PPSurf
Combining Patches and Point Convolutions for Detailed Surface Reconstruction

Philipp Erler, Lizeth Fuentes-Perez, Pedro Hermosilla, Paul Guerrero, Renato Pajarola and Michael Wimmer

Institute of Visual Computing & Human-Centered Technology
Research Unit of Computer Graphics
TU Wien, Austria
Motivation

Photos

Unoriented Point Cloud

Mesh

3D Print

Surface Reconstruction

Surface Reconstruction

Surface Reconstruction

Reconstruction Difficulties

PPSurf - EG2024
Method Categories

Non-data-driven Methods
Non-Data Driven Methods

Neural-IMLS

SAP (unlearned)

PGR

Method Categories

Non-data-driven Methods

Data-driven Methods

learned

Predicting Implicit Surfaces

Occupancy Probability

- TSDF: [-1, +1]
- Occupancy: [0, 1]
- Occupancy Probability (POCO):
 - In: [0, 1]
 - Out: [0, 1]
 - Occ_prob = (Out – In)

Global and Local Information

Only Local

Only Global

Local + Global
Global and Local Information

- **GT**
- **Only Global**
- **Local + Global**
Idea

Global POCO

Merge Features

Local POCO

P

X

$O(X)$
Idea

Global POCO

Local PointNet

Merge Features

$P \ x \ o(x)$
PPSurf Architecture

Uniform Subsample

Global Features

POCO

MLP

Nearest Neighbors

PointNet

Local Features

Global Features

MLP

POCO

Uniform Subsample

Nearest Neighbors

PointNet
PPSurf: Local Branch

Points → MLP → Per-Point Features → Sym Op → Features

Self-Attention
Data Driven Methods

POCO

PPSurf (ours)

Ground Truth

Data Driven Methods

POCO

PPSurf

Ground Truth

Quantitative Comparison

Chamfer Distance (x100) ↓

- Neural IMLS
- PGR
- SAP O
- SAP
- P2S
- POCO
- PPSurf 50nn
Ablation Study

Chamfer Distance (x100)

- PPSurf 10NN
- PPSurf 25NN
- PPSurf Full
- PPSurf 100NN
- PPSurf 200NN
Real-World Examples
Limitations

ground truth

Neural IMLS

PPSurf (ours)
Limitations

noisy input ground truth PPSurf (ours)
PPSurf Live System

https://huggingface.co/spaces/perler/ppsurf