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Kurzfassung

Luftbilder zusammen mit digitalen Höhenmodellen (DHM) ermöglichen die Darstel-
lung von 3D-Repräsentationen der Erde, einschließlich alpiner Gebiete. Diese virtuellen
Landschaften bieten die Möglichkeit, Lichtverhältnisse zu verschiedenen Tageszeiten zu
simulieren, was die Planung von Bergtouren vereinfachen kann. Allerdings enthalten
die als Textur verwendeten Orthofotos oft große Schatten von Bergen und Felsen, die
die visuelle Qualität der künstlich beleuchteten Texturen erheblich beeinträchtigen. Der
notwendige Prozess, um Schatten aus Einzelbildern zu entfernen, stellt ein entscheidendes
Problem für das Gebiet der Computer Vision dar und dient auch als Voraussetzung für
viele andere Aufgaben wie Segmentierung und Klassifizierung. Einige vielversprechende
Ansätze wurden bereits entwickelt, aber im Gegensatz zu früheren Methoden versucht
diese Arbeit mithilfe von den Verfügbaren DHMs den Schattenentfernungsprozess zu
verbessern. Schatten in Orthofotos sind inhärent mit der zugrunde liegenden raumbe-
zogenen Topologie verbunden und DHMs bieten eine wertvolle Informationsquelle, um
Schatteneffekte zu verringern. Daher beschäftigt sich diese Arbeit mit der Integration
von DHMs in eine moderne Deep-Learning Pipeline. DHMs werden auf ihre Rolle bei
der Erzeugung von Trainingsdatensätzen und als zusätzlicher Input für ein multimoda-
les Netzwerk untersucht. Insbesondere wird die aus DHMs abgeleitete 3D-Geometrie,
komplementiert durch Raytracing, verwendet, um künstliche Schatten mit realistischen
Formen zu erzeugen. Anschließend wird ein Experiment mit dem erstellten Datensatz
durchgeführt, um empirisch und qualitativ zu prüfen, ob zusätzliche Höhendaten die
Leistung der Modelle verbessern können. Darüber hinaus wurde die Fähigkeit der Modelle,
von künstlichen Schatten auf reale Schatten zu verallgemeinern, geprüft. Das Experi-
ment mit virtuellen Schatten zeigte, dass die Bereitstellung zusätzlicher Höhendaten
für das Schattenentfernungsnetzwerk signifikant bessere Ergebnisse mit einer mittleren
bis großen Effektgröße liefert. Anfänglich konnte keiner der trainierten Modelle auf
echte Schatten verallgemeinern. Das Verkleinern des Datensatzes auf eine niedrigere
Detailstufe verringerte dieses Problem. Zusammen mit einer Analyse der Ausgaben jeder
Netzwerkschicht wurde geschlussfolgert, dass der Grund für die unzureichende Leistung
bei echten Schatten kleine im Trainingsset verbliebene echte Schatten sind. Die aus dieser
Kenntnis gewonnenen verbesserten Modelle wurden einer visuellen Analyse unterzogen
und zeigten, dass Höhendaten und die generierten realistischeren Schattenformen zu
sichtbaren Verbesserungen bei der Verallgemeinerungsfähigkeit der Modelle beitragen.
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Abstract

Aerial orthophotos together with digital elevation models (DEMs) allow the rendering
of 3D representations of the earth, including alpine terrain. These virtual landscapes
provide the opportunity to simulate light conditions at different times of the day, aiding
in trip planning. However, orthophotos used as texture often contain large shadows
stemming from cliffs and rocks, which significantly impact the visual quality of relighted
textures. The necessary single-image shadow-removal process presents a crucial problem
for the computer vision domain, which also functions as a prerequisite for many other
tasks like segmentation and classification. Many promising approaches have already been
developed, but unlike previous methods, this study tries to capitalize on the availability
of DEMs to enhance the shadow removal process. Shadows in orthophotos are inherently
linked to the underlying geospatial topology, and DEMs provide a valuable source of
information for mitigating their impact. Therefore, this thesis explores the integration of
DEMs into a state-of-the-art deep learning pipeline. DEMs are examined for their role in
generating training sets and as supplementary input for a multi-modal network. Notably,
3D geometry derived from DEMs complemented by ray-tracing is used to generate
artificial shadows with realistic shapes. Subsequently, an experiment is conducted with
the created dataset to empirically test if additional elevation data is beneficial for the
performance of the models. Additionally, the model’s ability to generalize from artificial
to real shadows was probed. The experiment on virtual shadows showed that providing
additional elevation data to the shadow-removal network does yield significantly better
results with a medium to large effect size. Initially, all trained models failed to generalize
to real shadow data. Downsizing the dataset to a lower level of detail mitigated this
problem. Together with an analysis of the output of each network layer, it was concluded
that the reason for the subpar real data performance are remaining small-scale shadows in
the train set. A visual analysis of the improved models showed noticeable improvements
with the generated realistic shadow shapes compared to random ones. Moreover, the
utility of additional elevation data as input for the models was demonstrated.
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CHAPTER 1
Introduction

1.1 Motivation

Planning hiking and touring ski routes in alpine areas beyond known paths can be difficult
due to limited information about the terrain. Conventional 2D maps help to overcome
this knowledge gap, but they lack the ability to interactively navigate the terrain and rely
on the user to create an accurate cognitive 3D model of the observed area. High-resolution
terrain models and orthophotos captured by airplanes or satellites can help to create 3D
visualizations of landscapes (see Google Earth [Goo], Alpine Maps [Alp], Flight Simulator
[Fli]). These 3D landscape models can help hikers locate their position more accurately
in comparison to conventional 2D maps [SP07] and make navigation interactive. This
can enhance the overall understanding of the terrain and streamline the planning process
for a trip.

Furthermore, these visualizations provide the opportunity to realistically simulate sun
exposure in the given terrain. This can be achieved by using a 3D terrain model and
established computer graphics methods like shadow maps [Wil78] or ray-tracing [App68].
Additionally, the amount of solar radiation a hillside receives and at what time of day
can be displayed in real time. This information can be essential in assessing avalanche
risks [HNL09], the physiological load of the trip due to heat exposure, or the ideal time
to ascend a mountain. Services like Shadow Map [Sha] already offer sunlight and shadow
simulations with 3D maps. However, only a simple texture is used to display the terrain
and buildings. Orthophotos would offer more information about the vegetation and
terrain conditions, but they also contain real shadows cast by hillsides, rocks, and cliffs,
which can be confused with virtual shadows. This can be irritating for the user and hinder
correct assessment (see Figure 1.1). Therefore, it is advantageous to remove large-scale
shadows from the orthophotos to make the artificial shadows easier to interpret and more
visually appealing.
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1. Introduction

(a) (b)

Figure 1.1: Examples from Google Earth [Goo] (a) and Alpine Maps [Alp] (b) demonstrate
how virtual and real shadows combined can create confusing visualizations.

1.2 Shadow-Removal
Within the image domain, shadows correspond to regions characterized by a reduced
photon flux reaching the sensors, thus resulting in a reduced capacity to extract infor-
mation. This means that shadow-removal is more of a reconstruction process than a
removal process. The goal is to restore the information not transmitted by the photons.
However, shadow-removal is a widely used term in the community and in many papers;
hence, shadow-removal will be used throughout the thesis.

Shadows depend on many factors, like the light source, how much diffuse or direct light
is emitted, the material and shape of the occluding object, as well as the properties of
the surface the shadow is cast on [VST+23]. In addition, shadow properties are also
dependent on the image capturing process [AHO10]. All these factors combined make
it very difficult to infer a shadow-free version of an image and reconstruct the missing
information in the unlit areas.

Shadow removal is a fundamental problem in the computer vision domain. It offers use
cases for many tasks like recognition, tracking, segmentation and, in our case, it can also
be used to relight an image. There are already many approaches to address this problem
[FHLD05, QTH+17, LS19, WLY18, AI22] that show success in their tested domains.
However, shadow removal is a very diverse and complex problem, and a general solution
is still to be developed. In contrast to these single-image methods, alternative approaches,
such as those demonstrated by Rahman et al. [RMML19], adopt a multi-image strategy.
In this method, multiple images captured on the same day are utilized to eliminate
shadows from orthophotos. This is achieved by capitalizing on the dynamic nature of
shadows, which shift throughout the day. The process involves seamlessly stitching
together shadow-free areas to create a shadow-free output. Nevertheless, most of the
available orthophotos are not captured at sufficient frequency, not to mention multiple
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1.2. Shadow-Removal

times a day. Thus, we focus on single-image shadow removal during this thesis.

In recent years, the shadow-removal approach has shifted towards supervised deep-
learning methods [AI22, QTH+17, LS19, WLY18]. Here, one of the biggest challenges
is the creation of a representative training dataset containing shadow and shadow-free
image pairs. There are some available datasets, like the Image Shadow Triplets Dataset
(ISTD) [WLY18], the ISTD+ with corrected colors [LS19] or the Shadow-Removal Dataset
(SRD) [QTH+17]. However, these datasets are relatively small (between 1800 and 3000
images) and have a limited variety of scenes due to the tedious manual creation process.
This limited amount of available data also restricts the size of the trainable networks
[QTH+17]. The images are created by taking two consecutive photos of a scene, one with
an occluding object and one without. Figure 1.2 and Figure 1.3 show some of the scenes
and shadows depicted in the ISTD and SRD respectively. Nevertheless, none of these
datasets includes aerial orthophotos and creating a new orthophoto datasets with this
method is not feasible.

Figure 1.2: Examples from the ISTD [WLY18]. The input images are at the top, with
their respective ground truth images at the bottom.

Figure 1.3: Examples from the SRD [QTH+17]. The input images are at the top, with
their respective ground truth images at the bottom.

Another approach to producing training data is to take more or less “shadow-free” images
and introduce synthetic shadows to the image. Morales et al. [MHT19] use this method
to add procedural generated shadows to aerial satellite images. In their shadow creation
process, they use Perlin noise and apply thresholds to produce random cloud-like shadow
shapes. These artificial shadows enable their model to learn to remove similar real
shadows cast by clouds. However, in our case, the orthophotos do not contain shadows
cast by clouds but by the terrain, which produces widely different shapes depending
on the underlying geospatial topology. In order to create artificial shadows cast by

3



1. Introduction

the terrain, a DEM of the considered area will be used to render physically plausible
shadows with a rendering engine and ray-tracing. This method allows the creation of
a novel dataset depicting orthophotos of alpine terrain that will also be used in a later
experiment.

1.3 Research Questions
This thesis focuses on the utility of DEMs in the context of shadow removal and tries to
answer the following two research questions:

1) RQ1: How can terrain elevation data and orthophotos be encoded and incorporated
into a deep-learning shadow-removal pipeline?

2) RQ2: To what extent does additional elevation data affect the performance of deep
learning shadow-removal models?

1.4 Methods Overview
To properly answer the stated research questions, an investigation into state-of-the-art
shadow-removal techniques was conducted, and a strategy to incorporate DEMs into
a shadow-removal pipeline was developed. As a crucial first step, a dataset creation
pipeline was implemented, employing DEMs and a 3D rendering engine to create phys-
ically plausible artificial shadows. This pipeline facilitated the generation of a novel
dataset comprising orthophotos of the Austrian Alps, utilized for the training of two
distinct models: one with and one without elevation data. Afterward, both models
were evaluated with established quantitative metrics to discern possible performance
differences. Hypothetically, the additional elevation data should help the model learn
better features and increase its shadow-removal capacity. Furthermore, the models’ ability
to remove real shadows was investigated through a qualitative visual analysis. These two
evaluations will collectively contribute insights into answering RQ2.

To further assess whether the pipeline designed to address RQ1 yields improved gen-
eralizability to real shadows, a qualitative comparison with a baseline dataset will be
conducted. This dataset is created in the exact same way as the primary dataset, but
with random shadow shapes generated using Perlin noise.

4
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1.5 Contribution
This thesis provides the following main contributions to the field of single image shadow-
removal in the context of orthophotos:

• Shadow-Removal Dataset Generation Pipeline:
We introduce a novel dataset generation pipeline designed for orthophotos, leverag-
ing DEMs to create realistically shaped artificial shadows. This pipeline enhances
the realism of shadow shapes compared to randomly generated ones and has shown
improvements in the model’s generalizability to real data.

• Qualitative Comparison of Model Performance:
Through a qualitative comparison, we showcase the improved performance of models
trained on the dataset generated by our proposed pipeline.

• Incorporation of Elevation Data in a State-of-the-Art Models
We introduce an approach to integrating elevation data into a state-of-the-art
shadow- removal model by encoding the data into an additional image channel.
This enables the model to learn joint multi-modal features for terrain elevation and
shadow shapes.

• Quantitative Comparison of Model Variants:
A quantitative comparison of the model’s performance—with and without eleva-
tion data—is conducted and shows a statistically significant difference with small
improvements for the model trained with elevation data.

• Qualitative Analysis of Real Shadow Performance:
The thesis extends to a qualitative examination of the models’ performance in
handling real shadows. Through visual analyses, we demonstrate noticeable im-
provements when elevation data is integrated.

5





CHAPTER 2
Related Work

Early shadow-removal methods are based on physical shadow formation models and try
to estimate various parameters like direct and indirect light intensities and the reflectance
of different colors and materials. The established shadow formation model introduced
by Shor et al. [SL08] and used by Arbel et al. [AHO10] and Abiko et al. [AI22] is
formulated as follows:

Ishadow(x, λ) = a(x)La(x, λ)R(x, λ). (2.1)

In this equation, the illumination intensity of a shadow region Ishadow at position x and
light wave frequency λ is depending on the indirect (ambient) illumination La and the
reflectance (albedo) R. a denotes an additional attenuation factor of the ambient light
due to the occluding object. It was assumed that this factor is constant at different light
wave frequencies. With this formation model, we can formulate the shadow removal
process as estimating the direct illumination Ld and the reflectance of the direct light R
together with the inverse of the attenuation factor a to get the lit intensity I lit.

I lit = Ld(x, λ)R(x, λ) + 1
a(x)Ishadow (2.2)

Estimating these parameters can happen in image space or implicitly in gradient space
and is quite difficult, especially with single images. Furthermore, even if parameters are
estimated accurately, the used illumination models are not perfect and only represent an
approximation of the illumination process [AI22].

Regarding shadow-removal, as with many image-related tasks, deep-learning has shown a
lot of potential in recent years. Here, we can differentiate between paired (supervised) and
unpaired (unsupervised) approaches. Unpaired approaches like the Mask-ShadowGAN
[HJFH19] apply a feature transformation and do not need shadow-free ground truth
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images, which are difficult to obtain. However, unsupervised approaches like this proposed
method tend to create blurred output images [AI22].

Supervised methods (e.g., [WLY18, AI22, QTH+17]) are trained on a set of shadowed
and shadow-free image tuples. Within supervised deep learning methods, Conditional
Generative Adversarial Networks (CGANs) have proven to be a successful approach to
performing shadow-to-shadow-free image translation [WLY18, AI22]. In the approach by
Wang et al. [WLY18] two sequential (STacked) CGANs (ST-CGAN) are used for shadow
detection and removal. This approach was further adapted by Abiko et al. [AI22] with a
channel attention network, which focuses on the correlation between color channels.

Additionally, methods for estimating shadow parameters with deep learning and using
them to adjust the image with physical lighting models are promising [LS19]. This
approach by Le & Samaras also uses the shadow formation model introduced in Eq.
2.1 as basis for their mapping function to transform a shadow pixel to its non-shadow
equivalent.

For the experimental part of the thesis, the ST-CGAN will be used because it is an
already well-established model, and it uses the U-Net architecture. This architecture
can infer higher-level global features of the terrain (e.g., to determine shadows cast
from cliffs on the other side of the observed area) better than continuous condition
continuation [CZZY17]. Furthermore, it is easy to add an elevation channel to the
model, in contrast to the channel attention approach from Abiko et al. [AI22] where
a correlation between channels is assumed, which is probably not the case with the
elevation channel. Last but not least, code is available for this method, which provides
all the necessary implementation details, mitigates the risk of errors, and reduces the
time for implementation.

The next sections go through developments in deep-learning-based shadow-removal
in more detail, starting by explaining generative adversarial networks as a general-
purpose image-to-image translation tool and how this knowledge was used to create the
sophisticated ST-CGAN shadow-removal network. Additionally, a few other approaches
will be discussed in more detail and why they were not considered for this thesis.

2.1 Generative Adversarial Networks
Generative Adversarial Networks (GANs) are an established machine learning framework
to train generative models. It consists of two main components: a generator and a
discriminator, which play a two-player min-max game. The generator tries to produce
fake samples to spoof the discriminator, and the discriminator guesses if a sample comes
from the generator or the data. Worded differently, the goal of the discriminator D is
to minimize its prediction loss, and the generator G tries to maximize the loss of the
discriminator or minimize the inverse loss. If the input for the generator is random noise
denoted as z and the considered data is described as pdata, the objective function L of
this min-max game is defined as follows:

8



2.1. Generative Adversarial Networks

min
D

max
G

LGAN (D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z))]. (2.3)

If G and D have enough time and capacity, the generator learns the distribution of the
given data, and a point of convergence is reached. At this optimum D(x) = 1

2 and the
discriminator guesses correctly half of the time. Goodfellow et al. [GPAM+14] show that
this point is a global optimum. G now produces random non-deterministic examples
based on the distribution of the training data and the input noise z.

However, if we want more control over the output of the generator, it is useful to condition
the model with additional input y, e.g., class labels, text, or images [MO14]. In that
case, Equation 2.3 is extended to:

min
D

max
G

LCGAN (D, G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1 − D(G(z|y))]. (2.4)

These Conditioned GANs (CGANs) have proven to be a very powerful general-purpose
tool for image-to-image translation tasks [IZZE17]. Introducing an additional L1 norm to
the objective function was also found to be beneficial. This term is directly used on the
output of G and brings it closer to the ground truth while also preserving more detail as
using L2 [IZZE17]. However, L1 is averaging the distance of the whole image, therefore
still focusing on low-frequency structures. To mitigate this effect, the image can be split
up into N × N patches and let the discriminator predict the probability of each patch
being fake. This so-called PatchGAN encourages the production of higher-frequency
structures and models texture loss, whereas the L1 norm focuses more on the lower
frequencies [IZZE17]. The final objective function for a general-purpose image-to-image
CGAN was defined by Isola et al. [IZZE17] as:

L1(G) = Ex,y,z(||y − G(x, z)||), (2.5)

G∗ = min
D

max
G

LCGAN (D, G) + λL1(G). (2.6)

The additional variable λ denotes a weighing hyperparameter for the introduced L1
metric. Experiments have shown that the additional noise z has no benefit to the model,
and it just learns to ignore it [IZZE17] and makes the model non-deterministic [CZZY17].
Therefore, the noise input parameter can be left out.

Many image-to-image translation tasks require obtaining the underling structure of the
image throughout the translation process. However, the widely used encoder-decoder
network structure for translation tasks forces all the information through a bottleneck,
which makes it harder for the network to transfer detailed information from input to
output. Therefore, skip connections from the ith to the n − ith layer are introduced
to form a “U-Net” type architecture [RFB15]. This allows high-frequency structures to
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be passed through the model more easily, maintaining detail in the images. Another
architecture beneficial for transferring very localized features, e.g., as with colorization
tasks, is the continuous condition concatenation [CZZY17]. This architecture is also based
on convolutional layers to obtain conditional features but refrains from downsampling.
With this architecture, the network can keep all the spatial information throughout the
layers, but it cannot collect global features as well as the U-Net can.

2.2 Deep-Learning Based Shadow-Removal
As previously discussed, CGANs are a powerful general-purpose tool for image-to-image
translation tasks. Thus, they can also be used for shadowed to shadow-free image
translations [WLY18, AI22].

Wang et al. [WLY18] use two stacked CGANs (ST-CGAN) to achieve a successful
single image shadow-removal pipeline. The first CGAN detects the shadow areas and
produces a shadow mask, which is then given to the second CGAN as additional input to
reconstruct the shadow areas. Many approaches address the problem of shadow removal
in two consecutive parts: detection and removal, respectively [WLY18, AI22, MHT19].
However, the approach from Wang et al. [WLY18] is interesting because both CGANs
are trained together, which encourages joint learning of features. To establish this joint
learning process as an objective function, Equation 2.6 was adapted. In the resulting
adversarial objective function LCGAN , G1 describes the shadow detection generator, G2
the shadow-removal generator. D1 and D2 describe their respective discriminators. The
parameter x denotes the input image containing shadows, y signifies the ground truth
shadow mask expressed as a binary mask, and r represents the ground truth shadow-free
image. With that, the adversarial losses for the shadow detection LCGAN1 and shadow
removal LCGAN2 are defined as:

LCGAN1(G1, D1) = Ex,y∼pdata(x,y)[logD1(x, y)]+
Ex∼pdata(x)[log(1 − D1(G1(x))],

(2.7)

LCGAN2(G2, D2|G1) = Ex,y,r∼pdata(x,y,r)[logD2(x, y, r)]+
Ex∼pdata(x)[log(1 − D2(x, G1(x), G2(G1(x)))].

(2.8)

The L1 term for detection and removal was defined as:

L1data1(G1) = Ex,y∼pdata(x,y)(||y − G1(x)||), (2.9)

L1data2(G2|G1) = Ex,r∼pdata(x,r)(||r − G2(G1(x))||). (2.10)

10



2.2. Deep-Learning Based Shadow-Removal

This results in the following linear combination of the partial functions to achieve a
combined measure for the joined learning algorithm:

min
D1,D2

max
G1,G2

L1data1(G1) + λ1L1data2(G2|G1)+

λ2LCGAN1(G1, D1) + λ3LCGAN2(G2, D2|G1).
(2.11)

In this formulation λ denotes an additional hyperparameter to determine the individual
weighing of each loss term.

The darkening that occurs in a shadow area is not uniformly distributed over the spectrum
of visible light. Abiko et al. [AI22] use this knowledge to extend the ST-CGAN with an
additional channel attention layer that models the correlation between different colors
and achieve quite good results with their approach. As mentioned earlier, in our context,
this attention layer introduces an additional variable and could lead to unwanted side
effects when used together with an elevation channel due to the assumed correlation
between the channels. This probably does not apply to our setup with elevation as the
fourth image channel.

Other authors have already investigated shadow-removal in orthophotos. Morales et al.
[MHT19] compared CGANs with two different architectures to remove shadows from
4-band satellite images with red (0.63- 0.7µm), green (0.53-0.59µm), blue (0.45-0.50µm)
and near-infrared (0.752-0.885µm). They juxtapose U-Net to continuous condition con-
catenation in removing shadows cast by clouds. The models were trained on a dataset
consisting of handpicked, shadow-free satellite images from Peru altered with artifi-
cial shadows. It was concluded that continuous condition concatenation is superior in
performance and that the trained models can generalize well from virtual shadows to
real ones. However, the ability to generalize was evaluated by visually inspecting some
examples, and it is not made clear how many or by which criteria this inspection was
done. A ”Real vs. Fake“ Mechanical Turk study similar to Isola et al. [IZZE17] and Zhu
et al. [ZPIE17] could provide more profound insights. Nevertheless, the approach by
Morales et al. comes closest to our goal of removing shadows from aerial orthophotos.
Their method of introducing artificial shadows to handpicked ”shadow-free“ images was
used later in this thesis as a basis for the proposed data generation pipeline. Similar
to the approach of Wang et al. two cGANs are used to detect and remove shadows
sequentially, but the networks are not trained together, which prevents the joint learn-
ing of features. For this and the earlier stated reasons, the ST-CGAN by Wang et al.
was selected over the deep-learning architecture of Morales et al.. Other differences
between the approach of Morales et al. and our goal include different types of data
(4-Band images vs. RGB images), scale of the images (2.8m/px vs. 16-29cm/px) and the
type of shadow that should be removed (shadows from clouds vs. shadows cast by terrain).

11



2. Related Work

In addition to GAN based methods, other deep-learning based methods have emerged as
well. They try to estimate shadow parameters and adjust the images accordingly. Le &
Samaras [LS19] use a linear illumination transformation function with parameters esti-
mated by a neural network to relight the image. This approach could also be applicable
to our goal. The shadow parameter estimator network could be adapted to incorporate
elevation data as a fourth channel or even with a separate elevation network. The two
modalities, RGB and elevation (or depth), could be fused in a feature fusion layer similar
to approaches for RGB-D object recognition [GJZ+19] before predicting the shadow
parameters. Their shadow matte prediction network, which is used to combine the relit
image with the shadow mask and shadowed image, would need to be adapted similar to
the ST-CGAN to incorporate the elevation data. For the prediction of the shadow mask,
they use the approach of Zhu et al. [ZDH+18]. This shadow-removal strategy was not
selected because the ST-CGAN offers a more holistic approach to the problem and the
method lacks implementation details.

Qu et al. [QTH+17] use three different networks: a global localization network (G-Net),
an appearance modeling network (A-Net), and a semantic modeling network (S-Net).
Introducing elevation data into this complex collaboration of networks was deemed too
delicate and could easily lead to failure.
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CHAPTER 3
Dataset Generation

The goal is to create shadow-free orthophotos maintaining as much detail as possible. As
briefly discussed in Chapter 2, unsupervised training methods lead to blurry results [AI22]
and therefore the supervised ST-CGAN approach was chosen. For supervised learning,
a representative training dataset is essential to achieving robust results. However, as
mentioned in the introduction, creating shadowed and shadow-free image pairs is a very
tedious process, and natural scenes are never really shadow-free. There are always some
small occluding objects, like leaves, pebbles, or the side wall of a crevice, that cast shadows.
It is important to note that even the ISTD [WLY18] and the SRD [QTH+17] datasets
are only shadow-free within a certain scale factor. Furthermore, taking consecutive
photos with and without an occluding object is not always an option, for example, with
orthophotos. The occluding objects necessary to cast shadows of sufficient size would be
too big to manage, and producing a dataset with a similar technique as ISTD at that
scale is simply not feasible.

One could obtain shadow-free versions of orthophotos by taking images before and after
noon. However, light conditions change over time, and a ground truth image taken
in the afternoon does not accurately represent a shadow-free image taken before noon.
Additionally, natural scenes can contain surfaces that are in shadow all day (e.g., in
trenches) or objects that move (e.g., trucks, planes), which alter the scene over time.
Apart from that, the shading of objects is entirely different due to varying illumination.
Moreover, capturing images before and after noon doubles the time needed and is
accompanied by additional costs.

Therefore, we utilize elevation data together with ray-tracing to create a new Alpine
Shadow Dataset (ASD) with physically plausible shadows. These can be cast on more or
less shadow-free areas of the orthophotos and help to circumvent some of the problems
discussed. Additionally, the virtual shadows correlate directly with the underlying terrain
encoded in the DEM. It was assumed that this correlation would help the model generalize
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to real shadows better, due to the fact that the terrain topology is directly responsible
for the shadows.

3.1 Digital Elevation Models
Elevation data is often encoded as a height map consisting of a planimetric grid structure
and altitude values. Apart from a few exceptions, like overhanging cliffs, every point (x, y)
on Earth’s surface can be represented with one altitude value z as a bivariate function
z = f(x, y). Thus, the Earth’s relief can be considered 2.5D [PEH20]. This simplified
representation of height data is typically called a Digital Elevation Model (DEM) and is
one of the most commonly used forms of geographic information. Two types of surfaces
are frequently represented: the ground surface called Digital Terrain Model (DTM) or
the surface including all natural or man-made objects, called the Digital Surface Model
(DSM) (see Figure 3.1). The altitude values can be captured with photogrammetry, Light
Detection and Ranging (LIDAR) or Radio Detection and Ranging (RADAR) whereas
the last two are more appropriate for DTM [PEH20].

Figure 3.1: Visualization of the difference between a Digital Terrain Model (DTM) and a
Digital Surface Model (DSM) [PEH20].

The input data for the dataset generation consists of a digital terrain model (DTM)
and orthophotos of Austria. The data was obtained from Basemap [Bas] the official
geodata source of the Austrian government. The DTM has a resolution of 1m/pixel and is
encoded as a 32-bit float GeoTIFF. The GeoTIFF format is a compliant version of the Tag
Image File Format (TIFF) containing georeference information as additional metadata
and is commonly used to store DEMs [MR03]. The orthophotos have a resolution of
15-29cm/pixel and were captured by aerial surveying flights. There is also a digital
surface model (DSM) available that also contains the height information of objects on the
terrain. However, the DTM was chosen over the DSM because the DTM only includes
the elevation data of the terrain and ignores the elevation of the tree tops, bushes, and
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scrubs. The additional height information of vegetation would result in the generation of
artificial shadows produced by this vegetation, which we want to ignore anyway.

3.2 Data Selection
As a basis for the dataset generation, a set of “shadow-free” areas was handpicked from
the aerial images. Two main criteria were considered during the selection of these areas:

1. No large-scale shadows. Included shadows have to be smaller than 5 meters
and shadows of vegetation can be ignored.

2. Mountainous area. Flat terrain can not be used for the shadow generation
process and the corresponding DEM does not contain useful information for model.

These areas were sampled in a more or less random fashion, starting with an overview
of the Austrian alps and spotting potential candidate areas. If an interesting area was
found, it was magnified and checked for the criteria. The location of these areas can
be seen in Figure 3.2. Hillsides directly facing the sun yielded the most shadow-free
areas. It is important that these areas have a certain minimum size that is significantly
larger than a single training image to allow shadow casting from surrounding areas onto
the training image. The selected areas were between 18 and 300 times larger than the
256 × 256 pixel output images.

Figure 3.2: Sampling locations of the handpicked shadow-free areas.

The resulting set of 50 areas includes common terrain types from the Austrian alps
like forest, fields, bushes, scree, snow patches, and rock, as well as some ponds, streets,
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and cottages. Examples of the different terrain types can be seen in Figure 3.3. From
each area, an image was extracted and encoded as a Portable Network Graphic (PNG)
together with the corresponding DTM to enable the subsequent shadow rendering.

Figure 3.3: Examples of different types of terrain included in the Alpine Shadow Dataset.

3.3 Virtual Shadows
3.3.1 Shadow Mask Generation
As a first step, the DEM was converted to a 3D mesh to facilitate its integration into a
rendering engine. For this process, the altitude values z at the raster image coordinates
(x, y) can simply be interpreted as 3D vertices (x, y, z) and sequentially connected to
form triangles. The included georeference information in the metadata of the GeoTIFF
permits seamless scaling of the resultant mesh to real-world dimensions.

In order to create realistic shadow masks, the ray-tracing based Cycles Renderer by
Blender1 was chosen. The possibility of automating the rendering pipeline with Python
scripts poses an additional advantage for Blender. For the conversion of the DEM
into a 3D mesh, the BlenderGIS2 plugin was used. This plugin already implements
functionalities such as GeoTIFF file parsing, mesh generation, and the correct scaling of
the mesh.

1https://www.blender.org
2https://github.com/domlysz/BlenderGIS

16



3.3. Virtual Shadows

The general-purpose Principled BSDF shader3 by Blender was used to render the material
of the terrain. The final shadow masks should encode the shadow intensity, with 0 =
completely shadowed and 1 = no shadow. Therefore, the color of the shader was set to
pure white (Hex: #FFF). The other parameters of the shader were left with their default
values.

Figure 3.4: This diagram shows different types of shadows and how the angle α corresponds
to the size of the penumbra region.

For the lighting of the scene, a single directional light source (Sunlight in Blender) and
no ambient light were employed to simulate the sun. Depending on the clarity of the
atmosphere, sun rays get refracted at varying strengths, causing softer or harsher shadows
(larger or smaller penumbra regions). To replicate this effect, the angle parameter α of
the sunlight was randomly sampled from a uniform distribution α ∼ U(0.5, 10). This
parameter describes the angular diameter, which is the size of a sphere or circle from a
given view point. α = 0 would denote perfectly parallel light rays and a non-existent
transition (penumbra) region. Figure 3.4 visualizes the relation between angle α and the
transition (penumbra) region between the shadow and non-shadow areas and depicts
different types of shadows. The blue arrow denotes light reflected from the sky onto the
shadow area, which leads to the often blue tint of shadows.
The white texture used for the terrain causes a lot of light reflections, which brighten
areas inside the shadows unnaturally; thus, the number of ray bounces was reduced to

3https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/principled.html
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zero. This means that the shadow masks only represent areas with directly occluded
sunlight.

(a) Hard shadow α = 0.5. (b) Soft shadow α = 10.

Figure 3.5: Rendered shadow masks using the DTM with different angle parameters
(angular diameter) α determining the size of the penumbra region.

To increase data diversity, we rendered three randomized shadows for each image. Varying
sun rotations and angles were sampled from uniform distributions, resulting in shadows
of differing sizes and orientations. The rotation angles, denoted as xrot and yrot, were
randomly sampled in degrees from the intervals U(−45, −25) and U(−45, −25)∪U(25, 45),
respectively. These rotation ranges reflect sun positions closer to the horizon, producing
larger shadows on the terrain. The rendered shadow masks were stored as 16-bit gray-scale
PNGs.

3.3.2 Shadowing Algorithm
For the actual shadowing of the image, the shadow mask S = {x ∈ R : [0, 1]} was taken
together with the shadow-free input image I = {x ∈ R3 : [0, 1]} to produce the shadowed
version IS = {x ∈ R3 : [0, 1]}. I will be multiplied by S to darken the shadow areas.
Therefore, the shadow mask S is clipped with function c to prevent completely black
areas from appearing in the image. Completely black areas are not realistic because there
is always some light hitting the camera sensor. Furthermore, multiplying by zero would
completely erase all information from this area, making it impossible for the model to
reconstruct the original signal. The clipping threshold of 0.2 was determined by trying
different values and visually comparing real shadows to generated ones. The shadow
mask was inverted to represent higher shadow intensity with a higher value. This allows
adaptive noise to be added in the next step.

c(x) =
�

x, if x ≥ 0.2,

0.2, otherwise,
(3.1)

S−1 = 1 − c(S). (3.2)
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The truncated normal distribution Ntrunc(µ, σ, a, b) is used to sample Gaussian noise,
which is the most common noise occurring in images and other signals [Bon09]. As usual,
µ denotes the mean and σ the standard deviation of the Gaussian distribution, whereas
a and b describe the lower and upper truncation points. The noise is added to the mask
depending on the shadow intensity S−1 at this point. This models the transition in
penumbra regions more smoothly.

S−1
noise = S−1 + S−1 ∗ ν ν ∼ Ntrunc(0, 0.05, −0.2, 0.2) (3.3)

The noisy shadow mask is then filtered with a 3 × 3 median filter median3x3 to lower the
high frequency of the noise. The filtering and the following channel shifting steps were
adopted from the shadow generation approach of Morales et al. [MHT19].

S−1
f = median3×3(S−1

noise) (3.4)

The inverted shadow mask S−1
f will now be randomly shifted three times for each channel

of the image and inverted back. This is done to simulate varying shadow intensities for
different colors [MHT19]:

SR = 1 − S−1
f ∗ u, u ∼ U(−0.02, 0.02), (3.5)

SG = 1 − S−1
f ∗ v, v ∼ U(−0.02, 0.02), (3.6)

SB = 1 − S−1
f ∗ w. w ∼ U(−0.02, 0.02). (3.7)

The three shadow masks will now be multiplied with their corresponding channels from
the input image I to obtain the final shadowed image.

I ′
R = IR ◦ SR

I ′
G = IG ◦ SG

I ′
B = IB ◦ SB

(3.8)

The resulting shadowed images are depicted in Figure 3.6.
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(a) Original image (b) Perspective 3D representation of the terrain

(c) Image with hard virtual shadows α = 0.5 (d) Image with soft virtual shadows α = 10

Figure 3.6: Original and artificially shadowed images with varying transition region
(penumbra) sizes between shadow and non-shadow area.

3.4 Preprocessing
To facilitate feature learning for the elevation data, the DTM has to be added as input for
the model. However, there are a few preprocessing steps needed to achieve this. First and
foremost, the resolution of the DTM is lower than the orthophotos. Hence, the missing
values will be bilinearly interpolated. Furthermore, the very fine-grained 32-bit floating
point encoding of the DTM can be min-max scaled over the whole available dataset of
Austria and down-sampled into a 16-bit unsigned integer encoding. This encoding allows
the elevation data to be added as alpha channel to an PNG image, which makes it much
easier to read and write data. A precision of ∼ 6cm is retained due to the min-max scaling.

The generated shadowed images have a resolution of at least 1552 × 898 pixels, but the
neural network of the ST-CGAN requires images with a size of 256 × 256. Therefore,
image tiles with 256 × 256 pixels are cropped out of the larger image. The border region
of the image was excluded, because there is no terrain outside the image to cast shadows.
Figure 3.7 shows the extracted image tiles from a larger image. The same cropping is
also done to the original (ground truth) image and the DTM to produce the final image
triplet, which can be seen in Figure 3.8. The elevation data from the DTM is added to
the shadowed input image as the alpha channel. The generated Alpine Shadow Dataset
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Figure 3.7: Cropped image tiles

consists of 50 images of 50 selected regions. Each image was altered with three different
shadow masks with randomly chosen parameters, resulting in 150 images with varying
sizes between 1552 × 898 and 6212 × 3593 pixels, depending on the size and level of detail
of the selected area. Finally, the smaller 256 × 256 pixels images were cropped out of
these 150 images, resulting in 16,740 image triplets for training and evaluation.

(a) Input (b) Ground truth (c) Shadow mask

Figure 3.8: Generated image triplet example of the Alpine Shadow Dataset consisting of
an artificially shadowed input image (a) with an alpha channel containing elevation data
(not visible), an original ground truth image (b) and a shadow mask (c).
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3.5 Baseline Dataset with Random Shadow Shapes
To evaluate if the newly generated datasets has benefits for the models’ generalizability
over a dataset with random shadow shapes, a baseline dataset is also created. This
baseline dataset is built on the exact same data as the ASD, but instead of using a
rendering engine to create realistic shadow shapes, Perlin noise is used. The sampled
noise together with a threshold produces blob-like shadow masks, similar to the process
of Morales et al. [MHT19]. These shadow masks are then processed with the same
proposed shadowing algorithm and preprocessing steps. Figure 3.9 depicts what these
randomly darkened images look like.

(a) Input (b) Ground truth (c) Shadow mask

Figure 3.9: Generated image triplet with random shadow shape consisting of an artificially
shadowed input image (a), an original ground truth image (b) and a shadow mask (c).
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CHAPTER 4
Shadow-Removal Network

4.1 Network Architecture
The used shadow-removal network for the experiment ST-CGAN consists of generators G1,
G2 and discriminators D1 and D2 which are responsible for shadow detection and removal.
Both generators are implemented using an encoder-decoder-style network architecture,
and both discriminators use the same convolutional network architecture.

The generators G1 and G2 consist of 8 encoding layers, 8 decoding layers, and a bottleneck
layer in a U-Net architecture with skip connections from the encoding layer to the
corresponding decoding layer (see Figure 4.1).

Every encoding layer, except for L0, performs a leaky ReLU operation with a negative
slope of 0.2 before the convolution and a batch normalization afterwards. The applied
2D convolution has a kernel size of 4times4 and a stride of 2 to downsample the image
by half in each layer. The dimension of the input is reduced from 256times256 at layer
L0 to 1times1 in the bottleneck layer. The decoder side of the U-net upscales the signal
again with a transposed convolution analog to the encoder. In contrast to the encoder,
the decoder applies a ReLU. The number of feature channels doubles every layer going
downwards until L3, where a maximum of 512 feature channels is reached.

During training of the ST-CGAN, the discriminators D1 and D2 try to distinguish
between real and fake images produced by G1 and G2 respectively. D1 receives either the
ground truth shadow mask or the generated shadow mask, concatenated with the input
image. Similarly, D2 receives either the ground truth image or the generated shadow-free
image concatenated with the input image. Figure 4.2 shows a detailed overview of the
training framework and how the data is passed through the networks during training.
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Figure 4.1: Layer visualization of the generators G1 and G2 in the ST-CGAN. The
shadowed input image gets passed to G1 and G2. G2 receives the input image together
with the predicted shadow mask from G1 to produce the shadow-free output image. The
input image consists of the RGB channels and the elevation data as a fourth channel.
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Figure 4.2: GAN style training framework for the ST-CGAN.
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4.2 Implementation
The ST-CGAN was implemented using Python 3.9 and the PyTorch framework. An
in-official implementation from Github1 was used as the basis to mitigate implementation
workload and errors. The available version had to be adapted in order to read and process
images with 16-bit depth per channel instead of the usual 8-bit depth and to read the
elevation data from the fourth channel. The used Python framework Pillow2 used to
read images does not allow the parsing of 16-bit channels and defaults to 8-bit implicitly.
Therefore, the reading operations were replaced with the ones from the OpenCV3 library.
Here, it is important to pass the IMREAD_UNCHANGED flag to the imread() function,
otherwise it also parses the image in 8-bit. The employed augmentation methods like
rotations and flips were also unfit to handle the 16-bit data and have been completely
replaced with analog methods from the Albumentations4 library. Before the image and
elevation data are sent to the models, the data is normalized and cast to 32-bit float
values. The number of network input and output channels also had to be increased to
accompany the additional elevation information.

1https://github.com/IsHYuhi/ST-CGAN_Stacked_Conditional_Generative_Adversarial_Networks
2https://python-pillow.org
3https://opencv.org
4https://albumentations.ai
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Experiment

For the experiment, two ST-CGANs were trained with the generated Alpine Shadow
Dataset. The first network received the images together with the elevation data encoded
in the alpha channel of the RGBA image. The other network only received the RGB
data. This was done to measure performance differences between the two models and
answer RQ2. It was assumed that the additional elevation data could help the model
to remove shadows due to the direct correlation between terrain topology and shadows.
The second goal of the experiment is to determine if the models are able to generalize to
real shadows and if there are observable differences between the models. Additionally, a
comparison with a baseline dataset comprising randomly shaped shadows was conducted
to assess differences in generalizability. This elucidates the validity of the proposed data-
generation method. The hyperparameters for training runs are held constant throughout
all experiments to maintain consistency.

5.1 Training
The Alpine Shadow Dataset was split into train, validation, and test sets in a ratio of
(0.8, 0.1, 0.1), which results in 13392 training, 1674 validation, and 1674 test images. The
dataset contains three different shadow versions of the same image depending on the
sampled orientation of the sun and the angular diameter α. To make sure the provided
image tiles of the test and validation set are really unseen, the data was split between
images and not between different shadow versions.

The models were trained for 150 epochs with a batch size of 32 and a learning rate
lr = 0.0002. The Adam solver was used as an algorithm for the gradient descent with the
provided betas of (0.5, 0.999). The λ-parameters defined in loss Equation 2.11 were taken
from the original approach of Wang et al. [WLY18] and set to λ1 = 5, λ2 = 0.1 , λ3 = 0.1.
The training took 16 hours for the model without elevation data and 19 hours for the
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lr λ1 λ2 λ3 beta1 beta2
Value 0.0002 5 0.1 0.1 0.5 0.999

Table 5.1: Overview of the training hyperparameters of the ST-CGAN. The learning
rate (lr) is used together with beta1 and beta2 as parameters for the Adam solver. The
λ values describe the weighing of the individual parts of the loss function defined in
Equation 2.11 The weights and learning rate were taken from the approach of Wang et
al. [WLY18].

Model G1 G2 D1 D2
Without Elevation 29.239M 29.245M 2.766M 2.769M
With Elevation 29.240M 29.246M 2.767M 2.770M

Table 5.2: Number of trainable parameters for each network.

model with elevation data on a desktop PC with an Nvidia RTX-3060 graphics card and
an Intel Xeon-E3v3 processor. The number of trainable parameters for each network can
be seen in Table 5.2. Table 5.1 shows an overview of the used hyperparameters.

During training, the loss from Equation 2.11 (G_loss) and the loss only comprised of the
discriminator output (D_loss) were computed. As Figure 5.1 shows, these metrics for
the generator and discriminator decreased well over time, suggesting a successful training
algorithm (see Figure 5.1). After approximately 100 epochs, the loss curves flatten out,
exhibiting the convergence of the models.

(a) without elevation data (b) with elevation data

Figure 5.1: Learning curves of the two trained models, without and with elevation data,
over the 150 training epochs. The D_loss (orange) describes the discriminator loss and
was calculated using binary cross entropy. The G_loss denotes the generator loss (blue),
which was calculated using Equation 2.11.
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5.2 Performance Measures
To make the performances quantitatively comparable, the root-mean-square error (RMSE)
and the peak signal-to-noise ratio (PSNR) were used to calculate differences between the
model output and the ground truth. The predicted output denoted as ŷ and the ground
truth denoted as y were used to calculate the RMSE and the PSNR with the following
equations:

RMSE =

���� 1
n

n�
i=0

(ŷi − yi)2, (5.1)

PSNR = 20 · log10


2b − 1

1
n

�n
i=0(ŷi − yi)2

�
. (5.2)

The parameter b of PSNR denotes the bit depth of the observed images and is used to
calculate the maximal possible value with 2b − 1. For this experiment, the evaluated
images were stored with 8 bits, resulting in a maximum value of 255. Both metrics are
widely used to benchmark shadow-removal performance. In the subsequent analysis,
RMSE was primarily used for comparison because RMSE is used in more referenced
papers [LS19, AI22, QTH+17, WLY18] and has the advantage that it is defined for
identical outcomes. In this case, the denominator of the inner fraction of the PSNR would
equal zero. On the other hand, the PSNR metric is normalized, and comparison between
differently scaled data is possible. We included the PSNR for this reason. However,
similar to the mentioned papers, which use the RMSE, we transform the images to LAB
space, so comparison between these other approaches is possible anyway. The two metrics
were calculated over the test dataset within shadow areas and over the whole image. The
metrics within shadow areas facilitate a more focused look at the performance, regardless
of the size of the shadow region. The metrics over the full image additionally measure
if the models alter regions outside the shadow area and the performance overall. The
performance of the shadow mask prediction is measured with the Intersection over Union
(IOU) or Jaccard index. If we denote the binarized ground truth shadow mask with
A and the binarized predicted shadow mask with B, the IOU is calculated with this
equation:

IOU = |A ∩ B|
|A ∪ B| . (5.3)

The scores were calculated for each image individually. Afterward, the average of the
RMSE, PSNR and IOU was calculated over all 1674 test images to produce the final
aggregated scores. To measure the statistical significance of the metrics, the Wilcoxon
signed-rank test was used, analogous to the comparative GAN study by Lv et al. [LZY21].

Performance evaluation on real shadow data can only be done by visual inspection of the
predicted output, because there is no ground truth data as the basis for calculating the
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metrics. A “real vs. fake” Mechanical Turk study could be conducted on the deshadowed
images, similar to the studies done by Zhu et al. [ZPIE17] and Isola et al. [IZZE17].
However, this only makes sense if the predicted images are very close to real ones, which
is not the case for our models.
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CHAPTER 6
Results

This chapter presents the findings of the conducted experiments, commencing with an
evaluation of model performance on artificial shadow data from the Alpine Shadow
Dataset. Subsequently, the model’s ability to generalize to real shadow data is assessed.
This assessment is followed by a t-SNE analysis of the layers to elucidate the subpar real
shadow performance. The t-SNE analysis reveals a deliberate discriminatory behavior
between real and artificial shadows, which might be due to the remaining real shadows
in the training data and the chosen GAN training framework. This suspicion was further
underlined by training models with a downsized version of the Alpine Shadow Dataset to
a lower level of detail, which mitigates the effect of remaining small-scale shadows. A
comparison against the baseline dataset with random shadow shapes exhibited improved
generalizability using the ASD. This comparison was conducted with models trained on
downsized images due to the insufficient performance of the models trained on full-scale
images.

6.1 Virtual Shadow Data

Metric Mean Variance
RMSE 3.308 28.957
RMSE Shadow 16.051 74.235
PSNR 40.841 38.193
PSNR Shadow 38.176 33.192

Table 6.1: RMSE and PSNR between the input and the ground truth averaged over the
test dataset. Larger RMSE and lower PSNR scores signify larger differences.

Table 6.1 displays the baseline difference between the shadowed input images and the
ground truth of the ASD computed with the RMSE and PSNR metrics. All metrics
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observe very high variance, which is explained by the presence of image instances without
shadows.

No Elev. Elev. Difference p-value |r|
Metric mean var mean var mean var
RMSE 0.723 0.199 0.693 0.229 -0.03 +0.03 0.0001 0.42
RMSE Sh. 3.387 3.398 3.414 3.721 +0.334 +0.323 0.0547 0.06
PSNR 41.928 24.739 42.771 29.645 +0.843 +4.906 0.0001 0.54
PSNR Sh. 30.192 2.751 30.256 2.711 +0.064 +0.04 0.0524 0.15
IOU 0.744 0.100 0.722 0.109 -0.022 +0.009 0.0487 0.04

Table 6.2: Overview of the computed metrics on the test set sampled from the ASD.
Lower RMSE and higher PSNR and IOU scores signify better performance. In the
difference column, green means that the model trained with elevation data improved
over the one without, and red means the opposite. The p-values were calculated using
the Wilcoxon signed-rank test and rounded to four decimal places. All other scores were
rounded to three decimal places. Column “|r|” denotes the effect size of the observed
differences.

Table 6.2 shows the performance of the model with elevation data Melevation and the
model without elevation data MRGB on the test dataset sampled from the ASD. The
RMSE and PSNR scores suggest very good shadow-removal performance with artificial
shadows. The lower the RMSE score, the better, in contrast to the PSNR, where a higher
value is favorable. The RMSE score shows a statistically significant (p < 0.05) medium
(0.3 < |r| < 0.5) sized improvement with elevation data. The same can be observed with
the PSNR, where the effective difference is even large (0.5 < |r|).
The variance of the metrics is higher for Melevation most likely due to the higher number
of trainable parameters (see Table 5.2). The PSNR Shadow and RMSE Shadow metrics
show contrary results, even though they are closely related. This can be explained by the
transformation to LAB color space only done for the RMSE scores. Both shadow metrics
slightly exceed the p < 0.05 threshold for statistical significance, and their effective size
is very small (|r| < 0.1) for RMSE and small (0.1 < |r| < 0.3) for PSNR. Considering
the shadow mask prediction performance, the IOU score exhibits a very small (|r| < 0.1)
decrease in performance for Melevation which is statistically significant by a small margin.

The success of artificial shadow-removal can also be seen in the example from Figure 6.1.
The output was taken from MRGB and is almost identical to Melevation. Therefore, it
was excluded from the figure to make comparisons easier. The example was extracted
independently of the other test data because the smaller images tiles of ASD were split
up randomly into the train, test, and validation sets. Thus, combining multiple tiles into
a larger image was not possible with these images. Although this example was selected
geographically far away from the ASD, the models were still able to reconstruct the
shadow-free version quite well. However, some imperfections are visible, like the overly
bright reconstruction of certain shadowed scree and rock terrain. Another positive aspect
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6.1. Virtual Shadow Data

(a) Input (b) Ground truth

(c) Image tiles (d) Output

Figure 6.1: This example shows how the models are able to successfully remove artificial
shadows from the input image. The example taken from MRGB comprises 5 × 5 image
tiles with 256 × 256 pixels each seen in (c). The only visible differences are the overly
bright reconstructed rock and scree areas indicated by the red arrows.

that can be observed is that although the images consist of 5 × 5 smaller image tiles, the
transitions between those tiles are barely visible.

In Figures 6.2 and 6.3 the individual RMSE scores for each image are visualized as box
plot diagrams. Here, a close resemblance between the two models can be examined.
One visually observable distinction within the box plots lies in the presence of more
pronounced shadow RMSE outliers of Melevation which is also reflected in the higher
variance of the model.

For qualitative result inspection, Figure 6.4 shows the most extreme RMSE outliers from
the test dataset. Here, we can see that even though these are the worst-performing
images, they are visually not far away from the ground truth. The most common effect
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Figure 6.2: Juxtaposition of shadow RMSE scores between the two models visualized as
box plots.

Figure 6.3: Juxtaposition of RMSE scores between the two models visualized as box
plots.

is decoloring like in Figure 6.4 (a) or blurring, as seen in Figure 6.4 (c). Additionally,
hallucination effects can be observed as well, like in Figure 6.4 (d), where the larger
bush on the right side was replaced with smaller bushes with grass in between. Another
interesting aspect of this observation is that both models seem to struggle with the same
images (Figure 6.4 (a), (b), (d), and Figure 6.5 (a), (b), (f)). This indicates that these
are especially difficult ones. The outliers from Melevation are also very similar, so much
so that even the hallucination effect of Figure 6.4 (d) is almost identical to the effect in
Figure 6.5 (b).
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Figure 6.4: Top five outliers with the largest RMSE value from model MRGB trained
without elevation data. The images depict input, ground truth, output, ground truth
shadow mask, and shadow mask prediction from left to right.
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Figure 6.5: Top five outliers with the largest RMSE value from model Melevation trained
with elevation data. The images depict input, ground truth, output, ground truth shadow
mask, and shadow mask prediction from left to right.
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6.2. Real Shadow Data

6.2 Real Shadow Data
While the presented results on artificial shadows look promising, introducing real shadows
to the models yields substantially different outputs.

(a) input (b) without elevation (c) with elevation

Figure 6.6: Shadow removal examples with real shadows. Each of the images comprises
36 smaller (256 × 256) image tiles sent to the network individually and stitched together
afterwards.

Figure 6.6 illustrates three real shadow examples, each composed of 36 256 × 256 pixel
image tiles. The evaluation was solely done by visual inspection, because there is no
ground truth for real data. In the initial two instances, the output images exhibit minimal
alterations, with only subtle brightening present in the larger shadow regions. The final
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example shows that the detection of shadow areas works to some extent, but the removal
process does not work properly. Notably, cloud-like structures consistently emerge across
multiple examples, despite the absence of clouds in the training data. This intriguing
behavior persisted consistently across all trained models, including preliminary tests.

(a) Without Elevation Data (b) With Elevation Data

Figure 6.7: Examples of both models failing to detect shadows.

(a) Without Elevation Data (b) With Elevation Data

Figure 6.8: Examples of both models successfully detecting shadows.

(a) Without Elevation Data (b) With Elevation Data

Figure 6.9: Examples depicting that the model with elevation data seems to be less prone
to false positives.

The shadow detection performance of both models exhibits noticeable shortcomings
when evaluated against real shadow data. This deficiency is illustrated in Figure 6.7,
where both models completely disregard the shadow regions. While there are instances,
as depicted in Figure 6.8, where the detection performs quite well, such cases are
infrequent and appear to be confined to scenarios involving very dark and pronounced
shadows. Notably, in certain instances, Melevation demonstrates a reduced tendency for
false positives, exemplified in Figure 6.9, where MRGB mistakenly identifies a bush as
a shadow, while Melevation does not. Nevertheless, true positive predictions are still an
infrequent occurrence in both models.
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6.3 Layer Analysis with t-SNE
To elucidate if distribution shifts between virtual shadow, real shadow and ground truth
images are contributing factors to the poor real shadow removal performance, an analysis
of neural network layer outputs was conducted. In order to visualize the high-dimensional
data, the t-distributed stochastic neighbor embedding (t-SNE) was used to reduce the
data to two dimensions. Multiple data points are given to the model, stemming from
three classes (real shadow, artificial shadow, and ground truth). The layer output of each
data point is then projected on a plane and color coded depending on the class label.
Clustering of these points would reveal differences in layer outputs across classes and
helps to pinpoint if there is/are specific layer(s) where the models acquired discriminative
capabilities towards ground truth, real and artificial shadows, suggesting distribution
shifts between them.

To conduct this analysis, a subset of artificially shadowed and ground truth images was
sampled from the test dataset, alongside a distinct set of real shadow images. The three
sets contain 187 samples each, for a total of 561 data points. Subsequently, these datasets
were given to the models, and the output of each layer of G1 and G2 was extracted and
projected with t-SNE.

(a) without elevation (b) with elevation

Figure 6.10: T-SNE of the decoding layer L7 output of shadow detection network G1
with artificial shadow (test, blue) and ground truth (gt, green) images from the test data
set sampled from the ASD as well as real shadow images (real, red).

The t-SNE of the sampled sets shows that the shadow detection network G1 does not
distinguish between the three datasets visibly. Figure 6.10 depicts the output of the
first decoding layer L7 of the shadow detection network G1. In this graph, some minor
clusters are visible, but the three classes are still more or less evenly distributed over the
projected space.

This behavior can also be observed throughout encoding layers L0 to L7 of the shadow-
removal network G2. However, some clustering was visible in the bottleneck and decoding
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layer L7 of G2. Figure 6.11 shows the sample distribution with a considerable distinction
between real and artificial shadows. The t-SNE also shows that the features of real and
ground truth data are mixed. This indicates that the selected images for training are
representative samples.

(a) without elevation (b) with elevation

Figure 6.11: T-SNE of the shadow-removal network G2 bottleneck layer output with
artificial shadow (test, blue) and ground truth (gt, green) images from the test data set
sampled from the ASD as well as real shadow images (real, red).

The distinction between the classes real, ground truth, and test (artificial shadows) is
even more pronounced in decoding layer L7, where the ground truth also starts to
separate from the other two classes (see Figure 6.12). The plot shows that the real
and artificial shadows are on opposite sites, and the ground truth images are between.
This suggests that the model tries to maximize the distance between artificial and real
shadows, suggesting discriminative capabilities in these layers.

To determine if the images are discriminated by shadow type and not by another feature
present, class centroids for test, real and ground truth were computed. The centroid of
the real shadow class and the centroid of the artificial shadows class can then be used to
determine the most distance examples to each other. These examples probably include
the discriminating feature, according to the model. The centroids were computed with
the average of all class samples, and the distances were determined using the Euclidean
distance. Both calculations were done in feature space before the dimension reduction
with t-SNE. In Figure 6.13, the furthest and closest examples are visualized.

The top five most distant samples from each other’s class centroids can be seen in Figure
6.14. Each of the depicted images contains a lot of artificial or real shadows, which
underlines the assumption that shadows are indeed a discriminating factor for the models.

The five closest samples to the other class, as seen in Figure 6.15, depict forests and
shadow-free areas. This makes sense, because these areas are also contained in the
training and test sets. Interestingly, the closest real images to the test set, according to
model MRGB , contain rough, rocky terrain. A possible reason could be that rough, rocky
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(a) without elevation (b) with elevation

Figure 6.12: T-SNE of the shadow-removal network G2 layer L7 output of the shadow-
removal network G2 with artificial shadow (test, blue) and ground truth (gt, green)
images from the test data set sampled from the ASD as well as real shadow images (real,
red).

(a) without elevation (b) with elevation

Figure 6.13: Closest and farthest samples from real shadow (real, read) to artificial
shadow (test, blue) and vice versa using the Euclidean distance to the class centroids
calculated in feature space. The features stem from the L7 layer of the shadow-removal
network G2. The closest samples are marked with “+” and the farthest with “X”.

terrain inevitable contains some shadows, and the test set most likely also contains small
shadows within these areas.
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(a) without elevation (b) with elevation

Figure 6.14: Most distant samples to the respective other class centroids.

(a) without elevation (b) with elevation

Figure 6.15: Closest samples to the respective other class centroids.

6.4 Training on a Lower Level of Detail

In pursuit of understanding the discriminative behavior of our models concerning real
and artificial shadows, observed in the t-SNE analysis (see Section 6.3), two underlying
hypotheses were postulated. The first conjecture is that the artificial shadows are not
representative. The second assumption regards the persistence of small-scale shadows
within the training set serving as a discerning factor for the discriminator, guiding the
generator to leave real shadows in the output, which results in the observed discriminative
behavior.

To assess which of the aforementioned propositions applies, another experiment was
conducted. Larger tiles, measuring 640 × 640 pixels, were extracted from the ASD
and subsequently downscaled to 256 × 256 pixels. This downsizing to a lower level
of detail mitigates the influence of small-scale shadows on the models. The resulting
downsized ASD (DASD) only comprises 1,600 images, reduced from the initial 16,000. The
retraining of both models was executed over 100 epochs, with all other hyperparameters
held constant to maintain consistency with the initial experimental conditions. The
epochs are reduced from 150 in the initial training to 100 because the learning curves
flatten out after 100 epochs, and there is substantially less training data for this run.
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(a)

(b)

(c)

(d)

Figure 6.16: Performance comparison with real shadow data. Both models were trained
on the downsized version of the ASD. The images depict input, shadow-free prediction
and shadow mask prediction from left to right.

Upon visual inspection of the model-generated outputs on real shadow images, a distinct
contrast emerged between the two variants. Notably, the model trained with elevation
data Melevation outperformed the model without elevation data MRGB in detecting and
mitigating real shadows. This can be seen in Figure 6.16 (a), where Melevation accurately
identified shadow regions, while MRGB failed to detect any shadows. Similar trends were
observed in Figures 6.16 (b) and (c), where MRGB showed suboptimal shadow detection
compared to Melevation. Impressively, Melevation even correctly classified the pond in
Figure 6.16 (c) as a non-shadow area, despite its potential resemblance to a shadow.

43



6. Results

The shadow-removal of both models is still not sufficient, mainly due to the limited size
of the training set. The training set consists of 1,200 images, with each scene featuring
three shadow versions generated with varying parameters, resulting in only 400 unique
scenes. However, data can be added with the introduced data generation method.

Figure 6.17: Due to their size, shadows of trees remain in the training set even after
downsizing the images.

This experiment suggests that remaining small-scale shadows are a contributing factor
that hinders the models’ ability to generalize to real data. Figure 6.16 (d) shows that in
forest areas, the shadow removal is much weaker. This might be due to the persistence
of detectable shadow areas in forests occurring in the train set (see Figure 6.17). These
shadows were exempt from the “shadow-free” criteria because shadow-free forests are not
obtainable from orthophotos, and they are still visible after downsizing the images. This
further underlines the above-stated assumption that small-scale shadows are problematic
for the model’s training process.

6.5 Using an Established Generative Model to Fill
Predicted Masks

The shadow-detection performance of Melevtion showed to be quite effective. Therefore,
a quick test was done to see if other generative models could use this information to
produce a shadow-free version of the images. For this test, Adobe Photoshop’s Content
Aware Fill1 (Version 23.5.0) was used together with the predicted shadow masks. Figure
6.18 presents the resulting images of this process. The outcome depicts somewhat good
results, especially Figure 6.18 (b), which looks quite convincing. However, Content-Aware
Fill is not optimized for shadow removal or the preservation of the underlying data. Many
of the deshadowed areas depict terrain that is not really there, for example, the pond in
Figure 6.18 (c). Therefore, this method can only be used for artistic visualizations of
the terrain. Nevertheless, this experiment demonstrates that Melevation can be used as a
basis for a sequential shadow-removal process.

1https://helpx.adobe.com/photoshop/using/content-aware-fill.html
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(a)

(b)

(c)

(d)

Figure 6.18: Shadow-removal with Adobe Photoshop’s Content-Aware Fill using the
predicted shadow masks of Melevation. The images show input (left), predicted output
(center), and the predicted shadow mask (right).

6.6 Random Shadow Shapes

Upon achieving a model exhibiting visual proficiency on real shadow data through the
utilization of a reduced-scale version of the initial dataset, a comparative visual analysis
is conducted against a baseline dataset featuring randomly generated shadow shapes.
This investigation aims to determine whether the incorporation of rendered realistic
shadow shapes offers an advantage over random shapes in fostering generalization to real
shadow data and contributes to answering RQ1.

The baseline dataset is derived using the identical data and process as the initial dataset
but deploys Perlin noise and thresholding techniques, similar to the methodology employed
by Morales et al. [MHT19], to produce the shadow shapes. Training procedures for both
datasets involve identical hyperparameters applied over 100 epochs, utilizing elevation
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data. For this experiment, only one model was trained with elevation data, due to the
already subpar performance of the other model on the downsized ASD.

(a)

(b)

(c)

(d)

Figure 6.19: Performance comparison between models trained on realistically rendered
shadow shapes and random shadow shapes. Both models were trained on the downsized
version of the ASD and with elevation data. The images depict input, shadow-free
prediction and shadow mask prediction from left to right.

A visual assessment of the model outputs reveals a substantial performance disparity on
real shadow data. The model trained on random shadow shapes exhibits considerably
inferior results compared to its counterpart trained on realistically rendered shadows using
ray-tracing techniques. Figure 6.19 shows visible performance differences throughout all
depicted examples. This observation underscores the pivotal role of realistically rendered
shadows in enhancing the model’s capacity for generalization to real-world data.
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6.7 Preliminary Tests
A few preliminary tests were conducted to determine if the models were able to learn
sufficiently from the provided data. In these tests, different shadow generation parameters
were tested as well as different model architectures. In a first test, shadows were cast
onto the orthophotos directly in the rendering engine (see Figure 6.20).

(a) Input (b) Shadowed

Figure 6.20: Artificially shadowed image directly rendered with Blender using the digital
surface model of the area and the orthophoto as texture.

This was the fastest method, but it also restricted the adjustability of the shadows.
Furthermore, it rendered a shadowed image straightaway without producing a shadow
mask. This only allowed for a network where detection and removal were learned in a
single CGAN.

Additionally, the rendering engine altered the shadow-free parts of the image, because they
were lit by the light source, which brightened exposed areas. This produced subjectively
bad results, where many of the artificial shadows were not removed correctly.
Therefore, the rendering engine was only used to produce the shadow masks, leaving the
actual shadowing to the introduced algorithm and enabling the use of the ST-CGAN.
This also aligns the method more with the already established approach of [MHT19].

The DSM was initially used for the shadow generation and input for the model. However,
it had difficulties generalizing to real shadows. It was assumed that this was partially
due to the inclusion of elevation data and shadows of ignored shadow areas, like height
data and shadows of trees. Therefore, the DTM was used for all subsequent shadow
generation methods.

Light-ray bounces were another aspect investigated. The default four ray bounces in
Blender produced shadow masks with widely varying shadow intensities due to the
reflected rays from the white texture and the topology of the terrain. The resulting
shadowed images did not represent real shadows well, because real shadows are much
more uniform, as seen in Figure 6.21c. Consequently, the number of bounces was reduced
to zero, because all other values in between did not change the output significantly.

47



6. Results

(a) 4 bounces (b) 0 bounces (c) Real shadows

Figure 6.21: Artificially shadowed images rendered with four and zero ray bounces
juxtaposed to real shadows.

In spite of the inconsistencies between the four bounce dataset and the real shadows, a
full train run was conducted anyway to estimate the number of epochs needed and to
see how these models would perform on real shadow data. Figure 6.22 shows the same
examples as earlier but processed by the models trained on the dataset with four bounces.

Figure 6.23 displays that in some instances, the models were able to remove small scale
shadows, especially the model with elevation data. In example Figure 6.23a the shadow
of the trench in the upper right was removed, and in Figure 6.23c similar success can be
seen with the shadows of the rocks in the center of the image. However, the removal is
very inconsistent, and larger shadows are completely ignored.
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(a) input (b) without elevation (c) with elevation

Figure 6.22: Shadow removal examples with real shadows. Models were trained on
artificial shadows with four light-ray bounces. Each of the images comprises 36 smaller
(256 × 256) images tiles sent to the network individually and stitched together afterwards.
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(a) Input (b) Output

(c) Input (d) Output

Figure 6.23: Examples of small-scale shadow removal from the model trained on artificial
shadows with four light-ray bounces and elevation data.
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CHAPTER 7
Discussion

7.1 Performance on Artificial Shadows

In chapter 3 the efficacy of DEMs in rendering realistic artificial shadows was demonstrated.
The generated shadows directly relate to the real topology of the terrain, presenting a
departure from the method of [MHT19] where the shadow shapes are entirely random.
Additionally, the inferred 3D geometry of the terrain and ray-tracing contribute to more
realistic penumbra regions, simulating the real physical process. Addressing RQ1, we
can say that DEMs can be seamlessly integrated into shadow-removal pipelines during
the training phase as a data generation method. The proposed method of creating
realistically shaped shadows also seems to be advantageous for the model’s generalization
capacity to real data, as evidenced by the visual analyses in Section 6.6.

The experiment on the ASD demonstrated the models’ proficiency in handling artificial
shadows from the test set, effectively mitigating the introduced darkening in aerial
orthophotos. A quantitative evaluation of the experiment revealed that there is a
statistically significant difference between the models regarding measures over the whole
image. Specifically, model Melevation exhibits improvements over MRGB according to the
average RMSE and PSNR scores, even with the naive method of adding the elevation
data as a fourth channel to the ST-CGAN. The effective size of the improvement is
medium (0.3 < |r| < 0.5) measured with RMSE in LAB space and large (0.5 < |r|)
measured with PSNR in RGB space. More advanced methods to add elevation or depth
data to a network could yield even more substantial performance increases. One such
method of adding depth data to a generative image network was introduced by Hu et al.
[HYFW19]. This approach enhances object segmentation performance with depth data
by separating the encoding site of an encoder-decoder architecture into three branches:
RGB, Depth and Fusion. The fusion branch takes the combined output of the RGB and
Depth branches and learns joint features. However, this network was not developed for
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shadow removal and would need crucial adaptations that fall beyond the scope of this
thesis.

In respect to RQ2, it was concluded that additional elevation data does exert a medium to
large statistically significant impact on model performance. The marginal mean divergence
between models may be attributed to the ASD’s limited complexity, potentially causing
convergence towards the upper limits of reconstruction efficacy. The RMSE and PSNR
metrics calculated within the shadow regions were inconclusive. The RMSE showed a
decrease, while the PSNR showed an increase in performance with elevation data. This
inconsistency and the statistical insignificance of these metrics led to their exclusion from
the final assessment. Nevertheless, the RMSE and PSNR computed over the whole image
are the more important metrics anyway because they comprise false positives as well.

7.2 Generalizing to Real Data
When it comes to real shadow data, all the tested models failed to replicate their previous
success on the artificial test set. Most of the time, real shadows were overlooked, and in
some instances, the models produced cloud-like structures within shadowed areas. As
network layer analysis with t-SNE showed, the models deliberately distinguish between
real and artificial shadows. This behavior is especially evident in the bottleneck and L7
layers of the shadow-removal network G2. In these layers, the most distant samples to
the respective other class centroid consistently featured extensive areas of either real or
artificial shadows. This exhibits the models’ intent to maximize the distance between
images with real and artificial shadows. The likely explanation for this lies in the nature
of the GAN training framework and the persistence of small-scale shadows in the ground
truth of the training set. The remaining real shadows appear to be a discerning factor
for the discriminator, which likely considers the presence of real shadows as an indicator
of authenticity. Consequently, the generator probably seeks to obtain the real shadows,
hence learning to differentiate between real and artificial shadows. Notably, the projection
showed overlaps of ground truth and real shadows throughout all layers, which suggests
that the selection of ground truth samples is representative.

Training the models on a downsized version of the training images, aiming to mitigate
the impact of small-scale shadows, yielded substantially improved results on real data,
supporting this hypothesis. However, this approach conflicts with one of the initial goals
of the shadow-removal method, which was to preserve as much detail as possible, and
downsizing would inevitably result in a loss of detail.

Sanitizing the dataset from real shadows at the highest available level of detail is a really
tedious process. While a shadow detection network could aid in filtering shadowed areas,
manual oversight may still be required. Of course, the shadow detection network must
also be created first, but this seems to be a much easier task, as the already very good
shadow detection results of 6.4 demonstrate. Nevertheless, this network most likely has
a bias against exactly the shadows that remain in the train set. A detection network
trained on one of the available shadow-removal datasets is probably sufficient for the
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detection of shadows in orthophotos, but this has to be evaluated first. Areas with
vegetation, e.g., forests and rugged terrain, are also never shadow-free, which would lead
to an underrepresentation of these areas. We are unsure how the shadow-free ground
truth of these areas can be obtained without losing a lot of detail. The shadow-free
ground truth from Morales et al. [MHT19] uses satellite pictures with a resolution of
2.8m/pixel which is around 10 times larger than the orthophotos used in this experiment.
This resolution greatly reduces the impact of small shadows. At this scale, the defined
small shadows (<5m) would not quite span 2 pixels and thus not really be present in the
training images.

Qualitative visual evaluation of the outputs from models trained on the downsized ASD
revealed that Melevation exhibits noticeably superior performance on real shadow data
compared to MRGB. Therefore, we can add to RQ2 that not only does Melevation

demonstrate marginally better quantitative performance on artificial data, but it also
exhibits qualitatively superior performance on real shadow data. This observation
suggests that elevation data aids the model in developing more robust features.

7.3 Constraints and Drawbacks of Using DEMs
One factor that likely limits the utility of elevation data is the much more detailed scale
of orthophotos (16-29cm/px) compared to the lower resolution of DEMs (100cm/px).
Downsampling the orthophotos as done in Section 6.4 relatively increases the detail
of the DEMs and also includes more terrain for the model to infer information from.
For example, a cliff casting a shadow might be on a neighboring tile. Increasing the
observed area by downsampling mitigates this problem. The conducted experiment on
the downsized ASD also showed better performance on real shadow data, especially with
Melevation, which might has to do with the relative resolution increase of the DEMs.
Nevertheless, as already mentioned, downsampling is lossy and results in less detailed
orthophotos. Employing the original resolution and increasing the considered area would
demand larger models to handle the larger input images and still retain smaller DEM
resolutions.

Considering the broader application of the approach, using elevation data comes with
some drawbacks. The additional data leads to more processing requirements and more
trainable parameters to accommodate the additional information. This is primarily
relevant for training but, to some extent, also for later use. Furthermore, elevation data
is not always available, and gathering the required data poses an additional burden.
Moreover, this data has to be registered with the orthophotos in the same 2D space,
which has to be done during test time as well. Training models with elevation data also
restricts the usage of already scarce shadow training datasets like the ISTD [WLY18],
ISTD+ [LS19] or SRD [QTH+17]. However, these datasets could be valuable to pretrain
or test the models. Pretraining a model on one of these datasets and then fine-tuning
it on orthophotos with artificial shadows could be another promising approach to the
problem. Another downside of using DEMs as a shadow generation method is that they
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restrict the size and shape of the produced shadows. This limits the control over the
amount of shadow areas produced and the diversity of the shapes.

7.4 Other Observed Challenges
A number of challenges were observed during the dataset generation and the experiment.
First and foremost, not only are there many types of different terrain, but there are
also large differences in the capturing process of the images. They have varying quality,
resolution, contrast, saturation and hue, which makes the data domain even more diverse
and challenging. As seen in the experiment, cGANs can also produce hallucinations.
This should be kept in mind if the deshadowed images are used in maps for trip planning.
Paths, cottages or rocks visible in the images might not be there in the real world.
Sometimes it can be quite challenging to classify a specific region as a shadow. For
example, mountain creeks or bushes can be easily confounded as shadows in some cases.
This underlines how difficult the problem is and that errors can easily occur even with
human oversight.

7.5 Limitations
In pursuit of the overall objective of generating shadow-free alpine orthophotos for scene
relighting under varying sun angles, the scope of the shadow-removal domain was confined
to addressing large-scale shadows present in orthophotos from the Austrian Alps. The
orthophotos, obtained from Basemap [Bas], predominantly comprises images captured
during summer, thereby limiting the dataset to scenes from this season. Therefore, the
generalizability of the models to completely different geographical areas, such as the
Andes, Rocky Mountains, or Himalaya, remains uncertain. Furthermore, the models’
performance under different seasonal conditions, particularly winter scenes, remains an
open question.

Large-scale shadows were defined as all shadows larger than 5 meters in length. Further-
more, flat landscape regions were excluded from the dataset, as the underlying DEM
lacks significant terrain changes conducive to shadow rendering and feature development.
The complexity of obtaining shadow-free images in areas populated with bushes, trees,
and forests led to the deliberate omission of shadows caused by vegetation. This does
not mean that these areas were ignored, but that images containing shadows from vege-
tation were counted as shadow-free. Completely excluding these areas would lead to an
underrepresentation of a large proportion of real-world data.
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CHAPTER 8
Conclusion

In conclusion, this thesis proposes a novel dataset generation pipeline tailored for shadow-
removal in aerial orthophotos. This pipeline utilizes DEMs and ray-tracing to produce
physically plausible shadow shapes aligned with the underlying geospatial topology of
the terrain. Sequentially, this pipeline was used to generate the Alpine Shadow Dataset
which contains RGB and elevation data encoded into the alpha channel of the images.
This dataset depicts various scenes featuring alpine landscapes in Austria. A visual
analysis substantiated the superiority of artificial shadows generated by this pipeline
over random shapes, particularly in terms of their utility for model generalization to real
shadow data. Addressing RQ1, we demonstrated that DEMs can be effectively used
for data generation, enabling the rendering of realistic shadow shapes. Moreover, it was
demonstrated that elevation data can be successfully encoded into a fourth input channel
of the state-of-the-art shadow-removal model ST-CGAN.

Various experiments were conducted with the adapted version of the ST-CGAN and the
Alpine Shadow Dataset. The results were evaluated quantitatively with common metrics
for shadow-removal and qualitatively through a visual analysis to determine real shadow
performance. Concerning RQ2, our findings indicate that introducing DEMs as model
inputs yields statistically significant improvements with a medium to large effect size on
artificial data.

Initially, all trained models failed to generalize to real data. A conducted analysis of
the output of each network layer has shown that the models deliberately distinguish
between real and artificial shadows in the bottleneck and lowest decoding layer of the
shadow-removal network G2. Through an experiment on a downsized version of the
Alpine Shadow Dataset, it was argued that the remaining real shadows in the training set
are the main perpetrators of this problem. These remaining shadows include shadows
from trees, bushes and other smaller shadows excluded from the shadow-free criteria.
However, having a very sanitized ground truth data set seems crucial. Otherwise, the
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generator learns to leave real shadows in the output images to deceive the discriminator
effectively, hence differentiating between real and artificial shadows.

The downsized dataset yielded substantially better results on real shadows, especially when
it comes to the model trained with elevation data, which outperformed the model without
elevation data noticeably. Therefore, we argue that elevation data fosters noticeable
improvements regarding the generalizability of shadow-removal models, additionally
contributing to answering RQ2.

Although, the shadow detection of the network trained with elevation data already
exhibited quite good results, the shadow removal performance was still subpar. The
likely reason for this is the small training set size after downsizing the images. However,
a small-scale experiment showed that the predicted shadow masks can be used as the
basis for other generative model to reconstruct the shadowed area.
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CHAPTER 9
Future Work

Many questions raised are beyond the scope of this thesis, and therefore some possible
future approaches and experiments to answer these will be discussed in the following
sections.

9.1 Training with a Larger Dataset
We showed that the real shadow performance trained with a downsized version of the
dataset yielded substantial improvements over the more detailed primary dataset. This is
likely due to the reduced impact of small-scale shadows in the dataset and the increased
relative resolution of the DEMs. However, the shadow-removal performance was still
insufficient, which is likely due to the small size of the data set after downsizing it.
Morales et al. demonstrated that it is possible to remove shadows cast by clouds at
lower resolutions (2.8 m/pixel) [MHT19]. Therefore, an experiment with a larger dataset
should be conducted to elucidate if the models are also able to sufficiently remove shadows
cast by terrain. The same proposed data generation pipeline can be used for this process.
However, the ”shadow-free“ criteria has to be more strict for this iteration, as remaining
small-scale shadows have shown to have a negative impact. Nevertheless, it should be
easier to fulfill these criteria at a lower level of detail.

9.2 Propagate Information from Low to High Level of
Detail

If training the models on a low level of detail proves to be successful, the produced
shadow-free images and shadow masks can offer useful information for shadow-removal
at a high level of detail. A network specializing in upscaling and reconstruction could
use the masks, and/or shadow-free images together with the detailed shadowed images
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to infer a detailed shadow-free image. This process is still hypothetical, and a specialized
training algorithm and network needs to be developed to achieve this, but this approach
appears to be feasible.

9.3 Dedicated Network for Elevation Data
The experiments demonstrated that additional elevation data improves the performance
of the ST-CGAN. Nevertheless, the chosen approach to adding elevation data was quite
naive and simple. There are much more sophisticated methods to incorporate elevation
or depth into an image processing network. One such method developed for object
segmentation with RGB-D data was proposed by Hu et al. [HYFW19]. The so-called
ACNet comprises three branches at the encoding site of a U-net like network: a branch
for RGB, a branch for depth data, and a fusion branch that combines the features of
both branches after each layer. It seems feasible to adapt this strategy to shadow-removal
with elevation data, analogous to the ST-CGAN approach of Wang et al. [WLY18].

9.4 More Realistic Shadowing Algorithm
The introduced shadowing algorithm sometimes generates shadows that appear overly
dark, because of the varying contrast of the ground truth images. A more sophisticated
shadowing algorithm that takes the overall contrast and brightness of the images into
account could also help the realism of the training data and the models’ ability to
generalize. The rendered shadow masks only depict the direct illumination of an area.
However, orthophotos could be used as an approximation of the reflectance of the depicted
materials to model indirect lighting as well. Furthermore, a sky texture could also be used
to approximate the light reflected by the sky. Another aspect disregarded is the albedo
and shading of the objects, which do not match the artificial shadowing and cannot
be simply created by darkening specific light frequencies. In order to make shadowing
and shading consistent, the whole image has to be rendered from a virtual scene. A
completely artificial dataset could be created from DEMs and varying, procedurally
applied landscape textures. Nevertheless, possible distribution shifts between these
artificial and real shadows always remain.

9.5 Domain Adaptation
To overcome domain shifts between artificial and real data, methods like test-time training
(TTT) could be applied to the ST-CGAN. This could be especially beneficial for the
previously discussed, completely virtually rendered dataset. In the original work of Sun
et al., rotation prediction was used as a secondary task for a discriminative model to
learn from unlabeled test data [SWL+20]. The authors demonstrated that this method
is quite successful in increasing the models’ robustness. In our case, the unlabeled data
are the real shadow images, and the model is generative. However, predicting rotations
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does not make sense for orthophotos because they do not have a canonical orientation.
A much better secondary task for the model would be masking areas of the image and
letting the model reconstruct them, as proposed by Gandelsmann et al. [GSCE22]. The
authors use masked autoencoders (MAE) as the self-supervised secondary task for a
discriminative model, which also demonstrated a significant increase in class prediction
performance on the test data. In order to incorporate the MAE into the ST-CGAN a
second decoder could be added after the shared encoder assigned to the reconstruction
task. Masking and reconstructing could be a very beneficial secondary task because, as
with shadow-removal, it is a reconstruction process.
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