B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Klassenzentrierte
Visuell-Interaktive
Bildbeschriftung mittels
Eigenschaftsmafen

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Data Science
eingereicht von

Matthias Matt, BSc
Matrikelnummer 01529399

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Assistant Prof. Dr.in techn. Manuela Waldner, MSc
Mitwirkung: FH-Prof. Priv.-Doz. Dipl.-Ing. Mag. Dr. Matthias Zeppelzauer

Wien, 8. Mai 2024

Matthias Matt Manuela Waldner

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

“jaylolgig usipn N1 1e wud ul ajgerene si sisay) syl Jo uoisian [euibuo pasoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipy NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ apjonipab ausiqoldde aiqg v_ﬂ-‘_u.o__n__m

B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Class-Centric Visual Interactive
Labeling using Property
Measures

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Data Science
by

Matthias Matt, BSc
Registration Number 01529399

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dr.in techn. Manuela Waldner, MSc
Assistance: FH-Prof. Priv.-Doz. Dipl.-Ing. Mag. Dr. Matthias Zeppelzauer

Vienna, 8" May, 2024

Matthias Matt Manuela Waldner

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

“jaylolgig usipn N1 1e wud ul ajgerene si sisay) syl Jo uoisian [euibuo pasoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipy NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ apjonipab ausiqoldde aiqg v_ﬂ-‘_u.o__n__m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Erklarung zur Verfassung der
Arbeit

Matthias Matt, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstéindig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Mai 2024

Matthias Matt

“jaylolgig usipn N1 1e wud ul ajgerene si sisay) syl Jo uoisian [euibuo pasoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipy NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ apjonipab ausiqoldde aiqg v_ﬂ-‘_u.o__n__m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Danksagung

Zunachst mochte ich meiner Betreuerin Manuela Waldner fiir ihre unermiidliche Unter-
stiitzung wihrend dieser Arbeit von ganzem Herzen danken. IThr Fachwissen, ihre Sorgfalt
und ihre kontinuierliche Begleitung waren von unschétzbarem Wert beim Schreiben dieser
Arbeit und um nicht von der Bahn abzukommen. Ich mdchte auch Matthias Zeppelzauer
meinen aufrichtigen Dank fiir sein wichtiges Feedback und seine Anregungen aussprechen,
die wesentlich dazu beigetragen haben, diese Arbeit in ihre jetzige Form zu bringen.

Dariiber hinaus moéchte ich Professor Takeo Igarashi von der Universitidt Tokio dafiir
danken, dass er mich wiahrend meines gesamten Auslandsaufenthaltes unterstiitzt und
mir diese Moglichkeit gegeben hat.

Ich mochte mich auch bei meinen Freundinnen und Freunden bedanken, die mich in
meinem Studium und auch dariber hinaus unterstiitzt haben. Auflerdem mochte ich
mich bei allen Teilnehmerinnen und Teilnehmern der Studie bedanken.

Nicht zuletzt mochte ich meinen Eltern danken, die der Grund dafiir sind, dass ich heute
da bin, wo ich bin. Ihre stdndige Unterstiitzung und Ermutigung hat mich zu diesem
Punkt gefiihrt.

vii

“jaylolgig usipn N1 1e wud ul ajgerene si sisay) syl Jo uoisian [euibuo pasoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipy NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ apjonipab ausiqoldde aiqg v_ﬂ-‘_u.o__n__m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Acknowledgements

First, I want to express my heartfelt gratitude to my supervisor, Manuela Waldner, for
her unwavering support throughout this journey. Her expertise, diligence, and continued
guidance were invaluable in helping me write this thesis and keeping me on track. I
would also like to sincerely thank Matthias Zeppelzauer for providing crucial feedback
and input, which helped shape the thesis into its current form.

Moreover, I would like to thank Professor Takeo Igarashi from the University of Tokyo
for supporting me throughout my studies abroad and providing me with this wonderful
opportunity.

I would also like to thank my friends who supported me in my studies and otherwise.
Furthermore, I would like to express my gratitude to all user study participants.

Last but not least, I want to thank my parents, who are the reason I am where I am
today. Their constant support and encouragement have led me to this point.

ix

“jaylolgig usipn N1 1e wud ul ajgerene si sisay) syl Jo uoisian [euibuo pasoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipy NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ apjonipab ausiqoldde aiqg v_ﬂ-‘_u.o__n__m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Kurzfassung

Manuelles Annotieren von Bilddaten ist von fundamentaler Bedeutung fir tiberwachtes
maschinelles Lernen, bei dem beschriftete Datensétze fiir das Trainieren von Modellen
unerlésslich sind. Traditionell wurde die Reduktion des Annotationsaufwands durch
sogenanntes active learning erreicht, bei dem die optimale néchste Instanz fiir die manuelle
Beschriftung auf der Grundlage von Heuristiken zur Maximierung des Nutzens ausgewahlt
wird. Neuere Arbeiten konzentrieren sich auf die Integration von Benutzer:innen in den
Beschriftungsprozess durch visual interactive labeling, um den Prozess direkt und aktiv
zu steuern.

In dieser Arbeit wird cVIL préisentiert, ein klassenzentrierter Ansatz fiir visual interactive
labeling, der den manuellen Annotationsprozess fiir grole und komplexe Bilddatensét-
ze vereinfacht. Bisher waren visuelle Ansétze typischerweise instanzbasiert, wobei das
System einzelne Instanzen visualisiert, die dann annotiert werden kénnen. cVIL nutzt
hingegen sogenannte Eigenschaftsmafle, um schwierige Instanzen einzeln zu annotieren
und auflerdem eine grofle Anzahl von einfacheren Féllen schnell zu annotieren. Da die
Eigenschaftsmafle die Eigenschaften einer Instanz mit einem einzigen skalaren Wert
ausdriicken, sind die Visualisierungen einfach und skalierbar. ¢VIL kombiniert den heuris-
tischen Fiithrungsansatz von active learning mit dem nutzerzentrierten Ansatz von wisual
interactive labeling.

In Simulationen konnten wir zeigen, dass Eigenschaftsmafle effektives Annotieren von
einzelnen Instanzen und grofleren Selektionen ermoglicht. In einer Studie zeigte cVIL
eine hohere Genauigkeit und Zufriedenheit der Nutzer:innen im Vergleich zu einer in-
stanzbasierten wvisual interactive labeling Baseline, wo Scatterplots zur Visualisierung der
Daten verwendet wurden.

X1

“jaylolgig usipn N1 1e wud ul ajgerene si sisay) syl Jo uoisian [euibuo pasoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipy NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ apjonipab ausiqoldde aiqg v_ﬂ-‘_u.o__n__m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Abstract

Human annotation of image data is relevant for supervised machine learning, where
labeled datasets are essential for training models. Traditionally, reducing the labeling
effort was achieved through active learning, where the optimal next instance for labeling
is selected by some heuristic to maximize utility. More recent work has focused on
integrating user initiative in the labeling process through visual interactive labeling to
steer the labeling process.

This thesis proposes cVIL, a class-centric approach for visual interactive labeling that
simplifies the human annotation process for large and complex image datasets. Previously,
visual labeling approaches were typically instance-based, where the system visualizes
individual instances for the user to label. cVIL utilizes diverse property measures to
enable the labeling of difficult instances individually and in batches to label simpler cases
rapidly. Since the property measures express the properties of an instance using a single
scalar value, the visualizations are simple and scalable. ¢VIL combines the heuristic
guidance approach of active learning with the user-centered approach of visual interactive
labeling.

In simulations, we could show that property measures can facilitate effective instance and
batch labeling. In a user study, cVIL demonstrated superior accuracy and user satisfaction
compared to the conventional instance-based visual interactive labeling approach that
employs scatterplots. Participants also needed less time to complete the assigned tasks
in ¢cVIL compared to the baseline.

Xiii

“jaylolgig usipn N1 1e wud ul ajgerene si sisay) syl Jo uoisian [euibuo pasoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipy NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ apjonipab ausiqoldde aiqg v_ﬂ-‘_u.o__n__m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Contents

Kurzfassung xi
Abstract xiii
Contents XV
1 Introduction 1
1.1 __Motivation and Problem Statement 1

1.2 Contributions e 2
1.3 Research Questions|. L 3
1.4 Methodology| 3
1.5 Outlinel 4

2 Background 5
2.1 Active Learning| L 5
2.2 Visual Interactive Labeling 9
2.3 Property Measures| Lo 15
2.4 Representation Learning Lo 19

3 cVIL: Class-centric Visual Interactive Labeling 23
3.1 Components|. 23
3.2 Implementation| 26

4 FEvaluation 31
4.1 Simulation'. 31
4.2 Runtimeo e 36
4.3 User Study| e 37

5 Results 41
5.1 Simulation!. 41
5.2 Runtimel e 52
5.3 User Study| 54

6 __Conclusion 65
XV

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

|A.1 Proof of Equality of Active Learning utility functions for the binary case

|A.2 Aggregate NASA TLX Score
|A.3 Instance and Batch Selection Algorithms|

|List of Figures|

List of Tables

[List of Algorithms|

Bibliography|

67

69
69

73

77

79

81

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Introduction

A good human plus a machine is
the best combination.

Garry Kasparov

1.1 Motivation and Problem Statement

This work presents a class-centric approach for labeling unstructured data, an essential
task for supervised machine learning or subsequent tasks. We specifically focus on images
as subjects for labeling. Although repetitive and menial, it depends on human skill and
experience and can hardly be accomplished without human guidance for fine-grained
classification tasks. However, recent advances in representation learning have made
extracting useful semantic information from complex unstructured data possible, which
can assist humans in the labeling process. These lower dimensional representations
provide new possibilities that are not feasible with the raw data alone, such as fast model
training or efficient outlier detection.

Reducing human annotation cost has been wildly studied in the field of active learning
(AL), where the training process of a classification model is optimized to require as few
labels as possible. Instead of labeling data samples without any particular order, in AL,
the annotators are presented with the most valuable samples for the classification model
at a specific stage of the training process. However, with this approach, humans are
relatively passive figures in the labeling process and have to depend on the model to
present beneficial samples. Consequently, several works have been published to give users
more agency in the labeling process, which can be described as visual interactive labeling
(VIL). These approaches use visualization techniques to let the user actively participate
in the instance selection process. Typically, these systems show individual data instances

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.

INTRODUCTION

in some spatial representation, like a scatterplot projection. We refer to such systems
as instance-centric VIL systems or iVIL. While these systems proved useful, they suffer
from scalability, interactivity, or data complexity issues.

We aimed to mitigate these issues and ensure that our approach effectively handles the
following data characteristics:

1. Data Scale: The labeling process must remain feasible even as the number of
samples in the dataset increases. However, scalability in the number of classes is
not considered, and we assume that no more than ten classes are present in the
data.

2. Data Complexity: The system should be able to handle complex data without
affecting the core interaction techniques, and the system should mitigate the existing
complexity.

To meet these requirements, our proposed approach adopts a class-centric perspective,
partitioning instances into classes based on model predictions without visualizing data
points as individual entities.

1.2 Contributions

We present a class-centric iterative labeling approach, which we call cVIL, that visualizes
distributions of property measures ﬂm for each class independently, where instances
are divided based on the predictions of the underlying classification model. A data
instance is only represented by a single scalar value based on the currently visualized
property measure. These property measure values in a class partition are then shown as
a distribution. The main contributions of the thesis can be summarized as follows:

e Conceptually, cVIL combines the advantages of AL and VIL into a unified approach
by utilizing well-understood properties that guide the labeling process (like AL)
while leaving the user entirely in control of the instance selection (like VIL). In a
class-based approach, the user only has to identify false positives when deciding if
a class label is correct instead of the additional possibility for true/false negative
samples in instance-based systems. The use of property measures enables the
labeling of large selections with a single interaction, which we call batch labeling,
and guides the labeling of individual instances, which we call instance labeling.

e We implemented a labeling interface that utilizes property measures to allow users
to label large datasets efficiently. To further alleviate the scalability issues of some
previous systems, we incorporate representation learning as a preprocessing step
and use visualizations that are not impacted by the number of samples that need
to be visualized. Representation learning allows for a simple classification model,
which results in fast training times and is less affected by overfitting.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.3. Research Questions

o We formalized a simulation framework for evaluating different property measures
within the cVIL system. We presented the results by comparing the property
measures with each other and compared them to active learning. We further
analyzed the utility of ¢VIL for actual labeling tasks in a user study.

1.3 Research Questions

The success of any labeling system primarily depends on how accurately (effectively)
users can label data and how fast (efficiently) they can achieve accurate results

Another vital aspect is the scalability of the number of samples that can be labeled
through the system, as characterized by the first requirement of the system. Furthermore,
the system should lead to a better user experience and increase the accuracy of the
labeled output compared to instance-based systems in complex real-world scenarios.

Thus, the research questions can be formulated as follows:

« RQ1: Is instance labeling with ¢VIL more effective than active learning?
¢ RQ2: Can batch labeling improve the effectiveness of cVIL?

¢« RQ3: Is the use of property measures scalable in terms of the number of instances
and dimensions to process?

o RQ4: Does our class-centric labeling approach (a) reduce the labeling effort and
(b) increase user satisfaction compared to a traditional instance-based approach?

1.4 Methodology

The system is evaluated by simulating user interactions to get robust baselines of the
approach and conducting a user study where subjects have to solve label tasks manually.

To answer RQ1 and RQ2, we ran simulations to compare the effectiveness of different
property measures for instance labeling and batch labeling. Establishing a set of funda-
mental interactions for ¢VIL enabled us to compare the performance of different property
measures across various datasets and settings by measuring the accuracy of the labeled
output. This ensured that our results were both reproducible and representative.

We analyze RQ3, which concerns the system’s scalability, by measuring the runtime of
various property measures on synthetic data. By changing the number of samples and
dimensionality of the data and measuring the runtime for different inputs, we can gain
insights into how the properties behave in various settings.

We conducted a user study to answer RQ4 using a prototypical implementation of cVIL.
In the study, participants were required to complete a labeling task using two interfaces:
c¢VIL and an iVIL baseline. The baseline is identical to the ¢VIL implementation except

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.

INTRODUCTION

that it replaces the class-based visualizations with a scatterplot of t-SNE [vdMHOS]
projections, which was selected based on the findings of Bernard et al. [BHZ"18]. We
observe the accuracy of the generated label output, labeling time, task load, and preference
to compare cVIL to the iVIL baseline.

1.5 Outline

In the following chapter, we present the related work. This comprises active learning
and visual interactive labeling approaches that aim to give users more agency in the
labeling process. Here, we also present the property measures that were implemented
for evaluation. The representation learning approach used in c¢VIL and labeling systems
that use some form of representation learning are also introduced there.

Chapter 3| introduces cVIL with its components and interaction design, which are
explained in detail. Here, we also present the prototype used for the user study and how
it implements the different components of the system.

Chapter |4 details the evaluation of the system. We describe the simulation procedures
on which the quantitative evaluation is based and the user study design and summarize
the procedure for the participants.

Finally, in Chapter |5, the evaluation results from the simulations and user study are
presented, and a conclusion with an outline of possible future work is given in Chapter 6.

A paper based on the work of this thesis has been published at the FuroVA 202/ conference.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Background

In this chapter, we provide an overview of the related work for this thesis. We first
introduce the concept of active learning, which is an algorithmic approach to determine
which instances an oracle (the user) should label based on the system’s current state.
Then, we discuss visual interactive labeling approaches that give the user more agency
during the labeling process. We also introduce property measures, which c¢VIL uses to
combine aspects of both active learning and visual interactive labeling. As representation
learning is also a crucial aspect of cVIL, we explain the specific method used to find
image embeddings, which serve as input for the property measures. Finally, we present
other works incorporating representation learning into the labeling workflow.

2.1 Active Learning

In active learning, a machine learning model is trained by iteratively selecting the most
informative samples to maximize performance with the least amount of training data.
It has been shown that active learning outperforms passive learning (random sampling)
in most settings. Since providing large amounts of training data is costly, reducing the
amount of labeled data to train models is advantageous to machine learning practitioners.
This principle is also at the core of c¢VIL.

Fu et al. [FZL12] provide an overview of the most common active learning instance
selection strategies, all of which could, in principle, be included in c¢VIL. They categorize
the strategies into two major groups: IID-based and feature-correlation-based approaches.
IID-based measures are based on properties determined for each sample independently,
while feature-correlation-based measures try to select instances in relation to one an-
other. Due to the computational complexity of feature-correlation-based strategies, only
independent measures are directly implemented in the prototype. However, cVIL also
incorporates scalable data-based selection strategies that are conceptually similar or are
heuristics of these approaches.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

The three main IID-based measures are uncertainty-based approaches, Expected Gradient
Length, and Variance Reduction. The latter two are again excluded for computational
complexity considerations. Furthermore, these are tightly coupled to a specific family of
models, which would require restricting the model choice for the framework. That leaves
uncertainty-based measures, which are suited for labeling.

Generally, each measure assigns a utility value to each observation x € X in the data. For
uncertainty-based methods, the selection strategy always incorporates the probabilistic
classification model fy with parameters 6, which assigns conditional probabilities P(y|x)
to a data sample:

fo: X —[0,1]% (2.1)
with K classes, where the components sum to 1. Therefore, the utility of a sample is
given by the function u : 0 x X — R.

In active learning, the selected sample x* at each iteration is the sample with the highest
utility, which is given by:

* 9 2.2
@* = argmaxu(f, z) (2.2)

Fu et al. present the most prominent uncertainty-based selection strategies.
To simplify notation, we define Pp(y()l|z), Po(y(1)|®), .-, Pa(y(x—1)lx) to be the sorted
probabilities where Py (yg)|z) is the largest probability value and Py(y(x—1)|z) the smallest
probability value.

Uncertainty sampling

In uncertainty sampling, the sample with the highest uncertainty is selected. That is:
uync(0,x) =1 —maz fo(z) =1 — Py(y(o|v) (2.3)

Min-Margin sampling

In margin sampling, the utility is defined as the difference between the largest and the
second largest probability:

u(0,z) = Py(yoylz) — Paly)le) (2.4)

However, this leads to the smallest value being the most uncertain instance, which would
contradict the definition of z* from before, where we select the instance with maximum
utility. Therefore, we have to multiply by -1:

upa(0,z) = Po(yaylz) — Pa(y(o)lr) (2.5)

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.1. Active Learning

The domain of the utility is now [-1, 0]. We can add one, if that is required, to get
positive utility values.

Entropy sampling

Here, the entropy of the model prediction is used as the utility of a sample:

K-1

ugnt(0,2) = — Z Py(yi|z) log Py(yi|x) (2.6)
i=0

For binary classification problems, these three approaches are equivalent. A proof can be
found in the appendix |A.1L

Active learning, therefore, tries to select the sample with the largest utility at a specific
iteration. This sample is then used for training, which results in updated model parameters
0 and updated utility measures for the remaining samples. Active learning can be described

using a simple algorithm [FZLI12]:

Algorithm 2.1: Active Learning
Input: unlabeled data D, initial labeled data L, training size m < |D|+ |L]
Output: model fy, labeled data L

1 fp < initModel(L)

2 while |L| < m do

3 x* < argmax, u(fyp, z)

4 y* «+ oracle(x*)

5 L+« LU (z*y")

6 fo < trainModel(fy, L)
7 | D+ D\z*

8 end

At each iteration of the labeling loop, the optimal sample x* is selected based on the
chosen utility function, and an oracle (the user) is queried for the label y*. The chosen
instance is added to the labeled instances L along with the label from the oracle. Then,
the model is updated with the new information in L, and z* is removed from the pool
of unlabeled instances. The process stops once the number of labels in L exceeds the
training size m. However, any other stopping criterion can be applied as well.

2.1.1 Evaluation of Active Learning Strategies

The classification accuracy measure is the most prominent metric for comparing models.
Since active learning is an iterative process, we are interested in how the model improves
over time as more labels are added. Reyes et al. [PAVIS] argue that the area under the
learning curve (ALC) is a standard metric to quantify the model performance over the
whole training process.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

The learning curve is determined by the model accuracy at a specific number of queried
instances, and as more samples are available for training, the accuracy of the model
changes, resulting in a curve that illustrates this change. As the name suggests, the area
under this curve is the ALC metric, which can be calculated with the trapezoid rule.
Another common way of comparing selection strategies is just a visual comparison of
the learning curves. We chose visual comparison since this also allows us to compare the
results at different stages of the labeling process.

Yang and Loog [YLI16] thoroughly compare different active learning approaches with
logistic regression as the classification model. They tested ten different instance selection
strategies and found that entropy was the best strategy for the 44 real-world datasets they
used in their evaluation. It had the highest win count, the highest average ranking, and the
highest mean ACL score of all evaluated strategies. It also performed best across all these
metrics on 80 subsets of the ImageNet dataset. Expected error reduction (EER) performed
almost equally well in these tests. However, in terms of computational cost, entropy is
consistently orders of magnitude faster than most other methods, especially EER, which
is approximately 1000 times slower. Only the maximum model change (expected gradient
length or similar approaches) is comparable regarding runtime. However, they use a
particular method to estimate the model change, which only applies to logistic regression
and favors uncertain instances, making it similar to entropy in that regard.

Reyes et al. used Support vector machines (SVM) as the classification model
to analyze the performance of the uncertainty-based strategies on 26 datasets. Their
evaluation found little difference between uncertainty, margin, and entropy sampling.
However, all procedures performed better than random sampling with statistically
significant results.

2.1.2 Batch Active Learning

We will give a brief overview of batch active learning to avoid confusion about this
term and to put the cVIL system into perspective. In batch active learning or batch
mode active learning, multiple instances are selected to be labeled in one iteration. This
intends to mitigate potentially long training times of models and utilize a parallel labeling
framework. By returning more instances, multiple labelers can work simultaneously and
generate labels more efficiently.

However, batch-mode active learning requires more consideration of the instance selection
strategies. Selecting the instances with the highest utility is not the optimal strategy since
this does not consider information overlap among these instances. We would, therefore,
query many redundant instances. Instead, there should be a focus on diversifying the
instances in a batch to mitigate these problems. Several approaches have been studied to
diversify batch selections [Set09].

In c¢VIL, there are two forms of batching in label selection. Firstly, of course, there is
what we term “batch labeling,” which is the selection of instances with low uncertainty
or, more generally, with low property measure values. This might seem counterintuitive

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.2. Visual Interactive Labeling

since active learning selects the highest utility samples. However, these instances serve
as a baseline for the model to learn from prototypical instances. These selections have
a lower sample weight and, therefore, have less influence on the model than instance
labels. The interaction techniques used make selecting many instances at once much
more efficient. Furthermore, these instances are diversified by the class assignments. A
fixed amount of instances from each class is sampled from the batch label pool at training
time to prevent an unbalanced class distribution.

Secondly, since the user is not forced to train the model after a fixed amount of labels, we
have batch labeling in that respect from instance labeling. Realistically, the least amount
of labels per iteration is to label one sample from each class. However, theoretically,
the user could look at the specific maximum value of each class and only label a single
instance with the highest score, but this is not intended. So, we take the smallest batch
size as the number of classes. We hypothesize that this has no negative influence on the
performance since the class predictions again diversify the labels. We will examine the
training behavior of different batch sizes in Chapter 5.

2.2 Visual Interactive Labeling

With active learning, the user acts as an oracle that provides labels to the model. The
following approaches give users more possibilities to interact with the labeling process.
They shift the focus toward user interaction, and instance selection is done actively by
the user. The model mainly provides users with information, such as confidence scores.
The information about the data or the model is primarily presented using visualizations,
and the labeling is done by interacting with the visualizations.

The goal is to utilize human expertise to improve the label quality and give users more
agency to make the labeling process less repetitive. Users can also gain knowledge about
the data or the model while labeling. For example, they might gain insights about the
distribution, clusters, etc., in the data or have more information about how the model
performs, such as accuracy, bias, or other aspects.

Seifert et al. [SG10] published an important early work that can be attributed to visual
interactive labeling. Their system visualizes model confidence of all instances in a single
visualization instead of only presenting the most uncertain instances to the user, like in
active learning. The visualization is a star coordinate plot based on a classifier’s posterior
probability, as can be seen in Figure 2.1. They place the classes on the outer rim of a
circle and place samples inside it depending on how confident the model predictions are.
The final position is a linear combination of the “class anchors” on the outer rim based
on the confidence value for each class. The authors give the example of springs that
attract a sample to a class, i.e., the higher the confidence, the stronger the attraction
is to that particular class. It is important to note that the position of a sample is not
unique to a specific posterior probability, and several samples can fall into one place.
Therefore, the mapping function is surjective, and the output is a 2-dimensional point,
which results in visualizations similar to a scatterplot for multiple instances. Users can

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

10

Figure 2.1: Visualization of posterior Figure 2.2: t-SNE projection used in
output probabilities for user-based ac- VIAL interface [BHZ*18| p. 1].

tive learning [SG10, p. 2|.

then manually select points in the plot, where points closer to the center indicate that
these instances are less certain. Instead of comparing user performance with a user study,
they simulate two possible selection strategies and two label strategies, allowing them
to evaluate more settings. The two selection strategies are Gaussian and Convex-hull.
The Gaussian strategy selects points closest to the center. In contrast, the Convex-hull
strategy constructs a convex hull around a class anchor and then chooses the point closest
to the intersection point of the convex hull with the center. The labeling strategies
are called “all” and “misses,” so all points chosen by the selection strategy are labeled,
or only the incorrectly classified instances are labeled. They showed that with these
strategies, users could outperform standard active learning methods in many cases. They
also note that users could switch strategies while labeling using the visualization, which
is impossible with a fixed active learning algorithm.

Another highly influential work is the paper that first introduces the visual interactive
labeling framework (VIAL) by Bernard et al. [BZSAI§|. The authors aim to combine
model-centered and user-centered approaches into one unified and abstract process. The
framework differentiates three output types: labels, the trained model, and domain
knowledge. These outputs are generated with an iterative process that combines active
learning with visual interfaces, either by visually guiding the AL process or by steering
and verifying AL through visual means. More specifically, the framework is divided into
six distinct steps:

e Step 1 - Preprocessing: This can consist of data cleaning or projecting data into
more suitable representations.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.2. Visual Interactive Labeling

e Step 2 - Learning Model: A model is trained on the user-provided labels and is
also output at the end of the process.

e Step 3 - Result Visualization: Presents the current state of the labeling process to
the user.

o Step 4 - Candidate Suggestion: This can either be guidance based on active learning
or to help steer and verify active learning.

e Step 5 - Labeling Interface: This step is the basis of the interaction loop, where
data is mapped to labels by the user.

e Step 6 - Feedback interpretation: The learning model could utilize more advanced
feedback from the user, for example, relations between multiple instances. However,
most commonly, the user only provides feedback through labeling.

They also analyze “pioneer” implementations of the VIAL framework and show that it
can be successfully applied to labeling systems.

Bernard et al. ﬂB;H.Z—il&ﬂ also evaluated a representative VIAL system directly against
active learning. Their system is centered around projection scatter plots showing class
predictions, class uncertainty, superimposed convex hulls, or superimposed butterfly plots.
PCA [Jol03], non-metric MDS [Kru64], Sammons Mapping [Sam69], and t-SNE [vdMHOS)]
were the projection methods available to users. An example of a t-SNE projection used
in their system can be seen in Figure [2.2. Candidate suggestions are based on these
plots, where users can decide which instances to label based on the spatial information of
projection and additional information like class coloring. For the baseline, they simulated
uncertainty-based active learning strategies, including query-by-committee, where several
classifiers vote for the selected instance. They conducted a user study to see if VIL can
outperform active learning, even in complex label settings, and when multiple instances
can be selected. Furthermore, they evaluated whether users develop specific VIL strategies
and how they relate to active learning. In the easy complexity setting, users had to label
two classes. Medium and difficult tasks had 5 and 10 classes, respectively. The results
indicated that for easy tasks, VIL outperforms active learning considerably; however,
with medium and difficult tasks, the results are less clear, with VIL only being slightly
better. All tested VIL-support techniques performed very similarly regardless of the
setting. Class coloring based on model predictions performed marginally better than the
other techniques. Most participants relied on the t-SNE projection for labeling — the
default — and tended to use the others only for validation. Furthermore, participants
were much more efficient when they could label multiple instances at once. Observing
participants during the labeling process also revealed that participants used specific
strategies while labeling. These included data-centered strategies like highest density,
centroids first or equal spread, and model-based strategies like labeling class borders,
class intersection, and class outliers.

11

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

12

Bernard et al. [BZLF18| later formalized these strategies, which are central to the concept
of ¢VIL and will be discussed in great detail in the following section. Before, we want to
present additional relevant visual labeling systems.

Grimmeisen et al.[GCT22] extended VIAL with guidance based on formalized user
strategies. In their work, guidance is facilitated through visual cues in the scatter plot,
which assists the user in selecting specific instances to label instead of relying solely
on projection or color mapping. They also indicate class prediction by color, similar
to the class coloring support technique of Bernard et al. . Purely user-based
interactions can lead to bias, and some form of guidance can overcome this issue. Guidance
in VisGIL is based on the information gain of an instance, which is calculated based on
the model’s uncertainty and the representativeness of a sample. Representativeness, in
turn, is calculated based on the similarity of the instance to all other instances. This is
realized as a density measure over the data. The authors consider two forms of guidance:
orienting and directing. Orienting extends the VIAL plot by showing the utility through
the glyph’s size, directing further shows recommended instances for labeling using a
special glyph, particularly a red star. The number of recommended instances in the
directing setting is set to the number of classes k. The specific instances shown to the user
are determined by finding k clusters on a subset of the data with high utility and selecting
one point for each cluster closest to its center. Therefore, the user gets recommended k
diverse instances to label at each labeling iteration. The authors performed a user study
with orientation and guidance settings on a small subset of the MNIST dataset, with
each class limited to 100 instances. The results indicate that guidance with direction
outperforms guidance with orientation both in effectiveness and efficiency. The model
accuracy improved with stronger guidance. They also found evidence that the accuracy
per interaction increased and the percentage of correctly labeled instances increased.
However, these results were not statistically significant. The results further showed that
users thought the recommended instances had to be labeled and investigated less on their
own. This might be the case because single instances were explicitly highlighted.

Desmond et al. [DABT21] studied instance-based label assistance by ordering the labels
according to their predicted likelihood and showing the exact percentage values under the
label, similar to a bar chart. The likelihood of each label of an instance is determined by
label spreading, a semi-supervised labeling algorithm. In the user study, the participant’s
performance was evaluated with two different interfaces: a baseline without any ordering
or likelihood visualization and one with both ordering and visualization of the likelihood
based on classifier predictions. Furthermore, the user also tested two conditions of
assistance. One where the model was trained on 21 examples, and the other was where
active learning was used to train 200 samples. The latter will give better predictions.
The task participants were given was in the domain of text classification with 21 labels
and 420 instances in the dataset. Initially, 21 instances were selected as an example
of each class, and users had to classify these training examples. Wrong answers were
corrected with an explanation of why the chosen label was incorrect. Then, users labeled
79 more instances without any correction for incorrect labels. The study indicated that

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.2. Visual Interactive Labeling

assistance significantly improves the results of labels, although there was little difference
between weak and strong assistance.

Desmond et al. also present a system that utilizes a semi-automated labeling
approach that aligns much more closely with the paradigm of cVIL. Their system now
uses active learning and the same label-spreading approach to implement an interactive
label loop, similar to the other system discussed previously. The active learning selector
chooses batches that the user labels using the assisted labeling interface. After the batch
is labeled, the user reaches a checkpoint at which they can either improve the model
further by labeling or apply automatic labeling to the remaining data by the model. The
authors only performed an informal user study that did not allow them to draw firm
conclusions.

Benato et al. also try to combine automatic and user-based visual approaches
for data labeling. They integrate label propagation with active learning to assist the
user in labeling data. In particular, their system utilizes an autoencoder neural network
to extract features, which are then again visualized as a t-SNE projection in a scatter
plot. Moreover, the system allows the user to set a threshold, which divides the data into
uncertain and certain instances. Label propagation is then applied to instances the user
designated as certain, and the remaining instances the user determined to be uncertain
must be further labeled manually. The higher the confidence threshold set by the user,
the fewer instances must be labeled manually. High confidence points are displayed in the
predicted class color, while low confidence points are colored in black. The user can freely
choose which low-confidence samples to label next, similar to the systems before. These
manual labels are then propagated to the remaining instances. The authors evaluate
the system on MNIST and different subsets from microscope images of parasites, which
provide a more complex label setting. They found a confidence threshold between 0.5 and
0.6 works well for all settings. With more complex datasets, the threshold is higher than
for the MNIST dataset, which indicates that users do not like to delegate complex tasks
as much. Their method reduces the labeling effort compared to fully manual settings
and performs better for complex label settings than fully automatic approaches.

Yu et al. propose another semi-automatic approach for distributed data labeling
on the crowdsourcing platform Amazon Mechanical Turk. Their main contribution is the
creation of a large image dataset. They achieve this using a semi-automatic approach
by automatically labeling high-confidence positive samples and only using the low-
confidence samples in the next label iteration. They treat each category as a binary
classification problem. Therefore, it is acceptable to have an overfit classifier as long as
the high-confidence positive predictions are correct since these are labeled automatically.
Their system uses deep learning classifiers as predictors. The resulting dataset achieves
an average precision of around 90% but has over 95% precision for specific categories.
Training models using their new dataset improved the performance by over 20% compared
to the baseline dataset. Using just the baseline, their model achieves an error rate of
28.6%. When both the baseline and their dataset are used, the resulting model has an
error rate of only 22.2%.

13

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

14

Sun et al. [SLT17] explore visualizing the training progress of a classifier with several
visualizations, including some specific to the domain of name entity recognition. Their
Label-and-Learn system also utilizes active learning, and one visualization shows the
information gain of an instance in a 2D scatterplot where one axis is the classifier
uncertainty and the other is similarity. The similarity between any two items is the
overlap in the words they share. Label-and-Learn is evaluated against a version using no
visual information and only textual information. The results showed that the participants
performed better in every aspect with visualizations available while labeling. Measures
included the success of the classifier, understanding of the classifier’s decisions, and
self-assessed performance. Participants also rated the utility of each visualization for
labeling. Surprisingly, the information gain visualization scored very low on average.
However, some users reported that it was advantageous. The authors suspect that the
visualization was less clear for some participants.

Chegini et al. designed a labeling system for multivariate datasets based on
the VIAL process called mVis. A dataset can be explored using linked visualizations,
and instances can be selected and labeled in any of the views available to the user.
These views include parallel coordinate plots, scatter plot matrices, and projections like
t-SNE. The user is supported by active learning and clustering algorithms that help
to select suitable candidates for labeling. The authors analyze and discuss how linked
visualizations can be integrated with machine learning models to guide the user.

Beil and Theissler present an approach called Cluster-Clean-Label that also
incorporates clustering into the VIAL process. As the name suggests, the data is first
clustered and then cleaned using outlier detection so that the remaining instances in the
cluster have a high accuracy. Finally, the user can add a label to each cluster. Before
clustering, the data is projected to a lower dimensional space using PCA, where 90% of
the variance is retained. The data is then visualized in a t-SNE projection scatterplot.
This 2D projection is then used for clustering using the HDBSCAN [CMST13] algorithm.
Cluster cleaning is done using an autoencoder. For each cluster, an autoencoder model
is trained on the data in that specific cluster. The mean squared error (MSE) of the
reconstruction of each instance in the cluster is sorted and displayed to the user for
cleaning by removing instances with high MSE from the cluster. Therefore, cleaning is
done with an outlier-based approach, after which the cluster is labeled. With Cluster-
Clean-Label, the user can label large amounts of data with one action. However, this
depends on good clustering and projection of the data. In the user study, participants
were able to label around 91.5% of the MNIST dataset with an accuracy of around 99%.
For clusters of the digit “9”, there was suboptimal label quality where a disproportionate
number of samples were mislabeled.

Finally, Song [Son20] presents an approach that divides samples into annotation and
verification sets. While the approach cannot be directly classified as interactive labeling
because the label selection is determined by an adapted active learning selection criterion
without any human intervention, the distinction between informative samples and samples
for verification makes it nonetheless highly relevant in the context of ¢VIL. The annotation

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.3. Property Measures

and verification sets are found using an optimization approach that incorporates the
labeling efficiency (time cost) in the selection process. During the annotation phase,
the user labels the suggested samples from the annotation set individually, similar to
standard active learning. In the verification phase, the samples are partitioned into their
predicted class labels, and the user can then verify the samples of each verification set
and point out incorrect samples (outliers), which are then labeled in the next annotation
phase. The verification phase stops once the user identifies three consecutive outliers
in each verification set. This process is very similar to batch labeling in ¢VIL, with
the distinction that the user cannot make arbitrary selections and cannot freely switch
between instance labeling and batch labeling. The evaluation results show that the
proposed selection process outperforms all baselines and achieves better accuracy at
the beginning of the labeling process than random sampling. The system also improves
labeling times compared to their previous system and baselines from the literature, as
measured in the user study. On average, users only needed 328 seconds to label 400 images.
Removing the verification phase drastically reduces the effectiveness of the system. The
effect of the verification set only becomes negligible when the model predictions are poor.
This confirms that having a component for efficient and fast labeling can be advantageous.
Moreover, the system uses a learned semantic representation of the input images to train
the downstream classifier. The embeddings of the images are determined beforehand,
and the model is frozen during the labeling process. We discuss representation learning
approaches for labeling in Section 2.4/ in more detail.

2.3 Property Measures

After discovering specific strategies users adopted in visual interactive labeling, Bernard
et al. formalized these user strategies and analyzed their potential for labeling
tasks. They found that data-based strategies can outperform active learning strategies
initially, while active learning-based strategies are more robust and perform better in
later stages of the training process.

Then Bernard et al. [BHRT19] generalized the concept of formalized user strategies
into the notion of degree-of-interest functions in their later short paper. This paper
establishes a taxonomy of these functions and presents building blocks to construct them
systematically.

Bernard et al. ﬂm later published a more comprehensive analysis of degree-of-
interest functions, which they now termed property measures (PMs), and provided a
complete taxonomy fundamental for understanding these strategies. They identified 15
properties of the data or machine learning models applied to the data that can be used for
instance selection. These properties enable the unification of instance selection strategies
from the machine learning perspective, such as uncertainty-based active learning and
user-centered strategies applied in a visually interactive labeling context. Property
measures quantify given properties of the underlying system into a single numerical value.
Property measures can be used to explain certain characteristics of the data as well as

15

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

16

model decisions and development during the labeling process. The taxonomy is built
along four orthogonal dimensions describing property measures.

The first dimension is the type of model output used. A property measure can use no
model output at all, which means the property measure is only calculated using the
data itself. If model output is used, it can either be group assignments (classification),
posterior probability distributions, or scores (regression).

In the second dimension, property measures can differ in how instances are related to
each other when calculating the measure. This can be done with only one instance,
meaning only the model output is used to calculate the property measure. An instance
can be related to its neighbors, instances within its group, or instances from other groups.

The third dimension, measure functionality, describes how model output and instance
relations are combined to form the final property measure. As described before, either
model output or instance relations can be ignored by model- or instance-only PMs. The
third option is to use both model and instance properties to define the property measure.
One example could be to take the distance between instances as weighting or use the
model predictions of neighboring instances as an indication of diversity.

The fourth and last dimension is measure valance, which determines if the property
measures are interpreted in ascending or descending order. So, for example, a distance
measure is ascending, and model certainty is descending when estimating sample utility.

2.3.1 Explainability

Bernard et al. also describe using property measures to facilitate explainability.
Property measures can be used for explanations since they directly process information
about the model and data, which can be visualized and provide insights during labeling.
Any property of the data or model could be visualized and used to help users understand
specific aspects of the underlying data or model.

This also applies to cVIL while the system retains the advantages like improved scalability.
A straightforward example would be to utilize the model uncertainty to analyze for which
instances the model works well and which attributes the model might misclassify by
looking at samples with low or high values, respectively. Therefore, the interface can be
used to analyze and correct model behavior. When using model uncertainty, cVIL is a
simplistic interface for analyzing model performance through the posterior probabilities
of the classifier like Alsallakh et al. or Ren et al. [RAL¥17]. This is also
similar to Quality Assurance for Machine Learning approaches [ZTdJ"21], where the
interface is used to validate an already trained model.

Property measures could be specifically designed to achieve any form of explainability
within the system as long as the corresponding property measure can assign a score to
each data point. However, due to the simplicity of the visualizations, the c¢VIL interface
is less suited for developing and understanding the behavior of property measures
for explainability compared to the explainer prototype by Bernard et al. ﬂm

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.3. Property Measures

Nevertheless, once the property measures are used in the labeling process, it can provide
the user with the same information.

2.3.2 Property Measure Implementations

Here, we describe the prototypical implementation of each property in more detail.
All property measures can be implemented with eight atomic functions, which can be
composed to implement any of the 15 properties presented by Bernard et al [BHST21].
In this section, we will express the property measures used in ¢VIL in terms of these
atomic functions using the alphabetic designation given by Bernard et al. in Table 2

BHST21] p.19].

In c¢VIL, all data points are separated by their class assignment (Partition P), so all
property measures have an implicit partitioning function applied. In the following, this
initial partitioning is omitted from the description of the property measures. Staring
with uncertainty-based active learning measures, seven out of 15 properties described by
Bernard et al. [BHST21] were implemented in cVIL.

The Compactness, Variation, Collision, and Size are not implemented because they
operate on a partitioning of the data. Firstly, the data is already visually partitioned
by class assignment, and there is no straightforward way to partition the data further
within class assignments. Secondly, these property measures assign the same value for all
data points in a partition, which is unsuitable for cVIL. The Border property cannot
be easily implemented since Convex hulls, the most straightforward way to find class
borders, cannot be applied to the data since the number of dimensions will often be
larger than the number of instances. Finally, Relevance and Agreement properties are
incompatible with cVIL due to their measure valance. These measures are inverses of
Uncertainty and Disagreement, respectively.

Uncertainty

From the model posterior probabilities (Soft assignment: L) the minimum is used
(Aggregation: A) to get the uncertainty of an instance. The same decomposition is
used to represent Min-Margin and Entropy. All implement the Uncertainty property
and are a direct implementation of the corresponding active learning selection functions
described in Section [2.1.

PM(x): L — A

Eccentricity

From the data, the median and dimension-wise variance (Aggregation: A) is used to
calculate the distance of each point to the median (Pairwise Measure: D), where each
dimension is first scaled by the variance internally. The distance metric is implemented

in SciPy [VGOT20].

17

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

18

PM(z): A= D

Separation

The data is clustered into a fixed number of clusters k (Partition: P), and the distances
of each point to all cluster centers are calculated (Pairwise Measure: D). The median
distance to the cluster centers (Aggregation: A) defines the property measure. The x
indicates that a function is applied multiple times in calculating the property measure, in
this case, the distance to each of the k cluster centers. To speed up clustering, the input
embeddings are projected to a lower dimensional space using PCA that preserves 75%

PM(z):P—-D*— A

Density

For all k neighbors of a data point (Selection: R), the distance of the point to its
neighbors (Pairwise Measure: D) is calculated. The average distance (Aggregation: A)
is the density of a data point. This uses the average k-NN distance implementation of
the pyOD [ZNL19] package. For all evaluations, a value of k = 20 was selected.

PM(z):R— D* — A

Outlierness

For each data point, an outlierness score (Scoring: S) is calculated. The specific outlier
detection algorithm is ECOD [LZH'22|, also implemented in the pyOD [ZNLI9] package.

PM(x):S

Disagreement

For all k& neighbors of a data point (Selection: R), the classifier probabilities (Soft
assignment: L) are compared to the output probability of the selected point using
the Jensen—Shannon distances (Pairwise Measure: D) and the mean (Aggregation: A)
of these distances defines the disagreement of a point in relation to its neighborhood.
The nearest neighbor implementation of scikit-learn [PVG™11] is used and the distance

metrics are implemented in SciPy [VGOT20).

PM(z):R—L*—D"— A

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.4. Representation Learning

Coverage

For this measure, some training data (Selection: R) is used to calculate the distance
of all data points to the training data (Pairwise Measure: D). The minimum distance
(Aggregation: A) of a data point to the training data represents coverage. In c¢VIL, the
batch labels are used as training data. When no training data is available, the mean of
the whole data is used for calculating distances, which makes it identical to Eccentricity
in that case. Again, the scikit-learn [PVG¥11] implementation is used to find nearest
neighbors, and distances are calculated using SciPy ﬂm

PM(z):R—D*— A

These property measures give users guidance on what instances to label. Instances with
large property measure values should provide informative samples for instance-labeling.
At the same time, data points with small values should already represent the class they
were assigned to and, therefore, be suitable for batch labeling.

2.4 Representation Learning

¢VIL uses DINO [CTM™21al, a representation-learning model, to extract features from
images. This enables fast iterations of the labeling loop since the embedding vectors
returned by the model are much smaller than the original images. Since the parameters
of the backbone model are frozen, all embeddings are fixed and computed beforehand,
increasing the system’s throughput dramatically.

DINO uses a self-supervised approach to find vector representations of images without
the need for any labels. The process is similar to knowledge distillation, where a so-called
student model is trained using a fixed teacher model. Assuming the teacher model
outputs a probability distribution, the student model is aligned with the teacher by
minimizing the cross-entropy loss H(a,b) = —alogb between the output of the teacher
model and the student model for the same input.

To adapt this approach to a self-supervised framework, the cross-entropy loss function is
evaluated on several views (crops) V' of the input image. The teacher model is evaluated
on two large crops of the data (global views x{ and zJ) while the student model is
additionally evaluated on several smaller crops (local views). The new loss function
becomes the summed cross-entropy loss between the two global views from the teacher
model and all the views from the student model. The loss function is given by:

min YYD H(P(x). () (27)
s xE{xf,xg}zlli‘;

where P, and P; are the teacher and student models, respectively.

19

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

20

Therefore, the objective is for the output of a global view from the teacher and the local
views from the student to converge. As a result, the student model learns to extract the
same features from the local views to match the global views from the teacher model
and thus learns robust representations of an image.

Moreover, the teacher model is not fixed but is trained along with the student model.
This is done through a momentum encoder, i.e., the parameters of the teacher 6; get
updated with the parameters of the student model 6 after each batch using the following
update rule:

O <— N0 + (1 —)0 (2.8)

The parameter A follows a cosine schedule between 0.996 and 1.0 during training. So, for
each batch, the student model only has a small influence on the teacher’s parameters,
but over time, the influence is strong enough that the model adapts to the student
model. The architecture of the models is either based on a ResNet [HZRS15] or a vision
transformer [DBK*20], with the exact same model architecture shared by the student
and teacher model.

DINO outperforms other self-supervised methods in both linear and k-NN top-1 accuracy
of classifiers trained on the features. Interestingly, the k-NN performance almost matches
the linear performance. This phenomenon can only be observed when using vision
transformers as the backbone model and with no other self-supervised method.

DINO also performs very well on image retrieval tasks, where a similar image should
be retrieved from a database based on the vector representation of the input image
[PCIT08]. Tt beats supervised methods on this task. Furthermore, DINO is also better in
transfer learning tasks than models trained with supervision. For instance, pretraining
with DINO improves the results on ImageNet ﬂm by around 1% compared to
supervised methods.

Due to its properties, DINO is particularly well suited for the cVIL framework. Also
because of the excellent KNN performance, which should allow distance-based PMs to
work well. Coupled with the linear performance, the resulting features should allow the
classification model and property measures to perform well and provide rich feedback to
the user.

In the remainder of this section, we will present other applications of representation
learning in labeling systems.

2.4.1 Representation Learning for Labeling

Bengar et al. [BvdWTR21] analyze whether self-supervised feature learning in the context
of active learning can be beneficial. They use self-supervised learning to train a backbone
model, freeze the weights, and use the features to train a linear model using active
learning. Several informative and representative active learning sampling strategies are
implemented as baselines, and results are compared with and without self-supervised

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.4. Representation Learning

pre-training. For all evaluated datasets, pre-training drastically reduces the human
labeling effort. For a 1% labeling budget, pre-training achieves an accuracy of around
45% on the CIFARI100 dataset [Kri09], while using active learning only achieves an
accuracy of just 10%. Only at 50% labeling budget, the active learning settings without
pre-training reach the same accuracy levels as those using pre-trained features. Below
a labeling budget of 1%, random sampling outperforms all active learning sampling
techniques. Also, the more classes a dataset has, the better random sampling performs
in the early stages of labeling.

Yi et al. [YsSPgC22] introduce a novel sampling technique for active learning with
self-supervised pre-training. The loss from the pre-training task is used to divide samples
into batches, which are then used to sample instances for active learning. Starting with
the batch with the highest loss, the top-k instances of each batch are selected according
to standard uncertainty-based sampling. This makes it a batch-mode active learning
scheme since the user labels k samples before the classification model is retrained. The
idea behind this approach is that the batches are supposed to split the data into subsets
that are different from each other. In combination with uncertainty-based sampling
within each batch, this should allow for both distributional sampling variety over all the
data as well as optimal sampling at the decision boundaries in each batch. The proposed
method outperforms all baselines on all evaluated datasets. Their method also works
well on imbalanced data. It also lessens the effects of the cold-start problem by uniformly
sampling from the batch with the highest loss at the first iteration instead of the whole
data, which likely samples diverse or difficult instances. They also showed that their
method indeed either samples from the class boundary (due to uncertainty sampling) or
uniformly within the class distribution (due to batching).

Bai et al. use self-supervised representation learning to construct a nearest
neighbors graph for label propagation to reduce human labeling effort. Labels are queried

by an active learning scheme and are used to get pseudo-labels through label propagation.

With these pseudo-labels, the top-1 accuracy of a simple weighted k-NN classifier reaches
98.45% on CIFARI10 [Kri09] and 89.58% on CIFAR100, surpassing the results of Bengar
et al. [BvdWTR21]. On CIFARI0, only 0.1% of the data needs to be labeled to reach the
final target accuracy. Active learning performs much worse without pseudo-labels and
only achieves the target accuracy after around 50% of the data has been labeled. Label
propagation also performs well with noisy labels, where noise levels below 0.8 barely
affect the final accuracy.

Lee et al. [LSB22] utilize representation learning in combination with active learning
to improve the labeling efficiency of non-sematic speech tasks. Non-semantic speech

tasks include speaker recognition, language detection, and speech-emotion recognition.

Pre-trained models provide generic speech representations, which are used to achieve
roughly the same target accuracy with only 600 labels compared to using the entire
dataset for training, which contains 176.436 labels [Vox]. Their system uses a linear
model trained on the representations to achieve this level of performance. Similar to
previous approaches, the encoder model is not fine-tuned for any specific task, and all

21

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

BACKGROUND

22

datasets were labeled using the same generic encoder model.

Schroder and Kiko investigate the effectiveness of using representation learning on
MorphoCluster [SKK20], a novel labeling system designed to maximize label efficiency.
The goal is to label clusters of similar instances and then “grow” the cluster by selecting
the first object in a list of recommended samples that are not similar to the seed images.
Finally, the objects earlier in the list (i.e., those being similar) are added to the cluster.
With this approach, the system enables the user to label millions of images. The original
MorphoCluster approach used a supervised representation learning method with few
labels of the original dataset. Now, the authors additionally evaluated the use of transfer
learning on a labeled dataset if the target dataset is similar. If no similar dataset
is available, unsupervised representation learning methods are the only possibility to
get robust embeddings, which are also evaluated. In their experiments, unsupervised
methods generally performed slightly better than transfer learning methods. With
transfer learning, there was no single best source dataset. However, when the target
domain labels are available (full supervision), the quality of the learned representations
drastically improves. For clustering, unsupervised learning has better completeness
scores than transfer learning. However, the number of clusters is much larger. This
could indicate that the features are better aligned with the target domain when using
transfer learning with the appropriate dataset. Supervised methods still outperform the
other methods. This means that supervised representation learning methods are always
preferable if labels are available for the target dataset. Unsupervised methods should be
chosen over transfer learning approaches if this is not the case.

Perez et al. utilize representation learning to efficiently label high-resolution as-
tronomy data in combination with active learning. By comparing different representation
learning approaches, they found that self-supervised learning performs much better than
transfer learning or training a network from scratch when very few labels are available.
With only 20 labels, the unsupervised method already shows a 75% agreement with
humans, whereas the pre-trained or randomly initialized models perform not better than
chance. After 500 labels, all methods perform very similarly and reach a performance that
matches human agreement (85%) after 5000 labels. Furthermore, they show that freezing
the network and using a linear classifier on the embedding matches the performance of
fine-tuning the whole network. This is the case for any number of labels, but it drastically
reduces the computational effort.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

cVIL: Class-centric Visual
Interactive Labeling

In this chapter, we will discuss the concepts of ¢VIL in more detail. As mentioned before,
c¢VIL is based on incremental labeling steps with the option to label large amounts of
instances after verifying their correctness. The user labels individual data instances to get
to the point where the model predictions are good enough for batch labeling to become
possible. These labeling steps are repeated until the user has labeled everything or verified
that the model predictions are correct for the remaining samples. The interactions are
enabled by the underlying property measures presented in Section 2.3l The system should
facilitate the requirements of scalability, interactivity, and data complexity, as discussed
in the introductory chapter.

Batch labeling provides the model with many prototypical samples, similar to the
approaches discussed in Section 2.4.1. The user can label informative samples using
instance labeling based on the property measures described in Section 2.3. When using
uncertainty-based property measures or other active learning selection strategies, the
user can emulate active learning as described in Section 2.1. Above all, the user remains
in complete control over how the labeling process evolves and can choose or switch
strategies based on the information provided to the user, making it an interactive labeling
as described in Section 2.2. Throughout the labeling process, the amount of unlabeled
data is reduced, and the user, as well as the model, have to consider fewer remaining
instances.

3.1 Components

This section provides an overview of the various components of cVIL. The interactions
between the components are visualized in Figure |3.1)

23

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

cVIL: CLASS-CENTRIC VISUAL INTERACTIVE LABELING

24

X, Y, sample_weights

embeddings

f‘- -"-
’

-
Dat ¢ Unlabeled
images)\ Data I
~ s

- =

¥

Instance
Selection

Figure 3.1: An overview of the different components of cVIL. Purely algorithmic compo-
nents are highlighted in green, interface components are colored red, and data is shown
in blue. Arrows visualize the flow of data. A sample z from the pool of unlabeled data
contains the embeddings and the original image data. After labeling data, the labeled
samples are stored in the corresponding instance label pool I or batch label pool B.
These labeled samples are then used to train the classification model with the sample
weights described in Section [3.1.2. The model’s predictions are then used to update
the property measures. Property measures, including the implementation details, were
already introduced in Section 2.3, The property measure values v are visualized for
instance selection in the corresponding class based on the model prediction.

3.1.1 TUnlabeled Data

The unlabeled data contains raw image data as well as the embeddings of the representa-
tion learning model. All the algorithmic components (green) use embeddings, and the
interface components (red) also display the original images to the user.

3.1.2 Classification Model

The classification model is trained on the embeddings along with the labels provided
by the user. The relative simplicity and linearity of the embeddings allows
the model to be comparatively simple. The samples from instance labeling are weighted
by how recently the user labeled them to give more importance to new labels. The
reason for giving the most recent labels a larger weight is that they help correct specific
model behavior. The samples chosen for instance labeling are usually those with large
property measure values, which highlight attributes that contribute to outlierness within
the class partition or are incorrectly classified. By giving these samples slightly more
weight than earlier labels, we hope to reduce the number of labels needed to correct the
model predictions for samples with these attributes. Additionally, we want to assign
the lowest weight to the initial samples, which were selected randomly to bootstrap the
System.

The model trains on both instance and batch labels. The batch labels are randomly
sampled from the batch label pool. For each class in the batch label pool, fiateh © Cmin

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.1. Components

samples are randomly selected at each training step. The value of ¢;,;, is defined as
the number of samples of the class with the least amount of labels in the instance label
pool. The sampling factor fpuien is set to 10. This means the number of batch labels
used for training is approximately ten times the number of instance labels, given the user
has generated enough batch labels. Otherwise, all available batch labels are used. To
counteract the larger number of batch labels, they receive a constant weight of fbaltch =0.1,
So as not to over-emphasize their influence.

The weighting function of instance labels is based on a scaled cosine function and is

defined as
w(t) = 1-— cos(wt)’ (3.1)
2

where t is in the range [0, 1] and is determined by the order in which the instances were
labeled from 0.0 (earliest) to 1.0 (latest). For example, given four labeled samples, the
value of ¢ of these samples would be given by [0, %, %, 1], with the corresponding samples
weights of [0, i, %, 1]. If another label is added, the values t are recalculated accordingly
to be equally spaced again. The weights are then used to scale the loss function for the
corresponding sample. The choice of a cosine-based weighting function was motivated
by assigning recent labels weights close to 1 before falling off. Any other function like
stgmotd with similar properties would have been an equally valid choice. Finally, the
weights are rescaled to the range of [0.75,1.0]. The model then gives predictions of the

remaining unlabeled data for the rest of the components.

3.1.3 Instance Selection

The instance selection is based on the property measures described in Section [2.3. The
samples are partitioned into classes according to the predictions of the classification
model.

In ¢VIL, instance selection is facilitated through a kernel density estimation (KDE) plot.

The KDE plot shows the distribution of the selected property measure over all items that
were predicted for the corresponding class. Therefore, it shows the property measure
values on the x-axis and the estimated density of values on the y-axis. Property measures
of samples that have already been labeled are excluded from the visualization.

The user can inspect images for labeling in a separate labeling view that displays images of
a selection. The user can permanently select samples with a range selection, which selects
all samples with property measure values in the x-range of the selection. The samples
are displayed in descending order based on their property measure values, starting from
the highest value in the selection. Once the user has made a selection, the user can label
individual instances from the selection (instance labeling) or decide to label the whole
selection (batch labeling).

The user can also hover over a point in the KDE plot to inspect samples with a similar
property measure value. This hover preview is also shown in the labeling view, like the

25

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

cVIL: CLASS-CENTRIC VISUAL INTERACTIVE LABELING

26

fixed range selection. Again, samples with an equal or smaller property measure value
are displayed, and the hover preview can be used to validate samples quickly.

The KDE plot visualizes the output of one particular property measure. The selected
property measure can be changed anytime, e.g., through a dropdown menu. The
visualization can be updated instantly because values are pre-computed. The cache only
needs to be updated after batch labeling or retraining the classification model since these
are the only components that influence the calculation of the property measures.

3.1.4 Instance Labeling

The user can label individual samples in a range selection by assigning a class to an
instance. Instance labels are stored in a separate instance label pool to calculate the
specific sample weights for the classification model.

Users should consider the order of the samples determined by the selected property
measure since this order is optimal according to some heuristics when choosing the most
valuable item to label next. For all the implemented property measures, this is the
instance with the largest property measure value.

Any labeling action, either instance or batch labeling, can be reverted with an undo action.
Assigning incorrect labels to samples, especially when batch labeling, can drastically
change model behavior. By undoing a labeling action, the added labels are removed from
the respective labeling pool, and the model has to be retrained.

3.1.5 Batch Labeling

Batch labeling relies on the opposite idea: labeling the samples with the lowest property
measure values within each class. These will most likely be prototypical samples of the
class, either because of their distributional properties, e.g., being close to their respective
class center, or their informativeness attributed to them by the classification model,
e.g., their posterior probabilities. Users should select instances from the sample with
the lowest property measure value up to a threshold, and the selection should ideally
include only correct samples. Therefore, the user has to be able to inspect or validate
the instances first. This can be achieved through the hover preview by inspecting the
samples starting from the lowest property measure values.

3.2 Implementation

The prototype used for evaluation implements all components of the cVIL concept. It
was implemented in Dash [Das|, and the plots were created with Plotly [IncI5]. The user
interface needs to facilitate instance labeling and batch labeling, as these depend on user
input as well as instance selection through a visualization.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.2. Implementation

C labeled 63 /1000 (6.3%) EXPORT || RESET || LOGOUT
Model Predickions G uuuuu tainty +

oTWU 548 Samples
0 =

3 NEW LABELS

;
[
&
g
]
2
El
H
H
z
g
2
£
g
g

s
P
SO = SU——

Three 391 Samples

100n 1y 104 100y
Degree of interest

EEDODNEENN

ORI Rw R RS R LR
CEEEDSEOEE

S ¥ 3 0 N

NENUOES0OER
NN DERANNER

EENDOENEEN

HHHHHHDHEM

Figure 3.2: The prototype implementation of cVIL. The selected property measure is
visualized using a KDE plot (A). The class distribution view (B) shows the number of
labels for each class in a bar chart and allows the user to select a class for labeling. The
class with the colored background has been selected, which is “Two” in this example.
The labeling view (C) is used to label individual instances in a selection and shows the
hover preview.

3.2.1 TUnlabeled Data

The pool of unlabeled data is implemented as a PyTorch dataset. The
embeddings are found using the DINO ViT-B/8 model, which is based on a vision
transformer with a patch size of 8x8. The resulting representations have a dimensionality
of 768. All images are cropped to have a square aspect ratio and are up or downscaled
to 224 by 224 pixels for inference with the DINO model. Furthermore, the values
are normalized according to the mean and standard deviation of ImageNet to retrieve
the embeddings. For MNIST, the original features are used directly, which have a
dimensionality of 784.

3.2.2 Classification Model

The classification model is also implemented in PyTorch as a neural network with a
configurable size of hidden layers. For the prototype, two layers with 50 and 20 neurons
were used.

The labels should have as little class imbalance as possible to guarantee optimal per-
formance. To that end, the class distribution view (B) helps the user to label an equal
number of samples of each class. The label distribution view shows the instance label
counts (left bars) and batch label counts (right bars) for each class. The instance label
and batch label counts are independent, so instance labeling does not influence the

27

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

cVIL: CLASS-CENTRIC VISUAL INTERACTIVE LABELING

28

visualization of the batch label counts and vice versa.

During training, a validation set is used to monitor the loss. Each time the model is
retrained, 25% of the available labels generated by the user are used as a validation set
for the current training step. The validation set is stratified and contains 25% of the
samples in each class. The system uses early stopping with a patience of 20, so the model
trains for 20 epochs after the validation loss stops decreasing. If a class has less than four
labels, no validation set is used and early stopping is based on the training loss. The
batch size for training is set to 64.

3.2.3 Instance Selection

The KDE plots (A) are stacked in the prototype and align with the corresponding class
in the class distribution view (B). The displayed property measure can be changed with
the dropdown menu (E) above the plots. The labeling view (C) is implemented as a
simple grid of images.

A property measure can produce the same output for different inputs, for example, for
instances with a very low uncertainty close to 0. This can lead to problems because
each section in the KDE plot has to represent fewer samples than what can be shown in
the labeling view for validation. When more samples have the same property measure
value, this becomes impossible and would result in some samples never being shown to
the user. To avoid this problem, the collections of samples with equal values have to be
deduplicated. In the prototype, samples with more than one equal property measure value
are interpolated using the next-largest value of the output to achieve this deduplication.
This deduplication process breaks ties and provides samples with equal property measure
value with a fixed and consistent ordering. An example can be seen in Figure 3.3l

1.0 4
0.8 - oo0®
o®
oo*®’
0.6 - .laasoocoooooooo
.
o*

0.4 980000

.......0...

[14
poo?®
02] 008883500000660006660000
0] 10 20 30 40 50 60

Figure 3.3: Hlustration of the deduplication method used in the prototype. The points
are interpolated to the next point with a different value. Before deduplication, values
get rounded to eight decimal places to guarantee the required precision for interpolation.
Note that the function does not map the last series of numbers to new values. However,
in practice, the largest property measure will not require deduplication.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.2. Implementation

3.2.4 Instance Labeling

Once an instance selection is made, images can be labeled in the labeling view (C) by
selecting a class in the class distribution view (B) and clicking on an image. A solid
colored background indicates the selected class in the class distribution view (B). After
labeling an image, it is added to the instance label pool and is removed from the labeling
view (C), which gets updated with a new image from the current selection if one is
available.

When one or more instances are labeled, the model can be retrained, after which the
property measures get updated using the new posterior probabilities returned by the
retrained model. In the beginning, when no samples have been labeled, each class needs
at least one sample to train the model. Before, no visualization was displayed, and the
labeling view (C) showed a random selection of images for the user to label to bootstrap
the system.

3.2.5 Batch Labeling

Batch labeling assigns the label of the selected class from the class distribution view (B)
to all instances in a selection. This is done through the batch label button (D) above the
visualization. The samples are removed from the visualization, and the values of property
measures in the corresponding class partition are recalculated immediately. The other
class partitions not affected by the batch labeling action do not have to be updated.

c labeled 63 /1000 (6.3%) expoRT | | ESET || LocouT

Model Predickions LABEL SELECTION XT3 TR MopE: SEEIES
- B 8 8888
5 H (88 88
88 (8888

088 (g8 &

8| 8|a 8@ @

88 (a8 a8

8| 8|8 (g =&

B alaB8 88

B (E 8 (a8 8

B & (a(allal8

Figure 3.4: The prototype implementation of the iVIL system. The KDE plot from
the cVIL prototype is replaced by a scatterplot of the t-SNE projected embeddings (F).
Because the samples are not partitioned into classes, the predictions of the classification
model are indicated by the border color of each image (G) in the labeling view.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

cVIL: CLASS-CENTRIC VISUAL INTERACTIVE LABELING

30

3.2.6 iVIL Baseline Implementation

For the baseline iVIL interface, the KDE plot is replaced by a scatter plot showing a t-SNE
[vdMHOS| projection of the embeddings (F). The output of t-SNE is a 2-dimensional
projection based on the 768-dimensional input embeddings from the DINO model for
visualization in the scatterplot. This projection preserves the neighborhood structure
from the original embeddings as best as possible. This is done by first converting
Euclidean distances into conditional probabilities expressing similarity between two
instances. This is also done for the output embedding, resulting in two probability
distributions. The objective function then minimizes the Kullback-Leibler divergence
between the distributions of the original and projected space.

The t-SNE projection is parameterized by a perplexity value, which controls the number
of neighbors considered in the calculation. For the iVIL implementation, a perplexity
of 30 was chosen. The scikit-learn [PVGT11] implementation, which was used for the
prototype, allows the embedding to be initialized with a PCA projection. This option
was chosen since it provides more stability.

The color of a data point encodes the class membership of the sample in the scatter
plot. This also highlights an important distinction between the cVIL interface: c¢VIL is
a class-based approach, while iVIL is an instance-based approach. The KDE plot from
cVIL abstracts individual instances into distributions of the property measure values.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Evaluation

To evaluate the performance of ¢VIL, we employ a twofold evaluation approach involving
evaluation using simulated user interactions and a user study to assess actual user behavior
and performance. By leveraging simulated user interactions, we aim to determine the
theoretical performance of the system in various settings, compare the results to active
learning, and evaluate batch labeling performance (RQ1 and RQ2). The system’s
scalability (RQ3) is evaluated in isolation by running and measuring the execution time
of the relevant calculations. The user study allows us to assess the real-world efficacy
and usability (RQ4) of cVIL by testing it on actual users. Through this combined
evaluation methodology, we aim to obtain a comprehensive understanding of the system’s
capabilities and its utility in practical data labeling tasks.

4.1 Simulation

To evaluate the system’s effectiveness for a wide range of different settings in comparison
to active learning (RQ1), we simulate user interactions in the labeling process (see
Algorithm [4.1). Active learning can be easily simulated, which is regularly done in
the literature [|]EﬂZ—iL3L SG10], by assigning the ground truth labels to the suggested
instances (see Algorithm 2.1). This principle can be directly applied to any property
measure as well (see instanceSelection Algorithm A.1)), with the only difference being
that the instances are selected from each class partition independently. In short, the
L%J instances of each class are selected, where k is the batch size and C' denotes the
number of classes. If C' is a divisor of k, the final batch size will be k, as is the case for
the following results. For example, for a batch size of 10 with ten classes like MNIST
and STL10, a single instance of each class is selected. Analogously, a batch size of 10 for
the binary datasets means that five samples of each class are selected in each iteration.

The only remaining user interaction is batch labeling, which is slightly more complex
since it involves finding a suitable cutoff point in the KDE plot. This is implemented as

31

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

EVALUATION

32

Algorithm 4.1: Simulation of user interactions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Input: unlabeled data D, initial labeled data L, number of batches
nBatches > 0, boolean flag enable Batch Labeling, list of classes C,
instance selection size k

Output: accuracy at each iteration

B«

acc < ()

fo < initModel(L)

b+ 0

while b < nBatches and D # () do

{a7, 23, ..., 27} < instanceSelection(D, fy, L, B, k,C)

{vi,v5, ...y} < oracle({z}, 25, ..., 2} })

D« D\ {z},25,...,2}}

L LU{(t,y), (5, y3), s (5 y))

fo < trainModel(fy, L, B)

if enableBatchLabeling then

for ¢ in C do
{z), 25, ..., x}} + batchSelection(D, fp, L, B, c)
D« D\ {},25,...,x;}
B« BU{(2],¢),(zh,¢), ..., (z},¢c)}

end

end

acc + acc U accuracy(fy, L, B)

b+—b+1

end

the batchSelection Algorithm [4.1. By evaluating ¢VIL with and without batch labeling,

we

can determine the effectiveness of batch labeling (RQ2). All simulation runs were

initialized with a model trained on a single instance per class. To find the cutoff point
for the batchSelection procedure, we can use several methods:

1. optimal: This represents the best-case scenario where the best possible cutoff
point is chosen using the ground truth labels. The cutoff is selected at the first
sample with an incorrect label starting from the smallest property measure value.

2. greedy: This method starts from the largest property measure value and looks at

a small window of a specific size that slides over the samples. The cutoff is selected
where this window first reaches 100% accuracy.

3. balanced: Take the average of the optimal and greedy approaches for the cutoff
point.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.1. Simulation

The selection is then created from the smallest property measure value (index 0) to the
index found by the batch selection method. The procedure is described in Algorithm A.2.

4.1.1 Datasets

The evaluations are based on three datasets:

1. MINIST: The MNIST dataset contains 60000 images of handwritten digits from 0
to 9. It is commonly used as a benchmarking dataset [BT20, BHZ ™18, BGTE20]
for labeling tasks. In addition to the complete dataset, a subset containing only
1000 samples of the digits 2 and 3 is used for the introductory task in the user study
(MNIST23). Since the resolution of the images is only 28 by 28, the raw features of
the images are small enough to use directly without any prior embedding.

Figure 4.1: Sample images from the MNIST dataset.

2. STL10: The STL10 dataset includes only 5000 images in total but with a resolution
of 96 by 96, and the images are in color. The dataset also has ten classes and was
chosen because of its relative complexity and because the representation learning
model works well for natural images out of the box, so no further pre-training is
necessary.

3. CelebHair and CelebGlasses: These datasets are based on subsets of the popular
CelebA dataset [LLWTI5]. The subsets are either based on the person’s hair
color (CelebrityHair) or whether or not the depicted person wears eyeglasses
(CelebGlasses). For the CelebHair dataset, only gray and black hair are used, which
means both datasets are binary. The number of samples is fixed to 2000, with
precisely 1000 samples in each class. The image size is 218 by 178 pixels, which are
then center-cropped to 178 by 178 pixels. These datasets are also used for the user
study.

33

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

EVALUATION

34

Figure 4.2: Sample images from the STL10 dataset.

Black Black Black

Black Black

Figure 4.3: Sample images from the CelebHair dataset.

Glasses No Glasses Glasses No Glasses Glasses Glasses Glasses
B Al

No Glasses No Glasses

Figure 4.4: Sample images from the CelebGlasses dataset.

4.1.2 Independent Variables

The independent variables of the experiment are the batch or instance selection methods,
the model complexity, the batch size, as well as the different property measures we wish
to evaluate.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.1. Simulation

Batch Selection Cutoff Algorithm

The different choices of the batch selection algorithms will be influential to the quality of
the selections. This will, of course, not only affect the accuracy of the labels but will,
in turn, also influence the model and the quality of the training data of the property
measures. The size of the sliding window can further determine the quality of the greedy
and balanced approaches. Since the sliding window emulates the user behavior of looking
through the samples, the window sizes were 30 and 60.

5 levels:

e optimal

o greedy (window size 30)

o greedy (window size 60)
 balanced (window size 30)

« balanced (window size 60)

Instance Selection Algorithm

The method used for the instance selection simulation also directly influences the model
performance, which is crucial for all other components of ¢VIL. We can evaluate all
selection algorithms from Section 2.1 and any property measure from Section [2.3. To
simulate instance selection, a certain number of instances with the highest property
measure value are labeled automatically for each class or, in the case of active learning
simulations, across all classes. When evaluating property measures for batch selection,
we set the instance selection method to Uncertainty for all batch labeling simulations.

Model Complexity

The model is implemented as a neural network consisting of an input layer with the same

dimensionality as the embedding space and an output layer predicting class membership.

The network contains either no hidden layers, one hidden layer with 50 neurons, or two
hidden layers with 50 and 20 neurons. The learning rate of the model is fixed to 10~*
and has the weight decay set to 1077,

3 levels:

35

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

EVALUATION

36

Batch Size

We also vary the batch size for active learning before the model is retrained. Typically,
the model is retrained after each labeling step. To assess the performance of larger batch
size, we also performed retraining only after ten labeled samples were collected.

2 levels:

o 1

e 10

Property Measures

The goal of the simulations is to evaluate the performance of the different property
measures for instance labeling and batch labeling. Therefore, the choice of the property
measures is also a factor in the evaluation. We evaluated all property measures described
in Section 2.3.2| and random sampling and uncertainty sampling for active learning.

4.1.3 Dependent Variables

The dependent variables tested were the combined label accuracy throughout the sim-
ulation and the size of the batch labeling pool. The accuracy is calculated after each
labeling iteration to analyze how the accuracy evolves as more instances are labeled and
the model is retrained after each step.

4.2 Runtime

For runtime analysis (RQ3), the property measures are applied to synthetic data where
t