlike for ROI-based classification, we refrain from using AutoAugment
or similar here, as it includes rotations and shears, which result in unrepresentative
bounding boxes and degraded performance.
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Figure 5.8: Overview of the data augmentation pipeline with steps active throughout
training with solid strokes and those disabled during the final epochs with dashed strokes.

(a) Mosaic (b) MixUp

Figure 5.9: The Mosaic and MixUp steps of the data augmentation pipeline applied to
two example images.

Figure 5.10: The full data augmentation pipeline applied to some example images.
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5.5 Summary
This chapter presents object detection as a flexible alternative to previous region-of-
interest (ROI) methods for lock assembly verification. Object detection does not require
fixed object positions and simplifies processing by using a single model and removes the
need for separate regression models, as object sizes can be inferred directly from predicted
bounding boxes. To mitigate the high effort required for dataset annotation we proposed
two supplemental strategies with pseudo annotation and synthetic data generation.

The chapter introduces the model we employ, a Faster R-CNN with a ResNet-50 backbone,
enhanced by GIoU Loss and OOHEM. For data augmentation, an adapted pipeline
inspired by RTMDet and YOLOX is used, including Mosaic and MixUp techniques.
Together, these strategies form a strong baseline, which we use to evaluate our data-
centric methods.

40



CHAPTER 6
Evaluation

This chapter outlines the experimental setup used to assess model performance. It includes
details on dataset preparation, cross-validation strategy, construction of subsampled
datasets, and the metrics employed for classification and detection tasks.

6.1 Dataset Partitioning

To ensure reliable evaluation, the collected dataset is first divided into a training/validation
set, and a held-out test set, using an 80:20 split. This split is performed using stratified
grouped sampling, which ensures the class distribution in each subset mirrors that of
the original dataset [Coc77]. Using random sampling instead could introduce bias or
lead to unrepresentative evaluation results [FS10; Koh95]. Since each image generally
contains multiple annotations, disjoint partitioning is required. To further ensure testing
accuracy, extremely rare classes are over-represented in the test split with a minimum
of 10 samples per class. The resulting dataset distribution of each split can be seen in
Figure 6.1.

The larger portion of the dataset allocated for training and validation is further divided
using stratified 3-fold cross-validation. This technique splits the data into three distinct
folds, where each fold is used as a validation set once while the remaining folds are
combined for training [KV94]. A value of k = 3 is selected to strike a balance between a
manageable number of training runs and a sufficiently sized validation set for rare classes.
Stratified cross-validation maintains the class distribution across folds, which is crucial
for handling rare classes that might otherwise be distributed very unequally. Although
small validation sets can lead to variability due to dataset shift [Qui+22], averaging
results over multiple folds mitigates this issue and leads to more reliable performance
estimates without reducing the training set size [FS10; KV94].
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Figure 6.1: Number of annotations for each category in the train/validation and test
split (logarithmic).

6.2 Dataset Subsampling

Since the focus of this study is on the performance characteristics of small datasets,
we also consider subsampled datasets of varying sizes based on the training set of each
cross-validation fold. This setup also allows us to compare two types of datasets: large,
automatically collected datasets that are often noisy and imbalanced, and smaller, manu-
ally curated datasets that are usually of higher quality and more balanced. Subsampling
enables a controlled analysis of how the amount and composition of training data affects
performance.

Subsampling is constrained by the class distribution of the original dataset. Since some
categories are rare, it is not always possible to sample an equal number of examples for
every class. As a result, smaller subsets tend to be more balanced, while larger ones
reflect the original imbalance more closely. Since training is iteration-based, the dataset
size does not affect training duration, allowing for a fair comparison of the impact of
dataset size.

Two types of subsampled datasets are used in this study, corresponding to the differing
requirements of ROI-based methods and object detection tasks. Consequently, results
cannot be directly compared between the two approaches, except for those in Section 7.3.
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Minimum annotation
count per category Number of images

1 13
3 37

10 127
100 717
full 2951

Table 6.1: Number of images in the training split for each of the object detection
subsampled datasets used during evaluation.

6.2.1 ROI-Based Methods

For ROI-based tasks, subsampled datasets are created by randomly selecting a fixed
number of images per class from the training splits of each fold. From each selected
image, regions of interest (ROIs) corresponding to the target class are extracted and
used as individual training samples. This results in a class-balanced dataset, assuming
sufficient samples of each class are available.

6.2.2 Object Detection

For object detection, each dataset is constructed by selecting images until each class
reaches a predefined minimum number of annotations. Because images contain multiple
instances, selection is performed iteratively by always choosing an image containing an
instance of the most under-represented class. Thus, only the rarest classes are guaranteed
to match the specified annotation minimum, while more common categories may end
up over-represented. The average number of images in the resulting object detection
datasets is shown in Table 6.1, and the corresponding class distributions are visualized in
Figure 6.2.

6.3 Metrics

6.3.1 F1-Score

To evaluate the classification performance we mainly use the F1-score, a commonly
used metric combining precision and recall into a single value. Precision is the fraction
of correctly identified positive samples, while recall is the fraction of positive samples
identified by the system. Given the inherent trade-off between these metrics, the F1-score
strikes a balance, as it is calculated as the harmonic mean between them:

F1 = 2
1

Precision + 1
Recall

(6.1)

43



6. Evaluation

Figure 6.2: Distribution of annotation categories across the various object detection
subsampled datasets used in the evaluation.

For multi-class classification, we use the macro F1-score, which averages the class-wise F1-
scores. This approach is preferred for imbalanced datasets, as it ensures that performance
is equally considered for all classes, rather than focusing on majority classes.

6.3.2 Balanced Root Mean Squared Error (BRMSE)

For regression tasks, we use the Root Mean Squared Error (RMSE) to measure the
average difference between predicted and actual values. Since the ground truths of the
cylinder and extension lengths, as well as the screw counts, are each from a distinct set
of values, the output domain can be divided into corresponding bins. Since the datasets
are highly imbalanced, it is important to avoid bias. As such, we compute the RMSE for
each subrange and average the individual metrics to get the balanced RMSE.

BRMSE = 1
K

K∑
k=1

√√√√ 1
nk

∑
i∈k

(yi − ŷi)2 (6.2)

6.3.3 Average Precision (AP)

The Average Precision (AP) metric, as defined by the COCO benchmark, is the standard
measure for object detection performance. It evaluates how well a model detects objects
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by integrating the precision-recall (PR) curve. The PR curve plots recall on the x-axis
and precision on the y-axis for different confidence thresholds. The standard COCO
evaluation protocol computes the AP for 50% (AP50) and 75% (AP75) IoU thresholds,
as well as the average AP from 50% to 95%, in 5% increments, referred to simply as AP.
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CHAPTER 7
Results

This chapter presents the evaluation results for the proposed methods. We begin by
assessing the baseline object detection approach, followed by the results of applying
pseudo-annotations and synthetic data generation. Next, we evaluate the proposed ROI-
based methods on classification and regression tasks. Finally, we consider the trade-off
between dataset imbalance and size.

7.1 ROI-Based Methods

7.1.1 Classification

We begin by evaluating the performance of ROI-based classification methods. As shown
in Figure 7.1, the models achieve consistently high F1-scores across nearly all classes
when trained on the full datasets. Remarkably, even with substantial subsampling,
the methods remain effective: with as few as three samples per class, F1-scores above
90% can be attained. Expanding to 10 samples per class typically captures the key
variations within each category, leading to near-perfect performance. Beyond this point,
additional data yields only marginal gains. Although the larger datasets used in the
experiments may seem excessive in the context of data-efficient learning, they require
little manual annotation effort, since most labels can be generated automatically during
data acquisition.

There are two notable exceptions to these findings. First, the thumbturn screws require
more images overall, likely because missing screws are less visually distinct than other
appearance variations. Second, performance on the order notes seems to have a limit.
This is likely due to a few variants that differ only in the handwritten text written on
them, while sharing similar strokes and backgrounds, making them difficult to distinguish.
Frequent occlusions and a low number of instances further contribute to this apparent
limit.
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Figure 7.1: Results on the full datasets and subsampled variants based on top F1-score
averaged over all folds.

7.1.2 Regression

We now transition from classification to regression models, which predict a continuous
numerical output using a different loss function and augmentation pipeline.

Cylinder Length Estimation

We begin by estimating the lengths of the cylinder halves. To evaluate performance, we
compare the proposed model trained on the full baseline dataset with versions trained
on randomly and uniformly subsampled data. The results, along with the effect of the
custom shift augmentation, are shown in Figure 7.2. The strong correlation between
balanced accuracy and balanced RMSE indicates that the model is learning to estimate
the actual lengths as continuous values, rather than simply selecting the correct bin.
On large datasets, the model can achieve over 99% balanced accuracy and an BRMSE
approaching the annotation margin of ±1 mm. Even when trained with only 10 or 100
images, it maintains high accuracy of 94% and 98%, respectively, demonstrating robust
performance with limited data.
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The models trained on uniformly sampled datasets consistently outperform their randomly
sampled counterpart when no augmentation is applied, underlining the importance of
maintaining a balanced training distribution. With smaller datasets, augmentation is
essential for acceptable performance, with uniformly sampled datasets clearly favoured.
As dataset sizes increases, the effect of augmentation lessens. Augmented randomly
sampled as well as unaugmented uniformly sampled datasets perform best by a slim
margin.

Figure 7.2: Cylinder length estimation results across various dataset sizes and augmenta-
tion strategies.

Other Regression Tasks

In addition to cylinder length, two further regression tasks are evaluated: screw counting
on electronic thumbturns and estimation of thumbturn extension length. Both tasks
involve only a small number of discrete values (three and four, respectively), and can
therefore also be approached as classification problems. The corresponding classification
results were already included earlier in Figure 7.1.

In Figure 7.3, we show a comparison of regression and classification performance on
these tasks using differently sized datasets. For screw counting, regression yields superior
results across most dataset sizes, while classification performs better for measuring the
thumbturn extension length. Overall, classification tends to outperform regression on
smaller datasets, while regression shows better results on larger datasets, particularly if
the output domain is wide, as in the case of cylinder lengths, and sufficient training data
is available.
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Figure 7.3: Comparison of regression and classification models for screw counting and
thumbturn extension length estimation. Top: regression BRMSE; Bottom: F1-score
comparison of both approaches.

7.2 Object Detection

In this section, we evaluate object detection as an alternative to ROI-based methods.
Although object detection requires more detailed annotations, it offers greater flexibility
and robustness, particularly in handling diverse layouts and configurations. We begin
by assessing performance on a manually annotated baseline dataset, then extend the
evaluation to include models trained on pseudo-labelled and synthetic datasets.

7.2.1 Baseline

We begin by presenting the results on the baseline dataset in Figure 7.4, it compares
model performance across varying dataset sizes, showing both AP and AP50 scores for
different minimum annotation thresholds per class. As expected, model performance
improves as dataset size increases. However, moving from a minimum of 100 annotations
per class to the full dataset does not yield further improvements and even shows some
performance regressions. This is likely because this step primarily adds images containing
only the most common classes and configurations.

For smaller datasets, performance is uneven across classes. Rare classes that barely meet
the annotation threshold, such as uncommon order notes or less frequent cylinder end
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Figure 7.4: Baseline performance on various dataset sizes, measured by average precision
(AP) and AP50 for different per-class annotation thresholds.

pieces, tend to show significantly lower AP than more common components. Since the
intended application focuses on verifying component presence and type on the workpiece
carrier, rather than precise localization, AP50 is the more relevant metric. Encouragingly,
AP50 reaches near-perfect levels for most classes if as few as 10 annotated examples per
class are included.

7.2.2 Pseudo-Annotation

Next, we evaluate our proposed approach based on pseudo bounding boxes. Figure 7.5
compares the performance of models trained solely on pseudo bounding boxes against those
of baseline datasets of varying sizes. Due to the inherent imprecision of pseudo bounding
boxes, the observed AP is lower than that of even the smallest baseline dataset. However,
the approach remains effective at detecting and classifying the objects as reflected in
the AP50 and especially the non-standard AP25 scores. Notably, the pseudo annotation
method achieves an AP25 of 96.7%, approaching the performance of the datasets with at
least 10 annotations per category, despite relying solely on weakly-supervised labels.
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Figure 7.5: Comparison of the models trained on the baseline datasets compared to using
only pseudo bounding boxes using AP, AP50, and AP25 scores, demonstrating the high
classification but low localization performance.

The poor localization performance stems primarily from a few select classes, as can be
seen in Figure 7.6. Specifically, order notes located in the large, flat, loosely constrained
general-purpose area have highly inaccurate pseudo ground truth annotations. Similarly,
padlocks and, to a lesser extent, purchase orders (yellow paper) also suffer from inaccurate
pseudo-annotations. As a result, the model can only replicate these imprecise annotations,
leading to low IoU scores for these classes. Figure 7.7 highlights two examples of these
problematic cases by comparing the ground truth, pseudo ground truth, and resulting
predictions. While the model successfully aligns with the pseudo ground truth, it is
unable to compensate for the inherent localization inaccuracies.

Since these issues are limited to a few classes, it is possible to supplement the pseudo-
annotations with manual bounding boxes for these classes, which can improve the results
of the pseudo dataset with minimal effort. Assuming the performance for the manually
annotated classes matches those of the source dataset, we can estimate the impact on
performance and efficiency of supplementing specific classes. Given that the largest
subsampled dataset, with at least 100 annotations per category, achieves almost identical
performance to the full dataset while using fewer images, we base our estimations on
it. The improvements and effort involved in supplementing specific classes with manual
annotations are thus shown in Table 7.1 and Figure 7.8. The data demonstrates that
using only a few hundred manual annotations can elevate the AP50 to almost match the
full dataset while also significantly improving the AP.
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Figure 7.6: Comparison of class-wise results using the baseline and pseudo datasets.

Dataset Manual ann. AP AP50 AP⁄100 ann. AP50⁄100 ann.

Pseudo 0 63.06 88.28
+ Padlock 41 + 2.54 + 1.70 + 6.15 + 4.12
+ Notes 261 + 13.76 + 8.10 + 5.28 + 3.11
+ Keyway 15 + 0.79 + 0.32 + 5.18 + 2.08
+ FAP Endpiece 21 + 0.92 + 0.13 + 4.45 + 0.61
+ Electronic Thumbturn 110 + 0.91 + 0.04 + 0.83 + 0.04

Plug Cap
+ Thumbturn Extension 105 + 0.83 + 0.43 + 0.79 + 0.41
+ Electronic Thumbturn 520 + 2.95 + 0.03 + 0.57 + 0.00

Subsampled (≥ 100) 8185 90.64 99.04

Table 7.1: Impact of supplementing pseudo bounding boxes with manual annotations
for specific classes. The table shows the increase in AP and AP50 scores, along with
annotation efficiency, measured by AP per 100 annotations.
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Figure 7.7: Examples of localization errors caused by inaccurate pseudo-annotations. The
model replicates the pseudo ground truth for order notes but inherits their inaccuracy.

Figure 7.8: Visualization of the impact of supplemental annotations.
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7.2.3 Synthetic Data Generation

This section will cover the performance of models trained using our synthetic data
generation approach. We consider the same subsampled datasets as before and use
them to generate a corresponding synthetic dataset of 1000 images each. Figure 7.9
shows the results in conjunction with those of the baseline datasets. It illustrates that
models trained on synthetic data achieve superior AP and AP50 on smaller datasets,
while matching the baseline on intermediate ones. Only on the dataset with at least
100 annotations for each class, the model trained with synthetic data falls behind very
slightly. The performance differences are observed across all categories rather than being
limited to a specific subset.

Figure 7.9: Performance comparison of models trained on synthetic and baseline datasets.

Evaluation on Misplaced Cylinders To demonstrate the benefits of synthetic
training data in handling anomalous cases such as misplaced cylinders, we qualitatively
compare the predictions of baseline models with those trained on synthetic data in
Figure 7.10. All models were trained on the second smallest dataset, which contains
at least three instances per class. The results shown generally coincide across different
training folds. Note that these example images are not part of the training or validation
datasets.

Figure 7.10a shows an example without a carrier. The standard model produces numerous
false positives, particularly among rare classes, whereas the model trained with synthetic
data does not exhibit these errors. In Figure 7.10b, a misplaced Swiss cylinder with a
very rare black surface finish is shown. While the baseline configuration fails to detect
the cylinder, the model trained with synthetic data succeeds, albeit the bounding boxes
are somewhat imprecise. Figure 7.10c features a Euro profile cylinder already attached to
its thumbturn, a configuration not seen in training. Both models incorrectly classify the
thumbturn as a cylinder half. However, the version trained with synthetic examples is
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(a) Missing workpiece carrier

(b) Misplaced rotated Swiss round profile cylinder with rare surface finish

(c) Misplaced rotated Euro profile cylinder with attached thumbturn

(d) Upside-down cylinder

Figure 7.10: Comparison of predictions from models trained on a baseline dataset (left)
and its synthetic counterpart (right).

56



7.3. Comparison

able to detect most of the remaining components correctly. The cam remains undetected,
although a model trained with increased rotational variation in the synthetic samples does
capture it, at the cost of slightly reduced accuracy on more typical horizontal cylinders.
Lastly, Figure 7.10d displays an upside-down cylinder, which neither the baseline nor
the augmented model detects successfully. Addressing such cases may require additional
augmentations or adapted data generation, but such changes come with trade-offs in
performance on more common scenarios and have to be considered in relation to the
frequency of such edge cases.

7.3 Comparison

Until now, ROI-based methods and object detection have been evaluated separately. This
was due to several key differences between the two approaches. First, their annotation
requirements differ: object detection requires fully annotated images with bounding boxes
for all objects, while ROI-based methods can be trained on partially labelled images,
since each region is considered independently. This allows training on datasets where
only the rare classes or unique instances are annotated in an image, significantly reducing
annotation effort. Accordingly, different subsampling strategies were used for low-data
evaluation. Second, their outputs and most suitable evaluation metrics differ. Object
detection produces a variable number of bounding boxes per image, while ROI-based
models provide one prediction per predefined region. Finally, there are slight differences
in the set of predicted components and properties. For instance, cylinder surface finish
is only predicted in ROI-based classification, and certain components like Scandinavian
and Rim cylinders are treated as single units in classification but are split into separate
parts for detection.

To nonetheless enable a direct comparison, we retrain the classification and regression
models using the exact same images as those used for training the object detection models.
Performance is then evaluated solely based on region-based F1-scores, focusing on the
subset of parts and properties that are comparable across both approaches. For object
detection predictions, we apply class-specific confidence thresholds and non-maximum
suppression (NMS) across classes assigned to the same region assuming that only one
valid object can be present per region. Part length estimations are derived from the
width of predicted bounding boxes and mapped to the corresponding discrete length
categories.

The results, shown in Figure 7.11, demonstrate that all approaches generally perform well.
ROI-based methods slightly outperform the baseline object detection model across nearly
all regions, especially on smaller datasets. The only exception is a marginal advantage
for object detection on the red tray region. Detection models trained with pseudo labels
achieve results close to or on par with the baseline in most cases, and underperform
only in the few problematic regions previously discussed. Results for models trained on
synthetic data also align well with earlier findings: they surpass the baseline on smaller
datasets, but tend to match or slightly trail the baseline on larger datasets.
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Figure 7.11: Comparison of ROI-based with object detection models. ≥ X signifies the
dataset with a least X annotations per class.

The reduced annotation effort required for ROI-based methods makes their results even
more favourable. However, their performance relies on the training data capturing
all relevant visual variations. For instance, if a component from one region overlaps
into another one and such cases are not represented in the training set, classification
accuracy can deteriorate. Object detection does not share this limitation and is capable of
identifying misplaced or rotated components. However, it still requires sufficient examples
of such variations to detect them, particularly for rare or atypical appearances, like a
battery lying on its side. Additionally, detection models not using synthetic data are
more prone to false positives, especially when encountering components not seen during
training as shown in Section 7.2.3.

7.4 Dataset Size and Class Balance

This section evaluates how model performance scales with dataset size and how increasing
class imbalance affects ROI-based classification and object detection. For both methods,
smaller datasets were created by subsampling the original, highly imbalanced training
data. ROI-based classification datasets were constructed by selecting a fixed number of
samples per class, whereas object detection datasets were built by ensuring a minimum
number of annotations per class. Consequently, smaller datasets are more balanced,
while larger ones increasingly reflect the original class distribution. This setup highlights
both general data efficiency and the trade-offs between manual dataset curation, such

58



7.4. Dataset Size and Class Balance

as targeted collection of under-represented classes, and passive collection during regular
production.

Figure 7.12: Average performance of models trained on datasets of varying size and class
imbalance for ROI-based classification and object detection.

Previous results have shown that both ROI-based classification and object detection show
large performance improvements up to the dataset with (at least) 10 samples per class.
Afterwards, we can observe small improvements that are far less uniform than before since
the source dataset only contains less than 100 instances for many classes. When using
the full training set, the results diverge depending on the sampling strategy. As shown in
Figure 7.12, with balanced batch sampling, performance generally stagnated, showing
no substantial gains compared to the largest balanced subsampled dataset. Without
class-aware sampling, a clear performance regression of approximately 4 percentage points
was observed, caused by the dominance of frequent classes and configurations.

In conclusion, the number of instances per class is more important than the overall
dataset size. A large number of samples from common classes provides little benefit
in environments with low intra-class variance and can even lead to a regression in
performance if class imbalance is not addressed. Passive data collection is a practical
starting point, but it should be complemented by targeted sampling to capture the full
range of operational conditions needed for reliable deployment.
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CHAPTER 8
Discussion

This chapter summarizes the results of the previous chapter, compares the proposed
methods, highlights limitations, and suggests directions for future work.

8.1 Comparison

This thesis explored three distinct strategies to enable data-efficient visual inspection
through constrained component placement and low intra-class variance. Each approach
presents a different trade-off between data requirements, annotation effort, model robust-
ness, and applicability. This section provides a comparative analysis of these methods
and outlines the scenarios in which each is most effective.

ROI-based methods proved to be the most accurate and data-efficient approach. The
reformulation of detection into a set of localized classification tasks allows for training with
only image-level labels. The method performed particularly well for tightly constrained
regions, such as those for batteries and thumbturns, even with only a handful of images.
However, a separate model must be trained for each region. While this complicates
training, it also enables region-specific adaptations and fine-tuning. The main limitation
lies in the assumption of correct component placement and consistent orientation, making
it unsuitable for detecting misplaced or rotated parts. The severity of this drawback
depends on the application context, as such anomalies typically result in false negatives,
which are often more acceptable than incorrect classifications or false positives.

Object detection using pseudo annotations offers data efficiency on par with ROI-based
methods, while providing greater flexibility. A single model is used to detect all com-
ponents across the entire image, regardless of their position, thus making the approach
better suited for identifying misaligned or misplaced parts. Pseudo bounding boxes de-
rived from the constrained layout, reduce annotation effort while maintaining reasonable
performance. The approach shares some of the same issues as ROI-based methods. While
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it can detect misplaced components, the pseudo-annotations do not include such cases
unless manually supplemented. Performance also tends to drop in loosely constrained
regions, where pseudo bounding boxes are inaccurate. Additionally, object detection in
general can struggle with visually similar classes, such as distinguishing between empty
and full red trays. In these cases, dominant subcategories (empty tray) can overwhelm
rarer ones (full tray) during training. As further measure such as two-stage or hybrid
approaches as mentioned in Section 2.1.3 and Section 8.3 are needed to avoid such bias.

Unlike the previous two strategies, which focus primarily on reducing annotation effort,
synthetic data generation aims to reduce the total number of real images required. A
key advantage of this approach is its ability to intentionally simulate anomalies like
rotated or misplaced components, making it highly effective for enhancing robustness to
unpredictable real-world scenarios. However, this comes at the cost of realism: synthetic
samples inherently risk domain mismatch compared to real-world images, a challenge
amplified by our reliance on bounding box annotations instead of pixel masks. Lastly,
designing a suitable generation pipeline that produces usable, realistic training images
introduces additional complexity.

In summary, ROI-based methods offer the best overall results, making them the preferred
choice in suitable applications. The strong data efficiency and ability to work with weak
labels make them ideal for scenarios with constrained component placement and low
intra-class variance. Pseudo bounding boxes provide similar efficiency, but are most
effective if used to reduce annotation effort in object detection for a subset of classes.
These can then be refined using manual ground truths or with other methods as needed.
Synthetic data generation is most useful if collecting real samples is difficult, expensive,
or if a large number of product variants or configurations exist. It is effective in handling
anomalies and under-represented cases and could be combined with ROI-based methods
to form a hybrid approach. Together, these methods support scalable, data-efficient
inspection pipelines tailored to the demands of flexible and customized manufacturing.

8.2 Limitations

While the proposed methods demonstrate strong performance in the context of data-
efficient visual assembly verification, several limitations must be acknowledged.

First, the scope of this evaluation is limited to a single use case, namely a specific
electronic lock assembly line at EVVA. Nevertheless, we believe this environment to be
representative of a relevant subclass of industrial inspection applications. This subclass
includes scenarios such as PCB verification and aligns with numerous use cases discussed
in Chapter 2. It remains unclear how well the findings generalize to other manufacturing
domains, particularly those with less predictable layouts or broader visual variability.
Applying the methods to other products or environments may uncover challenges not
captured by this thesis.

Second, this thesis focuses on data-centric strategies. Although we optimize the model
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and training, innovation is limited to dataset manipulation. Consequently, we did not
investigate custom backbones, novel mechanisms, or task-specific modules. This decision
was based on the unique opportunities identified in the data itself and the wide variability
of architectures observed in related work. However, this choice inevitably limits the scope
of insights, particularly with respect to object detection performance.

These limitations highlight the scope within which the proposed methods operate ef-
fectively and point toward necessary considerations for future research and broader
applicability.

8.3 Future Work
This section outlines potential areas for future research.

Scalability and Data Deduplication While our approach has demonstrated strong
performance on small datasets, its scalability to larger datasets is not yet optimal,
particularly due to some classes showing performance regressions on larger datasets. To
address this, both methods could benefit from data deduplication, by filtering out highly
similar images. This should enhance training efficiency, especially for larger datasets that
contain a large number of highly similar images. Implementing this in a self-supervised
manner could also significantly reduce annotation effort. Additionally, the same similarity
measure used for deduplication could be integrated into the data generation process
to prioritize the most distinct and informative samples. As datasets grow larger, the
techniques used to train models may also need to be adjusted.

High-Fidelity Synthetic Data Generation Regarding synthetic data generation,
using a curated set of high-resolution images with pixel mask annotations could provide
greater flexibility in recombination, enabling the creation of a large, high-quality dataset
with minimal manual annotation effort. Ensuring that these images are free of occlusions
would also increase the quality of the generated synthetic images. This approach would
also make it feasible to use image segmentation methods without the need for manual
time-intensive pixel mask annotations.

Pseudo-Annotation Refinement Next, leveraging class activation maps (CAMs)
from ROI-based models or integrating weakly-supervised object localization (WSOL)
techniques could help mitigate challenges associated with less constrained components
while using pseudo bounding boxes. This approach would offer an alternative means of
enhancing localization accuracy, without supplemental manual annotations.

Hybrid Approaches Another direction for future research is the development of hybrid
approaches that combine object detection and ROI-based classification. Specifically, in
cases where a compound part has an unconstrained position, such as in the one examined
by Lin et al. [Lin+24], rotated object detection can first be used to localize the part.
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8. Discussion

Then, ROI-based methods can be used to perform fine-grained classification or property
verification of the constituent parts within the detected region. This two-stage approach
would broaden the applicability of ROI-based models to cases with variable component
positioning, offering greater flexibility without solely relying on object detection. It is
conceptually similar to the approach by Zhang et al. [Zha+24b], who detect arbitrarily
placed saw chains using their rivets as reference points, but allows for more adaptable
downstream analysis.

Shared Backbone for ROI-Based Methods While distinct models were trained
for each region in this study, another possibility could involve using a shared backbone
with region-specific classification heads. This would allow the model to share knowledge
across regions, particularly in identifying relevant features in the given application, which
could help reduce false positives and improve overall robustness.

Enhancing Robustness with Out-of-Distribution Backgrounds Another avenue
for future work is to generalize the use of unrelated background images applied for
synthetic data generation. These diverse backgrounds from a dataset like COCO could
also be integrated into the training of other object detection and ROI-based models. We
anticipate similar improvements in the handling of unexpected situations and a reduction
in false positives.
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CHAPTER 9
Conclusion

This thesis explored three data-centric strategies for enabling data-efficient deep learning
in assembly verification: ROI-based classification and regression, pseudo-annotation
based on constrained positions, and synthetic data generation through image composition.
These approaches were evaluated on a real-world use case in the manufacturing of
electronic locks, where traditional machine learning methods had previously failed to
meet requirements.

The first strategy, ROI-based classification and regression, leverages the constrained
spatial layout of components on the workpiece carrier to reformulate the detection problem
into localized classifications. This method delivers respectable performance with only
a handful of training images and achieves near-perfect accuracy if more data is used.
Additionally, it requires only image-level labels, which are more readily available than
bounding boxes or pixel mask annotations.

The second strategy involved reducing annotation effort through pseudo-annotations. By
again leveraging the known geometry of the carrier tray, approximate bounding boxes
were derived from image-level labels. This enabled the training of object detection models
without costly manual annotation. While pseudo-annotations proved accurate enough for
many components, they proved less useful for components with high positional variance.

The third strategy employed synthetic data generation through compositing. By reassem-
bling real cropped component images into new configurations and placing them on varied
backgrounds, this approach increased dataset diversity and improved model robustness,
particularly for rare classes.

While effective in this context, the generalizability of these methods to other manufactur-
ing settings remains to be explored. Future research may address scalability to larger
datasets, improve synthetic and pseudo-labelling methods, or explore hybrid approaches
that combine object detection with ROI-based methods. Enhancing model robustness
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9. Conclusion

through the use of shared backbones and the inclusion of varied backgrounds also present
promising directions.

In summary, this thesis demonstrates that data-efficient deep learning can effectively
reduce dataset requirements. This is achieved by leveraging domain-specific characteristics
such as constrained object locations and low intra-class variance.
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APPENDIX A
Additional Results and Materials

A.1 Comparison of Single and Multi-Label Models

As detailed in Section 4.2, we classified cylinder endpieces using four distinct single-label
models instead of a single multi-label model. The singular reason it is a multi-label
problem, is due to the extension and dust cap of electronic thumbturn cylinder endpieces.
This approach represents a trade-off between the effort of training multiple models and
the potential for improved accuracy through specialization. As shown in Figure A.1, the
aggregated results from the single-label models outperform the multi-label model across
all dataset sizes by a small margin.

A.2 Alternative Learning Paradigms

All of the methods proposed in this thesis rely on supervised learning. At first glance, this
may seem surprising given the growing emphasis on self- and weakly-supervised learning
to reduce annotation requirements. Also, few-shot learning targets a different, but
seemingly more relevant scenario: cases with only a small number of labelled examples
per class. This makes it appear particularly well-suited to our setting. From this
perspective, it is essential to evaluate how well these paradigms perform compared to
our proposed supervised models. As such, we evaluated a selection of state-of-the-art
(SOTA) approaches across these paradigms in Section 2.2 on both the region and the
object detection datasets.

While we aim to provide a fair comparison by adapting each method to our dataset
based on the insights gained during development of the proposed methods, conducting
extensive hyperparameter optimization for every method is infeasible. Therefore, the
results should be viewed as an indication of the general suitability of the corresponding
learning paradigm and concepts rather than the optimal performance achievable.
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Figure A.1: Comparison of multiple single-label models to a single multi-label model for
classifying cylinder endpieces across different dataset sizes. The aggregated single-label
results reflect the combined performance of all single-label models on the multi-label
dataset.

We provide an overview of selected state-of-the-art methods suitable for the region
datasets in Table A.1, along with their corresponding results in Figure A.2. Among
these, SimCLRv2, pretrained on the full dataset and fine-tuned with 10 images per class,
yields the best performance after our approach. However, we evaluated this method
on only a small subset of regions, as its self-supervised nature benefits from extended
training. Next, few-shot classification methods perform well, with ProtoNet overall
slightly outperforming CAML. Both were evaluated using 10 images per class. Despite
this, their performance remains notably below the supervised and semi-supervised results.
This aligns with findings from Nakamura and Harada [NH19] as well as those from Chen
et al. [Che+19], which suggest that training a linear classifier or fine-tuning a pretrained
model can match or surpass many meta-learning or few-shot approaches. TURTLE,
which requires no training, was tested on the full dataset. It achieved the worst results,
though it still demonstrates promising results in certain regions.

Figure A.3 and Table A.2, similarly give an overview of selected object detection methods
applied to our dataset. Our proposed methods perform the best overall, showing a
strong suitability for this dataset. The semi-supervised method, MixPL, follows closely
behind, showing competitive results while using additional unlabelled data. Among
the few-shot detection approaches, TFA achieves reasonable performance, but FSCE
struggles, highlighting the challenges of few-shot object detection techniques.
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Learning Paradigm Method Model F1
Supervised Ours ResNeXt-50 0.9846

Self-Supervised Pretraining SimCLRv2 [Che+20] ResNeXt-50 0.77271

ResNet-18 0.77211

Few-shot classification
ProtoNet [SSZ17] CLIP (ViT-B/16) 0.79402

ResNet-34 0.81552

CAML [Fif+24] CLIP (ViT-B/16) 0.78322

ResNet-34 0.76452

Unsupervised clustering TURTLE [GJB24] CLIP (ViT-L/14) & DINOv2 0.48012

Table A.1: Overview of selected state-of-the-art methods evaluated on the region datasets.
1 Includes only results for order notes, cylinder endpieces and electronic thumbturns.

2 Includes only results for single-label regions.

Figure A.2: Comparison of selected state-of-the-art approaches to ours on the regions
datasets with 10 images per class.
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Learning Paradigm Method Model AP AP50

Supervised
Ours Faster R-CNN (ResNet-50) 0.8860 0.9845
Ours (Pseudo) Faster R-CNN (ResNet-50) 0.8861 0.9845
Ours (Synthetic) Faster R-CNN (ResNet-50) 0.8620 0.9877

Semi-Supervised MixPL [Che+23b] Faster R-CNN (ResNet-50) 0.8636 0.9722

Few-shot detection TFA [Wan+20] Faster R-CNN (ResNet-50) 0.8335 0.9688
FSCE [Sun+21] Faster R-CNN (ResNet-101) 0.2879 0.4944

Table A.2: Comparison of selected SOTA approaches on the medium-sized dataset.

Figure A.3: Comparison of selected SOTA approaches on the medium-sized dataset.
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A.3. Ablation Study

A.3 Ablation Study

A.3.1 ROI-Based Methods

To support our choice of hyperparameters, augmentation and backbone, we also consider
alternatives and variations in an ablation study. However, this study will be limited to
the cylinder endpiece region with 10 images per class, as the number of training runs
would otherwise become intractable. The results can be seen in Figure A.4.

Figure A.4: Performance comparison of alternative backbones, augmentations and
hyperparameters for cylinder endpiece classification with 10 images per class based on
the F1-score.

In the backbone comparison (top left panel), most architectures performed comparably
to the selected ResNeXt-50. Lightweight models such as MobileNetV3, ResNet-18, and
EfficientNetV2 also yielded strong results, indicating their suitability for deployment in
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resource-constrained environments. In contrast, shallow networks and the data-efficient
transformer (DeiT) demonstrated significantly lower performance. The “Shallow 1” model
consists of three stages, each comprising a convolutional layer, ReLU activation, and
dropout, interleaved with max pooling. “Shallow 2” is constructed similarly but employs
two convolutional layers per stage.

The augmentation analysis (top right panel) underscores the effectiveness of our augmen-
tation strategy. Removing individual components, such as flipping or CutOut, leads to
a decline in performance, while the absence of augmentations altogether results in the
lowest F1-scores.

In the hyperparameter ablation study (bottom panel), performance variations are more
subtle. The most impactful factor is the size of the hidden dimension in the classification
head. Removing dropout causes a slight drop in performance, more pronounced on
smaller datasets.

A.3.2 Object Detection

As with ROI-based classification we will now give a brief comparison of object detection
with a selection of alternative models using different hyperparameters, feature extractors
or augmentation pipelines in Figure A.5.

Overall, performance varied less than with ROI-based classification. The backbone
selection was the most influential factor, although no distinct trend emerged for R-CNNs.
Notably, DETR performed considerably worse, likely due to its requirement for larger
datasets and extended training periods. Among augmentation strategies, incorporating
Mosaic had the most substantial effect for this dataset, perhaps because it enhances the
detection of features located at image borders. Hyperparameter choices had only a minor
effect on overall performance. The small impact of OHEM is probably attributable to
the balanced nature of this smaller dataset.
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Figure A.5: Performance comparison of alternative backbones, augmentation pipelines,
and hyperparameters based on AP for baseline object detection using the dataset with
at least 10 annotations of each class.
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A.4 Full Results Tables
Table A.3 presents the results of our proposed ROI-based method trained on datasets of
varying sizes and evaluated on the test set. The corresponding object detection results
are shown in Table A.4 (AP) and Table A.5 (AP50). Both sets of results closely align
with the previously reported validation performance, indicating minimal sample bias.

Region 1 3 10 100 full

Battery 99.4 99.4 99.7 99.9 99.9
Cam 76.9 95.2 98.1 98.7 99.9
Scandinavian Cylinder 90.2 99.3 99.7 100.0 100.0
Surface Finish 60.3 74.6 92.1 95.9 94.3
Euro Cylinder Half 50.4 99.1 100.0 100.0 100.0
Order Notes 22.6 45.5 28.7 30.7 19.6
Electronic Thumbturn 99.9 100.0 100.0 100.0 100.0
Cam Lock Cylinder 92.6 100.0 100.0 100.0 100.0
Purchase Order 82.7 83.0 74.6 74.3 82.8
Padlock 50.5 45.6 47.9 53.3 65.0
Electronic Thumbturn Plug Cap 53.5 95.2 98.9 99.5 100.0
Thumbturn Extension (Length) 45.3 73.0 98.7 99.0 99.7
Thumbturn Extension (Presence) 81.1 83.2 98.0 99.9 93.2
Cylinder Endpiece 74.9 90.3 95.4 98.8 90.0
Red Tray 92.6 95.6 99.3 100.0 100.0
Swiss Cylinder Half 77.4 98.2 100.0 99.8 100.0

Table A.3: Performance comparison of differently sized datasets based on F1-scores.

Minimum annotations per category 1 3 10 100 full
Base Syn. Base Syn. Base Syn. Base Syn. Base Pseudo

Mean 65.3 77.7 79.2 84.0 87.9 86.7 90.0 88.2 89.9 61.8

Battery 85.1 88.2 87.3 87.5 88.3 87.8 89.5 88.3 89.4 87.3
Swiss Cylinder 82.8 86.5 84.1 90.7 89.9 91.2 93.9 91.6 93.1 85.3
Cogwheel 71.4 86.9 82.9 90.3 90.2 92.1 93.3 93.4 92.3 87.9
Cylinder Half 92.3 95.1 95.2 96.1 98.0 97.6 97.4 97.3 98.5 87.9
Scandinavian Cylinder (Outside) 76.9 87.0 82.6 90.9 91.9 91.5 95.7 96.2 97.2 87.6
Scandinavian Cylinder (Inside) 68.5 69.5 84.2 97.3 96.3 98.2 99.6 95.1 98.3 91.5
Cam Lock Cylinder Body 80.0 83.2 83.8 84.0 87.5 85.2 88.2 84.7 88.0 85.3
Cam (One-Sided) 77.3 86.8 87.6 87.8 90.0 90.6 91.7 91.2 90.9 85.5
Electronic Thumbturn 91.7 97.8 97.0 97.8 98.7 98.3 99.2 98.0 98.9 81.4
Electronic Thumbturn (Capped) 89.5 96.7 97.7 97.2 99.0 97.7 99.1 98.1 99.0 84.0
Cam Lock Cylinder 80.9 89.3 86.5 88.1 90.2 88.7 90.9 90.8 91.3 87.9
Cam 88.3 90.1 91.2 90.2 92.7 91.0 92.4 91.4 92.8 87.3
Note AirKey 73.1 86.5 81.0 89.2 90.6 91.7 93.3 92.4 93.4 4.7
Note Bulk Order 22.4 74.9 75.5 77.0 83.2 83.7 86.1 86.9 87.1 18.3
Note FLU 4.0 47.9 27.0 65.8 86.5 79.1 87.6 81.1 88.9 0.4
Note Order-End 88.1 97.0 95.3 96.9 97.4 97.4 98.4 97.4 98.1 22.5
Note Xesar 12.4 78.3 59.9 79.8 83.8 83.8 87.2 84.9 85.4 2.6
Purchase Order 91.1 94.1 95.4 94.5 97.6 94.8 97.4 94.8 97.0 44.2
Padlock 58.4 97.5 84.4 98.2 95.6 99.0 97.2 99.0 97.0 24.2
Adaptable Thumbturn Axis 73.3 83.3 82.5 83.0 88.1 81.1 89.9 90.6 89.3 70.5
Scandinavian Endpiece 35.6 54.0 51.5 60.3 63.9 61.6 80.7 79.7 80.1 62.5
FAP Endpiece 29.0 22.3 32.0 36.9 51.5 50.9 56.9 53.1 56.7 35.5
Electronic Thumbturn Plug 77.6 80.0 81.1 81.7 83.1 82.3 84.7 83.2 84.2 68.1
Electronic Thumbturn Plug Cap 71.8 57.3 86.3 86.3 90.2 89.6 91.7 91.8 91.8 65.4
Thumbturn Extension 34.1 41.2 68.6 69.1 75.5 74.0 75.9 73.9 83.2 56.3
Keyway 20.4 20.6 41.2 44.8 66.2 54.2 66.7 50.1 58.9 27.2
Mechanical Thumbturn Plug 77.0 81.7 82.1 82.9 84.4 84.6 86.3 84.4 87.1 76.5
Red Tray (Empty) 92.7 99.7 99.3 99.4 99.8 99.8 99.9 99.9 99.9 86.3
Red Tray (Full) 48.1 79.6 94.3 93.0 98.2 98.3 99.7 99.4 99.4 89.0

Table A.4: Test split performance of the proposed object detection methods trained on
differently sized datasets (AP).
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Minimum annotations per category 1 3 10 100 full
Base Syn. Base Syn. Base Syn. Base Syn. Base Pseudo

Mean 83.2 91.4 93.9 97.1 98.9 98.4 98.9 98.6 99.0 87.2

Battery 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.3 99.0
Swiss Cylinder 99.8 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Cogwheel 94.5 98.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Cylinder Half 99.6 99.7 99.7 99.7 100.0 100.0 100.0 99.7 100.0 99.7
Scandinavian Cylinder (Outside) 98.9 99.2 96.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Scandinavian Cylinder (Inside) 83.9 74.2 89.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Cam Lock Cylinder Body 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Cam (One-Sided) 89.8 97.5 98.6 97.7 99.3 99.2 100.0 100.0 100.0 100.0
Electronic Thumbturn 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Electronic Thumbturn (Capped) 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Cam Lock Cylinder 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Cam 100.0 99.6 100.0 99.7 100.0 99.3 100.0 100.0 100.0 100.0
Note AirKey 86.3 93.5 91.6 97.6 94.8 97.1 95.0 99.8 96.8 24.8
Note Bulk Order 29.3 98.0 97.1 97.9 97.9 98.4 100.0 99.7 100.0 94.0
Note FLU 6.1 62.1 34.4 77.3 98.0 91.4 97.3 90.9 99.4 4.1
Note Order-End 96.1 99.9 99.5 100.0 100.0 100.0 100.0 100.0 100.0 99.7
Note Xesar 18.2 85.6 65.8 87.7 90.7 93.4 92.6 93.2 91.0 12.8
Purchase Order 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.7
Padlock 92.6 100.0 98.4 100.0 100.0 100.0 100.0 100.0 100.0 55.6
Adaptable Thumbturn Axis 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Scandinavian Endpiece 97.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
FAP Endpiece 72.7 59.6 88.4 96.6 99.4 100.0 97.8 99.2 96.7 81.0
Electronic Thumbturn Plug 98.2 99.2 99.6 100.0 99.9 100.0 100.0 100.0 100.0 100.0
Electronic Thumbturn Plug Cap 96.2 98.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Thumbturn Extension 58.6 70.8 89.6 89.5 92.8 92.2 92.6 92.6 99.9 87.4
Keyway 37.7 35.4 79.6 78.1 97.0 84.9 95.3 84.3 87.9 73.0
Mechanical Thumbturn Plug 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Red Tray (Empty) 99.6 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Red Tray (Full) 56.8 81.2 96.7 94.4 100.0 99.3 99.9 100.0 100.0 100.0

Table A.5: Test split performance of the proposed object detection methods trained on
differently sized datasets (AP50).
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