
Vertex-Komprimierung mit Mesh
Shadern an Modellen mit

Skelettanimation

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Gerald Kimmersdorfer
Matrikelnummer 01326608

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr. techn. Michael Wimmer
Mitwirkung: Projektass. Dipl.-Ing. Johannes Unterguggenberger, BSc

Projektass. Dipl.-Ing. Dr.techn. Bernhard Kerbl, BSc

Wien, 12. Oktober 2023
Gerald Kimmersdorfer Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Vertex Compression with Mesh
Shaders for Skinned Meshes

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Gerald Kimmersdorfer
Registration Number 01326608

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr. techn. Michael Wimmer
Assistance: Projektass. Dipl.-Ing. Johannes Unterguggenberger, BSc

Projektass. Dipl.-Ing. Dr.techn. Bernhard Kerbl, BSc

Vienna, October 12, 2023
Gerald Kimmersdorfer Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Gerald Kimmersdorfer

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Oktober 2023
Gerald Kimmersdorfer

v

Danksagung

Ich möchte meinen Betreuern Prof. Michael Wimmer, Johannes Unterguggenberger und
Bernhard Kerbl meinen Dank aussprechen, dass sie mir die Möglichkeit gegeben haben,
ein so interessantes Forschungsfeld für meine Bachelorarbeit zu erkunden. Besonders
dankbar bin ich für ihre wertvollen Anregungen und ihre Unterstützung bei diesem
besonderen Projekt. Zusätzlich möchte ich Prof. Manuela Waldner für ihre Ermutigung
sowie für die Bereitstellung der dafür notwendigen Zeit danken.

Ich möchte mich auch bei der Forschungsgruppe für Computergrafik dafür bedanken, dass
sie mir eine GPU zur Verfügung gestellt haben die für die Nutzung der Meshlet-Pipeline
unerlässlich war.

Darüber hinaus bin ich allen Künstlern dankbar, die ihre kreativen Werke in der pu-
blic domain oder unter einer Form von Attribution-Lizenz veröffentlichen. Das hat es
mir ermöglicht, geeignete Modelle zu finden, um meine Implementierungen zu testen.
Gleichermaßen werde ich meine Ergebnisse und meinen Code unter einer geeigneten
Open-Source-Lizenz veröffentlichen, in der Hoffnung, dass sie anderen nützlich sein
könnten. Insbesondere die modulare Implementierung des Meshlet Playground könnte
für jene von Interesse sein, die neue Ansätze für die Attribut-Komprimierung oder die
Meshlet-Generierung erforschen möchten.

Ein besonderer Dank gilt Christoph Peters, Bastian Kuth und Quirin Meyer für ihre hervor-
ragende wissenschaftlichen Arbeiten in dem Bereich der Vertex-Attribut-Komprimierung,
der einen Grundstein meiner Arbeit bildet. Ich möchte auch Arseny Kapoulkine meinen
Dank aussprechen, der mit meshoptimizer und der Bereitstellung zahlreicher Tutorials
und Ressourcen einen außergewöhnlichen Beitrag zur Welt der Computergrafik leistet.

Abschließend möchte ich meiner Familie für ihre unerschütterliche Unterstützung über
all die Jahre hinweg danken, ebenso wie meinen Freunden, insbesondere Sonja Morzycki
und Konstantin Kueffner, die mich in jeder Phase begleitet und beim Korrekturlesen
dieser Arbeit geholfen haben.

vii

Acknowledgements

I would like to extend my gratitude to my supervisors, Johannes Unterguggenberger
and Bernhard Kerbl as well as my advisor Prof. Michael Wimmer for offering me the
opportunity to explore such an interesting field of study for my Bachelor’s thesis. I
am particularly grateful for their valuable input and support throughout this journey.
Additionally, I want to thank Prof. Manuela Waldner for her encouragement to complete
the work I started and for providing me with the necessary time and resources to do so.

I would also like to thank the Research Unit of Computer Graphics for lending me the
equipment, which was essential for utilizing and studying the mesh shader-based pipeline.

Moreover, I am grateful to all artists who publish their creative work in the public
domain or under some form of attribution license. This enabled me to find appropriate
models to test my implementations. In the same spirit of openness, I will publish my
findings and code under a suitable open-source license, hoping it might benefit others.
Particularly, the modular implementation of the proposed software may be of interest to
those experimenting with new approaches for attribute compression or meshlet generation.

A special acknowledgment goes to Christoph Peters, Bastian Kuth, and Quirin Meyer for
their exemplary work on the permutation coding algorithm, which forms the cornerstone of
my research. Similarly, I extend my gratitude to Arseny Kapoulkine for his contributions
to meshoptimizer and for providing numerous tutorials and resources for public use.

Lastly, I want to express my heartfelt thanks to my family for their unwavering support
over the years, and to my friends, especially Sonja Morzycki and Konstantin Kueffner,
who stood by me at every step and assisted in the finalization of this thesis.

ix

Kurzfassung

Die Komprimierung von Vertex-Attributen ist eine wichtige Technik in der modernen
Computergrafik, insbesondere zur Verbesserung der Leistung von Echtzeitanwendungen.
In dieser Arbeit untersuchen wir aktuelle Methoden zur Komprimierung von Positionen,
Normal-Vektoren, Texturkoordinaten und Blend-Attributen. Unser Hauptaugenmerk
liegt auf der Komprimierung von Blend-Attributen bei Modellen mit Skelettenanimation.
Wir nutzen eine neuartige Hardware-Entwicklung: die Mesh Shading Pipeline. Diese
Pipeline ermöglicht es uns ein Komprimierungsschema für Blend-Attribute vorzustellen,
welches eine signifikante Reduzierung des Speicherbedarfs um bis zu 92,75% im Vergleich
zu bestehenden Methoden mit traditioneller Rendering-Pipeline erreicht. Darüber hinaus
diskutieren und vergleichen wir verschiedene Meshlet-Erstellungsalgorithmen, Meshlet-
Datenstrukturen und Meshlet-Erweiterungen innerhalb des Vulkan-Frameworks. Unsere
Auswahl und die vorgeschlagenen Codecs validieren wir durch eine Reihe von Benchmarks,
die sich auf Ressourcennutzung und Leistung konzentrieren.

xi

Abstract

Vertex compression helps to enhance the performance of real-time rendering applications,
making it a valuable technique in modern computer graphics. In this work, we investigate
current state-of-the-art methods for the compression of positions, normals, texture
coordinates and blend attributes. Our primary objective is to efficiently compress blend
attributes in rigged meshes, particularly focusing on bone weights and indices. We
leverage a recent hardware advancement: the mesh shading pipeline. This pipeline
enables us to propose a novel compression scheme for blend attributes, which achieves a
significant reduction in memory usage of up to 92.75% compared to existing state-of-the-
art methods using a traditional rendering pipeline. Additionally, we briefly discuss and
compare different meshlet building algorithms, meshlet buffer structures, and meshlet
extensions within the Vulkan framework. Finally, the proposed codecs are validated
through a series of benchmarks focused on resource utilization and performance.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Mesh Shading . 1
1.2 Linear Blend Skinning (LBS) . 3
1.3 Research Objective . 4

2 Methodology 5
2.1 Vertex Attribute Compression . 5
2.2 Meshlet Difference Encoding . 15

3 Implementation 19
3.1 Mesh Shading Pipeline . 20
3.2 Meshlet Building . 21
3.3 Compression Codecs and Buffer Layouts 24

4 Evaluation 29
4.1 Environment and Datasets . 29
4.2 Memory Consumption . 31
4.3 Performance . 33

5 Conclusion 35
5.1 Future Work . 35

6 Appendix 37

List of Figures 39

List of Tables 41

List of Algorithms 43

xv

Bibliography 45

CHAPTER 1
Introduction

The geometric detail in rendering applications is continuously increasing, with models
in photorealistic renderings now containing billions of triangles. This trend is pushing
VRAM throughput to its limits, as the required bandwidth must also increase to efficiently
transfer model data from the disk or within the GPU memory. Consequently, geometry
compression techniques have become critical to meeting these demands [MLDH15].

In this thesis, we present methods to address this issue by compressing vertex attributes
in skinned meshes. The primary contribution of this work is a novel compression scheme
for blend attributes when using a mesh-shader based pipeline. We introduce a difference
encoding technique that utilizes the local similarities of bone weights and bone indices
within local patches of the model. This approach achieves significant memory savings
while maintaining competitive rendering performance.

This chapter serves to briefly introduce the key concepts of this thesis and outlines the
general research objective for this work.

1.1 Mesh Shading

Mesh shading represents a significant evolution in the field of 3D graphics, offering a
stark contrast to the traditional vertex shading pipeline (Figure 1.1). Over the years the
traditional pipeline got extended by multiple specialized stages like the tessellation and
the geometry stage leaving the whole pipeline in a rather complex state. The Task/Mesh
pipeline intends to offer a more streamlined approach, resulting in greater flexibility while
still utilizing hardware-accelerated functionality, like rasterization.

In traditional vertex shading, each vertex is processed individually. In contrast, a Mesh
shading pipeline can process a group of vertices simultaneously within the Mesh Shader.
These clusters of vertices are known as meshlets (see Figure 1.2).

1

1. Introduction

Vertex
Assembly

Tesselation
Control TesselationVertex Tesselation

Evaluation Geometry Rasteri-
zation Fragment

Task Mesh
Generation Mesh Rasteri-

zation Fragment

Traditional Pipeline

Task/Mesh Pipeline

Figure 1.1: This figure illustrates the distinctions between the two geometry pipelines
available in modern GPUs. Grey boxes represent fixed-function stages, while the red
stages are fully customisable through the definition of appropriate shader programs
[Kub18].

An optional task shader can control the invocations of the Mesh Shader, potentially
calling for the additional rendering of meshlets. This functionality makes it particularly
suitable for the premature culling of geometry [UKPW21] and Level of Detail (LOD)
selection [Eng20]. Particularly for culling purposes, properly creating meshlets from
existing geometry is a crucial step to ensure peak performance when rendering the data
[JFB23].

Figure 1.2: In the traditional rendering pipeline, each vertex (red dots in left image)
of the model is individually processed by the vertex shader. In a mesh shader-based
pipeline, groups of vertices (right image) share a common storage structure and allow for
efficient neighborhood access, which facilitates the use of more advanced compression
algorithms.

Additionally, the shared memory buffer for a group of vertices makes this rendering
technique well-suited for advanced compression techniques. Recent research shows that
by proper indexing of the triangle mesh data, compression rates of up to 16:1 for index
buffer sizes can be achieved [MSS24, KOK+23]. Compressing vertex data by utilizing

2

1.2. Linear Blend Skinning (LBS)

local clusters is also fairly old [LCL10], but is and will be further revitalized in real-time
rendering software having the proper hardware support [BBM24].

A comparable approach, serving as a best-practice example of efficient cluster compression,
is Epic’s Nanite system, as described by Karis et al. [KMWM21]. Their system employs
custom compute shaders to perform efficient culling on clusters containing approximately
128 triangles. Compressed clusters are streamed from the disk and decoded on the GPU
with an adjustable bit rate.

1.2 Linear Blend Skinning (LBS)

Over the years, LBS has been known by many names, including skeleton subspace
deformation, enveloping, vertex blending, smooth skinning, bones skinning or linear
blend skinning [LD12]. It is a widely used technique for animating and rendering organic
entities, such as humans and animals. It is prevalent in both the gaming and film
industries and is often coupled with motion capture technologies. The technique excels
in animations that adhere to a hierarchical structure, making it suitable for animating
rigid bodies such as cars or robots.

Mesh skinning generally enables the deformation of a mesh by applying a series of
transformation matrices to an underlying structure. Typically, those transformation
matrices are derived from a set of hierarchically aligned interconnected parts. Those
parts are commonly known as bones. The set of those bones form the skeleton of the
mesh, as visible in Figure 1.3.

Figure 1.3: The Mannequin character from the Mixamo Collection consists of 65 bones.
Every vertex of the mesh is influenced by a subset of those bones with different magnitudes
(bone weights).

Each vertex within a mesh is algorithmically or manually associated with a subset of the
skeleton’s bones. The IDs of those bones are referred to as the bone indices. Additionally,
a factor is associated with every vertex-to-bone connection, representing the degree to
which the bone influences the vertex’s position. These factors are known as bone weights.

3

1. Introduction

To calculate the final position of each vertex, we apply the transformations of each bone
influencing the vertex, weighted by their respective influence on the vertex. This process
sums up the effects of all relevant bones on the vertex’s initial position to determine its
final position. Mathematically, this can be described as:

vt
i =

∑
j∈Bi

wij(T t
j pi)

where vt
i is the deformed position of the i-th vertex at time t, wij is the influence of the

j-th bone on the i-th vertex, pi is the position of the i-th vertex in the rest pose, and
Bi is the set of bones influencing the i-th vertex (bone indices). Here, T t

j represents the
general transformation matrix of the j-th bone at time t.

In the context of real-time rendering, the number of bones that can influence a single
vertex is often capped at four, known as the sparseness constraint. This requirement
is imposed for performance reasons, as the calculation of the transformation matrix
for each vertex is linearly dependent on the number of influencing bones. Additional
bones necessitate more data transfer to the GPU and potentially more expensive matrix
multiplications.

1.3 Research Objective
In real-world scenarios, vertex attributes for Linear Blend Skinning (LBS) models exhibit
significant similarity to vertices in close proximity. This phenomenon is illustrated in
Figure 1.4, where bone weights and unique bone indices are visualized for two different
models. As meshlets are generally generated as small local patches, the variation in
bone weights and bone indices for vertices within a meshlet is often minimal or even
non-existent. This observation motivates the development of a compression scheme that
leverages this geometric information.

Figure 1.4: The left images depict the scaled values of the first three bone weights (by
equation 2.19) encoded as RGB colors. The right images show all unique bone index
vectors in the Michelle and Robot model.

4

CHAPTER 2
Methodology

In section 2.1 the compression methods used for the various vertex attributes are discussed.
The methods described in this section can be used in either a traditional or mesh shader-
based pipeline, as they completely operate locally on the individual data per vertex.
Those compression techniques act as the baseline for our further investigation. Section
2.2 summarizes how meshlets can be used to further reduce the necessary storage for our
bone weights and bone indices.

2.1 Vertex Attribute Compression

Vertex attributes are properties associated with the vertices of a model. Prominent
examples include position and normal vectors. When dealing with rigged meshes, these
attributes need to be extended by bone indices and bone weights, representing which
bones affect the position and normal of each vertex. Since vertex data constitutes a
significant portion of the total model data, it is crucial to find compression methods that
reduce their memory footprint. These methods are typically categorized under the term
vertex compression. Although various methods exist for compressing vertex attributes
by reducing vertices, bones, or recalculating bone weights during pre-processing steps,
[PBCK05] this paper focuses on ways to compress the data without mutating the vertex
list and without applying significant changes to their values, aside from the effects of the
lossy nature of the investigated and proposed algorithms.

2.1.1 Positions

The position of a vertex is usually given in local coordinates described by three floating
point numbers. With a usual bit-depth of 32-bit per float, we end up with 12 bytes
per vertex to store the vertex position. A common way to compress these is by using
Quantisation.

5

2. Methodology

The first step is to normalize the position values. To this end, the maximum (pmax)
and minimum (pmin) bounds of all the vertex positions are evaluated for a given model.
Knowing those values, a normalized position with all component values in between [0, 1]
can be calculated:

∆p = pmax − pmin pnorm = p − pmin
∆p

(2.1)

We calculate an unsigned int vector p̃ with a bit-depth of b using the following formula:

p̃ =
⌊
pnorm · (2b − 1)

⌋
(2.2)

To decode the original position we are required to store pmin and ∆p as a property of the
model. Knowing those values we can decode p̃ using the inverse operation:

p′
norm = p̃

2b − 1 p′ = p′
norm · (∆p) + pmin (2.3)

This method works best for models where the vertices are uniformly distributed. It is a
lossy compression mostly depending on the bit-depth b.

To calculate a scale-invariant error we use the normalized positions to end up with the
following formula for the mean L2-distance error over all vertices N :

Mean L2-d error = 1
N

N∑
i=1

∥p′
norm − pnorm∥ (2.4)

Table 2.1: Scale-invariant quantization error for different bit depths

Model #Vertices Mean L2-d error
b = 8 b = 10 b = 16 b = 21

Stanford Bunny 208,353 3.78 × 10−3 9.39 × 10−4 1.46 × 10−5 4.32 × 10−7

Michelle 56,542 3.74 × 10−3 9.31 × 10−4 1.46 × 10−5 4.24 × 10−7

Mixamo Group 624,127 3.76 × 10−3 9.38 × 10−4 1.46 × 10−5 4.22 × 10−7

Porsche 597,003 3.76 × 10−3 9.36 × 10−4 1.46 × 10−5 4.28 × 10−7

More elaborate solutions to minimize the error and the required bit-depth can be
determined with a more complex prediction scheme [CM02] or by splitting the geometry
into locally closer patches [LCL10].

2.1.2 Texture Coordinates

Texture coordinates, commonly known as UV coordinates, are often compressed using
quantization, similar to positional data. These coordinates are typically normalized,

6

2.1. Vertex Attribute Compression

meaning they fall within the range [0, 1] for both the U and V axes. In systems that strictly
enforce this constraint, quantization is straightforward, involving a simple multiplication
by 2b, where b is the number of bits used for quantization. In such systems, b can be
chosen such that 2b equals the maximum allowed texture size without losing significant
details or creating visual artifacts.

In the more general case, where this constraint is not enforced, it is necessary to scale
the u and v values similarly to how positions are handled, ensuring that values greater
than 1 or less than 0 are properly decoded. In these cases, b must be selected larger
than the maximum allowed texture size to accommodate the extended range of values.
This ensures that the quantization process maintains the necessary precision for UV
coordinates that fall outside the standard [0, 1] range, thereby avoiding significant loss of
detail or visual artifacts when the texture is applied.

2.1.3 Normals

Like positions, normals are naively stored as 3-component float vectors. Discretizing this
value leads to many possible bit patterns being wasted [CDE+14]. This can be seen in
Figure 2.2 where this approach (referred to as the Euclidean Decode Method) yields far
fewer possible normal encodings with similar memory consumption compared to other
methods.

Given the constraint on normalized vectors:

x2 + y2 + z2 = 1 (2.5)

it becomes evident that all possible normal vectors are positioned on the unit sphere
with radius r = 1. Therefore a common approach is to store the normals as spherical
coordinates. Without the need to save r explicitly, we only need a 2-component float
vector per normal saving 33% of the necessary storage. The conversion from Cartesian
coordinates (x, y, z) to spherical coordinates (θ, ϕ), given the fact that r = 1 is done
using the following formulas:

θ = arctan2(y, x) ϕ = arccos(z) (2.6)

with θ ∈ [0, π] and ϕ ∈ [0, 2π]. To decode back to Cartesian coordinates, we use:

x = sin(ϕ) cos(θ) y = sin(ϕ) sin(θ) z = cos(ϕ) (2.7)

This approach has two downsides:

1. Uniformly spaced spherical coordinates are badly distributed over the unit sphere
and clump together at the poles (see Figure 2.2).

2. Trigonometric functions are expensive on some hardware, but required for Decoding.

7

2. Methodology

Better results are promised by the use of octahedral encoded unit vectors [MSS+10]. The
idea is to project the sphere onto an octahedron and unfold it onto a unit square. This is
done by reflecting the faces on the negative z-axis over the appropriate diagonals (see
Figure 2.1).

Figure 2.1: The octahedron encoding is defined by a mapping of the octants of a unit
sphere onto the faces of an octahedron. The faces are mapped onto a unit square which
can be stored in two components [CDE+14].

This algorithm has an almost perfect distribution of values over the unit sphere, as visible
in Figure 2.2. Furthermore, it is computationally very efficient to solve. To encode a
normal n we have to:

Normalize the vector using the Manhattan norm:

n′ = n

|nx| + |ny| + |nz|
(2.8)

The values of n′ for nz >= 0 directly correspond to the mapped octahedron coordinates.
For the case nz < 0 we need to flip the faces as depicted in Figure 2.1 resulting in:

f =
{

(n′
x, n′

y) if n′
z ≥ 0

(1 − |(n′
y, n′

x)|) · sign(n′
y, n′

x) if n′
z < 0

(2.9)

where the sign, || and · operate on the individual components of the 2-d vectors and f
represents the 2-dimensional octahedron encoded normal vector, with fx, fy ∈ [−1, 1].

In order to decode f , the formulas for the individual components of n′ = (n′
x, n′

y, n′
z) can

be derived as:

t = max(−1 + |fx| + |fy|, 0) (2.10)
n′

x = nx + sign(nx) · t (2.11)
n′

y = ny + sign(ny) · t (2.12)
n′

z = 1 − |fx| − |fy| (2.13)

8

2.1. Vertex Attribute Compression

After normalization:
n′ = n′

||n′||
(2.14)

n′ now holds the decoded components of f , with n′ ≈ n

(a) Euclidean (b) Spherical (c) Octahedron Encoding

Figure 2.2: Comparison of the distribution of unit vectors using different encoding
methods. The naive quantized Euclidean method depicted here uses 5 bits per channel,
resulting in a total of 15 bits. In contrast, methods (b) and (c) use 8 bits per channel
resulting in a total of 16 bits.

The appropriate quantization of f is done in the same fashion as for the positions. In
terms of bit depth, we choose b = 16 so that we can pack the normals into a single 32-bit
unsigned integer. A comparison of the errors for the different tested methods can be seen
in Table 2.2, highlighting the octahedron method as the best fit for this purpose.

Table 2.2: Errors for different normal encoding schemes on various datasets. The encoded
data fits into 32-bit leaving 10-bit for the components of the Euclidean method and 16-bit
for the components of the spherical and octahedral methods.

Model #Vertices Mean L2-d error
Euclidean Spherical Octahedron

Stanford Bunny 208,353 9.40 × 10−4 2.48 × 10−5 2.16 × 10−5

Michelle 56,542 9.54 × 10−4 2.38 × 10−5 2.09 × 10−5

Mixamo Group 624,127 9.47 × 10−4 2.90 × 10−5 2.62 × 10−5

Porsche 597,003 9.50 × 10−4 2.47 × 10−5 2.05 × 10−5

2.1.4 Bone-Indices

Given the common sparseness constraint with rigged meshes, every vertex is influenced
by at most four bones. This necessitates storing four unsigned integers per vertex, which
act as lookup indices inside the array of bone matrices. The required bit-depth of these
integers significantly depends on implementation decisions. In many cases, 8-bit per

9

2. Methodology

model is sufficient, but generally, 16-bit is a more robust choice. This choice ensures that
the system can handle larger models and avoid potential overflow issues.

Kuth et al. [KM21] enhanced compression by noting that only a limited number of bone
combinations are utilized, due to the tendency of neighboring vertices to share the same
or similar bones of influence (see Figure 2.3). These distinct combinations, referred to as
unique tuples, are stored in a separate table, with only a lookup ID (referred to as tuple
index) remaining as a vertex attribute.

[a] No Compression
(406 unique tuples)

[b] With tuple reuse
(263 unique tuples)

[c] Our solution
(94 unique tuples)

[d] Meshlets
(886 Meshlets)

Figure 2.3: Comparison of the amount and distribution of distinct tuple indices for
different methods applied to the Mixamo Michelle character. We propose a sorting and
merging step to reduce the number of unique tuples in the lookup table. The meshlets
shown in [d] illustrate that most meshlets share the same tuple index.

Peters et al. [PKM22] introduced two novel optimizations to this approach:

1. If only a single bone affects the vertex, it is directly encoded as the tuple index.

2. Tuple Reuse: For vertices influenced by fewer than four bones, their tuple may be
replaced by one containing the same bones in the same order. As the weight for
any additional bones is zero, they do not affect the calculation of the final vertex
position.

Rule 1 was not implemented in our work due to the following considerations:

• No extra handling of vertices at decompression time is necessary.

• The difference-based encoding algorithm works best if tuple indices vary as little as
possible. Therefore it’s generally better if the singular tuples have a shared tuple
index as opposed to an arbitrary bone index.

10

2.1. Vertex Attribute Compression

• The bit-depth for the tuple index must be at least the same size as for the bone
indices. If there are no unused bones in the model this will typically be the case,
but scenarios can be constructed where this constraint could pose a problem, such
as having a shared bone buffer in the scene but individual lookup tables.

• The size of the lookup table is only minimally affected by this rule, as the corre-
sponding tuple—containing only one bone—will usually be replaced by a different
tuple when applying Rule 2.

To implement Rule 2, we first set all irrelevant bone indices to the highest possible number
(denoted as ∞ in Figure 2.4). Subsequently, the list of tuples is organised in descending
order, ensuring that tuples that can be replaced by others appear before them. The last
value of these emerging groups is then saved as an entry in the final Lookup-Table.

Figure 2.4: Tuple-Reuse: Irrelevant indices are symbolized as ∞. The lookup table is
then sorted, and only the last tuple of each corresponding group is saved [PKM22].

Since the tuple indices of the vertices have now changed, it is necessary to update the
attributes accordingly. It is advisable to log all changes made to the lookup table in a
hash map and apply them all at once.

Index-Sorting and Merging

To further reduce the size of the lookup table and consequently the number of unique
tuple indices, we propose an additional pre-sorting of the tuples. The applied permutation
can be stored either within the bone weights or, alternatively, as a separate permutation
index. Given our constraint of 4 bones, there are 4! = 24 possible permutations, which
requires 5 bits per vertex to store the permutation.
Subsequently, we apply the same tuple-reuse technique as described earlier. By storing
the permutation for each vertex individually, we can further merge tuples that contain
irrelevant indices. Our greedy algorithm proceeds with the following steps:

1. Select the entry with the highest number of irrelevant indices.

11

2. Methodology

2. Search for the optimal merge candidate based on two criteria:

a) Minimize the number of irrelevant indices.

b) If criterion 2a applies to multiple candidates, we choose the one that maximizes
the number of shared bone indices. This heuristic may result in similar tuple
indices for vertices located near each other.

3. Merge the tuples by appending the relevant bone indices of the selected merge
candidate to the end of the entry selected in step 1. Adjust the permutation and
tuple indices for the vertices of the merge candidate accordingly.

4. Repeat from step 1 as long as possible combinations remain.

An example of the sort and merge process is illustrated in Figure 2.5. In the initial step,
we sort the bone indices within their respective tuples. Next, we apply the tuple reuse
technique as proposed by Peters et al. [PKM22] on this modified table. In the final step,
we merge tuples that contain a sufficient number of irrelevant indices. In this example, we
first select the tuple 0 | ∞ | ∞ | ∞ , as it contains the highest number of irrelevant values.
The only merge candidate satisfying the primary criterion is 4 | 7 | 8 | ∞ . Consequently,
we merge these entries by appending the candidate to the end of the selected tuple.
Further combinations are still possible, so we choose 6 | 8 | ∞ | ∞ as the next tuple to
merge, given that it has the highest number of irrelevant indices among the remaining
tuples. According to the second criterion, we merge it with 2 | 8 | ∞ | ∞ , as both
share the bone with index 8. With only 2 | 5 | ∞ | ∞ left, there is no additional merge
candidate and the algorithm terminates.

Figure 2.5: Sorting and merging the bone indices allows for a better compression rate of
the lookup table.

12

2.1. Vertex Attribute Compression

2.1.5 Bone-Weights

Bone weights are stored as vectors of floating-point numbers. These vectors adhere to
the following constraints:

• Sparseness: Limits the dimensionality. We consider bone weights only up to a
dimensionality of 4.

• Non-negativity: All weights are positive.

wj ≥ 0 j ∈ [1, N] (2.15)

where wj represents the weight of the j-th bone for a single vertex and N the
dimension of the bone weight vector.

• Affinity: The sum of the weights for all bones associated with a single vertex must
be equal to 1:

N∑
j=1

wj = 1 (2.16)

These constraints offer significant possibilities for compression. Equation 2.15, paired
with Equation 2.16, ensures that all bone weights are between zero and one. This
allows for easy quantification of these attributes. Additionally, Equation 2.16 enables the
elimination of one bone weight, as it can be reconstructed from the others using:

wj = 1 −
N∑

k=1
k ̸=j

wk (2.17)

The order in which bone weights are stored is arbitrary as long as they correspond
with the appropriate bone index. However, it is generally advised to sort them to allow
for premature termination of the final vertex calculation. Additionally, the resulting
constraint provides further compression possibilities:

w1 ≥ w2 ≥ w3 ≥ w4 (2.18)

Knowing that we have a sorted list of weights, we choose not to explicitly store the
largest one w1. The remaining inequalities w2 ≥ w3 ≥ w4 form a 3-dimensional simplex
(or tetrahedron) in weight space. Naively quantizing those weights between [0, 1] would
yield many invalid tuples, as can be seen in Figure 2.6 (a).

To cover more space inside the unit cube, the simplex can be stretched with a simple
consideration: The weight at position j is always smaller than 1

j . This is a direct result
of the constraint applied by sorting the elements (Equation 2.18) and by the affinity

13

2. Methodology

constraint (Equation 2.16). A proof by contradiction is trivial and provided in Section
6.1. Hence, we can stretch the weights by:

w′
2 = 2w2 w′

3 = 3w3 w′
4 = 4w4 (2.19)

which is visualised in Figure 2.6 (b). This tetrahedron now covers 1
6 of the whole weight

space but loses the original order, such that Equation 2.18 is not applicable for w′

anymore.

To that end, Peters et al. [PKM22] proposed a different approach to scale the weights:

w′
2 = 2w2 w′

3 = 3w3 + w2 w′
4 = 4w4 + w2 + w3 (2.20)

which is visualised in Figure 2.6 (c). This approach ensures that the weights w′ are still
ordered, meaning w′

2 ≥ w′
3 ≥ w′

4.

(a) Base (b) Eq. 2.19 applied (c) Eq. 2.20 applied (d) Permutations

Figure 2.6: All possible combinations of bone weights lie inside a 3-dimensional simplex
(a). A naive linear transformation can be applied to cover 1

6 of all possible encodings (b).
Peters et al. [PKM22] proposed a different linear transformation which is order-preserving
(c). By shuffling the weights after applying Eq. 2.20 we can reach all possible values
inside the unit cube. All possible permutations are shown in different colors (d).

The original weights can be reconstructed using:

w2 = w′
2

2 w3 = 2w′
3 − w′

2
6 w4 = 3w′

4 − w′
2 − w′

3
12 (2.21)

Another useful property of w′ is that by shuffling its components it is possible to attain
any other point inside the unit cube. The authors proposed to select a permutation based
on some bits of the tuple index, effectively saving another log2((N − 1)!) = log2(3!) = 2.6
bits. (Considerably more for N > 4)

One edge case still has to be considered: Components of w′ can be equal in which case
multiple permutations could be valid for the resulting weight vector and the reconstruction
of the tuple index would be impossible. To eliminate this problem the authors propose
to push the quantized values (ai) apart to force a strict ordering, meaning a2 > a3 > a4.

They furthermore introduced precision factors Bi to allow for extra bits to be used on a
single weights basis. This allows for fine-tuning the compression quality. Finally, they

14

2.2. Meshlet Difference Encoding

pack the quantized values together with the rest of the payload into one unsigned integer.
The other part of the payload is saved inside the permutation.

Additional information are given by Peters et al. [PKM22]. They document implementa-
tion details and pitfalls, while also providing ready-to-use code modules1 for GLSL and
C-language.

A different approach is proposed by Kuth et al. [KM21], who suggests assigning index
numbers to all possible and valid points inside the tetrahedron. Instead of storing the
weight vector, only this index is stored. This scheme is named Optimal Simplex Sampling.
However, due to the expensive decoding algorithm, which requires solving polynomial
equations, Permutation Coding yields better results in our tests. Consequently, we chose
this compression scheme to pair with our Difference Encoding algorithm.

2.2 Meshlet Difference Encoding
Given the strong local similarity for bone attributes, as presented in Section 1.3, we
propose storing only the differences from a reference value within the vertex attributes.
This reference value is stored in the meshlet data along with a resolution value. The
resolution value defines how many bytes are necessary to properly store the individual
difference values.

To calculate the reference value bm for a given meshlet m, we take the minimum of all
bone attributes bim for that meshlet:

bm = min(bim)

The difference ∆bim for each vertex i is then calculated as:

∆bim = bim − bm

The bone attribute bim for a given vertex i from a meshlet m can then be evaluated on
the GPU with a simple addition.

To limit the number of cases we must handle, we define rm, the bit resolution for meshlet
m, in such a way that varying the padding parameter p results in different paddings.

rm =
⌈ log2(max(∆bim) + 1)

p

⌉
p (2.22)

where max(∆bim) is the maximum difference for all vertices in meshlet m.

We conducted experiments with p ∈ {8, 16, 32}:

• p = 8 means that the difference is stored in 8-bit aligned data.
1https://momentsingraphics.de/I3D2022.html

15

https://momentsingraphics.de/I3D2022.html

2. Methodology

• p = 16 means that the difference is stored in 16-bit aligned data.

• p = 32 is the equivalent of only having special treatment for vertices that share the
same bone attribute, as those are 32 bits long.

This approach has one crucial downside: vertices can only be referenced by different
meshlets if rm and bm are the same. To address this issue, we introduced a preprocessing
step in which we create copies of the vertices affected and adapt the references accordingly.

The entire scheme is summarised in Algorithm 2.1, and a visualization of how the different
bit resolutions are present in some of our models is shown in Figure 2.7.

Algorithm 2.1: Vertex Data Preparation for Meshlet Difference Encoding
1 Compress bone weights and indices with permutation codec.
2 foreach meshlet m do
3 Calculate bm, rm

4 end
5 foreach vertex i referenced by multiple meshlets do
6 foreach meshlet tuple m1, m2 referencing i do
7 if bm1 ̸= bm2 or rm1 ̸= rm2 then
8 Split the vertex i Update reference in meshlet m2
9 end

10 end
11 end
12 foreach vertex i do
13 Calculate ∆bim

14 end
15 Upload 8-bit vertex buffer with respect to rm for all meshlets m.
16 foreach meshlet m do
17 Change the vertex_id to the appropriate offset inside the 8-bit vertex buffer.
18 end
19 Upload additional buffer containing bm and rm for each meshlet m.

In general, this encoding scheme works with any form of vertex attribute data. It is neither
bound to Permutation Coding [PKM22] nor specific to bone attributes. We also tested
the potential compression possibilities when applied to position, texture coordinates, or
normals. However, those results have not been promising as these attributes exhibit too
great variances within the respective meshlets.

16

2.2. Meshlet Difference Encoding

Figure 2.7: Our Meshlet Difference Encoding algorithm stores bone attributes with
varying bit resolutions inside the vertex buffer. The bit resolutions are visualized with
different colors on the Michelle, Robot and Dragon models. The bone attributes are
encoded with the Permutation Coding Algorithm [PKM22].

17

CHAPTER 3
Implementation

To test the proposed method, a Vulkan application (see Figure 3.1) was implemented.
The project is publicly available on GitHub1 and uses the Auto-Vk-Toolkit Framework
[Com24]. The software allows us to compare the efficiency of the implemented algorithms
with timing and buffer sizes presented on the screen.

The processing pipeline for the model data is generally structured into four different
steps:

1. File Loading: All meshes inside the scene are loaded into one vertex and one index
array, which can optionally be optimized using the meshoptimizer library [Kap17]
library. Bone weights are cleaned up, and positions and texture coordinates are
rescaled to fit within the range of [0, 1] (as described in Section 2.1.1).

2. Meshlet Building: The geometry is split into meshlets and appropriate buffers are
generated. If not specified, we use the meshlet creation algorithm provided by the
meshoptimizer library [Kap17]. Additional information about this step is provided
in Section 3.2, where we compare two different methods for flattening and accessing
the data in a GPU-friendly manner.

3. Vertex-Compression: A compressed vertex buffer, with optional additional meshlet
buffers, is created. The compression is performed on the CPU side. We evaluate
seven methods, outlining their differences in Section 3.3.

4. Rendering: All the required buffers are uploaded to the GPU, and the necessary
shaders are compiled. We implemented a custom Shader Meta Compiler, which
is a text-based preprocessing step for our shader files. It allows us to introduce
dynamic preprocessor constants. The SPIR-V [Khr24] compiler is then executed

1https://github.com/GeraldKimmersdorfer/compressed_meshlet_skinning

19

https://github.com/GeraldKimmersdorfer/compressed_meshlet_skinning

3. Implementation

Figure 3.1: The Skinned Meshlet Playground is a Vulkan application implemented
specifically for this thesis. It allows us to compare our proposed algorithm to other
state-of-the-art methods.

on these altered files, eliminating all unnecessary code for the selected pipeline
layout. This implementation detail enables very compact shader files with less
redundancy in the code. We investigated the differences between two possible
Vulkan Meshlet-Extensions in Section 3.1.

3.1 Mesh Shading Pipeline

Support for the Mesh Shading pipeline was initially introduced with the NVIDIA Turing
Architecture in 2018 [Kub18]. Shortly afterward, they offered a device extension named
VK_NV_mesh_shader to provide the necessary software support for the new hardware
architecture. In September 2022, Vulkan released a new vendor-independent solution for
Mesh Shading called VK_EXT_mesh_shader2.

2https://github.com/KhronosGroup/Vulkan-Docs/blob/main/ChangeLog.adoc

20

https://github.com/KhronosGroup/Vulkan-Docs/blob/main/ChangeLog.adoc

3.2. Meshlet Building

While there are some differences in the syntax3, the general structure of the extensions is
fairly similar, particularly for the functionality required for this work. The most notable
difference for this project’s scenario is that the NVIDIA extension supports an intrinsic
function, writePackedPrimitiveIndices4x8NV, which allows for four 8-bit wide
indices packed in a single 32-bit integer to be sent at once.

Given the layout of our redirected mesh buffer detailed in Chapter 3.2, this saves some
clock cycles on the GPU, as we can immediately send the packed indices to the rasterizer.
For the Vulkan extension, we implemented a workaround, which has to unpack the data
first.

In the provided software we implemented support for both extensions and ran benchmarks
with our test scenes to evaluate differences in frame time (see Table 3.1). In all cases,
peak performance was achieved by using the NVIDIA extension. Given these results, we
used the NVIDIA extension for all other benchmarks unless explicitly specified.

NV Extension VK Extension
Meshlet-Type: Native Redirect Native Redirect
Playground 130.94 ms 127.46 ms 140.38 ms 129.67 ms
Mixamo G. 92.39 ms 91.93 ms 99.77 ms 93.24 ms
Monsters 209.10 ms 207.24 ms 218.96 ms 209.89 ms

Table 3.1: Performance comparison between NVIDIA and Vulkan extensions for Mesh
shading by monitoring GPU frame timings. NVIDIAs extension reaches peak performance
on our hardware. Timings are taken with a copy count of 500 instances per model and
no vertex compression.

3.2 Meshlet Building

Constructing meshlets for a model often depends on specific requirements. For compact
storage, different patches might be more advantageous compared to those used for
rendering a mesh. We deem an approach that minimizes cache misses and maximizes
vertex reuse, while selecting faces with similar normals, as optimal for most 3D models
and rendering scenarios. In such cases, premature culling of the entire meshlet is more
efficient. For our specific purposes, meshlets that reduce the variance of bone attributes
are ideal. This implies that all vertices of a meshlet should possess similar bone weights
and bone indices to achieve the best possible compression rate.

Since bone attributes constitute only a relatively small fraction of the overall model data
size, a meshlet creation algorithm optimized solely for compressing these attributes will
result in suboptimal selections for culling or rendering. Taking this into account, we
propose our compression scheme to be generally applicable, independent of any specific
meshlet-building strategy.

3https://www.khronos.org/blog/mesh-shading-for-vulkan

21

https://www.khronos.org/blog/mesh-shading-for-vulkan

3. Implementation

Figure 3.2: Comparison of a simple greedy meshlet generating approach (AVK-Default,
left side) and an approach which takes vertex reuse, proximity and normal variance into
account (Meshoptimizer, right). One random meshlet is highlighted in both images.

Partitioning a model into meshlets is an ongoing area of research [JFB23, KOK+23,
MSS24] and is not the primary focus of this work. However, we briefly evaluated two
different meshlet construction algorithms:

1. AVK-Default: This algorithm is integrated into the Auto-VK-Toolkit-Framework
[Com24]. It follows a simple greedy strategy, constructing meshlets by sequentially
adding triangles as they appear in the index buffer. Upon reaching the maximum
allowed vertex or index count, the algorithm proceeds to the next meshlet. Conse-
quently, the quality of the meshlets is dependent on the vertex order within the
index buffer.

2. Meshoptimizer: The meshoptimizer framework [Kap17] offers a more sophisticated
meshlet-building algorithm that maximizes vertex reuse inside meshlets while
prioritizing vertex proximity and the minimization of the variance inside the vertex
normals.

A visual comparison of both implementations can be seen in Figure 3.2. Unless explic-
itly stated otherwise, all subsequent and preceding tests, as well as benchmarks, were
conducted using meshlets created by the meshoptimizer framework. In all scenarios, it
generated fewer meshlets with their respective vertices in closer proximity.

Meshlet-Buffer Considerations

Meshlets are usually bound in the number of vertices and indices. For NVIDIA GPUs,
those maximum values are recommended as 64 vertices and 126 primitives (378 indices
for triangles) [Kub18].

22

3.2. Meshlet Building

This limitation on the vertex number allows the compression of the usually 32-bit
indices into 8-bit indices. If vertex-reuse inside the meshlet is maximised this can save a
substantial amount of data [Kub20].

Knowing those limitations a straightforward approach for a meshlet data structure is
given by:

struct meshlet_fixed
{

uint16_t meshIndex;
uint8_t vertexCount;
uint8_t triangleCount;
uint32_t meshletVertices[64];
uint8_t meshletIndices[380];

};

Here the meshletIndices array contains indices into the meshletVertices array.
The meshletVertices array contains indices that point to the appropriate vertex data
inside the vertex buffer. meshletIndices has a length of 380 elements such that we
have a 4-byte-aligned struct. In total, this scheme enforces a fixed size of 640 bytes per
meshlet.

Since we usually will not reach both the primitive and vertices bound we will end up with
some unused data inside the vertex- and index-arrays. To mitigate this issue a two-buffer
approach is proposed using a meshlet buffer with the following structure:

struct meshlet_redirect
{

uint16_t meshIndex;
uint8_t vertexCount;
uint8_t triangleCount;
uint32_t dataOffset;

};

It contains an offset into a 32-bit buffer. To avoid confusion with the Index Buffer present
in a traditional pipeline, we will call this buffer the Meshlet Index buffer. It contains
all the elements of the meshletVertices and meshletIndices arrays in sequential
order. Each 32-bit unsigned integer packs four meshlet indices. Figure 3.3 visualizes this
approach.

This solution is similar to a method with separate Vertex Index and Primitive Index
Buffers as shown in [Kub20], except that those two buffers are combined into one Meshlet
Index buffer. This saves approximately 32 bits per meshlet and may additionally reduce
cache misses.

In the provided software, both implementations can be changed during runtime. They
are compared in terms of buffer size and frame time in Table 3.2. We included the index
buffer size to highlight the memory reduction compared to a traditional pipeline.

23

3. Implementation

Meshlet Buffer𝑚𝑚1 𝑚𝑚2 𝑚𝑚3

dataOffset

vertexCount (𝑛𝑛𝑥𝑥𝑥)

triangleCount (𝑛𝑛𝑡𝑡𝑡)

Meshlet Index Buffer 𝑥𝑥20𝑖𝑖1(3𝑛𝑛𝑡𝑡1−1)

𝑚𝑚𝑛𝑛𝑚𝑚

𝑖𝑖1(3𝑛𝑛𝑡𝑡𝑡) 𝑥𝑥2𝑛𝑛𝑥𝑥𝑥 𝑖𝑖21 𝑖𝑖2(3𝑛𝑛𝑡𝑡𝑡) 𝑥𝑥30

𝑛𝑛𝑥𝑥𝑥 elements 3𝑛𝑛𝑡𝑡𝑡 elements

meshletVertices meshletIndices

Vertex Buffer𝑣𝑣1

position, normal, texture coordinates, bone attributes

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣𝑛𝑛𝑣𝑣

Figure 3.3: We propose to use one buffer for both the meshlet vertex indices x and the
meshlet indices i. In this figure, nm depicts the meshlet count and nv the vertex count.

Fixed Redirect
Meshlets B.-Size F.-Time B.-Size F.-Time IB.-Size

Playground 4589 2.80 MB 41.0 ms 2.14 MB 40.1 ms 3.93 MB
Mixamo Group 3478 2.12 MB 35.3 ms 1.73 MB 35.3 ms 3.41 MB
Monsters 4832 2.95 MB 56.4 ms 2.38 MB 55.9 ms 4.86 MB

Table 3.2: Comparison of two different meshlet buffer layouts. The model data was
optimized for vertex reuse before running the tests. The frame times are taken with a
copy count of 500 instances per model and no vertex compression was applied.

The results conclusively demonstrate that the two-buffer approach has significant benefits,
using on average 25% less memory than the meshlet layout with a fixed meshlet size. When
compared to the Index-Buffer used in a traditional pipeline, we observe approximately
95% storage savings. Given these results, we adopted the redirected approach for all
other benchmarks unless explicitly stated otherwise.

3.3 Compression Codecs and Buffer Layouts

We conducted experiments to evaluate runtime performance and compression rates across
seven different compression methods. We included two state-of-the-art methods for bone
attribute compression and compared them to an uncompressed pipeline. Furthermore, we
examined four variations of the proposed Difference Encoding. To ensure a fair comparison,
we utilized the same code for bone animations and applied the same encoding/decoding

24

3.3. Compression Codecs and Buffer Layouts

scheme for positions, texture coordinates, and normals as detailed in Chapter 2. For all
algorithms, except the uncompressed codec, these values were stored with the following
bit-depth inside the vertex-buffer:
3 x uint16 quantized vertex position
2 x uint16 octahedron encoded normal
2 x uint16 quantized texture coordinates

For the bone attributes, we ensure that all reference implementations, except the uncom-
pressed codec, fit within 32-bit.

Uncompressed (UC)

For the uncompressed variant, 32-bit representations of all vertex components are used:
3 x float32 position
2 x float32 texture coordinate
3 x float32 normal
4 x uint32 bone indices
4 x float32 bone weights

This results in a fixed vertex-data size of 64 bytes per vertex.

Optimal Simplex Sampling (OSS)

We use the OSS algorithm as proposed by Kuth et al. [KM21]. We compress the weights
using OSS into 16-bit. The indices are stored inside a lookup table as detailed in 2.1.4.
With 16-bit for the tuple index, we are well within the limits for our benchmark scenes
(see Table 4.1).

To that end, we add the following entries to our vertex data structure:
1 x uint16 tuple index
1 x uint16 OSS encoded bone weights

This results in a fixed vertex-data size of 18 bytes per vertex.

Permutation Coding (PC)

For this codec, we use the Permutation Coding algorithm as proposed by Peters et al.
[PKM22]. They provide a Python script to calculate the best possible codec configuration.
With a 16-bit budget for weights and indices, a general weight value count of 58 and an
extra bit for w2 is suggested. The weight value defines the maximum sample space for
each component.

The algorithm returns one unsigned number which we attach to the vertex data:
1 x uint32 permutation encoded blend attributes

This results in a fixed vertex-data size of 18 bytes per vertex.

25

3. Implementation

Permutation Difference Codec (PDC8, PDC16, PDC32)

Our novel approach works as follows: As detailed in Section 2.2 we only store the
difference for the bone attribute per vertex. The bit-depth rm for those difference values
∆bim is variable and stored together with the reference value bm on a meshlet basis.

The difference between the versions lies in the allowed values for the resolution rm which
can be set by modifying p in Equation 2.22:

• PDC8: p = 8 such that rm ∈ {0, 8, 16, 24, 32}.

• PDC16: p = 16 such that rm ∈ {0, 16, 32}.

• PDC32: p = 32 such that rm ∈ {0, 32}.

Thus, we optionally attach to the vertex data:
1 x uint8/16/24/32 bone attribute difference

This results in a variable size of 14-18 bytes per vertex. Additionally, we need a meshlet
buffer extension adhering to the structure:
1 x uint32 bone attribute reference value
1 x uint32 resolution

This results in the requirement of an additional 8 bytes of storage per meshlet.

32-bit Variant Optimisations

Since our whole bone attribute is packed inside 32-bit, this variant of our algorithm
degrades to a binary differentiation between all vertices having the same bone attribute
or not (rm ∈ {0, 32}). Given this knowledge, we included the following optimizations for
this codec:

• Saving the min is unnecessary as the 32-bit in the vertex buffer might as well just
encode the bone attribute directly.

• In the case of rm = 0, we use the 8 bytes in the extra meshlet buffer to not only store
rm, but also the weights and the tuple index in a format that can be decompressed
faster than the permutation codec. Thus, we store the scaled weights (by equation
2.19) w′

2, w′
3, w′

4 alongside the tuple index. For rm = 32 we set the tuple index to
0xFFFF such that we don’t have to store rm explicitly. This leaves us with the
following layout for the extended meshlet buffer:
1 x uint_16 tuple index (0xFFFF when resolution is 32)
3 x uint_16 scaled weights

26

3.3. Compression Codecs and Buffer Layouts

Dual Permutation Difference Codec 16-bit (DPDC16)

To evaluate the use of the sorted and merged index table as proposed in Section 2.1.4,
we implemented this codec based on the PDC16 with one modification: we pack the
tuple index together with the weight permutation inside the payload for the permutation
coding algorithm. Thus, we allocate:

• 13 bits for compressed weights,

• 5 bits for the permutation,

• 14 bits for the tuple index,

compressed in the blend attribute. Consequently, we must use a marginally worse codec
for the permutation coding algorithm, with only 36 possible values, while still maintaining
the extra count for w2.

27

CHAPTER 4
Evaluation

In Section 4.1 we discuss the environment and the models we used for tests and benchmarks.
To evaluate the effectiveness of the proposed method, we assess the potential reduction in
memory consumption in Section 4.2. Furthermore, we compare the runtime performance
of our method to two state-of-the-art solutions in Section 4.3. Regarding visual quality,
our approach is by design comparable to the findings of Peters et al. [PKM22], as we
utilize their proposed algorithm to calculate bone attributes.

4.1 Environment and Datasets
All benchmarks were taken on an NVIDIA GeForce RTX 3060 with a window resolution
of 1920x1080. To measure the exact GPU timings we used GPU Timestamp Queries 1.
We averaged the frame-timings of 240 frames for each scenario. We froze the animation on
the first frame of each respective scene and dropped all fragments to put more emphasis
on the mesh stage. To achieve a higher workload, we rendered multiple instances of the
same model. We do so by executing the pipeline multiple times.

The models used for benchmarking are listed in Table 4.1. We focused on models with
varying vertex and face counts, ensuring that they also differ in the average number
of bones influencing each vertex. We expect our methods to perform well on models
with a low number of bones per vertex and a low number of unique index tuples. These
conditions are typically satisfied with non-organic models, such as robots or cars.

1https://docs.vulkan.org/samples/latest/samples/api/timestamp_queries/
README.html

29

https://docs.vulkan.org/samples/latest/samples/api/timestamp_queries/README.html
https://docs.vulkan.org/samples/latest/samples/api/timestamp_queries/README.html

4. Evaluation

Sc
re

en
sh

ot
N

am
e

V
er

ti
ce

s
Fa

ce
s

B
on

es
M

es
hl

et
s

m
es

h
op

ti
m

iz
er

U
ni

qu
e

T
up

le
s

n
o

co
m

p
re

ss
io

n

∅
bo

ne
s

p
er

ve
rt

ex

Pl
ay

gr
ou

nd
2

2
9.

69
×

10
5

3.
44

×
10

5
21

0
15

37
0

52
3

1.
03

M
ix

am
o

G
ro

up
2

6.
24

×
10

5
2.

98
×

10
5

88
9

98
39

49
30

1.
87

M
on

st
er

s
3

1.
27

×
10

6
4.

24
×

10
5

35
28

20
46

8
18

87
4

1.
99

D
ra

go
n

4
1.

14
×

10
5

3.
80

×
10

4
14

6
18

10
14

76
2.

23

M
ich

el
le

2
5.

65
×

10
4

2.
81

×
10

4
52

88
6

40
6

1.
85

R
ob

ot
5

6.
23

×
10

4
2.

08
×

10
4

33
99

3
33

1.
00

Ta
bl

e
4.

1:
O

ve
rv

ie
w

of
al

lt
he

sc
en

es
us

ed
fo

r
be

nc
hm

ar
ks

,t
es

ts
,a

nd
vi

su
al

iz
at

io
ns

in
th

is
th

es
is.

2
co

nt
ai

ns
T

he
La

st
St

ro
ng

ho
ld

(a
ni

m
at

ed
)

by
C

on
ra

d
Ju

st
in

h
t
t
p
s
:
/
/
s
k
f
b
.
l
y
/
o
o
w
E
z

2
co

nt
ai

ns
an

im
at

ed
an

d
rig

ge
d

M
od

el
s

fr
om

M
ix

am
o

by
A

do
be

h
t
t
p
s
:
/
/
w
w
w
.
m
i
x
a
m
o
.
c
o
m

3
U

lti
m

at
e

M
on

st
er

s
Pa

ck
by

qu
at

er
ni

us
h
t
t
p
s
:
/
/
s
k
f
b
.
l
y
/
o
z
D
Y
s

4
B

la
ck

D
ra

go
n

w
ith

Id
le

A
ni

m
at

io
n

by
3D

H
au

pt
h
t
t
p
s
:
/
/
s
k
f
b
.
l
y
/
F
W
L
t

5
A

ni
m

at
ed

hu
m

an
oi

d
ro

bo
t

by
pi

ng
ui

no
co

np
ul

ga
re

s
h
t
t
p
s
:
/
/
s
k
f
b
.
l
y
/
K
E
8
x

30

https://skfb.ly/oowEz
https://www.mixamo.com
https://skfb.ly/ozDYs
https://skfb.ly/FWLt
https://skfb.ly/KE8x

4.2. Memory Consumption

4.2 Memory Consumption
To compare the overall memory consumption of our approach, we have to monitor:

• Vertex Buffer (VB): This buffer stores position, normal, texture coordinates, and
blend attributes for each vertex. For UC, OSS, and PC, we have fixed buffer sizes
that depend only on the vertex count. However, this varies for the PDC8, PDC16,
PDC32, and DPDC16 approaches.

• Meshlet Buffer (MB): As outlined in Section 3.2, the Meshlet Buffer contains
triangle and vertex data. The buffer size is constant across all evaluated algorithms.

• Additional Meshlet Buffer (AMB): Our difference codecs PDC8, PDC16, PDC32,
and DPDC16 require additional information per meshlet, as detailed in section 3.3.

• Tuple Index Buffer (TIB): This buffer contains the contents of the lookup table,
with each tuple stored as 4 x uint16.

Table 4.2 contains all the relevant buffer sizes for our test scene, highlighting a substantial
memory reduction with our proposed approach. PDC8 shows the best compression since
we allow the most fine-grained bit-resolution for the bone-attributes. The stark contrast
between the different buffer sizes is shown in Figure 4.1.

Ours
UC OSS/PC PDC8 PDC16 PDC32 DPDC16

Playground

VB: 59.15 MB 16.63 MB 13.09 MB 13.14 MB 13.29 MB 13.13 MB
AMB: - - 120.08 kB 120.08 kB 120.08 kB 120.08 kB
TIB: - 2.73 kB 2.73 kB 2.73 kB 2.73 kB 0.97 kB
SUM: 59.15 MB 16.64 MB 13.21 MB 13.26 MB 13.41 MB 13.25 MB

Mixamo G

VB: 38.09 MB 10.71 MB 9.53 MB 9.88 MB 10.02 MB 9.93 MB
AMB: - - 76.87 kB 76.87 kB 76.87 kB 76.87 kB
TIB: - 24.30 kB 24.31 kB 24.31 kB 24.31 kB 8.91 kB
SUM: 38.09 MB 10.74 MB 9.63 MB 9.98 MB 10.12 MB 10.02 MB

Monsters

VB: 77.70 MB 21.85 MB 19.11 MB 19.73 MB 20.03 MB 19.79 MB
AMB: - - 159.91 kB 159.91 kB 159.91 kB 159.91 kB
TIB: - 99.92 kB 99.92 kB 99.92 kB 99.92 kB 40.13 kB
SUM: 77.70 MB 21.95 MB 19.37 MB 19.98 MB 20.29 MB 19.99 MB

Dragon

VB: 6.96 MB 1.96 MB 1.81 MB 1.88 MB 1.90 MB 1.88 MB
AMB: - - 14.14 kB 14.14 kB 14.14 kB 14.14 kB
TIB: - 8.27 kB 8.27 kB 8.27 kB 8.27 kB 3.37 kB
SUM: 6.96 MB 1.96 MB 1.83 MB 1.91 MB 1.93 MB 1.90 MB

Robot

VB: 3.80 MB 1.07 MB 0.87 MB 0.89 MB 0.90 MB 0.90 MB
AMB: - - 7.76 kB 7.76 kB 7.76 kB 7.76 kB
TIB: - 0.26 kB 0.26 kB 0.26 kB 0.26 kB 0.07 kB
SUM: 3.80 MB 1.07 MB 0.88 MB 0.89 MB 0.91 MB 0.91 MB

Table 4.2: This table summarizes all relevant buffer sizes for our test scenes. PDC8
compresses the vertex buffer the most. DPDC16 uses the smallest lookup table.

31

4. Evaluation

0 2 4 6 8 10 12 14
MB

PDC8

OSS/PC VB
MB
AMB
TIB

Figure 4.1: Visualization of the differences between buffer sizes on average showing
the Vertex Buffer, Meshlet Buffer, and, specific to our bone attribute compression, the
Additional Meshlet Buffer and Tuple Index Lookup Buffer.

4.2.1 Bone Attributes

If we extract the allocated size necessary for our bone attributes, we can calculate the
average byte count per vertex for the blend attributes. We expect this value to be 32
bytes for the uncompressed version by design and approximately 4 bytes for the reference
OSS and PC solutions, varying slightly due to the size of the index tuple lookup table. For
a fair comparison, we must also include the AMB-buffer size for our Difference-Codecs.
Table 4.3 and Figure 4.2 show the result of this metric.

As expected we get a substantial reduction for the blend attributes on scenes with mostly
non-organic rigged meshes. In the Playground scene, a significant storage reduction of
92.75% is observed for PCD8 compared to state-of-the-art OSS/PC approaches. When
compared to the uncompressed version, the storage reduction reaches 99.09%.

Ours
UC OSS/PC PDC8 PDC16 PDC32 DPDC16

Playground 32.00 4.00 0.29 0.34 0.51 0.34
Mixamo G. 32.00 4.04 2.18 2.77 3.00 2.83
Monsters 32.00 4.08 1.95 2.46 2.71 2.46
Dragon 32.00 4.07 2.81 3.54 3.72 3.50
Robot 32.00 4.00 0.83 1.05 1.25 1.24
Average 32.00 4.04 1.61 2.03 2.24 2.08

Table 4.3: Average byte count per vertex including the additional memory necessary for
the index tuple lookup table and the size of the additional meshlet buffer.

As the Playground scene might not be generally representative, we decided to focus on
the average values of our findings. Those still show a reduction in the range of 45%-60%
compared to OSS/PC and 93%-95% compared to the uncompressed codecs. The blend
attributes with our scheme occupy only a small fraction of the overall vertex buffer,
ranging from 11% for PDC8 to 16% for PDC32 (visualized in figure 4.3).

32

4.3. Performance

Playground Mixamo G. Monsters Dragon Robot Average
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

By
te

-c
ou

nt
 p

er
 v

er
te

x

OSS/PC
PDC8
PDC16
PDC32
DPDC16

Figure 4.2: The average byte count per vertex for blend attributes is evaluated for the
proposed encoding schemes. The Uncompressed (UC) scheme is deliberately excluded
from the plot as its disproportionately large size would obscure the relative differences
among the other values.

0 8 16 24 32 40 48 56 64
Bytes per vertex

PDC8

OSS/PC

UC

position normal uv b

position normal uv blend

position normal uv indices weights

Position
Normal
UV
Bone Indices
Bone Weights
Blend Attributes

Figure 4.3: In our setup, the blend attributes constitute only 11% of the vertex buffer size
(for PDC8), which is less than half of that required by current state-of-the-art algorithms.
This figure already accounts for the additional storage needed for the extra meshlet and
tuple index data.

4.3 Performance

As detailed in Section 4.1, we evaluated GPU frame times for all of our scenes. For our
evaluations we duplicated the geometry multiple times: the larger scenes (Playground,
Mixamo Group, Monsters) were rendered with 500 copies, while the smaller ones were
rendered with 2000 copies. We averaged the timings over multiple frames. The results
are presented in Table 4.4 and Figure 4.4.

Despite the substantial reduction of the blend attribute in some scenes (see Section
4.2), this does not significantly impact frame timing, as confirmed by our results. This
is due to the fact that the blend attributes constitute a relatively small fraction of
the entire vertex buffer layout. Therefore, our average memory gain of 60.24% for
these attributes translates to only approximately 13.39% when considering the whole

33

4. Evaluation

vertex buffer. Additionally, decoding the compressed blend attributes introduces a minor
overhead on the overall complexity.

The proposed algorithms exhibit slightly longer frame timings, as indicated by results that
remain comparable to those of the permutation coding reference implementation. However,
in the Playground scene, the algorithm outperforms the reference implementation in
the PDC16 and PDC32 variants.

Ours
UC OSS PC PDC8 PDC16 PDC32 DPDC16

Playground 126.7 117.2 111.8 118.9 109.4 108.9 116.4
Mixamo G. 91.5 89.2 87.7 92.6 88.3 88.8 96.3
Monsters 207.2 205.6 205.7 217.2 208.4 209.2 227.5
Dragon 70.3 61.8 60.4 64.5 62.1 62.5 70.7
Robot 33.4 24.2 22.6 24.6 22.7 22.8 25.5
Michelle 31.4 23.8 22.9 25.0 23.1 23.5 26.6

Table 4.4: Performance comparison in milliseconds [ms]. Playground, Mixamo Group
and Monsters were rendered with 500 copies each. Dragon, Robot and Michelle
with 2000 copies.

Playground Mixamo G. Monsters Dragon Robot
0

50

100

150

200

Ti
m

e
(m

s)

UC
OSS
PC
PDC8
PDC16
PDC32
DPDC16

Figure 4.4: Frame timings for the tested encodings (see Table 4.4).

34

CHAPTER 5
Conclusion

In this thesis, we have explored methods for compressing vertex attributes, with a primary
focus on blend attributes. We demonstrated that mesh shaders significantly enhance the
compression of bone weights and bone indices by leveraging the local similarities of these
attributes. The proposed algorithms are easy to integrate into a project already utilizing
the mesh shading pipeline and achieve on average a 60% reduction in memory usage for
the blend attributes compared to state-of-the-art methods while maintaining competitive
performance.

Despite a reduction of the tuple lookup table buffer by 60.56%, our proposed algorithm
for sorting and merging indices (see section 2.1.4) did not better the storage requirements
or the frame times. Given the already minimal size of the table, the additional 5 bits
required per vertex are disproportionate and do not justify this approach. As illustrated
in Figure 4.1, the Tuple Index Buffer constitutes only a small fraction of the overall
model data. Therefore, further compression of this buffer, even at the cost of a single
additional bit-per-vertex, is unwarranted. Our proposed DPDC16 codec demonstrated
worse performance in terms of both memory requirements and GPU frame time, while
also decoding bone weights at a lower quality compared to the other proposed difference
codecs.

Furthermore, our performance evaluation demonstrated that merely reducing the size of
the vertex buffer offers limited potential for performance gains (see Section 4.3).

5.1 Future Work

We assume that the compression could be further optimized by utilizing a meshlet
generation algorithm designed to maximize the similarities within the meshlets vertices.
Although such an approach may not be advantageous for rendering purposes, it could be

35

5. Conclusion

valuable for compression, where even constraints on the number of vertices and indices
per meshlet might not apply.

It may also be of interest to relax the sparseness constraint, allowing designers finer
control over their animations. Permutation Coding scales effectively with more than four
bones per vertex [PKM22]. Since our approach builds upon this algorithm, the same
scalability applies to our scheme.

From a performance perspective, it could be beneficial to encode the weights and tuple
index separately using a scheme with fewer performance implications (e.g., Equation 2.19).
It is ultimately a trade-off between speed and storage requirements where our difference
encoding scheme may help to keep the resulting size implications within reasonable
bounds.

36

CHAPTER 6
Appendix

6.1 Proof wj < 1
j for sorted weights

Proof by Contradiction

Assume that wk is larger than 1
k for some k ∈ [1, n] where n is the amount of weights per

vertex:

wk >
1
k

Let’s assume the weights are ordered such that:

wj ≥ w(j+1) ∀j ∈ [1, n − 1]

Now, consider wk > 1
k .

w1 ≥ w2 ≥ . . . ≥ wk >
1
k

All wj with j < k, must also be greater than 1
k because the weights are sorted. There

are k such weights. The sum of these k weights need to be greater than k 1
k = 1:

k∑
z=1

wz > 1

Since k ≤ n this contradicts the affinity constraint, which states that the sum of all
weights must be equal to 1:

n∑
k=1

wj = 1

37

6. Appendix

Since this contradiction arises from the assumption that wj > 1
j , the assumption must

be false. Thus, for the affinity and sorting constraints to hold, wj ≤ 1
j must be true.

38

List of Figures

1.1 This figure illustrates the distinctions between the two geometry pipelines
available in modern GPUs. Grey boxes represent fixed-function stages, while
the red stages are fully customisable through the definition of appropriate
shader programs [Kub18]. 2

1.2 In the traditional rendering pipeline, each vertex (red dots in left image) of the
model is individually processed by the vertex shader. In a mesh shader-based
pipeline, groups of vertices (right image) share a common storage structure
and allow for efficient neighborhood access, which facilitates the use of more
advanced compression algorithms. 2

1.3 The Mannequin character from the Mixamo Collection consists of 65 bones.
Every vertex of the mesh is influenced by a subset of those bones with different
magnitudes (bone weights). 3

1.4 The left images depict the scaled values of the first three bone weights (by
equation 2.19) encoded as RGB colors. The right images show all unique bone
index vectors in the Michelle and Robot model. 4

2.1 The octahedron encoding is defined by a mapping of the octants of a unit
sphere onto the faces of an octahedron. The faces are mapped onto a unit
square which can be stored in two components [CDE+14]. 8

2.2 Comparison of the distribution of unit vectors using different encoding methods.
The naive quantized Euclidean method depicted here uses 5 bits per channel,
resulting in a total of 15 bits. In contrast, methods (b) and (c) use 8 bits per
channel resulting in a total of 16 bits. 9

2.3 Comparison of the amount and distribution of distinct tuple indices for
different methods applied to the Mixamo Michelle character. We propose a
sorting and merging step to reduce the number of unique tuples in the lookup
table. The meshlets shown in [d] illustrate that most meshlets share the same
tuple index. 10

2.4 Tuple-Reuse: Irrelevant indices are symbolized as ∞. The lookup table is then
sorted, and only the last tuple of each corresponding group is saved [PKM22]. 11

2.5 Sorting and merging the bone indices allows for a better compression rate of
the lookup table. 12

39

2.6 All possible combinations of bone weights lie inside a 3-dimensional simplex (a).
A naive linear transformation can be applied to cover 1

6 of all possible encodings
(b). Peters et al. [PKM22] proposed a different linear transformation which
is order-preserving (c). By shuffling the weights after applying Eq. 2.20 we
can reach all possible values inside the unit cube. All possible permutations
are shown in different colors (d). 14

2.7 Our Meshlet Difference Encoding algorithm stores bone attributes with varying
bit resolutions inside the vertex buffer. The bit resolutions are visualized with
different colors on the Michelle, Robot and Dragon models. The bone
attributes are encoded with the Permutation Coding Algorithm [PKM22]. 17

3.1 The Skinned Meshlet Playground is a Vulkan application implemented specifi-
cally for this thesis. It allows us to compare our proposed algorithm to other
state-of-the-art methods. 20

3.2 Comparison of a simple greedy meshlet generating approach (AVK-Default, left
side) and an approach which takes vertex reuse, proximity and normal variance
into account (Meshoptimizer, right). One random meshlet is highlighted in
both images. 22

3.3 We propose to use one buffer for both the meshlet vertex indices x and the
meshlet indices i. In this figure, nm depicts the meshlet count and nv the
vertex count. 24

4.1 Visualization of the differences between buffer sizes on average showing the
Vertex Buffer, Meshlet Buffer, and, specific to our bone attribute compression,
the Additional Meshlet Buffer and Tuple Index Lookup Buffer. 32

4.2 The average byte count per vertex for blend attributes is evaluated for the
proposed encoding schemes. The Uncompressed (UC) scheme is deliberately
excluded from the plot as its disproportionately large size would obscure the
relative differences among the other values. 33

4.3 In our setup, the blend attributes constitute only 11% of the vertex buffer size
(for PDC8), which is less than half of that required by current state-of-the-art
algorithms. This figure already accounts for the additional storage needed for
the extra meshlet and tuple index data. 33

4.4 Frame timings for the tested encodings (see Table 4.4). 34

40

List of Tables

2.1 Scale-invariant quantization error for different bit depths 6
2.2 Errors for different normal encoding schemes on various datasets. The encoded

data fits into 32-bit leaving 10-bit for the components of the Euclidean method
and 16-bit for the components of the spherical and octahedral methods. . 9

3.1 Performance comparison between NVIDIA and Vulkan extensions for Mesh
shading by monitoring GPU frame timings. NVIDIAs extension reaches peak
performance on our hardware. Timings are taken with a copy count of 500
instances per model and no vertex compression. 21

3.2 Comparison of two different meshlet buffer layouts. The model data was
optimized for vertex reuse before running the tests. The frame times are taken
with a copy count of 500 instances per model and no vertex compression was
applied. 24

4.1 Overview of all the scenes used for benchmarks, tests, and visualizations in
this thesis. 30

4.2 This table summarizes all relevant buffer sizes for our test scenes. PDC8
compresses the vertex buffer the most. DPDC16 uses the smallest lookup
table. 31

4.3 Average byte count per vertex including the additional memory necessary for
the index tuple lookup table and the size of the additional meshlet buffer. 32

4.4 Performance comparison in milliseconds [ms]. Playground, Mixamo Group
and Monsters were rendered with 500 copies each. Dragon, Robot and
Michelle with 2000 copies. 34

41

List of Algorithms

2.1 Vertex Data Preparation for Meshlet Difference Encoding 16

43

Bibliography

[BBM24] Joshua Barczak, Carsten Benthin, and David McAllister. Dgf: A dense,
hardware-friendly geometry format for lossily compressing meshlets with
arbitrary topologies. In Proceedings of the ACM SIGGRAPH Conference,
July 2024.

[CDE+14] Zina H. Cigolle, Sam Donow, Daniel Evangelakos, Michael Mara, Morgan
McGuire, and Quirin Meyer. A survey of efficient representations for inde-
pendent unit vectors. Journal of Computer Graphics Techniques (JCGT),
3(2):1–30, April 2014.

[CM02] Peter H. Chou and Teresa H. Meng. Vertex data compression through vector
quantization. IEEE Transactions on Visualization and Computer Graphics,
8(4):373–382, October 2002.

[Com24] Computer Graphics Group, TU Wien. Auto-vk-toolkit. https://github.
com/cg-tuwien/Auto-Vk-Toolkit, 2024. Accessed: 2024-08-05.

[Eng20] Matthias Englert. Using mesh shaders for continuous level-of-detail terrain
rendering. In ACM SIGGRAPH 2020 Talks, SIGGRAPH ’20, New York,
NY, USA, 2020. Association for Computing Machinery.

[JFB23] Mark Bo Jensen, Jeppe Revall Frisvad, and J. Andreas Bærentzen. Perfor-
mance comparison of meshlet generation strategies. Journal of Computer
Graphics Techniques (JCGT), 12(2):1–27, December 2023.

[Kap17] Arseny Kapoulkine. meshoptimizer. https://github.com/zeux/
meshoptimizer, 2017. Accessed: 2024-08-05.

[Khr24] Khronos Group. SPIR-V Specification, 2024.

[KM21] Bastian Kuth and Quirin Meyer. Vertex-blend attribute compression. In
Proceedings of the Conference on High-Performance Graphics, HPG ’21,
pages 43–52, Goslar, Germany, 2021. Eurographics Association.

[KMWM21] Brian Karis, Jeremy Moore, Daniel Wright, and Martin Mittring. Nanite:
A deep dive into the virtualized geometry system in unreal engine 5. In

45

https://github.com/cg-tuwien/Auto-Vk-Toolkit
https://github.com/cg-tuwien/Auto-Vk-Toolkit
https://github.com/zeux/meshoptimizer
https://github.com/zeux/meshoptimizer

ACM SIGGRAPH 2021 Advances in Real-Time Rendering, 2021. Accessed:
2024-08-09.

[KOK+23] Bastian Kuth, Max Oberberger, Felix Kawala, Sander Reitter, Sebastian
Michel, Matthäus Chajdas, and Quirin Meyer. Towards practical meshlet
compression, 2023.

[Kub18] Christoph Kubisch. Introduction to turing mesh
shaders. https://developer.nvidia.com/blog/
introduction-turing-mesh-shaders/, 2018. Accessed: 2024-
08-05.

[Kub20] Christoph Kubisch. Using mesh shaders for professional
graphics. https://developer.nvidia.com/blog/
using-mesh-shaders-for-professional-graphics/, 2020.
Accessed: 2024-08-05.

[LCL10] Jongseok Lee, Sungyul Choe, and Seungyong Lee. Mesh geometry compres-
sion for mobile graphics. In Proceedings of the 2010 7th IEEE Consumer
Communications and Networking Conference, pages 1–5, USA, January
2010. IEEE.

[LD12] Binh Huy Le and Zhigang Deng. Smooth skinning decomposition with rigid
bones. ACM Transactions on Graphics, 31(6), November 2012.

[MLDH15] Adrien Maglo, Guillaume Lavoué, Florent Dupont, and Céline Hudelot.
3d mesh compression: Survey, comparisons, and emerging trends. ACM
Computing Surveys, 47(2), April 2015.

[MSS+10] Quirin Meyer, Jochen Süßmuth, Gerd Sussner, Marc Stamminger, and
Günther Greiner. On floating-point normal vectors. Computer Graphics
Forum, 29:1405–1409, June 2010.

[MSS24] Daniel Mlakar, Markus Steinberger, and Dieter Schmalstieg. End-to-end
compressed meshlet rendering. Computer Graphics Forum, 43, January
2024.

[PBCK05] Budirijanto Purnomo, Jonathan Bilodeau, Jonathan Cohen, and Subodh
Kumar. Hardware-compatible vertex compression using quantization and
simplification. In Proceedings of the 2005 Symposium on Interactive 3D
Graphics and Games, I3D ’05, pages 53–61, New York, NY, USA, 2005.
Association for Computing Machinery.

[PKM22] Christoph Peters, Bastian Kuth, and Quirin Meyer. Permutation coding for
vertex-blend attribute compression. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 5(1), May 2022.

46

https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/

[UKPW21] Johannes Unterguggenberger, Bernhard Kerbl, Jakob Pernsteiner, and
Michael Wimmer. Conservative meshlet bounds for robust culling of skinned
meshes. Computer Graphics Forum, 40(2):217–229, May 2021.

47

	Kurzfassung
	Abstract
	Contents
	Introduction
	Mesh Shading
	Linear Blend Skinning (LBS)
	Research Objective

	Methodology
	Vertex Attribute Compression
	Positions
	Texture Coordinates
	Normals
	Bone-Indices
	Bone-Weights

	Meshlet Difference Encoding

	Implementation
	Mesh Shading Pipeline
	Meshlet Building
	Compression Codecs and Buffer Layouts

	Evaluation
	Environment and Datasets
	Memory Consumption
	Bone Attributes

	Performance

	Conclusion
	Future Work

	Appendix
	Proof wj<1j for sorted weights

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

