
Rendering of Point Clouds via
WebGPU

Performance comparisons between WebGPU and
common desktop methods on the subject of

rendering large Point Clouds

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

David Bauer
Registration Number 012120495

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Projektass. Dipl.-Ing. Dr.techn. BSc Markus Schütz

Vienna, January 1, 2001
David Bauer Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

David Bauer

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 1. Jänner 2001
David Bauer

iii

Danksagung

v

Acknowledgements

vii

Kurzfassung

Diese Arbeit beschäftigt sich mit dem Rendern von Punktwolken im Browser mithilfe der
Technologie WebGPU. Der Hauptgrund für die Verwendung dieser neuen Technologie
statt dem etablierten WebGL, ist die Einsatzmöglichkeit von Compute-Shadern anstelle
einer üblichen Rendering-Pipeline. Diese sind für große Datensätze wie Punktwolken
besser geeignet und machen es möglich, mit ihrer Hilfe, eine Leistungssteigerung zu
gewöhnlichen Rendering Pipelines heraus zu arbeiten.

Das Ziel dieser Arbeit ist es, einen WebGPU Compute-Shader zu konstruieren, um in einer
Website im Browser in Echtzeit große Punktwolken zu rendern. Es wird eine Rendering
Pipeline gebaut, die anhand von mehrerer Compute-Shader die Punkte verarbeitet und
in einen Framebuffer schreibt. Dieser Framebuffer wird gelesen im Browser angezeigt. In
dieser Arbeit wird ebenfalls die Leistungscharakteristik von WebGPU Compute-Shadern
untersucht. Mehrere System-Konfigurationen werden herangezogen um Schlüsse über die
effiziente Verwendung dieser GPU API zusammen mit JavaScript im Browser ziehen zu
können.

ix

Abstract

This thesis explores rendering of point clouds in a browser with WebGPU. The main
argument for the new and unestablished technology WebGPU is the potential of using
compute shaders in a rendering pipeline. The current web solution, WebGL, does not
offer this feature. Compute shaders are well suited for large amounts of arbitrary data.
In related work, a noticeable speed-increase can be measured when employing compute
shaders instead of normal rendering pipelines.

The goal of this work is to use WebGPU compute shaders in a website to render large
point clouds in real time. A rendering pipeline is built that employs multiple compute
shaders to transform the points and write their projection into a framebuffer. This
can then be read and displayed on the website. Additionally, this work examines the
performance characteristics of WebGPU compute shaders. Multiple different system
configurations are tested to draw conclusions about efficient use of this GPU API in the
browser in tandem with JavaScript.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Method . 2
1.2 Contributions . 3
1.3 Structure of this Work . 3

2 Background 5
2.1 Compute Shaders . 5
2.2 WebGPU . 6
2.3 LAS . 7

3 Related Work 9
3.1 Point Cloud Rendering . 9
3.2 Compute Shaders . 10

4 Structure of the Rendering Pipeline 11
4.1 Batches and Batch-wise Culling . 12
4.2 Depth Pass . 13
4.3 Colour Accumulation Pass . 13
4.4 Display Pass . 14

5 Results 15

6 Conclusion 21

Overview of Generative AI Tools Used 23

Übersicht verwendeter Hilfsmittel 25

List of Figures 27

xiii

List of Tables 29

List of Algorithms 31

Bibliography 33

CHAPTER 1
Introduction

Point clouds are a vital part of capturing a real world 3D environment or object. Whenever
a laser scan is performed, the created model will initially be some form of point cloud.
Point clouds are used in various industries. Object scans can be used for asset creation in
video games or movies. [LYC+23] Construction companies can use scans of construction
sites for quality controlling their work [WSS+15] They can also use point clouds of
bridges, roads and tunnels to check for cracks [FLL+22], deformations or other anomalies.
An example of this can be seen in image 1.1. Various governments routinely scan entire
swaths of land for use in height and terrain maps.

As is evident by the previous examples, point clouds tend to be used by agencies or larger

Figure 1.1: Crack detection of a 30m long point cloud scene. (a) Reflection intensity of
the point cloud. (b) Detection result of the proposed method. Image taken from Luo et
al. [FLL+22].

1

1. Introduction

corporations. These point clouds are often gigabytes in size and hold multiple millions if
not billions of points. The required throughput of data and fidelity of the result is often
a key concern.

Handling large point clouds is made possible by taking advantage of the computing capa-
bilities of modern graphics hardware. With their increased multiprocessing performance
GPUs are a great option for speeding up necessary calculations. One such process for
which the use of GPUs is advisable is the aim of this work: to take point clouds and to
recreate them visually for manual inspection or showcase.

One technique for rendering point clouds is to view the data samples as vertices and to
draw them using a simple vertex shader. The problem with this approach is that vertices
are normally used for meshes and are therefore optimised for this use-case. Vertex shader
outputs are often limited to transformed vertex positions, normals, and other per-vertex
attributes. For large point clouds, this can become a bottleneck because the amount of
data that needs to be processed and passed through the shader pipeline can be enormous,
leading to performance issues.

Handling most of the calculations using the much more flexible compute shaders instead
of just relying on vertex shaders offers up considerable improvements. The method
employed in this thesis will be based on simply rendering the points via a projection as
is common for rendering via vertex and fragment shaders. Some optimisations will be
explained and applied.

1.1 Method

In this thesis, a renderer is built using the TypeScript superset of the JavaScript pro-
gramming language and the Graphics API WebGPU. The goal is to build a renderer
that relies on compute shaders to handle the highly parallelised computational work that
comes along with large datasets such as point clouds.

This renderer implements level-of-precision (LOP) optimisations to improve memory
fetching and use during rendering. This approach was first proposed in a work by
Meyer et. al. [MSGS11]. The aim for this paper is that the more efficient memory use
ultimately might also affect performance. We utilize GPU buffers to write data in our
own designated format in order to reduce the amount of accessed memory needed for
rendering points at lower LOP levels.

The language TypeScript was chosen because this project will be hosted as a website.
JavaScript is dominant in this field. TypeScript, which is a superset of JavaScript enforces
types, which is very helpful when working with lower-level concepts such as buffers and
hardware-access.

The WebGPU graphics API is used in order to employ compute shaders. Because this
thesis constructs a website, WebGPU is also one of few possible choices because the
browsers themselves need to implement functionality. WebGPU is a fairly new graphics

2

1.2. Contributions

API so analysing it’s performance in tandem with JavaScript might provide insight for
future development efforts.

1.2 Contributions
This thesis will show how to design a performant compute shader for working with point
cloud or other similarly structured data when working with WebGPU and TypeScript. A
rendering technique will be highlighted which utilises multiple buffers for faster memory
access.

1.3 Structure of this Work
Chapter 2 will be about the theory of computer shaders and explaining how to use them
to render an image. Some advantages and limitations will be discussed. In chapter 3
we show related work such as the optimisation strategy used in this thesis. Chapter
4 presents the rendering engine and accompanying website. The necessary steps to
produce an image from point cloud data will be shown. The results as well as the
performance characteristics will be handled in chapter 5 and, finally, in chapter 6 will
hold the conclusion of this work.

3

CHAPTER 2
Background

This chapter serves to give an overview of the theory behind Compute Shaders and
WebGPU. Some limitations will also be discussed. Furthermore, the LAS standard will
be briefly introduced.

2.1 Compute Shaders
To render an image via the GPU, graphics pipelines or rendering pipelines are used.
These serve as a framework that outlines the necessary procedures for creating the image.
A lot of pipeline steps are implemented in hardware directly which one one hand makes
them very fast but on the other hand means there can be large differences between GPU
vendors such as Nvidia, AMD and Intel. For this reason graphics APIs such as OpenGL,
Direct3D and Vulkan have been developed to create an abstraction over the hardware
and help standardise code.

There are currently three major ways to render an image via the GPU. These are
rasterisation, ray-tracing and compute shaders. Large parts of these are equal and
interchangeable and there is also the possibility of constructing a hybrid renderer.

Rasterisation and Ray-Tracing is built on the idea of triangle meshes, however, since this
work only uses points, these methods have unnecessary overhead. Compute shaders on
the contrary are much less integrated into a pipeline. How they are used is largely up to
the developer. They do not have a well-defined set of input or output values, these have
to be specified and created as buffers manually. Furthermore the number of compute
shader invocations [khr19] is also up to the specific use-case.

The invocations of a compute shader can be thought of similar to multi-threading on the
CPU. However, they have multiple layers of hierarchy. The smallest unit is a thread, this
corresponds to a single running instance of code. Threads are grouped into subgroups
(also known as warps on NVIDIA and wavefronts on AMD), which execute in lockstep on

5

2. Background

the GPU hardware. These subgroups are further organized into workgroups, which are
defined by the shader and can synchronize and share memory. While WebGPU exposes
workgroups explicitly, access to subgroups is limited and must be supported by the device
[W3C25]. Workgroups are quite abstract as they can be defined to have one, two or even
three dimensions. Workgroups themselves can also be created in a three dimensional space.
This was done to make compute shaders adaptable to use-cases like image-transformation.
In this example, work groups can be spawned two dimensionally and one thread can be
spawned per pixel of the image. Similarly we could have one workgroup that spawns
multiple threads itself however, the amount of threads a workgroup can hold is much
smaller than the total number of workgroups possible. The WebGPU standard enforces
a minimum of 256 x 256 x 64 workgroups with a total of at least 65535 workgroups to be
handled by the device. However, only a maximum of 256 invocations per workgroup are
required by the standard [Web25].

Threads within a subgroup can run in lockstep, this means that an operation is performed
on all threads in the same cycle. As WebGPU only organizes in workgroups and not
subgroups, how many threads per workgroup can benefit from this is up to the hardware
and driver itself. Workgroup sizes of 64 threads are a recommended baseline for WebGPU,
working well across multiple devices [weba]. Benchmarking is required to find the optimal
workgroup size for specific compute shaders on specific hardware.

2.2 WebGPU

WebGPU is a GPU API with bindings for JavaScript, C, C++ and Rust that was
designed for portability. It can be used in stand alone applications and imbedded in
websites. In the web context it is the successor to WebGL. It is currently being developed
by a W3C community group by Software-developers from Apple, Mozilla, Microsoft,
Google and others. The goal is a more portable, faster and up to date graphics API. The
predecessor, WebGL, was based on OpenGL ES which is based on OpenGL and therefore
has an almost identical design to the desktop API. WebGPU on the other hand has no
real connection to any existing graphics interface. Still there are conceptual similarities
to Vulkan, Metal and Direct3D 12.

The figure 2.1 below shows a simplified diagram of how to set up WebGPU to draw a
triangles via a vertex and fragment shader. The process reminds of the Vulkan API,
where buffers, bind groups, and the pipeline among others need to be created by the
program explicitly before being used.

To execute shaders these resources need to be set up. The process however, is not as
complicated as is the case with Vulkan. Most of these resources can not be changed after
they have been created. A buffer will remain the same size during its entire use-cycle. If,
for example, a bigger buffer is needed, the old one needs to be discarded and a new one
created.

Command buffers are used to control the state of the WebGPU runtime. When executing

6

2.3. LAS

Figure 2.1: Simplified diagram of WebGPU setup to draw triangles via vertex and
fragment shader. Image taken from webgpufundamentals.org [Webb].

actions with WebGPU, the hardware is not called directly. Rather, a command encoder
encodes the desired actions into commands that can then be stored in a command buffer.
Once all desired actions have been accrued, the command buffer can be submitted to
WebGPU which will thereafter execute the commands. The dispatchWorkgroup command,
to give a relevant example, tells the GPU to execute a compute shader.

All rendering is ultimately done to a texture. Usually this texture is requested from a
HTML canvas element in the browser and then drawn to in order to present the result of
the rendering process.

2.3 LAS
LAS is a file format standard for "storage and distribution of airborne and mobile LiDAR
data" [Ise13]. The file standard was created by the ASPRS for the "interchange of
3-dimensional point cloud data data between data users" [ES19].

The file is made up of a header, commonly followed by a body which hold the individual
points. Arbitrary user and application-defined data may be interspersed before the body.
Their existence and length however must to be noted in the header.

Every point record in the body has an x, y and z coordinate describing the position
of the data point. Each of these is stored as a signed 4 byte integer. Rather than
storing positions directly as floating-point numbers, LAS uses fixed-precision integers
in combination with scaling factors and offsets, which are defined in the file header.
This was done to counteract floating point inaccuracies that emerge when working with
numbers far away from zero. The scaling factor determines the precision of the stored
values and the offset shifts the coordinate space to a local origin. A record also holds
other fields such as color, intensity, scan angle, etc.

7

CHAPTER 3
Related Work

In this section, we will discuss the advancements in point cloud rendering in terms of
algorithms and the hardware that made them possible. Because of the importance of
point clouds in classification and scene reconstruction we will also explore this field briefly.

3.1 Point Cloud Rendering

The conceptual foundation for using point-based representations for rendering was laid
in a work by Leoy Whitted et al. [LW85], where they introduced the idea of using points
as display primitives. Using points instead of the traditional polygon primitive enabled
the direct rendering of sampled surface data without the need for surface reconstruction.

Improvements in the quality of point-based rendering came from splatting techniques.
Surface splatting is used to achieve visually smooth results from unstructured point
data. The concept of surfels (surface elements), was introduced in a work by Pfister
et al. [PZvBG00]. They represent surfaces using oriented discs that store position,
normal, color, and other attributes for efficient rendering of complex geometry without
the need for explicit connectivity information. In a work by Botsch et al. [BHZK05], a
splat-rendering pipeline based on deferred shading was introduced that takes advantage
of the computing capabilities of GPUs. This enabled "high-quality per-pixel shading as
well as significant performance improvements" [BHZK05].

A main focus of research is handling the large datasets created by modern sensing hardware.
There are many different approaches to combat this issue. Compression algorithms,
acceleration structures or visual tricks may be employed to ease the computational
burden on hardware. In Potree [Sch15], an LOD system is employed to render large
point clouds via WebGL. A adapted version of modifiable nested octree (MNO) [SW11]
is employed to segment the point clouds and accelerate rendering.

9

3. Related Work

A different work by Markus Schuetz, et al. [SKW19] proposes to make use of the disjointed
nature of point clouds and defines the level of detail continuously. The LOD state also
takes not only the distance to the point into account but also considers if the point is
near the center of the view, because more attention is paid to that region.

In some applications only the visual result and coherence of the point cloud is important.
A work by Ta Hu et al. [HXCJ23] introduces a learning-based method to render photo-
realistic images from point clouds. The point cloud is first clustered into a grid structure.
It then expands on previous works like NeRF by Mildenhall et al. [MST+21] by building
different groupings in x y and z direction that are then used in a Unet to get the features
for image construction.

3.2 Compute Shaders
Initially GPUs were hardware designed for a very limited scope. They only handled
functions like texture mapping or depth calculations. Using the GPUs hardware for
computational purposes was first widely adopted with the advent of the CUDA develop-
ment platform developed by Nvidia in 2007. Roughly two years later the open standard
OpenCL was introduced. Only much later, in 2012 would the first major GPU API -
in this case OpenGL - incorporate compute shaders into their core standard. [MS13]
Nowadays they are commonly used for various diverse fields such as machine learning,
image processing, linear algebra and even stock options trading [Ole18].

10

CHAPTER 4
Structure of the Rendering

Pipeline

This chapter describes the implementation of the point cloud renderer. As depicted in the
graphic below 4.1, the renderer goes through four stages to create one final frame. The
first stage is a preliminary batch-wise culling on the host side. The pipeline itself has three
passes, adopted from the high-quality shading approach of Botsch et al. [BHZK05]. First
there is the depth pre-pass, then a colour accumulation pass and finally a display pass.
Because the number of workgroups and threads is limited, the depth and accumulation
pass may be repeated for multiple batches of points before the final image is displayed.
The results of each pass are required in subsequent passes, synchronisation is therefore
necessary. In our case, however, this is handled by the command buffer, so no additional
statements like fences or barriers are needed.

The renderer always uses depth and frustum culling. No points outside the view are
considered for any of the calculations. Nevertheless, the threads to handle them are
spawned, so the points still have a small performance impact. Whole batches of points
may be excluded outright as we will discus in the following chapter.

Figure 4.1: Rendering pipeline used for the program.

11

4. Structure of the Rendering Pipeline

4.1 Batches and Batch-wise Culling

The renderer holds groups of points as batches. The size of these batches are arbitrary,
but later testing proved about four to eight million points per batch to lead to good
performance on most systems. These have arbitrary structure and distribution. When a
model is loaded in, it is split according to the maximum number of points allowed for
one batch. A minimum bounding box is calculated as can be seen in 4.2.

Figure 4.2: Arbitrary distribution of points with minimal bounding box

One batch always has four GPU buffers associated to it. These are the coarse, medium,
fine-precision coordinate buffers and the colour buffer. The first three contain coordinate
values in cumulatively higher precision, allowing us to process distant points with a
reduced pressure on memory bandwidth. During rendering, we load as many coordinate
bits as necessary and assemble them back together. For example, for distant points, we
only load the 10 coarsest bits. For close points, the coarse, medium and fine bits are
merged together to recover a 30 bit fixed-precision integer coordinate.

The first step is to transform the point into the coordinate system of the bounding box.
For this the bounding box origin, meaning the minimum x, y and z values as well as
the bounding box extent are calculated. The x, y and z coordinates are represented as
unsigned 30 bit integers with 0 being the bounding box origin and 230 being the furthest
possible point per axis.

The following procedure is illustrated in 4.3. Each coordinate is split into three different
ten bit values, the most significant ten bit, the middle ten bit and the least significant
ten bit. The more significant a bit is, the more important it is for the position of the
point. We therefore call the first ten bits "coarse", the next ten "medium" and the last
ten "fine". The coarse x, y and z bits are packed into a single 32 bit integer which thus
holds a low precision coordinate of a point. This operation is repeated with the medium
and fine bits. The resulting three coarse, medium and fine values are saved to their own
corresponding buffer.

12

4.2. Depth Pass

Figure 4.3: Splitting the coordinates of a point into coarse, medium and fine parts for
buffer storage.

4.1.1 Course, Medium and Fine Buffer

The real-world position of the points is later reconstructed in the shader. The recon-
struction process defines what Level-of-Precision (LOP) level the points are viewed at.
If a batch is small on the canvas, the error from using less precision in the calculations
is small and only the coarse buffer is needed. The required LOP level is calculated on
the CPU side and passed in via a uniform buffer. The benefit of this process is that,
even though more operations are needed, time is saved from not retrieving the unneeded
buffers from ram. This results in a net performance gain.

4.2 Depth Pass
The entire scene is rendered in the depth pre-pass stage, but only depth values are stored.
The colour buffer is not required in this operation. AtomicMin is used to calculate and
store only the minimum depth value for each pixel in a buffer for use in the following
passes.

4.3 Colour Accumulation Pass
During rendering, multiple points with similar or equal depth value may lie on the same
pixel. The colour accumulation pass deals with this issue by adding up the colours of all
points that fall into the same pixel and which are at most 1-2% farther away than the
closest point. The additions are done using atomicAdd. To make sure the calculations

13

4. Structure of the Rendering Pipeline

don’t result in overflows, the red, green and blue channel each save their values in a
unsigned 32-bit integer. A fourth number, the "opacity", is reserved for keeping track of
how many points have been accumulated per pixel.

4.4 Display Pass
The display pass shows the final result on the canvas. This is the only stage that does
not use a compute shader. A fragment shader is employed. The accumulated colour
values from the previous pass are averaged per pixel. The three colour channels are each
divided by the tracked total number of accumulated colours.

A full-screen quad is rendered, the result of the computations is sampled like a texture
and drawn to this quad. The browser then ultimately presents this in a HTML canvas.

14

CHAPTER 5
Results

This chapter showcases the results of the paper. A few different systems as well as
operating systems will be tested. The scene is an aerial scan of Morro Bay [Ope13] with
136 million points, filling the entire viewport and looking straight down. For testing the
canvas will be set to a resolution of 1280×720 to make different systems more comparable.
A visualisation of the rendered scene as produced by the program can be seen in the
figure (5.1) below.

Figure 5.1: Morro bay point cloud (36m points) as rendered by the discussed program.

15

5. Results

5.0.1 Testing Methodology

All scenes were rendered from the same viewpoints. Varying factors between tests are
the following. As is written in the pipeline explanation, the point information is divided
up into three equal parts defining the rendering quality of the point cloud. However, no
performance impact could be observed when changing this setting. The performance
overhead from transforming more points must therefore be minimal. Because the different
quality steps are divided up into their own pipelines and bindgroups, the assumption is
that fetching and loading the data on the GPU is faster when a lower quality setting is
used. When contrasted with the highest setting, the lower setting only needs a third of
the data for computation. As is apparent by preliminary testing, this does not impact
performance as much as was anticipated, at least not for the tested model size. This
change might still result in a performance impact when larger models are used.

The first parameter for testing is the size of the buffers that the point cloud is divided
into. Here, three different configurations will be tested, 32 megabit (roughly two million
points), 64 megabit, 128 megabit an 256 megabit. The second parameter is the number
of threads per workgroup used for the rendering computations. Here, 64, 128 and 256
threads per work group will be tested.

GPUs tested

GPU OS Backend Best Config FPS
RX 6600XT Windows OpenGLES Direct3D12 128M-256T 45

GTX 1660Ti Max-Q Linux Vulkan 128M-256T 52
RX 6600XT Linux Vulkan 128M-256T 54
RTX 4080m Windows OpenGLES Direct3D11 128M-64T 64
RTX 2060 Windows OpenGLES Direct3D11 128M-256T 71
RTX 3090 Windows OpenGLES Direct3D11 128M-256T 145

Table 5.1: GPUs used in testing as well as the used operating system and graphics
back-end. It also shows the best setting and what performance was achieved using this
setting.

All GPUs used for testing the developed program are listed in table 5.1. Over all
test instances, using 128 megabit and 256 threads per workgroups performed the best
consistently. This can be further observed when looking at the pacing distributions listed
below.

Frame Timings

The following plots use cpu and gpu frame timing informations in milliseconds. The CPU
time includes time spent on logic like batch visibility calculations, as well as command
encoding and submitting to the GPU. The values are retrieved using timing the according
Typescript code portions, over a timespan of five seconds. For timing the GPU compute

16

Figure 5.2: Frame timings of 6600XT on Windows

time, a helping script from WebGPU Fundamentals [webc] was used. The shown plots
were created using the Seaborn python library. They depict the distribution of the gpu
and cpu timings over the five second runs in a violin plot. This makes it possible to see
inconsistencies as well as compare relative performance. For a full picture, the table
with the best setting as well as the recorded fps at that setting (5.1) can be taken into
account.

The 6600xt on windows (5.2) and on linux (5.3 have about the same CPU timings but
the GPU times are consistently worse on the windows side. In both runs, however, the
best setting was 128 megabit and 256 threads per workgroup.

The 1660Ti graphics card was tested on a laptop in linux (5.4) as well and solid perfor-
mance can be observed. The best fps was noted with the 128 megabit and 256 threads
setting. In contrast to this, the other tested laptop, which utilised an RTX 4080 mobile
GPU (5.5), showed strong fluctuations in the CPU timings while the GPU timings
remained closely clustered. This might be explained by the CPU being noted to have
overheating issues.

On the RTX 4080 mobile GPU, the best fps was observed at 128 megabit and 64 threads
(5.1) This could be because the CPU shows large timing inconsistencies at all other
settings, as can be seen in the timing graph 5.4. Because the laptop CPU is noted to
sometimes have issues with overheating this result should be scrutinized. It might be
plausible that the best fps can be achieved with 128 megabit and 256 threads like with
the other tested systems, if no such issues were present.

Interestingly, the 2060 had notably better performance in this test than the 6600xt even
though they can often be seen with similar performance, with the 6600xt leading most of

17

5. Results

Figure 5.3: Frame timings of 6600XT on Linux

Figure 5.4: Frame timings of 1660Ti Max-Q on Linux

18

Figure 5.5: Frame timings of 4080 mobile edition on Windows

Figure 5.6: Frame timings of 2060 on Windows

the time, when benchmarked in popular games. The 2060s (5.6) best performing setting
was, again, 128 megabit and 256 threads with 71 fps. To contrast this, the 6600xt only
got 54.

The RTX 3090 (5.7) achieved the highest overall fps at 145 using the 128 megabit and
256 threads setting, far eclipsing the other tested systems. From this result we can infer
that this solution scales well with increased computational power.

19

5. Results

Figure 5.7: Frame timings of 3090 on Windows

Overall robust performance can be observed on the different tested systems. Even on
less powerful laptop hardware the program remains usable with 54 fps (5.1) when using
the large Morro Bay point cloud with 136 million points. Except for the laptop with the
RTX 4080 mobile GPU, the CPU as well as the GPU frame timings are consistent with
little outliers. The two bands that are visible in most measurements may represent the
different stages the program uses as these were measured independently. The assumption
is that calculating depth values takes less time than calculating the colour values, as the
latter performs the same calculations and more.

While the program achieved adequate performance, it’s implementation deviates signifi-
cantly from previous works like "Software Rasterization of 2 Billion Points in Real Time"
[SKW22] and can therefore not be compared to these implementations.

20

CHAPTER 6
Conclusion

In this thesis, a program was developed to render LAS point clouds in the browser in
real-time. This was accomplished by utilising the users GPU through WebGPU and
Typescript. The developed program was tested using a large point cloud and showed
adequate performance. This signals that WebGPU can effectively be used to render point
clouds in the browser, even at larger file sizes. Future work might include more advanced
rendering systems like voxelisation or LOD structures to improve performance.

21

Overview of Generative AI Tools
Used

23

Übersicht verwendeter Hilfsmittel

25

List of Figures

1.1 Crack detection of a 30m long point cloud scene. (a) Reflection intensity of
the point cloud. (b) Detection result of the proposed method. Image taken
from Luo et al. [FLL+22]. 1

2.1 Simplified diagram of WebGPU setup to draw triangles via vertex and fragment
shader. Image taken from webgpufundamentals.org [Webb]. 7

4.1 Rendering pipeline used for the program. 11
4.2 Arbitrary distribution of points with minimal bounding box 12
4.3 Splitting the coordinates of a point into coarse, medium and fine parts for

buffer storage. 13

5.1 Morro bay point cloud (36m points) as rendered by the discussed program. 15
5.2 Frame timings of 6600XT on Windows . 17
5.3 Frame timings of 6600XT on Linux . 18
5.4 Frame timings of 1660Ti Max-Q on Linux 18
5.5 Frame timings of 4080 mobile edition on Windows 19
5.6 Frame timings of 2060 on Windows . 19
5.7 Frame timings of 3090 on Windows . 20

27

List of Tables

5.1 GPUs used in testing as well as the used operating system and graphics
back-end. It also shows the best setting and what performance was achieved
using this setting. 16

29

List of Algorithms

31

Bibliography

[BHZK05] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High-quality sur-
face splatting on today’s gpus. In Proceedings Eurographics/IEEE VGTC
Symposium Point-Based Graphics, 2005., pages 17–141, 2005.

[ES19] Kristian Damkjer Evon Silvia, Howard Butler. LASer (LAS) File
Format Exchange Activities &x2013; ASPRS — asprs.org. https:
//www.asprs.org/divisions-committees/lidar-division/
laser-las-file-format-exchange-activities, 2019. [Accessed
03-07-2025].

[FLL+22] Huifang Feng, Wen Li, Zhipeng Luo, Yiping Chen, Sarah Narges Fatholahi,
Ming Cheng, Cheng Wang, José Marcato Junior, and Jonathan Li. Gcn-based
pavement crack detection using mobile lidar point clouds. IEEE Transactions
on Intelligent Transportation Systems, 23(8):11052–11061, 2022.

[HXCJ23] Tao Hu, Xiaogang Xu, Ruihang Chu, and Jiaya Jia. Trivol: Point cloud
rendering via triple volumes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 20732–20741, 2023.

[Ise13] Martin Isenburg. Laszip: lossless compression of lidar data. Photogrammetric
engineering and remote sensing, 79(2):209–217, 2013.

[khr19] Compute Shader - OpenGL Wiki — khronos.org. https://www.khronos.
org/opengl/wiki/Compute_Shader, April 2019. [Accessed 30-06-2025].

[LW85] Marc Levoy and Turner Whitted. The use of points as a display primitive.
Stanford, 1985.

[LYC+23] Jiarong Lin, Chongjian Yuan, Yixi Cai, Haotian Li, Yunfan Ren, Yuying Zou,
Xiaoping Hong, and Fu Zhang. Immesh: An immediate lidar localization
and meshing framework. IEEE Transactions on Robotics, 39(6):4312–4331,
2023.

[MS13] Kurt Akeley Mark Segal. Opengl 4.3 spec, February 2013. [Online; accessed
2025-02-27].

33

https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.khronos.org/opengl/wiki/Compute_Shader
https://www.khronos.org/opengl/wiki/Compute_Shader

[MSGS11] Quirin Meyer, Gerd Sussner, Günter Greiner, and Marc Stamminger. Adap-
tive Level-of-Precision for GPU-Rendering. In Peter Eisert, Joachim Horneg-
ger, and Konrad Polthier, editors, Vision, Modeling, and Visualization (2011).
The Eurographics Association, 2011.

[MST+21] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron,
Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural
radiance fields for view synthesis. Communications of the ACM, 65(1):99–
106, 2021.

[Ole18] Olena. A brief history of gpu. today, a gpu is one of the most crucial. . . | by
olena | altumea | medium, 2 2018. [Online; accessed 2025-02-27].

[Ope13] OpenTopography. Pgamp;e diablo canyon power plant (dcpp): San simeon
and cambria faults, ca, 2013.

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross.
Surfels: surface elements as rendering primitives. In Proceedings of the
27th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’00, page 335–342, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.

[Sch15] Markus Schütz. Potree: Rendering large point clouds in web browsers. PhD
thesis, Technische Universität Wien, 2015.

[SKW19] Markus Schütz, Katharina Krösl, and Michael Wimmer. Real-time continuous
level of detail rendering of point clouds. In 2019 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR), pages 103–110, 2019.

[SKW22] Markus Schütz, Bernhard Kerbl, and Michael Wimmer. Software rasterization
of 2 billion points in real time. Proc. ACM Comput. Graph. Interact. Tech.,
5(3), July 2022.

[SW11] Claus Scheiblauer and Michael Wimmer. Out-of-core selection and editing
of huge point clouds. Computers Graphics, 35(2):342–351, 2011. Virtual
Reality in Brazil Visual Computing in Biology and Medicine Semantic 3D
media and content Cultural Heritage.

[W3C25] W3C. WebGPU Shading Language — gpuweb.github.io. https://gpuweb.
github.io/gpuweb/wgsl/#subgroup-builtin-functions, 2025.
[Accessed 03-07-2025].

[weba] WebGPU Compute Shader Basics — webgpufundamentals.org.
https://webgpufundamentals.org/webgpu/lessons/
webgpu-compute-shaders.html. [Accessed 03-07-2025].

[Webb] Webgpu fundamentals. [Online; accessed 2025-02-26].

34

https://gpuweb.github.io/gpuweb/wgsl/#subgroup-builtin-functions
https://gpuweb.github.io/gpuweb/wgsl/#subgroup-builtin-functions
https://webgpufundamentals.org/webgpu/lessons/webgpu-compute-shaders.html
https://webgpufundamentals.org/webgpu/lessons/webgpu-compute-shaders.html

[webc] WebGPU Timing Performance — webgpufundamentals.org. https:
//webgpufundamentals.org/webgpu/lessons/webgpu-timing.
html. [Accessed 30-06-2025].

[Web25] Webgpu, 2 2025. [Online; accessed 2025-02-25].

[WSS+15] Jun Wang, Weizhuo Sun, Wenchi Shou, Xiangyu Wang, Changzhi Wu,
Heap-Yih Chong, Yan Liu, and Cenfei Sun. Integrating bim and lidar for
real-time construction quality control. Journal of Intelligent & Robotic
Systems, 79:417–432, 2015.

35

https://webgpufundamentals.org/webgpu/lessons/webgpu-timing.html
https://webgpufundamentals.org/webgpu/lessons/webgpu-timing.html
https://webgpufundamentals.org/webgpu/lessons/webgpu-timing.html

	Kurzfassung
	Abstract
	Contents
	Introduction
	Method
	Contributions
	Structure of this Work

	Background
	Compute Shaders
	WebGPU
	LAS

	Related Work
	Point Cloud Rendering
	Compute Shaders

	Structure of the Rendering Pipeline
	Batches and Batch-wise Culling
	Depth Pass
	Colour Accumulation Pass
	Display Pass

	Results
	Conclusion
	Overview of Generative AI Tools Used
	Übersicht verwendeter Hilfsmittel
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

