
Pixel Art Restoration

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Florian Wagner
Matrikelnummer 11907095

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Lukas Lipp

Wien, 20. März 2024
Florian Wagner Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Pixel Art Restoration

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Florian Wagner
Registration Number 11907095

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Lukas Lipp

Vienna, 20th March, 2024
Florian Wagner Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Florian Wagner

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. März 2024
Florian Wagner

v

Danksagung

Zunächst möchte ich meiner Familie danken, die mir während meines Studiums stets
tatkräftig zur Seite stand und mich in allen Belangen unterstützte. Ebenso möchte ich
meinen Mitstudierenden meinen Dank aussprechen, die mir sowohl während meines
Studiums als auch bei dieser Arbeit stets zur Seite standen.

Ein besonderer Dank gebührt meinem Betreuer Lukas Lipp, der trotz gelegentlicher
Verzögerungen meinerseits stets zur Verfügung stand und mich in sämtlichen Aspekten
dieser Arbeit ermutigte und unterstützte.

vii

Acknowledgements

First of all, I would like to thank my family, who always stood by my side during my
studies and supported me in all matters. I would also like to thank my fellow students,
who have always supported me both during my studies and in this thesis.

Special thanks go to my supervisor Lukas Lipp, who, despite occasional delays on my
part, was always available and encouraged and supported me in all aspects of this thesis.

ix

Kurzfassung

Spiele, die in der 8- und 16-Bit-Ära entwickelt wurden, verwendeten niedrig aufgelöste
Bilder, so genannte Sprites, zur Darstellung der Spielwelten und ihrer Objekte. Dieser
Kunststil wird oft als Pixel-Art bezeichnet und hat sich zu einem eigenen Subgenre von
Spielen entwickelt, für das auch heute noch neue Spiele veröffentlicht werden. Während
moderne Pixel-Art-Spiele die visuelle Wiedergabetreue moderner Flüssigkristallbildschir-
me (LCD) in ihr Design einbeziehen, sehen Spiele aus der Kathodenstrahlröhren-Ära
(CRT) oft schlechter aus, wenn sie auf einem LCD-Monitor angezeigt werden. Das ist
verständlich, denn die damaligen Spiele wurden entwickelt, um auf Röhrenfernsehern
und -monitoren gut auszusehen, die im Vergleich zu modernen Bildschirmen ganz anders
funktionieren.

Seit dem Aufkommen von Emulatoren für Retro-Spielkonsolen wurde viel Mühe darauf
verwendet, die Effekte von Röhrenmonitoren bei der Wiedergabe dieser alten Spiel-
dateien auf LCD-Monitoren zu reproduzieren. Dies erfordert oft die Verwendung von
Upscaling-Algorithmen, um das Aussehen der niedrig aufgelösten Spiele auf Monitoren
mit höherer Auflösung zu verbessern. Upscaling im Allgemeinen, aber auch auf Pixel-Art
zugeschnitten, ist immer noch ein ungelöstes Problem und der Schwerpunkt vieler neuerer
Veröffentlichungen.

In dieser Arbeit werden wir untersuchen, welche Auswirkungen CRT-Monitore auf Pixel-
Art haben und wie man diese Informationen nutzen kann, um die Hochskalierung von
Pixel-Art aus der 8- und 16-Bit-Ära anzuleiten, um die visuelle Wiedergabetreue bei der
Darstellung auf modernen LCD-Monitoren zu verbessern.

xi

Abstract

Games developed in the 8 and 16-bit era of computing used low-resolution images called
sprites for displaying game worlds and their objects. This art style is often referred to as
Pixel-Art and evolved into its own subgenre of games with new games still getting released
to this day. While modern Pixel-Art games incorporate the visual fidelity of modern
Liquid Crystal Display (LCD) monitors into their design, games from the Cathode Ray
Tube (CRT) era often look worse when displayed on an LCD monitor. Understandable,
since games at that time were designed to look good on CRT TVs and Monitors which
function in very different ways compared to modern Displays.

Since the upcoming of retro game console emulators, a lot of effort was put into reproducing
the effects of CRT monitors when playing back these old game files on LCD monitors. This
often requires the use of upscaling algorithms to improve the look of the low-resolution
game assets on higher-resolution monitors. Upscaling in general but also tailored towards
Pixel-Art is still an unsolved problem and the focus of many recent publications.

In this work, we will explore what effects CRT monitors have on Pixel-Art and how to
use this information to guide the upscaling of 8 and 16-bit era Pixel-Art to improve
visual fidelity when displayed on modern LCD monitors.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 2

2 Related Work 3
2.1 Pixel Art Upscaler . 3
2.2 Pixelart Downscaler . 9
2.3 CRT Filter . 9

3 Background 11
3.1 The Pixel . 11
3.2 Pixel-Art . 11
3.3 CRT and LCD Displays . 12
3.4 Scaling Graphics . 17
3.5 LUT - Look-Up Table . 17

4 Implementation 19
4.1 SRResNet Model . 20
4.2 Data Processing . 21
4.3 Training Procedure . 26
4.4 Parameters and Workflow . 27

5 Evaluation 31
5.1 Experimental Setup . 31
5.2 Results . 34
5.3 Memory and Runtime Analysis . 37
5.4 Parameter Analysis and Their Impact on Output Quality 39
5.5 Dataset and Training Time Analysis 40

xv

6 Conclusion and Future Work 43

List of Figures 45

List of Tables 49

Acronyms 51

Bibliography 53

CHAPTER 1
Introduction

In this chapter, we present the motivation for this work and discuss the underlying
problem of displaying pixel-art as-is on modern displays.

1.1 Motivation

Since the early days of computer games, the visual appearance of the game’s content has
been of high importance. During these early times of game development, game developers
did not have the computational resources of today available to build large-scale worlds
with stunning visuals. Rather, they used low-resolution two-dimensional images, typically
referred to as sprites, to build the game’s world. These sprites were not only low in
resolution, but also low in the usage of colors since computer screens during that time
had a limited color palette to display, with only 8 bits in total for all three color channels,
resulting in 256 colors total. During the 16-bit era, this limit was lifted to 65,536 different
colors.

In essence, this meant that game developers had to carefully craft these sprites to get
visually appealing results. This art style is usually referred to as pixel art and still
receives a lot of attention, especially within the indie games industry. Games designed
for Cathode Ray Tube (CRT) TVs often look worse on modern displays because they
lose aspects of their original design. Understandably, games at that time were designed
to look good on CRT TVs/monitors, which function in a very different way compared to
modern displays. Modern pixel art games make use of the high visual fidelity of Liquid
Crystal Display (LCD) monitors, making them look more detailed in comparison to their
predecessors.

Figure 1.1 demonstrates the distinct viewing experiences of pixel art on a CRT and
LCD display. The original image (a) looks dull when viewed on a modern display in
comparison to how it looks on a CRT display. Much work and research has been dedicated

1

1. Introduction

to developing filter solutions that replicate the experience of a CRT display, known as
CRT filters. These filters simulate the analog processes an image, such as (a), would
have undergone on those devices to look like image (b).
Image (c) is an artist’s reinterpretation of the pixel art (a), preserving the original pixel
art but reflecting the color and form of its CRT version. This interpretation illustrates
how the pixel art in (a) would have appeared if it were originally crafted on a modern
display. Our goal is to faithfully recreate this form, capturing its color and form as
envisioned when it was crafted on a CRT display, and bring it to life on modern display
technologies.

(a) (b) (c)

Figure 1.1: A visualization by X user Thomas Feichtmeir [Fei], describing how pixel art
should look like, when designed for modern Liquid Crystal Display (LCD) displays.
(a) The raw pixel art.
(b) The original look when viewed on a CRT display.
(c) Handcrafted reinterpretation (by Thomas Feichtmeir [Fei]) of the raw pixel art (a)
capturing its intrinsic crt look (b) for modern displays.

1.2 Problem Definition
One of the major reasons for the difference in color and form of pixel art on modern
displays is the fundamental difference in how a CRT display operates compared to modern
LCD displays. With the rise of retro game console emulators, considerable effort has
been dedicated to replicating the effects of CRT monitors when playing back these old
game files (ROMs) on LCD monitors. However, methods for generating higher detailed
versions (Figure 1.1 c) of the original pixel art (Figure 1.1 a) while capturing its intrinsic
CRT look (Figure 1.1 b) without involving manual work by professional artists remain
completely unexplored.

In this work, we investigate the feasibility of utilising a neural network to generate a
higher quality version, similar to image (c) in Figure 1.1, from its CRT counterpart (b).

2

CHAPTER 2
Related Work

In this chapter, we delve into greater detail about various types of pixel-art upscalers and
downscalers. Additionally, we categorize the upscalers into non-AI and AI sub-categories,
respectively. We employ these upscalers, in particular the SRRes network, in our work
to re-create, or more accurately, reconstruct pixel art for higher-resolution displays.
Finally, we will examine existing CRT filters developed for emulation use and leverage
the insights gained from our research to guide the upscaling, using the aforementioned
SRRes network, of CRT images into a higher definition version that faithfully represents
the pixel art on a modern display

2.1 Pixel Art Upscaler

Pixel art upscalers are algorithms that “upscale” pixelated images or graphics into
smoother or higher-quality representations. We categorize these upscalers into two
groups: Non-AI, as discussed in sections 2.1.1 and 2.1.2, and AI-powered, which aim to
enhance results using Artificial Intelligence techniques.

2.1.1 Non-AI

Various upscaling or upsampling techniques and algorithms exist for images and graphics.
One particularly intriguing algorithm for our work is MMPX [MG21], a style-preserving
pixel-art magnification filter.

Similar to other upscaling algorithms, the MMPX algorithm establishes a set of rules that
determine the upsampling of the input image to a 2x output image. A 2x magnification
signifies that the output image is twice the size of the input image.

3

2. Related Work

Figure 2.1: The source-to-destination mapping in Mazzoneli notation that MMPX uses is
as follows: J, K, L, and M represent the destination pixels, while the 3x3 neighborhood
pixels A-I and the diamond points P-S are utilized as input pixels [MG21].

As mentioned the MMPX algorithm works by defining a set of rules such as

• Fallback to Nearest Neighbor
In case the central source pixel is different than the other pixels in the 3x3 center
grid and the 3x3 grid pixels are all different.

• 1:1 Edges
The 1:1 Edge rule applies for horizontal, vertical or diagonally-conntected runs of
pixels, which feature the exact same value.

• Triangle Tips
The triangle tips is needed because the 1:1 Edge rule flattens the luminance tips of
bright triangles which are against a darker background. This rule will correct such
errors and restore the corners.

• 2:1 Edges
The 2:1 Edge rule extends the reach of the 1:1 Edge rule by an additional pixel
which has previously been assigned by a different rule.

A different approach to upscaling images is to apply an image vectorization technique to
convert them into vector graphics. One of these techniques, specifically tailored for pixel
art by [KL11], extracts a smooth, resolution-independent vector representation from the
image.

Most algorithms designed to automatically extract vector representations from images are
intended for natural images. The fundamental and primary primitive used is a quadratic
B-Spline curve. The original image is represented as a lattice graph, where each pixel
represents a cell in this graph.

4

2.1. Pixel Art Upscaler

Considering the properties of such a graph, neighboring pixels share an edge, while
diagonal neighbors only share a vertex. As a result, the first step in their approach
involves reshaping the square pixel cells so that every pair of neighboring pixels along a
thin feature corresponds to cells that share an edge [KL11]. To ensure correct identifi-
cation of connections, several heuristics are used to resolve locally ambiguous diagonal
configurations. Three major heuristics are employed to process distinct features of the
pixel art image, specifically Curves, Sparse Pixels, and Islands, respectively.

With the graph reshaped, edges can be identified where adjacent pixels exhibit significantly
different colors. These edges form the foundation of the visible contours in the vector
representation. The remaining edges will lie within smoothly shaded regions. Quadratic
B-spline curves are fitted to the identified contour edges, resulting in smooth contours
for the vectorized output.

Finally, the curves are optimized to reduce staircasing effects, which can occur due to the
low-resolution pixel grid used for quantization and placement of the spline control points.

2.1.2 AI

In recent years, there has been significant development regarding artificial intelligence in
combination with image filtering and feature recognition. One such advancement is the
ability to upscale images using neural networks, which are nearly indistinguishable from
the original [LTH+16].

Super Resolution

Super Resolution (SR) is an umbrella term for a number of techniques that process Gen-
erative Adversarial Network (GAN) images into a High Resolution (HR) representation
using signal processing [CHQ+22]. In essence, SR is the process of obtaining one or more
HR images from one or more LR input images.[NM14].

Figure 2.2: An overview of existing super resolution techniques [CHQ+22].

5

2. Related Work

Figure 2.2 gives an overview of the various techniques that exist today. SR is not only
able to produce a higher resolution image; these techniques allow for resolutions beyond
the limit of typical imaging solutions [CHQ+22]. Concisely, SR algorithms provide details
finer than the sampling grid [PETM09]. Therefore, they are used for subsequent image
analysis, segmentation, and other image manipulation or recognition tasks [CHQ+22].
Typical software filtering algorithms, such as the MMPX algorithm discussed in 2.1.1,
suffer from oversimplifying the Single Image Super-Resolution problem. This oversimpli-
fication leads to results with overly smooth textures [LTH+16].
Besides Single Image Super Resolution (SISR), which only focuses on one singular image,
Video Super Resolution (VSR) focuses on video sequences. The two main subsets of VSR
are spatial VSR, which aims to improve the spatial resolution of a video, and temporal
VSR, which, in turn, aims to improve the frame rate of the observed video [CHQ+22].
For our work, we mainly focus on Single Image Super-Resolution (SISR), which is an
approach that recovers or estimates a high-resolution (HR) image from just a single
low-resolution GAN input.

SRResNet

Image processing and computer vision use neural networks to leverage the difficulty of
image processing and recognition tasks. However, typically, the better such networks
become, the deeper they will become. In this context, “deepness” refers to the number of
layers that make up the neural network.
“Deep learning methods aim at learning feature hierarchies with features from higher
levels of the hierarchy formed by the composition of lower level features.”[GB10]
The main problem with deep learning methods, and deep neural networks in general, is
that the deeper the neural network gets, the more difficult it is to properly train. Once
such deep networks start converging, it becomes apparent that with increasing depth,
the network’s accuracy gets saturated and degrades [HZRS16].

To this end, deep residual learning, was proposed in the form of “ResNet” by He et al.
[HZRS16], a residual neural network that leverages the learning and degradation problem
by introducing shortcut connections, also known as skip connections, into the network.
Shortcut connections are connections that skip one or multiple layers in the network. In
the case of “ResNet”, these connections perform identity mappings, and their outputs are
simply added to the outputs of the stacked layers [HZRS16]. One of the great advantages
of identity shortcut connections is that they do not add any extra parameters, nor do
they add computational complexity to the overall network [HZRS16].

When considering the underlying mapping H(x) the stacked layer shall fit to another
mapping F (x) = H(x) − x . The original mapping is then recast to F (x) + x. Where x
is the identity mapping of the shortcut connection. This formulation can be realized by
feedforward neural networks that employ said connections [HZRS16].

To that end, “SRResNet” proposed by Ledig et al. [LTH+16] is a super-resolution
residual network, which employs shortcut connections, to achieve a deep neural network

6

2.1. Pixel Art Upscaler

Figure 2.3: A building block for residual learning. Symbolizing how feed forward networks
can be created with shortcut connections to realize the formulation F (x) + x.[HZRS16]

that allows for high upscaling factors up to 4x. The network consists of three different
building blocks that make out the layers of the network. These building blocks are a
convolutional block, which performs 2d convolution on the target. A residual block, which
introduces skip connections and a sub-pixel convolutional block which is responsible, as
the name suggests, for sub-pixel convolution to upscale the image by a given factor. The
convolutional block is used in all other modules like the residual block as well as the
sub-pixel convolutional block. The convolutional block has an optional activation layer
as well as an optional batch normalization layer.

2D Convolution Layer (Optional)
Batch Normalization Layer

(Optional)
Activation Layer OutputInput

Convolutional Block

Figure 2.4: The convolutional block in our implementation. Both the Batch Normalization
layer as well as the activation layer are optional. The convolutional block is used
throughout our implementation.

The forward propagation for the convolutional block is then calculated by having the
2D convolution and the optional batch normalization and activation layer in sequence,
as shown in Figure: 2.4. The residual block used by the network is composed of two
convolutional blocks, both having a batch normalization layer, but only the first one has a
“PReLU”, a Parametric Rectified Linear Unit, activation layer. The forward propagation
for these blocks is then the sequential execution of the convolutional blocks. Since these
are residual blocks, a skip connection in the form of the input is added to the output of
the second convolution.

7

2. Related Work

Convolutional Block Convolutional Block OutputInput

+ residual

Residual Block

Figure 2.5: Diagram showing the residual block in our implementation. It consists of two
convolutional blocks, both having input and output channels of size 64 and a kernel size
of 3. Both convolutional blocks have a batch normalization layer and the first block also
features a PReLU activation layer.

The sub-pixel convolutional block consists of a 2D convolution, which scales the output
channels to the number of input channels times the scaling factor squared, a pixel shuffle,
and a PReLU layer. The pixel shuffle is needed to form additional pixels which are used for
the sub-pixel upscaling. It upscales each dimension by the scaling factor. It “rearranges
elements in a tensor of shape (*,C×r**2 ,H,W) to a tensor of shape (*,C,H×r,W×r),
where r is an upscale factor.”[Fou] Where * is zero or more batch dimensions.

Sub-Pixel Convolutional Block

2D Convolution Pixel Shuffle OutputInput PReLU

Figure 2.6: This diagram shows how the sub-pixel convolutional block is structured. It
features 2D convolution input channels and 64 ∗ scalingSactor2 output channels, a pixel
shuffle to shuffle the additional channels to form additional pixels, and a PReLU layer.

Finally they all come together and are used to form SRResNet. The first convolutional
block transforms the three input channels into 64 output channels with a kernel size of
nine and a PReLU activation layer. This output is then stored as a residual, which will
be added back later in the pipeline, and is fed to the residual blocks. There are a total
of 16 residual blocks in sequence. It further gets propagated into another convolutional
block with a batch normalization layer after which the residual is added back to the
output and used as input to the sub-pixel convolutional block. The number of sub-pixel
convolutional blocks depends on the scaling factor, which is chosen. In our case, the
upscaling factor is two, resulting in one sub-pixel convolutional block. This output is
then used by the final convolutional block, which transforms the 64 channels back into
three. The final convolutional block has a Hyperbolic Tangent activation layer, applying
the Hyperbolic Tangent (Tanh) element-wise to its input.

8

2.2. Pixelart Downscaler

SRResNet

Convolutional Block Residual Blocks

Sub-Pixel Convolution

Input Convolutional Block

+ residual

Convolutional Block Output

Figure 2.7: This diagram shows how the previously mentioned blocks are used together
to form the SRResNet. The residual is formed as a skip connection that “skips” the
residual blocks and the second convolutional block.

2.2 Pixelart Downscaler

Pixelart downscalers, as the name suggests, are designed to do the opposite of what we
described in 2.1 for pixelart upscalers. Instead of upscaling the image - going from the
pixelated graphic into a smooth or even vector representation - they are designed to
downscale normal images into pixelated versions of the input image.

2.3 CRT Filter

In recent years, with the introduction of sophisticated emulators such as libretro [Tea24],
which provide users with necessary API endpoints, more and more filters have been
developed to enhance the user experience. One such enhancement is the implementation
and use of CRT effects.
One of the most advanced filters is the CRT-Royale [TT14] filter for libretro’s RetroArch
[Tea] emulator frontend. The CRT-Royale filter features a wide variety of effects typical
for old CRT monitors and tries to simulate them with lots of customizability such as
user settings for Gamma, Contrast, Bloom, Mask, Anti-Aliasing, and more. While it is
currently one of the most advanced filters, it is also a very complex filter that requires
certain hardware to run efficiently.
Another popular filter, which we will also briefly discuss in Section 4.2.2, is Timothy
Lottes’ [Lot14] public domain CRT filter which features different mask styles such as
aperture-grille, stretched and non-stretched VGA-style shadow masks, and more. Com-
pared to other filters like the CRT-Royale, it is simpler, both implementation-wise as
well as in the effects it provides, but therefore also easier to run on low-end machines.
While there are plenty of filters dedicated to different CRT displays and shadow masks,
there are also filters for specific consoles such as the Amiga. One such specific filter is
the A2080 [gue22] filter by guest.r, written for the Amiga emulator WinUAE [TT24].

9

2. Related Work

This filter, different from the others, does not provide a lot of options to tweak the
shadow masks or various other aspects of the filter, such as anti-aliasing, but focuses on
accurately recreating the Amiga look.

It is important to note that there are a lot of different filter implementations freely
available on the internet; the ones listed above are just a subset of the most popular and
influential filters available.

10

CHAPTER 3
Background

In order to understand the significance and challenges that come with upscaling pixel art
from its CRT representation, while preserving its original aesthetics, and transforming it
into a high-definition version, it is crucial to delve into the fundamentals of pixel art and
grasp the differences between traditional CRT and modern display technologies, such as a
LCD. In this section, we explore the technology and disparities between CRT and LCDs
and introduce the variations in upscaling rasterized and vector graphics. Additionally,
we discuss the methods for color correction using look-up tables.

3.1 The Pixel
In layman’s terms, a pixel can be described as a two-dimensional little square that has
further properties like color, transparency, and brightness [Bli05]. We will discuss the
principles of a pixel later in 3.3 when we discuss the fundamentals of CRT and LCDs
and how they operate to display pixels on the screen.

3.2 Pixel-Art
With the fundamental principle of what a pixel is in mind, pixel art is ”an image where
each pixel visible on screen is placed intentionally“ [Sil15]. Pixel art itself became the
go-to format for game developers, not because of its aesthetics, but because the technical
restraints of early computer hardware did not allow a higher fidelity in computer-displayed
imagery. Because of this, pixel art is now not only iconic but still widely used due to its
many benefits for indie developers. Since pixel art graphics use a reduced color palette,
the inherent file size and processing power needed to display those graphics are largely
reduced, making it a very convenient art style for young developers. Similarly, because
pixel art games have been around since the very early days, they are regarded as iconic
in every aspect [Sil15].

11

3. Background

3.3 CRT and LCD Displays
The Cathode Ray Tube Display and the Liquid Crystal Display are two vastly different
technologies that originate from very distinct eras.
The CRT and the LCD are two major technologies of recent times used to render and
display images on a screen. The CRT display is a so-called emissive display technology,
whereas the LCD is a non-emissive display technology [She03].

3.3.1 The Cathode Ray Tube

The Cathode Ray Tube itself was conceived back in 1879 by William Crookes [Tri86],
while the idea of using this technology as a display device was first thought of by Ferdinand
Braun in 1886 [Tri86].

Figure 3.1: The basic principle of a shadow-mask CRT. Image courtesy of [She03]. (A)
depicts the basic architecture of the CRT, while (B) shows the relationship between the
shadow mask and the cathode rays that are directed onto the phosphor-coated faceplate.

For each primary color – red, green, and blue – there is one cathode, or electron gun,
which serves as a source of electrons. The electron beam, for each color respectively, can
be modulated by a control signal. Usually, this signal is derived from an input signal
originating from an image or video. These beams of electrons are modulated by the input
signal, altering the current flowing in the cathodes as well as the electrodes to accelerate,
shape, and focus the beam onto the phosphor-coated faceplate [She03].

The electrons from the electron beams of each color pass through a so-called shadow
mask. Different kinds of such masks exist from various manufacturers, which together
form the pixel structure visible on the screen. We will delve into more detail on this
topic below, as it is a vital component of re-creating the look and feel of these old-school
displays.

12

3.3. CRT and LCD Displays

The electrons that pass through the shadow mask excite the red, green, and blue phosphors
respectively, creating the pixel color in that manner.

Shadow Masks

Shadow masks essentially determine the pixel structure of the CRT display. They reside
between the phosphor-coated faceplate and the inner housing of the Cathode Ray Tube.

The mask’s purpose is to ensure that the electron beam for each primary color only excites
or activates the phosphors on the screen that are directly assigned to that color’s electron
beam [Slu98]. To aid in our ability to distinguish individual pixels, regardless of the
mask type, a black matrix layer is added [Oak84] [Slu98]. Different screen structures are
achieved by placing and distributing either holes or slots over the screen in combination
with the aforementioned black matrix layer [Slu98].

A distinct difference between the various mask types lies not only in the layout of the
red, green, and blue phosphors but also in the arrangement of the electron guns them-
selves. The commonly used layouts are the ”Delta Gun,“ ”Inline Gun,“ and ”Trinitron“
configurations, respectively [WC92].

Figure 3.2: Displaying the three most common mask types of CRT displays. Original:
”CRT mask types, ways of measuring dot pitch.“ By Philipp M. Moore. [Phi10]

The dot-triad structure, often referred to as a shadow mask, consists of red, green, and
blue phosphors. In the case of the shadow mask, the phosphors are not arranged in stripes
but in dots, with a black matrix between the dots [Oak84]. The dot-triad structure
employs a Delta Gun, aligning the red, green, and blue electron guns in an equilateral
triangle [WC92]. This is why the dotted phosphor arrangement resembles a triangular
pattern.

The aperture grille employs three phosphor stripes for red, green, and blue, respectively,
in conjunction with a black matrix layer situated between the stripes [Oak84]. The

13

3. Background

aperture grille was developed alongside a patented electron gun layout known as the
Trinitron, introduced by Sony [YOM68]. A major advantage of the aperture-grille mask
is its improved transparency, which can enhance brightness by up to 30 percent compared
to conventional mask types like the shadow mask.

The Trinitron, a three-beamed single-gun optical system, enables the production of
brighter images with superior resolution compared to conventional three-gun systems
[YOM68]. While the aperture grille was designed alongside the Trinitron, the Trinitron
system is not limited solely to the aperture grille. It can also be used with conventional
mask types, such as the shadow mask, resulting in images that are 50 percent brighter
with a much sharper appearance [YOM68].

The slot-mask structure is the outcome of rapid advancements in electron optics. Instead
of the dotted triangular layout, a striped (slots) arrangement is employed. This alteration
in arrangement is attributed to a newly developed electron gun layout known as the
Inline Gun [WC92]. As the name suggests, the guns are laid out in line, which explains
the change in the mask’s structure [WC92].

Figure 3.3: Comparison of different mask types (of different TVs) by Reddit user
”Reddit_sacks“ [Red22].

Pixel-Bleed and Halation

One important side effect of CRT displays is the so-called pixel bleed or halation. A pixel,
in the context of a CRT screen, has a spatial profile that extends beyond the borders of
the cell [MC92]. While this profile is radially symmetrical and nearly Gaussian, the light
output distribution differs when the phosphor is excited by the electron beam [NM92].
One major problem that pixel bleed introduces is the reduction of contrast because darker

14

3.3. CRT and LCD Displays

parts of the image displayed on the CRT are lighter, and small bright areas are perceived
bigger than they are [UVD88, MC92].
If we consider the luminance contribution of any given pixel to its neighbors, the spatial
profile of a stationary electron beam can be expressed as a Gaussian function, centered
around the pixel location. However, while this Gaussian function holds as a good ap-
proximation for the vertical profile, it is less accurate for the horizontal direction, which
is the direction the electron beam moves. The interaction of adjacent pixels in the
scanning direction of the electron beam varies from CRT to CRT and also features vast
nonlinearities on some CRT displays [MC92]. However, Naiman et al. [NM92] show
through measurements, that even though there are nonlinearities, the spatial horizontal
pattern is still qualitatively Gaussian. The cause of pixel bleed lies in the angles with
which the light rays strike the glass-air interface of the display and the reflection and
refraction caused. If the light ray is perpendicular to the glass-air interface, it will pass
through and exit the display undeflected. In case the angle of incidence of the light ray
hitting the glass is oblique, it will be refracted away from the perpendicular ray, towards
the tube face. Essentially, the larger the angle of incidence is, the more the ray will
bend away from the normal of the glass face. In case the angle of incidence reaches a
critical angle, it will no longer be refracted by the glass face but rather reflected back
onto the phosphor layer where it excites the phosphors and diffuses again in all directions,
bleeding into the neighboring pixels [UVD88]. This effect continues consequently until
no perceivable light is reflected. If viewed from just a singular pixel, the effect will form
a dim circle around the pixel, hence the name halation, as it appears like a halo around
the pixel with Gaussian distribution.

While more effects occur on a CRT display, such as moiré patterns, geometric distortions,
screen flickering, and more, these effects and their influence are outside the scope and
interest of this work.

3.3.2 Modern Displays

Nowadays, Cathode-Ray-Tube displays have been superseded by Liquid Crystal Displays
LCD and even more modern types of display technologies, such as LED and OLED
display devices, respectively. These work fundamentally differently from CRT display
devices. Since these display technologies are highly complex on their own and have
various sub-types, we will focus more on the Liquid Crystal Display to illustrate the
general technological differences when compared to an old-school CRT device.

A fundamental distinction between the newer LCD technology and the CRT lies in the
fact that the LCD device does not require any form of an electron gun to function. This
feature enables the display to be much slimmer in-depth than the CRT.

Figure 3.4 illustrates the basic principles of the layers and technologies employed by an
LCD. In particular, this Figure presents the basic architecture of a “twisted nematic”

15

3. Background

(TN) LCD. We will now proceed to elaborate on the fundamental components of the TN
Liquid Crystal Display, as depicted in Figure: 3.4.

Figure 3.4: Architecture showing the basics of a liquid crystal display. Image courtesy by
[She03].

The backlight of the LCD is responsible for illumination. Usually, the backlight consists
of a fluorescent lamp, which offers the advantage of high luminous efficiency and the
ability to tailor the spectral power distribution as needed [She03] [Kaw02] [Che11].

The incoming light is then plane-polarized by a polarizer. This polarized light passes
through the thin-film transistor array, which is used to apply voltage to the Liquid
Crystal (LC) layer [She03] [Kaw02] [Che11].

The liquid crystal layer is highly complex and dependent on a variety of material and
geometrical parameters. However, the spectral transmission of this layer also relies on
the applied voltage, which is a key principle for the display [She03] [Kaw02] [Che11].

The liquid crystal cells polarize the light based on the applied voltage. When no
voltage is applied to the liquid crystal cell, the liquid crystal optically rotates the axis of
polarization of the incoming light, which originates from the backlight and is linearly
polarized. However, applying voltage above a certain threshold to the liquid crystal
allows the dielectric anisotropy of the liquid crystal to deform it in a way that destroys
the rotated structure of the liquid crystal display and aligns it with the incoming light
[She03] [Kaw02] [Che11].

Due to this change in light polarization, the exit polarizer also referred to as the “analyzer,”
assesses the polarization state of the exiting light. If the light is polarized parallel to

16

3.4. Scaling Graphics

the analyzer’s polarization, it is transmitted through; however, if the light is polarized
perpendicular to the analyzer’s polarization, it is extinguished [She03] [Kaw02] [Che11].

3.4 Scaling Graphics
Scaling images, including pixel art for our purposes, is a field that continues to receive
considerable attention and development for better and/or faster algorithms. Despite the
thorough exploration of this field and the existence of numerous algorithms, scaling pixel
art naturally to preserve its appearance remains quite challenging and has not been fully
achieved to this day.

Typically, two distinct kinds of graphics undergo upscaling:

• Rasterized Graphics
Rasterized graphics are typically images that are defined by a pixel matrix on a 2D
image plane. This means that the number of pixels a rasterized graphic or image
contains is finite and determined by the size of the image raster.

• Vector Graphics Vector graphics are, as the name suggests, based on vectors that
define the position of a given color, rather than a pixel matrix. Because of this
characteristic, vector graphics can be scaled more easily than their rasterized
counterparts.

3.5 LUT - Look-Up Table
A LUT, also known as a Look-Up Table, is, as the name suggests, a table that, in the
context of image processing and color correction, transforms the image colors based on
the table. The benefit of such tables is that they can be easily applied and changed if
needed. There are different types of tables, ranging from 1D LUTs to 3D LUTs. A 1D
LUT can be compared to a gamma curve transformation, whereas a 3D LUT is capable
of transforming or mapping the hue, saturation, and brightness, each represented on one
axis.

17

CHAPTER 4
Implementation

crt2hq

We propose “crt2hq”, an approach for upscaling and converting CRT-based images into
high-quality versions while still maintaining the intrinsic look and feel of the CRT. The
key idea of our approach is to take advantage of a residual neural network, SRResNet as
described in 2.1.2, and its upscaling capability in conjunction with a custom-made dataset
comprised of two sets of images. One set of the images represents the upscaled target
images while the other set consists of the same lower-resolution images but with a custom
software CRT effect applied to them. The goal was to then train the network with this
dataset to recognize the CRT patterns on any given input image and convert and upscale
them into a high-resolution representation. To this end, we implemented seven different
CRT effects to mimic as many different display types as possible, which were then used
for training the network to not gain any bias towards certain CRT displays that might
have occurred if only one CRT-based effect were used. Additionally, we trained a second
network which acts as a cleanup filter. The idea here is that not all CRT images might
be of the same quality and the CRT pattern might have different scales. Therefore, we

19

4. Implementation

trained a second network with faded or blurry CRT patterns. This is to help in two ways.
Firstly, it helps clean up the image from CRT marks and allows for a wider range of
input images; secondly, it sharpens the image, as we discuss later, the target images used
for training the network are still sharp and high-quality representations of the inputs.

4.1 SRResNet Model

Our implementation is written in the Python programming language [pyt]. We chose
Python for its versatility and deep integration with existing neural network libraries such
as PyTorch, which we utilized for this work. PyTorch enables quick and efficient neural
network programming and is described as an “End-To-End Machine Learning Framework”
[Fou].

We structured the network into different modules representing the building blocks outlined
in 2.1.2. In PyTorch, a “Module” serves as the base class for any network model, including
our sub-blocks. Modules can be nested in a tree-like structure and used as attributes
inside the class. With this structure in mind, we created four different classes where three
implement the building bocks: “ConvolutionalBlock”, “SubPixelConvolutionalBlock”,
and “ResidualBlock”, and the fourth being the implemented model itself. Each of these
classes only has two methods: the Python built-in “__init__” method, which acts as a
constructor to set all parameters used in the class as well as to set up the different layers
of the block, and the PyTorch method “forward” which is used to define the forward
propagation of the module.
All of the layers and PyTorch equivalent classes mentioned below are part of the PyTorch
package “nn” [tor23]. This package encompasses most of the basic PyTorch functionality
used to construct graphs and neural network models.
The ConvolutionalBlock class was designed to be versatile, comprising a convolution layer,
an optional batch normalization layer, and an optional activation layer. Using a standard
Python list, one can append different layers, predefined in the PyTorch library, such as
“nn.Conv2d” for 2D convolution or “nn.BatchNorm2d” for batch normalization, to this
list. By setting the list as a parameter in the constructor of “nn.Sequential” PyTorch
automatically sequences the layers and facilitates easy extension or modification of the
layers of this block.
Similarly, the SubPixelConvolutionalBlock is set up using PyTorch equivalents of the out-
lined blocks from Section 2.1.2, namely “nn.Conv2d”, “nn.PixelShuffle” and “nn.PReLU”
activation layer. This block is ready to use in just ten lines of code.
Analogue to the other two blocks, the ResidualBlock is constructed using the Convolu-
tionalBlocks created earlier. However, in this case, the ConvolutionalBlocks are utilized
sequentially in the forward method of the ResidualBlock. The initial input is added at the
end of both ConvolutionalBlocks as a residual. The structure of the ConvolutionalBlocks
within the ResidualBlock follows the specifications outlined in Section 2.1.2. Specifically,
the first ConvolutionalBlock includes a batch normalization layer and a PReLU activation
layer, while the second block consists solely of a batch normalization layer.

20

4.2. Data Processing

1 class SRResNet(nn.Module):
2
3 def __init__(self, large_kernel_size=9, small_kernel_size=3, n_channels=64,

n_blocks=16, scaling_factor=4):
4 [...]
5
6 def forward(self, lr_imgs):
7 """
8 The forward propagation of the SRResNet.
9

10 :param lr_imgs: The LR image to be upscaled. A tensor of size (N, 3, w, h)
11 :return: SR images upscaled from the LR input. A tensor of size (N, 3, w *

scaling factor, h * scaling factor)
12 """
13
14 # (N, 3, w, h)
15 output = self.conv_block1(lr_imgs)
16
17 # (N, n_channels, w, h)
18 residual = output
19
20 # (N, n_channels, w, h)
21 output = self.residual_blocks(output)
22
23 # (N, n_channels, w, h)
24 output = self.conv_block2(output)
25
26 # (N, n_channels, w, h)
27 output = output + residual
28
29 # (N, n_channels, w * scaling factor, h * scaling factor)
30 output = self.subpixel_convolutional_blocks(output)
31
32 # (N, 3, w * scaling factor, h * scaling factor)
33 sr_imgs = self.conv_block3(output)
34
35 return sr_imgs

Figure 4.1: Code shows the forward propagation of the SRResNet and how the different
building blocks are used in code, as outlined in the diagram of Figure: 2.7.

4.2 Data Processing
To properly train the network, we had to prepare a dataset first. The training images for
our dataset were sourced from the supplements of the paper “Make Your Own Sprites:
Aliasing-Aware and Cell-Controllable Pixelization” [WCZ+22]. The dataset features a
wide variety of images, including both pixel art and non-pixel art, collected from sources
such as the CartoonSet [RBG+17] or the Abstract Scene dataset [ZP13]. This base
dataset was then modified and processed to suit our needs. The SRRes network is a
super-resolution network, meaning it takes a small input image and a larger target image,
and then trains the weights accordingly based on those inputs. For each entry in our
training set, we must prepare two groups of images. The first group serves as the input
to our model, while the second group represents the desired output, also referred to as
the target. To avoid bias towards a single CRT filter, we created a total of seven different
filters, resulting in a training-to-target ratio of 7:1. The raw dataset consisted of 10,969
images with resolutions ranging from 256x256 to 512x512. With seven different CRT
masks, this resulted in a total of 76,783 training images in our dataset. Similarly, we
have 10,969 target images ranging from a resolution of 512x512 to 1024x1024, as well as

21

4. Implementation

1024x1024 to 2048x2048 for our second network respectively. Neither the training nor
the input images have an alpha layer. Therefore, our implementation does not utilize the
alpha layer for either training or testing purposes.

Aperture Grille Compressed TV

Streched VGA

PhosphorVGA

Advanced
Aperture Grille

Dot Matrix

Train Input Train Targets

MMPX Upscaling

Pixelation

x2 x4

Figure 4.2: The figure illustrates how our dataset was modified from the base dataset.
The training target undergoes upscaling and then pixelation to ensure the elimination of
upscaling artifacts. The training inputs are generated by processing the base image with
seven different CRT filters each.

It should be noted that the following explanations of our training procedure, as well as
the input and target images, represent the best results we have achieved. We attempted
several different training procedures with input and target images of varying sizes, and
we applied the pixelation effect at different stages. However, none yielded results that
came close to what we present below. In particular, we tried to downscale the input
images by a factor of two and pixelate them afterward, instead of upscaling and pixelating

22

4.2. Data Processing

the target images. The rest of the training pipeline remained the same, including the
application of our CRT filter. While this approach yielded better color accuracy overall,
it didn’t process the CRT patterns as efficiently and accurately, leading us to pursue the
following solution for input and training images.

4.2.1 Training Targets

For the training targets, we had two options: either downsampling, in conjunction with
pixelation, using the method from Wu et al. [WCZ+22] to reduce the original images by
a factor of two and pixelating them, while keeping the target images the same size as
before, or upscaling the target images by a factor of two and leaving the training input
images unchanged in size.
In this work, we opted for the latter option. Given that our base dataset primarily
comprised images sized 256x256 and 512x512, where a significant portion already consisted
of pixel art or pixelated images, we decided to upscale the target images by a factor of
two to enhance the quality with higher-resolution images. Our dataset consisted of 4235
512x512 images and 6734 256x256 images, respectively. The 256x256 images were of
pixel art nature.
To achieve the upscaling, we utilized the MMPX upscaling algorithm, as described in
2.1.1, and then passed the upscaled images through the pixelation network by Wu et
al. [WCZ+22]. While it may seem counterproductive initially, given that our primary
objective is to detect the CRT pattern and upscale the pixel art image into a higher
resolution representation where the pixel art style may not be desired, our intention was
not to completely repixelize the target images but rather to address upscaling artifacts
like misplaced pixels at the edges.
The effectiveness of this approach depends significantly on the image resolution. The
pixelation network is primarily designed for lower-resolution images, where detecting
and repixelizing graphics is more straightforward. Given that our images are larger
than the preferred resolution, the repixelization aspect is almost nullified, while the
network effectively cleans up the image by addressing upscaling artifacts on the pixel
art boundaries. Additionally, due to the image size, the network even smooths out the
pixelation of the upscaled image, minimizing the pixel art effect for our target images.
However, employing the pixelation network results in a slight color loss compared to
the original image. It should be noted, however, that employing the pixelation network
generally has minimal effect due to our large image resolutions. While we did include it
in our final dataset creation, omitting it would have yielded the same results.

4.2.2 Training Inputs

As previously discussed, for each of the training targets, there are seven different input
images. Each of the seven images has a different CRT mask representing different types
of displays, respectively. To achieve this, we implemented the filter as a post-processing
effect which is directly applied to the image. This filter was written in the OpenGL
Shading Language (GLSL) using OpenGL as the graphics API. We chose OpenGL for

23

4. Implementation

this task due to its simplicity and efficiency in creating a small filter application for
preprocessing tasks like this one.

Figure 4.3: Images from our dataset which exhibit different kinds of CRT filters, in
various sizes, with not all adhering strictly to the pixel-art aesthetics. It is important
to feature various kinds of images with different colors and contrasts to better train the
model.

The masks were chosen based on our research, as extensively discussed in Section 3.3.1.
The chosen masks encompass a range of display types that were prevalent during the era
of the first pixel art games. Several of the implemented shaders (b) to (e) in Figure: 4.4
were originally published to the public domain by Timothy Lottes [Lot14] and modified
for our purposes. The phosphor mask, (f) in the same Figure, was originally crafted by
“libretro”[Tea24] user “guest.r”[gue19] and also modified for our purposes.

The shader was crafted to allow easy modification of various mask features, such as
brightness, mask scale, or scanline density, enabling high customizability for fast and
efficient image creation. To calculate the mask for a given input, several steps are neces-
sary. Since we are dealing with a fragment shader, the mask and scanline are calculated
and applied per fragment shader invocation. The initial step involves computing the
mask. What remains consistent across all seven masks is how the invocation index of the
fragment is utilized. We leverage the invocation index to determine the color component
of the mask. This position is then scaled by an input parameter called “i_maskSize”,
allowing for adjustments to the mask size for differently sized images or artistic purposes.
Once we determine the scaled position, we normalize it to the number of intervals, which

24

4.2. Data Processing

Figure 4.4: This Figure shows the different kinds of CRT masks we have implemented for
the training dataset. The aperture grille version (c) was already present in Figure: 4.3.
(a) The raw pixel art without any effects applied.
(b) A compressed TV CRT mask.
(c) An aperture grille CRT mask without a black matrix.
(d) Stretched version of a CRT screen where the image was transmitted over VGA.
(e) Non-stretched version of a CRT screen where the image was transmitted over VGA.
(f) A CRT mask that uses just the raw Phosphors as colors.
(g) An adapted Aperture grille mask featuring a black matrix as described in 3.3.1.
(h) A Dot-Matrix CRT mask with an included black matrix.

is predetermined by the type of mask. An interval represents the different mask color
components. For example, the Aperture-Grille mask shown in Figure 4.5 has an interval
of three because the red, green, and blue components are adjacent to each other. If one
were to include a black matrix between each color component, the interval would become
six, as each color component is followed by one black component.
By taking the fractional part, we normalize the index from zero to one based on the
number of intervals. This allows for the layout of the mask such that depending on the
position (now between zero and one), either the red, green, or blue channel of the mask
is active or inactive. This can be further expanded by utilizing not only the x-component
of the position but also the y-component, enabling the creation of complex masks with
minimal effort.

In our implementation, we use predefined light and dark values for the brightness of
the different color channels of the mask, depending on whether they are active or not.
However, this can be enhanced by sampling the image at the given position to reflect the
intensity and color of the image to which the effect is applied.
Once the mask color is determined for the current fragment, the next step is to calculate
the scanline intensity. The scanlines are computed by utilizing the current fragment

25

4. Implementation

invocation index, similar to the mask calculation. A 1D Gaussian blur is applied to the
pixels to the left and right of the current fragment, with a 3-tap, 5-tap, and 3-tap Gaussian
blur being applied, respectively. The term “3-tap, analogous to "5-tap," indicates that
the filter kernel has three (or five for the 5-tap kernel) non-zero coefficients, respectively.
A Gaussian blur is a common image processing technique used to reduce image noise
and detail by averaging the pixel values in the vicinity of each pixel. This averaging is
weighted by a Gaussian function to give more importance to nearby pixels.
In a 1D Gaussian blur filter, the kernel is typically centered around the current pixel
and weights the neighboring pixels according to a Gaussian distribution. The weight of
the individual blurred results is determined based on the distance of the current pixel
and the invocation index. Finally, the calculated scanline value, a three-component color
vector, is multiplied with the previously calculated mask to form the final output.
It should be noted that while the various parameters allow for a lot of customization for
each mask type as well as more artistic freedom, for creating our dataset specifically, all
values were left at their default settings, as we will discuss later in Section 4.4.2.

4.3 Training Procedure

For our approach, we trained two separate networks that work together as one. Both
networks were trained with the same parameters: 2 × 106 iterations and a learning rate of
1 × 10−5. The content loss criterion used was MSE-Loss (mean squared error or squared
L2 norm) when comparing the Super Resolution (SR) image with the target image. Since
we minimize this loss, and the comparison is between the SR and the target image, we
change the parameters of the network in such a way that when we re-input the Low
Resolution (LR) image again, it will create an SR image that is closer to the target image
than it was before. The optimizer used was Adam [KB17], a stochastic gradient-based
optimizer.
The batch size for each trained model was set to 16. Regarding the model parameters,
a kernel size of nine was chosen for the first and last convolutions, which transform
the inputs and outputs, respectively. The size of the kernels used for all in-between
convolutions such as in the residual and subpixel convolutional blocks, was set to three.
The number of channels was selected as 64 for the in-between input and output channels,
such as the residual and subpixel convolutional blocks. The model consists of a total of
16 residual blocks.
Additionally, both networks were trained with two different datasets, each dependent on
the other. Firstly, the network was trained using the CRT images as training input and
the two times upscaled, non-CRT version as the target. Secondly, another SRResNet
was trained, but this time, the outputs of the first network were used as the training
input and a four-times upscaled, non-CRT version was used as the target. This means
two differently scaled target images were used: one 2x and one 4x.

26

4.4. Parameters and Workflow

Input Image Output ImageFirst Network

Target Image

Intermediate
Output Image

Input

Target

Input Second Cleanup
Network

Target

Figure 4.6: The pipeline illustration depicts the training process where both our networks
utilize the intermediate output of the first network as the input image for the second
network. Throughout this process, the same target image is employed for training both
networks.

For the second network, the input data comprised the output of the first network, which
was run with the same training dataset. While this isn’t a typical approach, the second
network aimed to create a clean-up network to remove smears, incorrect pixels, and
residuals that may still be visible from CRT filters.
Consistently, the training procedure for both networks was the same. For each iteration,
the input was cropped into random chunks of size 24x24. The target images underwent a
similar cropping process, albeit with size adjustments based on the scaling factor, which
in our case is two. This ensured that the target images maintained proportionality and
consistency with the input images, facilitating accurate training of the network. By
aligning the dimensions of the target images with those of the input images, we ensured
that the network learned to produce output that corresponded correctly to the desired
upscaled versions of the input images.
The cropping of images offers several benefits for training our network. Firstly, it enables
data augmentation, effectively diversifying our dataset by introducing variations in image
content. Secondly, it enhances training efficiency by utilizing more patches of smaller
images, allowing the network to learn from a wider range of data samples. Additionally,
cropping helps standardize image sizes during training, ensuring consistency across the
dataset. Overall, these benefits contribute to improving the robustness and effectiveness
of our network during the training process.

4.4 Parameters and Workflow

In our implementation, we prioritized simplicity and user-friendliness as overarching goals.
This guiding principle was upheld throughout the development process, reflected in both
the resultant application, crt2hq, and the software CRT filter used in generating our
dataset. As a result, both crt2hq and the software CRT feature very few parameters that
can and need to be tweaked. All parameters are supplied as command-line parameters,
also known as command-line arguments or command-line options. These parameters

27

4. Implementation

are provided to the program when it is executed in a command-line interface (CLI) or
terminal. This design choice enhances ease of use and allows users to interact with the
program efficiently.

4.4.1 crt2hq

Input Image More Runs? Output Image

Yes

NoSRResNet(s)

DownsampleApply Blur?

Yes

Gaussian Blur

No

Keep
Resolution?

No

Yes

Downsample

crt2hq

Apply LUT? No

Yes

Apply LUT

Figure 4.7: Pipeline image demonstrating how our approach, crt2hq, works.

Upon evaluating our trained model, it became apparent that merely inputting an image
into the network did not yield the desired outcome. Consequently, we modified the
program to run the input image multiple times through the trained model. However, this
approach sometimes resulted in over-sharpened images or harsh artifacts, particularly
with certain types of CRT images. To address this issue, we introduced a slight blur
applied after each iteration the image is sent through the network. This blur has become
a vital point for our approach as we will discuss later in Section: 5.4.

Parameter Description Type
-i The input file or directory. String
-o The output file or directory. String
-r The number of runs (iterations) for the network. Integer

-b The blur radius for in-between blur.
Helps smooth the output. 0 = Disable. Float

-s If set, skips the first crt filtering step.
(Useful for crt images on the internet.) Boolean

-k If true, it keeps the same size as the original image. Boolean
-l The path to the HALD (LUT) image used for color correction. String

Table 4.1: Showcasing the input parameters of our program, crt2hq.

The most notable parameters include “-r” which determines the number of times the
image is fed through the network, and the parameter “-b” which sets the blur radius of
the applied blur between each run. Additionally, “-l” enables the application of LUTs.

28

4.4. Parameters and Workflow

This feature was implemented because our network may experience color or brightness
loss at times. Utilizing a LUT image allows us to address these shortcomings. Depending
on the input image used, the number of runs and the blur radius can significantly impact
the resulting image.

4.4.2 CRT Filter

As previously mentioned, we have developed a highly versatile shader that incorporates
seven different CRT mask types. To streamline the process of creating and testing CRT
input images for our dataset, we have enabled the easy adjustment of shader parameters.
Although the filter can warp the image to simulate the appearance of a curved CRT

Parameter Default Value Description

i_scale 14 The scale of the overal image.
Used to apply the proper amount of scanlines to the image.

i_hardScan -15 The sharpness of the scanlines.
i_hardPix -1.5 The sharpness scale used for the gaussian blurs.

i_maskLight 1.5 The brightness of the pixel
when light shines through the mask.

i_maskDark 0.5 The brightness of the pixel
when the mask covers the current pixel.

i_maskSize 3 The size of the mask itself.

i_warpX 32 Warping in X direction.
Used to recreate a CRT screen more faithfully.

i_warpY 64 Warping in Y direction.
Used to recreate a CRT screen more faithfully.

i_maskType 1 The mask type to use.
Value between 1-7.

Table 4.2: The parameters used by our CRT shader and their default values have been
used when generating the training dataset.

display, we did not utilize this feature for our purposes. However, it can be enabled if
required. This decision was made because our images are relatively small, and adding
curvature to them would offer minimal to no benefit for training the model.
The default values provided in Table: 4.2 were used as parameters when creating our
dataset. The only parameter that changed during training was the “i_maskType”
parameter, which tells the shader which mask type to apply.

29

4. Implementation

1 // Aperture-grille without black matrix
2 vec3 mask_ApertureGrille(vec2 position) {
3 //scale the current fragment position by using
4 //an input (uniform) i_maskSize
5 vec2 pos = floor(position / i_maskSize);
6
7 //the number of intervals
8 //this lets us choose how many sub-pixels we want to have
9 float num_intervals = 3.0;

10
11 //we take the fractional part of the x coordinate
12 //this allows us to map 0-1 to one fragment
13 pos.x = fract(pos.x / num_intervals);
14
15 //the mask variable will be the return value.
16 //here its initialized with just dark
17 vec3 mask = vec3(i_maskDark, i_maskDark, i_maskDark);
18
19 //i_maskLight = the brightness of the pixel when light shines through the mask
20 //i_maskDark = the brightness of the pixel when the mask covers the current pixel
21
22 //now we can map the x position to thirds which will be our RGB
23 //Aperture-Grille mask
24 //this same principle can be extended into 2D with the y axis
25 if(pos.x < 0.333) {mask.r = i_maskLight; }
26 else if(pos.x < 0.666) { mask.g = i_maskLight; }
27 else { mask.b = i_maskLight; }
28 return mask;
29 }
30
31 // Calculate the scanline intensity at the given position
32 vec3 scanline(vec2 position) {
33 //calculate the blur colors of neighboring pixel
34 vec3 a = gauss3Tap(position, -1.0);
35 vec3 b = gauss5Tap(position, 0.0);
36 vec3 c = gauss3Tap(position, 1.0);
37
38 //get the weights of these pixels
39 float wa = scanWeight(position, -1.0);
40 float wb = scanWeight(position, 0.0);
41 float wc = scanWeight(position, 1.0);
42
43 return (a * wa + b * wb + c * wc);
44 }
45
46 // Return scanline weight.
47 float scanWeight(vec2 position, float off) {
48 return exp2(dist(position).y + off, i_hardScan * i_hardScan);
49 }
50
51 // Calculates the distance of the emulated pixel to the neares texel
52 vec2 dist(vec2 position) {
53 //Calculate the resolution using the input variable i_scale, iResolution.xy is the resolution of

the input image
54 vec2 res = iResolution.xy / i_scale;
55 position = position * res;
56 return -((position - floor(position)) - vec2(0.5));
57 }

Figure 4.5: This code snippet illustrates how the aperture-grille mask intensity and color
are calculated based on the fragment invocation index. The position is normalized to
determine which color component of the mask should be active at the given fragment
invocation index. Finally, the function returns a 3D vector representing the mask color.
Additionally it depicts how the scanline is calculated by using different Gaussian blurs
together.

30

CHAPTER 5
Evaluation

In this chapter, we evaluate and analyze our proposed approach of refining CRT based
images into a higher definition version, by using a reference CRT images sourced from
the internet, as well as a software CRT image created using our custom CRT filter
implementation, which was used to generate our training dataset, outlined in Section
4.2. We compare the results against each other and assess how well the CRT images are
filtered, including both the reference images and our own implementation. Additionally,
we evaluate the resulting images based on the accuracy of the CRT image processing
and how they compare to the original pixel art. We also analyze why some CRT images,
both sourced and with our filter, might not look as expected, and identify the sources of
these discrepancies.

5.1 Experimental Setup

As briefly stated, for our experiments, we sourced several reference CRT images as well
as the original pixel art from the internet. We then analyzed the reference images and
created our own CRT image using our software CRT filter, which was applied to the
original pixel art.
These images were then processed using our proposed approach, crt2hq. Both processing
runs were executed with the same parameters per image, respectively. However, the first
iteration did not use a Look-Up Table (LUT) color correction at the end, whereas the
second run applied a custom LUT. This LUT was created based on the results of the
first run, to evaluate whether it is possible to accurately recreate colors as well. This
already suggests some shortcomings or color loss in our approach, which we will discuss
in more detail in Section 5.2.

31

5. Evaluation

5.1.1 Test Dataset

We chose three different games that stem from the SNES and PlayStation 1 era. These
games were originally developed and played on CRT displays, making them ideal for our
purposes. The games in question are:

• Castlevania: Symphony of the Night.
Developed by “Konami”[Kon] for the Playstation 1.

• Final Fantasy VI.
Developed by “Squaresoft”, nowadays known as “Square Enix”[SQU] for the SNES.

• Chrono Trigger.
Developed by “Squaresoft”, nowadays known as “Square Enix”[SQU] for the SNES.

From each game respectively, we sourced one CRT image, which was captured using a
professional camera displayed on an equally good-quality display. We then sourced the
corresponding original pixel art or sprite sheet and applied our own software CRT effect.
Every software CRT filter used was tuned to look as closely as possible to the reference
image. Figure: 5.1 shows the original, the reference CRT, as well as our CRT-filtered
image.

The reference image of Castlevania: Symphony of the Night and Chrono Trigger were
originally captured by X user “CRTPixels” [CRT21], the Final Fantasy VI image used
was captured by X user “Ruuupu”[Ruu21]. Table: 5.1 shows the values with which we
created our CRT replicas of the reference image. To understand the differences in values
and what they do individually, refer to Section: 4.4.2.

Image i_scale i_hardScan i_hardPix i_maskLight i_maskDark i_maskSize i_maskType
Castlevania 13 -10 -1.1 3 1.5 3 6

Final Fantasy 14 -15 -1.5 1.5 0.4 3 6
Chrono Trigger 26 -10 -1.0 1.7 0.5 3 2

Table 5.1: The parameters used when we created our CRT images were based on the
reference images.

Because the original pixel art images are naturally very small in size, we applied a similar
process as we did for our training targets, outlined in Section: 4.2.1, where we upscaled
and pixelated the images again. We did this mainly because our sourced reference
images, captured by a camera, did not adhere strictly to pixel boundaries and were
naturally larger. We attempted to match the sizes and actual crop of the images as
closely as possible to ensure a fair comparison. Only the Chrono Trigger image has a
slight discrepancy in size due to upscaling and cropping of the original pixel art.

All images used were of the Portable Network Graphics (PNG) file format as it is one of
the most commonly used formats and offers lossless compression of the images. However,
all of our references as well as original pixel art images had different widths and heights.

32

5.1. Experimental Setup

(a) Original Pixelart (b) Photographed
CRT references

(c) Our custom CRT �lter
implementation

Figure 5.1: The test images which were used to evaluate our approach.
(a) The raw pixel art.
(b) Photographed CRT references. The first and the third images were captured by X
user “CRTPixels” [CRT21]. The second image was captured by X user “Ruuupu”[Ruu21].
(c) Our recreation of the reference CRT image by using our custom software CRT filter,
which was used to generate the training dataset, on the original pixel art.

This is important to note as we will later discuss how the image size has a significant
effect on both the runtime of our approach and the RAM consumption in Section: 5.3.

33

5. Evaluation

5.2 Results

Figure: 5.2 showcases our results. To properly compare and evaluate our results, we
used the original pixel art image, upscaled it by a factor of two using both bilinear and
the hq2x algorithm, and compared those results with our approach, processing both the
reference and our own CRT filtered image. The images (e) to (g), enclosed within the
highlighted red box, showcase our results using crt2hq on the input image in (a).

(a) Original Pixelart (b) Bilinear (c) hq2x (f) crt2hq - applied on
reference CRT image

(g) crt2hq -
same as (f) with LUT applied

(e) crt2hq - applied on
our CRT �lter

(d) Photographed
CRT references

Figure 5.2: (a) The raw pixel art.
(b) A two times upscaled version of the raw pixel art using a standard Bilinear filter.
(c) The hq2x upscale algorithm applied on the raw pixel art.
(d) Photographed CRT reference image.
(e) Our result using our recreated CRT images from Figure: 5.1 (c) as input.
(f) Our result with the photographed CRT reference image as input.
(g) Our result with the photographed CRT reference image as input with a custom LUT
applied to resemble the original colors.

5.2.1 Discussion of Color Loss and Correction

With the right parameters supplied, our approach delivers satisfactory results in terms
of upscaling and maintaining the CRT style while simultaneously removing the CRT
pattern successfully. However, when we compare the images in rows (e) and (f) of
Figure: 5.2 to their original pixel art, it becomes clear that the resulting images become
somewhat faded in color and contrast. The color loss can be traced back to our SRResNet
model. To address this, as previously stated in Section: 5.1, a LUT was applied for color
correction at the end of the process in images of column (g) using the reference CRT image.

34

5.2. Results

Image Runs Blur Skip
Castlevania (Our CRT) 3 2.2 Set
Castlevania (Ref. CRT) 3 2.0 Set

Final Fantasy IV (Our CRT) 4 2.1 Set
Final Fantasy IV (Ref. CRT) 4 2.0 Set

Chrono Trigger (Our CRT) 3 4.0 Set
Chrono Trigger (Ref. CRT) 3 4.0 Set

Table 5.2: The parameters used for crt2hq when processing the test dataset.

5.2.2 Impact of Parameters

To achieve satisfactory results as shown in the above Figure, it is necessary to adjust
the provided parameters as outlined in Section: 4.4.1. Different parameters had to be
supplied for each image processed. Additionally, due to the number of runs that our
approach takes and the slight blur introduced in between each of the processing steps, a
blur is visible in the final results. Looking at Figure: 5.2 shows which parameters were
used for each of the visible result images in Figure: 5.2. Specifically, the number of runs
varies only slightly.

5.2.3 Analysis of Specific Examples

Through extensive testing on the impact of the number of runs as well as the blur radius,
the best results are achievable using run values between three and four and blur values
between two and four. We discuss and analyze the effects of the parameters used later
in Section: 5.4. Overall, our approach preserves the look and feel gained from the CRT
quite well, despite the slight color discrepancy compared to the original pixel art. This is
particularly evident in the eyes of Dracula in Figure: 5.2 where the long stretched eyes
are preserved on our upscaled result.

5.2.4 Challenges and Limitations

While our test images achieve good results, this cannot be said for all input images
in general. Similarly, not all input parameters work equally well. If images are very
dark or have a certain peak color from the CRT mask, for instance, a high red portion,
it is difficult for our approach to produce satisfactory results. While it can achieve a
decent job, there may be some detail loss and smearing, especially if the input image
is comparatively small. To further investigate why our approach struggles with those
examples, we examine the reference image (c) from Figure: 5.4 and compare it with our
own CRT implementation to indicate why our approach struggles with these images.
As mentioned previously, CRT displays were tuned by the manufacturer, as well as by

the home user. When comparing (b) to (d) in Figure: 5.3, it becomes apparent that the
brightness and the contrast between pixels are largely increased in the reference CRT
image of (b). Similarly, in our CRT implementation, there is no bias towards any of the

35

5. Evaluation

(a) (b)

(c) (d)

Figure 5.3: This figure demonstrates the difference between reference CRT images and
our own software CRT filter.
Image (a) corresponds to the reference image (c) in Figure: 5.4, and image (b) provides
a zoomed-in version to clearly show the CRT pattern.
Image (c) depicts our recreation using our custom software CRT filter, while image (d)
offers a zoomed-in view for closer examination.

three color channels. Every color is treated with the same amount of brightness for the
resulting CRT mask. Compared to the reference image our CRT filter is muted and has
less contrast. Because our network was trained with images where the frequency between
the red, green, and blue channels is not as high as with the reference image shown in (b),
our network struggles to properly retain the colors and shapes. Because there is a bias
towards blue in the reference image, the red channel becomes very visible with harsh
edges compared to the other two colors, which mix better together. Due to this mixing,
red edges become very visible when using such an image with our approach. Analogously,
this is the case for image (a) in Figure: 5.4 as well.

36

5.3. Memory and Runtime Analysis

Figure 5.4: Three example images by X user [Ruu21]. The top row is the reference CRT
image. The second row is the output of our approach with no blur applied. The bottom
row is the output from our approach with a blur radius of 1.5.
It effectively illustrates the challenges our approach encounters with dark or high-contrast
images, as well as CRT images biased towards a specific color channel, such as red.

5.3 Memory and Runtime Analysis

We conducted all image tests and benchmarks on a system running Windows 11 and
using Python version 3.9, utilizing an AMD Ryzen 9 7950X processor, 128 gigabytes
RAM, and an NVidia RTX 2080 graphics card. To maintain consistency in timings and
measurements, all processes were executed on the same machine. Each image underwent
individual processing in its dedicated process, rather than batch processing, to prevent
residual memory allocations from influencing subsequent image analyses. To assess
memory consumption and runtime performance, we tracked the average metrics for
each image across 25 iterations. The choice of 25 iterations was determined through
experimentation to identify a stable plateau in the average metrics. Both processing time
and RAM usage exhibit a strong dependence on the number of pixels in the input image,

37

5. Evaluation

as observed in the graph in Figure: 5.5 and the raw data in Figure: 5.3. As anticipated,
both metrics follow a largely linear trend with increasing pixel count.

Pixel

0

10

20

30

40

50

412500 782400 914432 1888029

Time in seconds Ram in Gb

Figure 5.5: This figure illustrates the timings and RAM consumption (Figure: 5.3)
relative to the number of pixels, with values sorted in ascending order.

Our approach exhibits inefficiencies in both time and memory compared to conventional
upscaling algorithms like bilinear filtering or the hq2x algorithm. The prolonged runtime
can be attributed to several factors. Firstly, initializing the neural network entails loading
checkpoints and initializing PyTorch, which contributes to the overall processing time.
Additionally, neural networks inherently demand significant computational resources,
necessitating suitable hardware for efficient operation. Similarly, memory efficiency dimin-

Image Avg. Real Time Avg. CPU Time RAM Pixels
Castlevania (Our CRT) 13.29 11.33 14.5983 782400
Castlevania (Ref. CRT) 13.79 11.73 14.5362 782400

Final Fantasy IV (Our CRT) 3.95 9.83 6.3578 412500
Final Fantasy IV (Ref. CRT) 3.98 9.84 6.3581 412500
Chrono Trigger (Our CRT) 42.79 14.16 43.0527 1888029
Chrono Trigger (Ref. CRT) 16.53 11.32 23.2436 914432

Table 5.3: To display the timings and average RAM usage of our test images, we measured
the time units in seconds and RAM units in gigabytes. All images were processed using
identical settings, and the number of iterations was set to 25.

ishes linearly with increasing pixel count in the input resolution. As the input resolution
rises, our approach’s overall memory consumption escalates accordingly. Throughout

38

5.4. Parameter Analysis and Their Impact on Output Quality

testing, we encountered challenges related to both RAM and VRAM on our graphics
card on images with larger resolutions than our test images, as PyTorch attempted to
allocate more memory than available, leading to crashes. Our testing images pushed the
boundaries of our hardware capabilities, rendering this approach challenging to execute
on standard systems. Optimization is imperative and remains a focal point for future
iterations of our approach.

5.4 Parameter Analysis and Their Impact on Output
Quality

As previously highlighted, our approach features a relatively small set of input parameters.
Among these, the most pivotal parameters include the number of runs and the blur radius
applied between successive iterations. Through empirical testing, as discussed in Section
5.2, we determined that an optimal number of runs falls within the range of three to four,
while an effective blur radius typically ranges from two to four.

Figure 5.6 vividly illustrates the importance of these parameters in achieving favorable
outcomes. Their careful selection significantly influences the quality of the final result.

(a) 1 Run (b) 2 Runs (c) 3 Runs (d) 4 Runs

Ra
di

us
: 0

Ra
di

us
: 2

Figure 5.6: Filtering the reference CRT input from Figure: 5.1 (b) with different number
of runs as well as different blur radii. The first row shows a radius of zero, whereas the
second one has a radius of two.

When the blur radius is relatively small or zero, the refinement process reaches a plateau
where further improvement becomes minimal. However, introducing a slight blur radius
enhances our model’s ability to filter the image and remove unwanted edges and colors

39

5. Evaluation

more effectively. As depicted in Figure 5.7, this principle is not absolute.
Image (a) demonstrates the image without any applied blur, where clear red lines are
visible at the top, and the overall appearance exhibits roughness with harsh edges.
Conversely, applying a small blur radius of 1.5, as shown in the image (b), effectively
clears these edges and enhances the overall suitability of the resulting image for our
purposes.

(a) (b)

Figure 5.7: Demonstrates the effect a small amount of blur has on the output compared
to no blur.
(a) The reference CRT image from Figure: 5.1 upscaled with our approach without using
any blur.
(b) Our approach applied on the reference CRT image with a blur radius of 1.5.

The reference CRT images were processed without enabling the first network, where the
parameter “–skip” is set. This decision was made due to differences in both color and
brightness between the reference CRT images and our own CRT filter used for training
the model. The first network tends to over-brighten the output excessively. While it
can effectively pre-clean the CRT effect to a significant extent, it exhibits a bias on our
dataset. As discussed in Section 5.2, our CRT filter is relatively muted in color and
brightness compared to CRT images sourced from the internet.

5.5 Dataset and Training Time Analysis

As outlined and discussed extensively in Sections 4.2.2 and 4.2.1, both the input and
target image creation processes were extensive endeavors. The input images comprised a
total of 76783 images derived from a ground truth dataset of 10969 images. The CRT
filtering process itself was relatively fast, averaging 0.03 seconds per image per CRT mask.
Despite its efficiency, processing the entire dataset of input images took approximately
0.63 hours.

40

5.5. Dataset and Training Time Analysis

In order to create the input images for our second network, we applied our trained
network to all 76,783 input images, which took an average of 0.499 seconds per image.
This totals to approximately 10,642 hours of processing time. The most time-consuming
aspect was the creation of target images. This substantial time consumption is primarily
due to the size of our images. Working with both 256x256 and 512x512 images, and with
two networks, necessitates target images of 512x512 and 1024x1024 for the first network,
and 1024x1024 and 2048x2048 for the second cleanup network. Our dataset consisted of
4235 512x512 images and 6734 256x256 images, respectively. Considering this, we had to
upscale and apply the pixelation network to the images twice: once for the first network
with a scaling factor of two, and a second time with a scaling factor of four, due to our
two-network setup where the first network’s output serves as the input for the second
network.
Upscaling the 512x512 images to 1024x1024 and 2048x2048 took 1,272 seconds and 5.693
seconds respectively, totaling 8,193 hours. Similarly, the upscaling of the 256x256 images
to 512x512 and 1024x1024 took 0,349 seconds and 1,085 seconds respectively, totaling
2,682 hours. Thus, the upscaling of the images alone took an estimated 10,875 hours.
Additionally, the pixelation of the 512x512 images took an average of 0,649 seconds, the
1024x1024 images took 2.34 seconds, and the 2048x2048 took 20,997 seconds, amounting
to a total pixelation time of roughly 30,266 hours.
In total, creating the target images took an estimated 41,141 hours to produce. Training

Step Time in hours
Training Input (CRT Filtering) ∼11,272

Target Input (Upscale + Pixelate) ∼41,141
SRResNet Training (Rough CRT) ∼10

SRResNet Training (Cleanup) ∼10
Total 72,413

Table 5.4: Time evaluation of creating the dataset and training the two SRResNet passes.
Time was measured in hours.

the networks proved to be more efficient on our hardware compared to the upscaling
and filtering steps outlined earlier, as PyTorch is highly optimized for training tasks. As
detailed in our implementation in Section 4.3, both networks underwent similar training
procedures, comprising a total of 209 epochs each. Each epoch required approximately
two to three minutes to process, resulting in roughly ten hours for each network’s training
cycle. In total, the dataset creation and model training processes amounted to an
estimated 72,413 hours. This duration can certainly be optimized by streamlining the
workflow, implementing multi-threading where applicable, and utilizing newer hardware
for model training.

41

CHAPTER 6
Conclusion and Future Work

In this thesis, we discussed the challenges of reproducing the distinctive look and feel of
pixel art, originally crafted for CRT screens, on modern LCD displays and explored the
reasons behind this difficulty. Although the recreation of the CRT effect using software
filters remains an area still open to further exploration due to the intricate nature of
CRT displays and diverse manufacturing architectures, our research demonstrates the
utility of employing these filters for our purpose. Combined with neural networks such as
the SRResNet, they offer promising avenues for future development to enhance the pixel
art images into their high-definition version. With that said, there are still improvements
to be made using different kinds of neural networks such as a Generative Adversarial
Network (GAN) that employs adversarial learning that could enhance the results, such
as making sharper, less blurry, images.
The training images used in our approach are obtained from two datasets, containing a
mix of pixel art and non-pixel art images. Ideally, for the best training outcome, our tar-
gets should consist only of high-definition versions of the input images. However, we only
had one set of images to create our training and target image pairs, so we experimented
with various input and target resolutions and applied pixelization at different stages.
We achieved the best training results by upscaling the target images and keeping the
input images at their initial resolution. Nevertheless, since this is not an ideal solution,
we need to conduct further investigation to refine the training pair in future iterations
of our work. Regarding the creation of our input images, all CRT mask parameters
were pre-defined and remained similar across all different mask types. One improvement
could be calibrating the parameters per image or randomizing them within acceptable
parameter bounds and further developing the filters to achieve higher accuracy and a
more robust representation of the software CRT result. However, instead of relying on
single images on which a CRT filter is then applied, utilizing existing emulation solutions
to capture in-game footage and screenshots, or screen capture both with and without
a CRT filter applied, could be a valid alternative to generate a comprehensive dataset.

43

6. Conclusion and Future Work

With that in mind, no publicly available CRT dataset currently exists. Generating the
dataset using software-based CRT filters also has limitations and shortcomings because
of the intricate nature of CRT displays and the multitude of different effects, such as
halation which can only be simulated. Creating a dataset based on real CRT displays,
instead of using a software-based solution, could be an interesting avenue for future work.

In conclusion, in this work, we presented an approach to addressing the challenge of
generating higher-definition versions of CRT images for modern displays. By exploring
the feasibility of training and utilising a neural network, specifically the SR network
SRResNet, for this purpose, we have demonstrated the potential to bridge the gap
between the original pixel art viewed on CRT displays and its high-definition version on
modern LCD screens. Our method not only preserves the original look and feel of the
CRT representation but also offers insights into the effects of different CRT masks on
the training process and final results. Additionally, we have identified several areas for
improvement and future research directions to further enhance the efficiency and quality
of this approach.

44

List of Figures

1.1 A visualization by X user Thomas Feichtmeir [Fei], describing how pixel art
should look like, when designed for modern Liquid Crystal Display (LCD)
displays. (a) The raw pixel art. (b) The original look when viewed on a CRT
display. (c) Handcrafted reinterpretation (by Thomas Feichtmeir [Fei]) of the
raw pixel art (a) capturing its intrinsic crt look (b) for modern displays. 2

2.1 The source-to-destination mapping in Mazzoneli notation that MMPX uses
is as follows: J, K, L, and M represent the destination pixels, while the 3x3
neighborhood pixels A-I and the diamond points P-S are utilized as input
pixels [MG21]. 4

2.2 An overview of existing super resolution techniques [CHQ+22]. 5
2.3 A building block for residual learning. Symbolizing how feed forward networks

can be created with shortcut connections to realize the formulation F (x) +
x.[HZRS16] . 7

2.4 The convolutional block in our implementation. Both the Batch Normalization
layer as well as the activation layer are optional. The convolutional block is
used throughout our implementation. 7

2.5 Diagram showing the residual block in our implementation. It consists of two
convolutional blocks, both having input and output channels of size 64 and a
kernel size of 3. Both convolutional blocks have a batch normalization layer
and the first block also features a PReLU activation layer. 8

2.6 This diagram shows how the sub-pixel convolutional block is structured.
It features 2D convolution input channels and 64 ∗ scalingSactor2 output
channels, a pixel shuffle to shuffle the additional channels to form additional
pixels, and a PReLU layer. 8

2.7 This diagram shows how the previously mentioned blocks are used together to
form the SRResNet. The residual is formed as a skip connection that “skips”
the residual blocks and the second convolutional block. 9

3.1 The basic principle of a shadow-mask CRT. Image courtesy of [She03]. (A)
depicts the basic architecture of the CRT, while (B) shows the relationship
between the shadow mask and the cathode rays that are directed onto the
phosphor-coated faceplate. 12

45

3.2 Displaying the three most common mask types of CRT displays. Original:
”CRT mask types, ways of measuring dot pitch.“ By Philipp M. Moore. [Phi10]
. 13

3.3 Comparison of different mask types (of different TVs) by Reddit user ”Red-
dit_sacks“ [Red22]. 14

3.4 Architecture showing the basics of a liquid crystal display. Image courtesy by
[She03]. 16

4.1 Code shows the forward propagation of the SRResNet and how the different
building blocks are used in code, as outlined in the diagram of Figure: 2.7. 21

4.2 The figure illustrates how our dataset was modified from the base dataset.
The training target undergoes upscaling and then pixelation to ensure the
elimination of upscaling artifacts. The training inputs are generated by
processing the base image with seven different CRT filters each. 22

4.3 Images from our dataset which exhibit different kinds of CRT filters, in various
sizes, with not all adhering strictly to the pixel-art aesthetics. It is important
to feature various kinds of images with different colors and contrasts to better
train the model. 24

4.4 This Figure shows the different kinds of CRT masks we have implemented
for the training dataset. The aperture grille version (c) was already present
in Figure: 4.3. (a) The raw pixel art without any effects applied. (b) A
compressed TV CRT mask. (c) An aperture grille CRT mask without a
black matrix. (d) Stretched version of a CRT screen where the image was
transmitted over VGA. (e) Non-stretched version of a CRT screen where the
image was transmitted over VGA. (f) A CRT mask that uses just the raw
Phosphors as colors. (g) An adapted Aperture grille mask featuring a black
matrix as described in 3.3.1. (h) A Dot-Matrix CRT mask with an included
black matrix. 25

4.6 The pipeline illustration depicts the training process where both our networks
utilize the intermediate output of the first network as the input image for the
second network. Throughout this process, the same target image is employed
for training both networks. 27

4.7 Pipeline image demonstrating how our approach, crt2hq, works. 28

4.5 This code snippet illustrates how the aperture-grille mask intensity and color
are calculated based on the fragment invocation index. The position is
normalized to determine which color component of the mask should be active
at the given fragment invocation index. Finally, the function returns a 3D
vector representing the mask color. Additionally it depicts how the scanline
is calculated by using different Gaussian blurs together. 30

46

5.1 The test images which were used to evaluate our approach. (a) The raw pixel
art. (b) Photographed CRT references. The first and the third images were
captured by X user “CRTPixels” [CRT21]. The second image was captured
by X user “Ruuupu”[Ruu21]. (c) Our recreation of the reference CRT image
by using our custom software CRT filter, which was used to generate the
training dataset, on the original pixel art. 33

5.2 (a) The raw pixel art. (b) A two times upscaled version of the raw pixel art
using a standard Bilinear filter. (c) The hq2x upscale algorithm applied on
the raw pixel art. (d) Photographed CRT reference image. (e) Our result
using our recreated CRT images from Figure: 5.1 (c) as input. (f) Our result
with the photographed CRT reference image as input. (g) Our result with
the photographed CRT reference image as input with a custom LUT applied
to resemble the original colors. 34

5.3 This figure demonstrates the difference between reference CRT images and
our own software CRT filter. Image (a) corresponds to the reference image
(c) in Figure: 5.4, and image (b) provides a zoomed-in version to clearly show
the CRT pattern. Image (c) depicts our recreation using our custom software
CRT filter, while image (d) offers a zoomed-in view for closer examination. 36

5.4 Three example images by X user [Ruu21]. The top row is the reference CRT
image. The second row is the output of our approach with no blur applied.
The bottom row is the output from our approach with a blur radius of 1.5.
It effectively illustrates the challenges our approach encounters with dark or
high-contrast images, as well as CRT images biased towards a specific color
channel, such as red. 37

5.5 This figure illustrates the timings and RAM consumption (Figure: 5.3) relative
to the number of pixels, with values sorted in ascending order. 38

5.6 Filtering the reference CRT input from Figure: 5.1 (b) with different number
of runs as well as different blur radii. The first row shows a radius of zero,
whereas the second one has a radius of two. 39

5.7 Demonstrates the effect a small amount of blur has on the output compared
to no blur. (a) The reference CRT image from Figure: 5.1 upscaled with our
approach without using any blur. (b) Our approach applied on the reference
CRT image with a blur radius of 1.5. 40

47

List of Tables

4.1 Showcasing the input parameters of our program, crt2hq. 28
4.2 The parameters used by our CRT shader and their default values have been

used when generating the training dataset. 29

5.1 The parameters used when we created our CRT images were based on the
reference images. 32

5.2 The parameters used for crt2hq when processing the test dataset. 35
5.3 To display the timings and average RAM usage of our test images, we measured

the time units in seconds and RAM units in gigabytes. All images were
processed using identical settings, and the number of iterations was set to 25. 38

5.4 Time evaluation of creating the dataset and training the two SRResNet passes.
Time was measured in hours. 41

49

Acronyms

API Application Programming Interface. 9, 23

CRT Cathode Ray Tube. xiii, 1–3, 9, 11, 14, 15, 19, 31, 34, 43–45

GAN Generative Adversarial Network. 5, 6, 43

GLSL OpenGL Shading Language. 23

HR High Resolution. 5

LC Liquid Crystal. 16

LCD Liquid Crystal Display. xiii, 1, 2, 11, 15, 43–45

LR Low Resolution. 5, 26

LUT Look-Up Table. 17, 31

PNG Portable Network Graphics. 32

RAM Random Access Memory. 33

SISR Single Image Super Resolution. 6

SR Super Resolution. 5, 26, 44

VSR Video Super Resolution. 6

51

Bibliography

[Bli05] James F Blinn. What is a pixel? IEEE computer graphics and applications,
25(5):82–87, 2005.

[Che11] Robert H Chen. Liquid crystal displays: fundamental physics and technology.
John Wiley & Sons, 2011.

[CHQ+22] Honggang Chen, Xiaohai He, Linbo Qing, Yuanyuan Wu, Chao Ren, Ray E
Sheriff, and Ce Zhu. Real-world single image super-resolution: A brief review.
Information Fusion, 79:124–145, 2022.

[CRT21] CRTpixels. Castlevania: Symphony of the night (1997, konami) - ps1
sharp pixels vs. ps1 composite via sony kv-13m51, 2021. [Online at
https://twitter.com/CRTpixels/status/1408451743214616587 accessed April
27, 2023].

[Fei] Thomas Feichtmeir. Thomas feichtmeir (@cyangmou) · x. Online at
https://twitter.com/cyangmou Mar. 13, 2024.

[Fou] The Linux Foundation. Features. [Online at https://pytorch.org/features/
accessed Jan. 11, 2024].

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Yee Whye Teh and Mike Titterington, editors,
Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine Learning Research, pages
249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

[gue19] guest.r. Crt - guest - dr.venom, Apr 2019. Online at
https://github.com/libretro/glsl-shaders/tree/master/crt/shaders/guest/
accessed Jan. 12, 2024.

[gue22] guest.r. A2080, Nov 2022. Online at https://github.com/guestrr/WinUAE-
Shaders/blob/master/CRT-A2080-HiRes-SmartRes-Interlace.fx accessed Mar.
7, 2024.

53

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778, 2016.

[Kaw02] Hirohisa Kawamoto. The history of liquid-crystal displays. Proceedings of the
IEEE, 90(4):460–500, 2002.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2017.

[KL11] Johannes Kopf and Dani Lischinski. Depixelizing pixel art. In ACM SIGGRAPH
2011 papers, pages 1–8. 2011.

[Kon] Konami. Konami group corporation. Online at https://www.konami.com/en/
accessed Jan. 12, 2024.

[Lot14] Timothy Lottes. Fixingpixelartgrille, Aug 2014. Online at
https://www.shadertoy.com/view/MsjXzh/ accessed Jan. 12, 2024.

[LTH+16] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew P.
Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-
realistic single image super-resolution using a generative adversarial network.
CoRR, abs/1609.04802, 2016.

[MC92] Blair MacIntyre and William B Cowan. A practical approach to calculating
luminance contrast on a crt. ACM Transactions on Graphics (TOG), 11(4):336–
347, 1992.

[MG21] Morgan McGuire and Mara Gagiu. Mmpx style-preserving pixel-art magnifica-
tion. Journal of Computer Graphics Techniques Vol, 10(2), 2021.

[NM92] Avi C Naiman and Walter Makous. Spatial nonlinearities of gray-scale crt
pixels. In Human Vision, Visual Processing, and Digital Display III, volume
1666, pages 41–56. SPIE, 1992.

[NM14] Kamal Nasrollahi and Thomas Moeslund. Super-resolution: A comprehensive
survey. Machine Vision and Applications, 25:1423–1468, 08 2014.

[Oak84] K.R. Oakey. Some consequences of the shadow-mask crt dot structure. Displays,
5(3):143–148, 1984.

[PETM09] Matan Protter, Michael Elad, Hiroyuki Takeda, and Peyman Milanfar. Gen-
eralizing the nonlocal-means to super-resolution reconstruction. IEEE Transac-
tions on Image Processing, 18(1):36–51, 2009.

[Phi10] Philipp M. Moore. Crt mask types, ways of measuring dot pitch, 2010. [Online at
https://de.m.wikipedia.org/wiki/Datei:CRT_mask_types_ende.svg accessed
May 1, 2023].

54

[pyt] Python. Online at https://www.python.org/ accessed Jan. 12, 2024.

[RBG+17] Amelie Royer, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar
Mosseri, Forrester Cole, and Kevin Murphy. XGAN: unsupervised image-to-
image translation for many-to-many mappings. CoRR, abs/1711.05139, 2017.

[Red22] Reddit_sacks. Mask battle! slot vs dot vs aperture grill, 2022.
[Online at https://www.reddit.com/r/crtgaming/comments/vol9yl/
mask_battle_slot_vs_dot_vs_aperture_grill accessed May 5, 2023].

[Ruu21] @ruuupu1 Ruuupu. ... pic.twitter.com/q79id6rbgm, Jan 2021. [Online at
twitter.com/ruuupu1/status/1348589603763077127 accessed Jan. 11, 2024].

[She03] Steven K Shevell. The science of color. Elsevier, 2003.

[Sil15] Daniel Silber. Pixel art for game developers. CRC Press, 2015.

[Slu98] AAS Sluyterman. 13.3: A theoretical analysis and empirical evaluation of the
effects of crt mask structure on character readability. In SID Symposium Digest
of Technical Papers, volume 29, pages 179–182. Wiley Online Library, 1998.

[SQU] Square enix limited. Online at https://www.squareenix-
games.com/en_GB/home accessed Jan. 12, 2024.

[Tea] Retroarch Team. retroarch. Online at https://www.retroarch.com/index.php
accessed Mar. 7, 2024.

[Tea24] Libretro Team, Feb 2024. Online at https://www.libretro.com/ accessed Mar.
7, 2024.

[tor23] torch.nn, 2023. Online at https://pytorch.org/docs/stable/nn.html accessed
Feb. 4, 2024.

[Tri86] J Robert Trimmier. Color display technology—an overview. SAE Transactions,
pages 732–739, 1986.

[TT14] TroggleMonkey and Themaister, Aug 2014. Online at
https://github.com/libretro/common-shaders/tree/master/crt/shaders/crt-
royale accessed Mar. 7, 2024.

[TT24] Toni and Toni. Winuae, Feb 2024. Online at https://www.winuae.net/accessed
Mar. 7, 2024.

[UVD88] Frank B Uphoff, NAVAL AIR DEVELOPMENT CENTER WARMINSTER
PA AIR VEHICLE, and CREW SYSTEMS TECHNOLOGY DEPT. Cathode
ray tube displays. Technical report, 1988.

[WC92] T. R. H. Wheeler and M. G. Clark. CRT Technology, pages 221–256. Springer
US, Boston, MA, 1992.

55

[WCZ+22] Zongwei Wu, Liangyu Chai, Nanxuan Zhao, Bailin Deng, Yongtuo Liu, Qiang
Wen, Junle Wang, and Shengfeng He. Make your own sprites: Aliasing-aware
and cell-controllable pixelization. ACM Trans. Graph., 41(6), nov 2022.

[YOM68] Susumu Yoshida, Akio Ohkoshi, and Senri Miyaoka. The" trinitron"-a new color
tube. IEEE Transactions on Broadcast and Television Receivers, 14(2):19–27,
1968.

[ZP13] C. Lawrence Zitnick and Devi Parikh. Bringing semantics into focus using
visual abstraction. In 2013 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3009–3016, 2013.

56

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Definition

	Related Work
	Pixel Art Upscaler
	Pixelart Downscaler
	CRT Filter

	Background
	The Pixel
	Pixel-Art
	CRT and LCD Displays
	Scaling Graphics
	LUT - Look-Up Table

	Implementation
	SRResNet Model
	Data Processing
	Training Procedure
	Parameters and Workflow

	Evaluation
	Experimental Setup
	Results
	Memory and Runtime Analysis
	Parameter Analysis and Their Impact on Output Quality
	Dataset and Training Time Analysis

	Conclusion and Future Work
	List of Figures
	List of Tables
	Acronyms
	Bibliography

