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Figure 1: We present PPSURF, a method to reconstruct surfaces from noisy point clouds. Unlike previous methods, our approach combines
two strong data-driven priors, one prior over local surface details, and a second prior over the coarse shape of larger surface regions. This
makes PPSURF robust to noise, while reconstructing surface detail better than current methods.

Abstract
3D surface reconstruction from point clouds is a key step in areas such as content creation, archaeology, digital cultural
heritage, and engineering. Current approaches either try to optimize a non-data-driven surface representation to fit the points,
or learn a data-driven prior over the distribution of commonly occurring surfaces and how they correlate with potentially noisy
point clouds. Data-driven methods enable robust handling of noise and typically either focus on a global or a local prior, which
trade-off between robustness to noise on the global end and surface detail preservation on the local end. We propose PPSURF

as a method that combines a global prior based on point convolutions and a local prior based on processing local point cloud
patches. We show that this approach is robust to noise while recovering surface details more accurately than the current state-of-
the-art. Our source code, pre-trained model and dataset are available at: https://github.com/cg-tuwien/ppsurf

CCS Concepts
• Computing methodologies → Shape modeling; Machine learning;
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1. Introduction

3D surface reconstruction from point clouds is a key step for work-
flows in areas such as content creation, archaeology, digital cultural
heritage, and engineering, to convert raw 3D point scan data, like
casual RGBD (color and depth) mobile phone images or more ac-
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curate range scans (e.g., from laser range scanner), to surface-based
3D object representations that can be used in downstream applica-
tions.

Given the large practical interest, surface reconstruction has be-
come a central problem in computer graphics and vision research.
The problem is generally ill-defined, as different surfaces may cor-
respond to similar point clouds. However, several approaches have
been proposed to tackle this ambiguity. One research direction at-
tempts to optimize surface representations with strong non-data-
driven inductive biases to fit the point cloud [KBH06, WSS∗19,
PJL∗21,BZYSM21]. This resolves the ambiguity, but is susceptible
to deteriorating conditions of the input points, such as scan noise
or regions with missing points, which cannot easily be corrected
using a fixed inductive bias. Another line of research focuses on
learning data-driven priors, usually over the distribution of com-
monly occurring surfaces and how they correlate with potentially
noisy point clouds [PFS∗19, EGO∗20, PJL∗21, BM22]. The sur-
face reconstruction ambiguity can then be resolved by finding a
surface that has a high probability for the given point cloud under
the learned prior. The prior in these data-driven methods can range
from global, where the prior captures a distribution over full 3D ob-
ject surfaces, to local, where the prior captures the distribution over
local surface patches. Global priors are the least susceptible to noise
and missing points, but have limited capability to capture fine local
details. Local priors, on the other hand, can capture such fine details
accurately, but are more susceptible to strong noise and missing
points. Existing methods mostly focus their prior on a small range
in this global-local spectrum. For example, DeepSDF [PFS∗19]
uses a global prior, Points2Surf [EGO∗20] mostly focuses on a lo-
cal prior, while POCO’s point convolutions [BM22] learn a prior in
the medium range that is reasonably robust to deteriorating condi-
tions, but still struggles to accurately capture local detail.

We propose PPSURF as a method that covers a wider range in
the global-local spectrum of priors, by combining the local prior
of a patch-based method like Points2Surf with a more global prior
of a point convolution-based method like POCO. For this purpose,
we design an architecture that has two branches: the first branch
is based on POCO [BM22] and provides a global prior by ap-
plying several layers of point convolutions to a sparse set of sup-
port points. To reconstruct geometric details more accurately, we
merge features from this first branch with features from a sec-
ond branch, which processes a local patch of points with Point-
Net [QSMG17]. We additionally discovered that modifying the ar-
chitecture of PointNet by replacing the sum aggregation with an
attention-based aggregation improves performance. This results in
a method that is robust to noise and missing points, while preserv-
ing details more accurately than previous methods.

In our experiments, we compare PPSURF to several previous
state-of-the-art methods, both data-driven and non-data-driven, on
synthetic as well as real-world data, and demonstrate improved per-
formance on both in-distribution, and out-of-distribution surface re-
construction tasks.

2. Related Work

Surface reconstruction from point clouds is an active area of re-
search. We distinguish between data-driven methods that train on a

large dataset, and non-data-driven methods that do not use machine
learning or overfit to a single shape.

Non-data-driven methods. Poisson reconstruction [KBH06,
KH13] has for many years been the gold standard of non-data-
driven approaches. Recent works have suggested optimizing the
parameters of a neural network to predict the signed distance to
the surface [AL20, SMB∗20, AL21] directly from a single point
cloud. In particular, Atzmon and Lipman [AL20] introduced this
concept for unoriented point clouds. They optimized the parame-
ters of the neural network with a sign-agnostic loss and a geomet-
ric initialization of its parameters. Gropp et al. [GYH∗20] and Atz-
mon and Lipman [AL21] followed up on this work and included a
gradient regularization in the loss. Later, Ma et al. [BZYSM21] in-
troduced Neural-Pull, an optimization objective that uses directly
the gradient of the optimized SDF to move the query points to
the closest point in the input point cloud. In follow-up work, this
approach was extended by incorporating a network to classify a
point being on the surface or not [CHL23], and an additional
loss that aligns the gradient direction between different level sets
of the SDF [MZLH23]. In order to improve the quality of the
final SDF, Yifan et al. [YWOSH20] and Zhou et al. [ZML∗22]
proposed to iteratively increase the input point cloud with points
sampled from the optimized SDF in the previous iteration. A dif-
ferent approach was proposed by Peng et al. [PJL∗21] (also used in
LION [ZVW∗22]), based on a differentiable Poisson Surface Re-
construction operation that could be used for optimization-based
or learned reconstructions. Differently from previous methods, the
set of points in the surface is optimized through the differentiable
reconstruction instead of a neural network representing the SDF.
Lin et al. proposed a parametric Gauss formula for reconstruc-
tion [LXSW22], which has quadratic complexity in memory lead-
ing to prohibitive costs for larger point clouds. VIPSS by Huang
et al. [HCJ19] formulates reconstruction as a constrained quadratic
optimization problem. iPSR by Hou et al. [HWW∗22] uses an iter-
ative approach to Poisson reconstruction that improves the surface
more and more, while removing the need to be given point nor-
mals. IsoPoisson by Xiao et al. [XSL∗23] incorporate an isovalue
constraint to the Poisson equation, which helps with consistent nor-
mal orientation and consequently improved reconstruction.

Non-data-driven methods are sensitive to noise, which is usu-
ally present in real 3D scans. In order to address this limitation to
some extent, a recent pre-print from Wang et al. [WWW∗23] pro-
posed Neural-IMLS, a non-data-driven method that regularizes the
smoothness of surface normals using an MLP with limited capacity.
While this produces smooth surfaces, it also loses some geometric
detail due to this non-data-driven regularization. Noise to Noise
Mapping by Baorui et al. [MLH23] focuses on the reconstruction
of noisy point clouds in an unsupervised overfitting scheme. Addi-
tionally, these methods require significant reconstruction times due
to the optimization being performed for each shape individually,
which can be a limiting factor for large scans.

Data-driven methods. A recent line of research has approached
the problem of shape reconstruction in a data-driven manner by us-
ing a large dataset to learn a prior over the distribution of com-
monly occurring surfaces and how they correlate with the input
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point cloud. These approaches are typically fast and robust to noisy
inputs compared to non-data-driven approaches. However, in such
methods, the resulting reconstruction highly depends on the quality
of such priors.

Several works have proposed to use a global prior to captur-
ing the distribution over full 3D object surfaces [CZ19, MON∗19,
PFS∗19]. These methods define such a prior as a single latent vec-
tor representing the shape, which is then used as a condition in a
fully connected network to decode the SDF of a given query point.
Usually, the decoder is trained on large data sets with a point-cloud
encoder [MON∗19,CZ19]. However, Park et al. [PFS∗19] proposed
to train the decoder directly on such data sets and then optimize the
latent vector to match the noisy point cloud during inference. Re-
cently, Zhang et al. [ZTNW23] proposed to use richer global priors.
They introduced an encoder-decoder network that encodes the in-
put point cloud using attention modules into a set of latent vectors
representing the shape, which are then used to predict the SDF for
a set of query points using cross-attention modules.

Other works have opted to condition their models with local pri-
ors. Siddiqui et al. [STM∗21] encoded the input point clouds in a
set of latent scene patches. These latent vectors are used to query a
database of latent vectors from patches obtained from the training
set. The obtained patches are then blended together using an at-
tention mechanism. Ma et al. [BYSZ22] incorporated local priors
by including a network pre-trained on a large number of surface
patches which classifies a point as being on the surface or not. This
network is used to guide an optimization process that learns the
shape’s SDF using another neural network. Jiang et al. [JSM∗20]
pre-trained an SDF encoder-decoder on a large data set of ob-
ject parts. Then, during the optimization process, only the latent
codes of the different parts of the object are optimized. Chen et
al. [CTFZ22] propose a dual contouring method learned on a small
local prior.

Since global and local priors provide complementary informa-
tion about the shape, a common approach is to use a prior in
the medium range using a hierarchical encoder-decoder network.
These approaches reduce the input point cloud to a simplified rep-
resentation, e.g., voxelization or subsampled point cloud, which is
then enriched by the global information provided by the bottle-
neck of the encoder-decoder architecture. Chibane et al. [CAPM20]
and Peng et a. [PNM∗20] proposed a 3DCNN encoder-decoder
network to encode the sparse or noisy point cloud to later pre-
dict the SDF for an arbitrary point around the surface. Chibane et
al. [CMPM20] extended this work to predict an unsigned distance
field, which allowed them to represent complex open surfaces. Tang
et al. [TLX∗21] extended the work of Peng et al. [PNM∗20] to in-
clude test-time optimization to improve out-of-distribution point
clouds. Ummenhofer and Koltun [UK21] proposed a CNN that
works directly on an Octree, from which the model was able to
predict the SDF. Wang et al. [WLT22] also represented the input
point cloud with an octree, from which they constructed a graph.
This graph was further processed by a GCN encoder-decoder to
generate an embedding for each octree node, from where the fi-
nal SDF is predicted. Dai et al. [DDN20] instead used a 3D sparse
encoder-decoder network to complete partial 3D scans and predict
a complete SDF. Lionar et al. [LESP21] also developed an encoder-

decoder network but used instead the projection of the input point
cloud to a set of arbitrary 2D planes, from which the final SDF
was predicted. Boulch and Marlet [BM22] recently proposed to
use an encoder-decoder network that directly worked with points,
avoiding discretization artifacts from voxel-based representations.
Although all these methods work relatively well when compared
with methods that use global or local priors alone, they struggle to
accurately capture fine local details of the shapes.

Erler et al. [EGO∗20] proposed to explicitly model global and
local priors directly from point clouds using two different branches.
Each branch used a PointNet [QSMG17] architecture, to process
the local patch around the query point in the local branch, and a
point cloud representing the complete shape in the global branch.
While the local branch was able to capture high-frequency details
relatively well, they used a weak global prior due to the small subset
of points selected to represent the shape. Our approach addresses
the limitations of all these methods by incorporating strong global
and local priors.

3. Method

The goal of our method is to take as input an unoriented point cloud
P = {p1,p2, . . . ,pn} that was sampled from an unknown watertight
surface Sgt with a noisy sampling process, and output a surface S
that approximates Sgt as closely as possible. Similar to several pre-
vious approaches, we define the surface S using an implicit rep-
resentation, since this guarantees watertightness and naturally han-
dles arbitrary surface topology in a smooth and differentiable way.
More specifically, S is defined as the 0.5-level set of an occupancy
field o(x): S := {x | o(x) = 0.5}.

We train a network fθ(x,P) with parameters θ to model the field
o given a point cloud P:

o(x) := fθ(x,P) (1)

The network f uses two branches: i) a global branch f g(x,P′) that
performs point convolutions [BPM20] on a sparse random subset of
points P′ ⊆ P and effectively learns a global prior over the coarse
shape of S given the input points P, and ii) a local branch f l(x,Px)
that processes a small local patch Px ⊂ P around x and effectively
learns a local prior over the detailed shape of local surface patches.
Each branch outputs a feature vector for a given query point x that
is combined into a single feature vector before being processed by
a small MLP f o that outputs the occupancy probability o(x):

fθ(x,P) := f o( f g(x,P′)⊕ f l(x,Px)
)
, (2)

where ⊕ is the operation used to combine the two feature vectors,
a sum in our experiments. Here, we omit the parameters of the net-
works f o, f g, and f l to avoid a cluttered notation. Figure 2 illus-
trates our architecture.

In the following, we describe the architecture of PPSURF, in-
cluding the global and local branches in Section 3.1, followed by
a description of the training and inference setups in Sections 3.2
and 3.3, respectively.
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Figure 2: PPSURF computes the occupancy probability at a query point x given a noisy point cloud P. A global branch processes a sparse
subset P′ ⊆ P using point convolutions, followed by an attention-based interpolation to get features at x that capture the coarse shape of the
point cloud. A local branch processes a local patch Px ⊂ P using a PointNet [QSMG17] with attention-based aggregation to get features at
x that capture the detailed shape of the point cloud near x. Global and local features are aggregated to compute the occupancy probability
at x.

3.1. Architecture

Global Branch The global branch f g(x,P′) takes as input a ran-
dom subset P′ ⊆ P and a 3D query point x and outputs a global
feature vector for the point x, which encodes information about the
coarse shape of the point cloud. We implement the global branch
using POCO [BM22], which consists of two main components: i) a
point convolution module that computes a feature vector z′i for each
sparse point p′

i ∈ P′, followed by ii) an interpolation module that
interpolates the feature vectors z′i to get the global feature vector at
point x.

The point convolution module uses FKAConv [BPM20] to pro-
cess the sparse point cloud P′ into a feature vector for each point:

Z′ = FKAConv(P′), (3)

where Z′ = {z′1,z
′
2, . . . ,z

′
|P′|} is the set of feature vectors at each

sparse point. Due to limitations both in performance and network
capacity, convolutions can only be performed on the sparse subset
P′ instead of the full point cloud P, with |P′| = 10k in our exper-
iments. This module consists of 10 layers of convolutions. Each
layer uses a convolution kernel that operates over the 16 nearest
neighbors of each point.

Given a query point x, the interpolation module interpolates the
feature vectors z′i at the nearest neighbors N ′

x of the query point to
get the global feature vector using an attention-based weighting:

f g(x,P′) := f gb
(

∑
j∈N ′

x

wx, j f ga((x−p′
j)∥z′j

))
(4)

with wx, j :=
1
k

64

∑
k=1

softmax j f gw
k

(
(x−p′

j)∥z′j
)
, (5)

where ∥ denotes concatenation, f ga, f gb are two MLPs that trans-
form the feature vectors before and after the weighted sum, and
f gw
k are learned weighting functions, each implemented as a single

linear layer. Analogous to the attention heads in multi-head atten-
tion, multiple different weighting functions are used as a form of
ensemble learning, 64 in our experiments. Note that when evaluat-
ing multiple query points x for a point cloud, the point convolution
module only needs to be evaluated once, while the interpolation
module needs to be evaluated once per query point.

Local Branch The local branch f l(x,Px) processes a local patch
Px around the query point x and outputs a local feature vector for
the point x, which encodes information about the detailed shape
of the point cloud near x. We base the local branch on the pop-
ular PointNet [QSMG17] architecture, which has been success-
fully applied in various methods that process local point cloud
patches [GKOM18, RLBG∗19]. We modify the architecture with
an attention-based aggregation, instead of the original max- or sum-
based aggregation, which we found to improve performance.

We define the local patch Px as the 50 nearest neighbors of the
query point x. We normalize the patch by centering it at the ori-
gin and scaling it to fit into a unit sphere, obtaining the normalized
patch P̄x. Subsequently, we apply PointNet with attention-based ag-
gregation similar to Eqs. 4 and 5, but without using multiple atten-
tion heads:

f l(x,Px) := f lb(
∑

p̄ j∈P̄x

v j f la(p̄ j)
)

(6)

with v j := softmax j f lv( f la(p̄ j)
)
, (7)

where f lv is a learned weighting function implemented as linear
layer, and f la, f lb are two MLPs that transform the feature vectors
before and after the weighted aggregation.
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3.2. Training Setup

We train our network with a binary cross-entropy loss
BCE(o(x),ogt(x)) supervised by the ground-truth occupancy
ogt(x) on query points defined by the Points2Surf ABC var-
noise training set [EGO∗20]. We train with AdamW (lr=0.001,
betas=(0.9, 0.999), eps=1e-5, weight_decay=1e-2, amsgrad=False)
for 150 epochs with scheduler steps at 75 and 125 epochs. On our
training machine, we can fully utilize all 4 NVIDIA A40 GPUs
with distributed data-parallel training using a total batch size of 50
and 48 workers. The other hyperparameters are mostly based on
POCO, namely 10k manifold points, a network decoder k of 64 and
2 output classes. One change is the increased latent size of 128,
which was 32 in POCO. The additional hyperparameters for the lo-
cal branch are a PointNet latent size of 256 and a patch size of 50.
The training takes about 5 hours.

3.3. Inference Setup

We use the inference setup from POCO [BM22], which differs from
the training setup in two main aspects: First, we perform test-time
augmentation in our global branch to obtain more reliable results.
Second, we sample query points in a grid and use a variant of
marching cubes to reconstruct a mesh. We describe both in more
detail below.

Test-time augmentation. The sparse subsample P′ ⊆ P used for
the global branch may miss important geometric detail. To improve
robustness, we compute the per-point feature vectors z′i for multi-
ple different random subsamples P′

1,P
′
2, . . . , until each point in P

is included in at least 10 subsamples. The ≥ 10 different feature
vectors for each point in P are then averaged before performing the
interpolation step.

Mesh reconstruction. We place query points in a 2573 grid and
use a variant of marching cubes [LC87] proposed in POCO to ob-
tain a mesh from the occupancy field o(x). That marching cubes
variant uses a region-growing strategy starting from the input points
to avoid the costly evaluation at all grid points, and super-samples
marching-cube edges that intersect a surface to get a more accurate
estimate of the intersection point.

4. Results

We evaluate PPSURF by comparing our surface reconstruction per-
formance to several state-of-the-art methods, both data-driven and
non-data-driven. We show both quantitative and qualitative com-
parisons in Section 4.1. Additionally, we provide an ablation to
empirically validate our main design choices in Section 4.2.

Metrics We use three well-known metrics to evaluate the error of
our reconstructed surfaces: the Chamfer distance, the F1-score, and
the normal error. We evaluate each metric at 100k random surface
samples for the Chamfer distance and normal error, or volume sam-
ples for the IoU. This results in roughly ±0.5% variance between
different runs.

The Chamfer distance [BTBW77,FSG17] measures the distance
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Figure 3: Point cloud examples of the data sets used in our evalu-
ation.

between two point sets. We use it to measure the distance between
reconstructed and GT surface samples. It is defined as:

1
|A| ∑

pi∈A
min
p j∈B

∥pi −p j∥2
2 +

1
|B| ∑

p j∈B
min
pi∈A

∥p j −pi∥2
2, (8)

where A and B are point sets of size 100k sampled on the surface of
the GT object and the reconstructed object.

The F1 Score [TH15] measures the overlap between the ground
truth surface and the region enclosed by the reconstructed surface,
similar to the IoU. It weights precision and recall equally.

The normal error measures the difference between the normals
of the reconstructed surface and the ground truth normals. We sam-
ple 100k points uniformly on the ground truth mesh A and the re-
constructed mesh B, storing the normals of their originating faces.
Then, we find the closest neighbor of each point b ∈ B in A. We
report the average angle between the normals of these point pairs:
1
ns

∑
ns
i=1(arccos(nA

i · nB
i )), where nA

i and nB
i are ground truth and

reconstructed normals, respectively.

Datasets We evaluate our method on the set of dataset variants
introduced in P2S [EGO∗20]:

• The ABC variant of P2S [EGO∗20] is a subset of the ABC
dataset by Koch et al. [KMJ∗19] and contains 4950 points clouds
from high-quality CAD meshes in the training set and 100 point
clouds in the test set.

• The FAMOUS [EGO∗20] dataset consists of 22 diverse well-
known meshes, including the Stanford Bunny, the Utah Teapot,
and the Armadillo. We use this dataset for testing only.

• A subset of 100 shapes from the THINGI10K [ZJ16] dataset are
used as additional test set. The THINGI10K dataset contains a
variety of CAD shapes, but also more organic shapes like statues.

• The REAL [EGO∗20] dataset consists of 3 real-world point
clouds.

All synthetic point clouds were created with the simulated scan-
ner BlenSor [GKUP11] with a scanner resolution of 176 × 144,
using a random number of scans between 5 and 30. Each dataset
comes in up to five variants:

• no noise: A version without noise
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• med. noise: A version with noise using a standard deviation of
0.01L, where L is the largest side of the object’s bounding box.

• high noise: A version with noise using a standard deviation of
0.05L.

• var. noise: A version with variable noise, where the amount of
noise used for a given shape is sampled uniformly in [0,0.05L]
and the number of scans in [5,30].

• sparse: A version with medium noise where all shapes only uses
5 scans, resulting in point clouds between 2k and 22k points.

• dense: A version with medium noise where all shapes use 30
scans, resulting in point clouds between 5k and 112k points.

For a fair comparison, we train all data-driven methods on the
ABC var. noise dataset and evaluate them with each test set. Some
point cloud examples of these data sets are illustrated in Figure 3.

4.1. Comparisons

We compare PPSURF to several recent data-driven and non-data-
driven reconstruction methods. PGR [LXSW22], Neural-IMLS
(IMLS) [WWW∗23] and Shape as Points (SAP-O) are non-data-
driven methods that do not train on a large dataset and instead di-
rectly fit a surface to the input point cloud. Shape as Points also has
a data-driven variant (SAP) that uses a trained network. Addition-
ally, we use Points2Surf (P2S) [EGO∗20] and POCO [BM22] as
data-driven methods. We took the best available variants and set-
tings for each method: For PGR, we use the default parameters
wmin=0.0015, alpha=1.05 for no noise, med noise and var. noise.
We use the following adapted parameters for the other datasets:
wmin=0.03, alpha=2.0 for high noise, wmin=0.03, alpha=1.5 for
dense and sparse. We use thingi-noisy for SAP-O, vanilla for P2S ,
and 10k-FKAConv-InterpAttentionKHeadsNet for POCO. We used
the provided noise-large configuration for SAP. For IMLS, we used
the results provided by the authors (high noise datasets were not
provided by the authors). Note that IMLS was developed concur-
rently with our work.

Qualitative Comparison Figure 4 shows comparisons for one ex-
ample of each dataset variant. While non-data-driven methods give
competitive results on low-noise results, PPSURF has a clear ad-
vantage with sparse and noisy point clouds.

We show examples on real-world point clouds in Figure 5, where
PPSURF produces clearer edges and finer details.

Quantitative Comparison Table 1 shows the performance of
PPSURF on all dataset variants. We report the average over all
shapes in the test set. Similar to the qualitative results, POCO,
PPSURF and the non-data-driven methods share the first place in
most low-noise dataset variants, but PPSURF 50NN takes the lead
in almost all other dataset variants. This confirms that adding the
local branch does indeed improve the local reconstruction.

Computation Time and Memory Consumption Training
PPSURF on the ABC var-noise training set was done in 5 hours
on 4 NVIDIA A40 GPUs and 48 AMD EPYC-Milan cores. We
reconstruct all shapes in our test sets on a single A40 and 48 CPU
cores. See the timings and memory consumption in Table 2. While
non-data-driven methods tend to be faster than data-driven ones,

SAP is a lightning-fast exception. PPSURF with small patch sizes
has a negligible impact on resources compared to POCO. Neural
IMLS does not report timings. As it is concurrent work, we could
not do our own measurements. While it is fast, PGR’s memory
usage varies a lot with point cloud size, between a few GB to going
out-of-memory with >46GB on 21 shapes.

Discussion For dense and noise-free point clouds, non-data-driven
methods such as PGR, SAP-O and especially IMLS are a good op-
tion. However, their performance is limited in the presence of typ-
ical point-cloud artifacts, due to missing data-driven priors. Data-
driven methods such as SAP, P2S, POCO and PPSURF can better
deal with such artifacts. SAP is the fastest method but lacks accu-
racy, possibly due to its very small network. A bigger version could
perhaps produce competitive results but would require non-trivial
changes to the method.

P2S employs a relatively simple PointNet for global shape en-
coding, which results in a weak global prior that can not reach the
quality of a more efficient encoder such as FKAConv. Furthermore,
it reconstructs noisy surfaces, which is reflected in the relatively
high normal error, even with noise-free inputs.

Apart from some noise-free datasets, only POCO is close to
PPSURF’s quality. PPSURF achieves similar results on low-noise
point clouds, but significantly better reconstructions for noisy point
clouds. When predicting the occupancy at the query points, POCO
has no direct access to the full point cloud, only to a coarse latent
representation. This inability to accurately represent local informa-
tion is likely the reason why POCO tends to produce blobby struc-
tures and over-smooth the reconstructed surfaces. We avoid this by
providing a latent code that captures local detail more accurately
by adding a local branch that directly encodes dense local patches
of the point cloud.

4.2. Ablation

We investigate several design choices in an ablation study on the
ABC var-noise test set. Most importantly, Table 3 shows that hav-
ing both global and local branches gains a major advantage. Re-
ferring to Table 4, the optimal local patch size lies in the range of
25NN to 100NN. Further, attention is a better symmetric operation
than max, and concatenating features is similar to summing them.
This can be seen in Table 5. Please see the supplementary for an
evaluation of the most relevant variants on all datasets. We com-
pare the following variants of our method:

• Full is the full method as described in Section 3.
• For Only Local, we set the global features to zeros, disabling

this branch. Based on the results of this experiment, we conclude
that this model can not reliably encode any surface since it lacks
global knowledge of the surface to reconstruct.

• Only Global is similar to POCO as it omits the local branch.
The results show that a global prior can help to obtain reliable
reconstructions but with lower performance due to the missing
fine details.

• For Sym Max, we replace the attention-based interpolation used
in the local branch with the max, effectively making this branch
a PointNet [QSMG17]. The results show an advantage for atten-
tion.
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Figure 4: Qualitative comparison to all baselines. We evaluate one example from each dataset variant (except for the no-noise variants,
where we only show one example due to space constraints). Colors show the distance of the reconstructed surface to the ground-truth
surface. Due to our combined local and global branches, PPSURF reconstructs details more accurately than the baselines, especially in the
presence of strong input noise. Note that results for Neural IMLS are not provided by the authors for the high-noise dataset variants. See the
supplementary material for a qualitative comparison on all shapes in our test sets.
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noisy input picture of
real-world object

POINTS2SURF SHAPE AS POINTS POCO PPSURF (ours)
data-driven

SHAPE AS POINTS

non-data-driven

Figure 5: Real-world reconstructions. We compare to all baselines on the two point clouds that were obtained from real-world objects.

Table 1: Comparison of reconstruction errors. We show the Chamfer distance, F1 Score and normal error between reconstructed and ground-
truth surfaces averaged over all shapes in a dataset. Apart from a few noise-free datsets, PPSURF consistently performs similar or better
than the baselines. Note that the mean performance of Neural IMLS does not include results of the high noise datasets, which are likely
to favour PPSURF. Due to out-of-memory errors, PGR could not reconstruct all shapes, which are ignored here. Best results per row are
marked in bold and the second-best results are underlined.

Dataset Chamfer Distance (x100) ⇓ F1 ⇑ Normal Error ⇑

IMLS PGR SAP-O SAP P2S POCO PPSURF IMLS PGR SAP-O SAP P2S POCO PPSURF IMLS PGR SAP-O SAP P2S POCO PPSURF

ABC var. noise 1.08 1.60 1.18 1.18 0.84 0.70 0.66 0.78 0.50 0.67 0.79 0.83 0.89 0.90 0.55 1.29 1.11 0.52 0.65 0.32 0.30

ABC no noise 0.48 0.53 0.63 1.08 0.61 0.50 0.48 0.92 0.92 0.88 0.80 0.88 0.94 0.94 0.20 0.26 0.30 0.51 0.31 0.19 0.19
Famous no noise 0.35 0.36 0.35 0.99 0.46 0.39 0.37 0.95 0.95 0.95 0.84 0.93 0.95 0.96 0.44 0.48 0.44 0.75 0.57 0.46 0.46
Thingi10k no noise 0.40 0.30 0.43 0.89 0.39 0.33 0.33 0.93 0.95 0.92 0.85 0.93 0.95 0.96 0.25 0.19 0.23 0.49 0.32 0.18 0.19
Mean no noise 0.41 0.40 0.47 0.99 0.49 0.41 0.39 0.93 0.94 0.92 0.83 0.91 0.95 0.95 0.30 0.31 0.33 0.58 0.40 0.28 0.28

Famous med. noise 0.54 0.95 0.58 1.06 0.52 0.49 0.48 0.91 0.60 0.90 0.83 0.92 0.94 0.93 0.57 1.35 0.91 0.78 0.63 0.53 0.54
Thingi10k med. noise 0.58 0.93 0.56 0.93 0.44 0.39 0.38 0.90 0.57 0.89 0.85 0.92 0.94 0.94 0.37 1.32 0.78 0.50 0.38 0.24 0.25
Mean med. noise 0.56 0.94 0.57 0.99 0.48 0.44 0.43 0.91 0.59 0.89 0.84 0.92 0.94 0.94 0.47 1.33 0.85 0.64 0.50 0.38 0.39

ABC high noise – 1.90 1.96 1.51 1.24 1.00 0.97 – 0.42 0.49 0.75 0.78 0.84 0.85 – 1.35 1.42 0.65 0.99 0.43 0.41
Famous high noise – 1.86 1.80 1.62 1.14 1.11 1.01 – 0.50 0.59 0.78 0.84 0.84 0.85 – 1.35 1.39 0.91 1.04 0.76 0.72
Thingi10k high noise – 1.94 1.89 1.45 1.08 0.92 0.83 – 0.51 0.60 0.80 0.84 0.87 0.88 – 1.31 1.36 0.64 0.90 0.47 0.43
Mean high noise – 1.90 1.88 1.53 1.16 1.01 0.94 – 0.32 0.56 0.78 0.82 0.85 0.86 – 1.34 1.39 0.73 0.98 0.55 0.52

Famous sparse 0.90 0.88 0.71 1.24 0.77 0.67 0.64 0.86 0.88 0.88 0.74 0.89 0.92 0.92 0.68 0.75 0.86 0.89 0.71 0.60 0.61
Thingi10k sparse 0.82 0.89 0.86 1.35 0.78 0.63 0.63 0.85 0.86 0.84 0.73 0.87 0.90 0.90 0.48 0.53 0.76 0.73 0.51 0.37 0.39
Mean sparse 0.86 0.88 0.79 1.29 0.77 0.65 0.63 0.86 0.87 0.86 0.73 0.88 0.91 0.91 0.58 0.64 0.81 0.81 0.61 0.48 0.50

Famous dense 0.45 0.70 0.53 0.96 0.41 0.42 0.40 0.93 0.43 0.90 0.86 0.94 0.95 0.95 0.52 1.33 1.00 0.74 0.59 0.49 0.48
Thingi10k dense 0.49 0.67 0.54 0.88 0.36 0.35 0.33 0.91 0.47 0.89 0.87 0.94 0.95 0.96 0.30 1.23 0.84 0.47 0.33 0.21 0.21
Mean dense 0.47 0.69 0.53 0.92 0.39 0.39 0.37 0.92 0.45 0.89 0.86 0.94 0.95 0.96 0.41 1.28 0.92 0.60 0.46 0.35 0.34

Mean overall 0.61 1.04 0.93 1.16 0.70 0.61 0.58 0.89 0.66 0.80 0.81 0.89 0.91 0.92 0.43 0.98 0.88 0.66 0.61 0.40 0.40

• In Merge Cat, we concatenate the features of both branches in-
stead of summing them, which leads to twice the input size for
the final MLP. Results show that this is slightly worse than Full.

• The QPoints variant is the same as Merge Cat, but addition-
ally, we concatenate query point coordinates to the input of the
learned weighting function f lv. However, this results in a slightly
worse performance than Full and even Merge Cat.

• For the xNN variants, we take the x nearest neighbors for local
subsample. Full is equal to 50NN.

4.3. Limitations

Reconstruction times are still non-interactive, due to the need to
evaluate the occupancy at a large number of samples. Possibili-

PPSurf (ours)ground truth Neural IMLS

Figure 6: Limitations. Our method has difficulties to recover the
edges of clean point clouds due to training with noisy point clouds.

ties for speed-ups include more efficient sampling strategies to use
fewer query points.

As our learned priors were trained on noisy data to make
PPSURF more robust to noise, they also bias the reconstructed sur-

submitted to COMPUTER GRAPHICS Forum (1/2024).



P. Erler & L. Fuentes & P. Hermosilla & P. Guerrero & R. Pajarola & M. Wimmer / PPSURF: Combining Patches and Point Convolutions for Detailed Surface Reconstruction9

Table 2: Comparison of reconstruction times and memory usage.
We show the mean reconstruction time per shape and the maximum
GPU-memory consumption for each method on the ABC var noise
dataset. 200NN uses reconstruction batch size 25k instead of 50k.
PGR went out of memory on 21 shapes.

Time per Shape Max GPU Memory

PGR 1.9 min >46GB
SAP-O 1.1 min 3.8GB

SAP 0.8sec 3.1GB
P2S 13.5min 14.3GB

POCO 1.6min 9.0GB
PPSURF 10NN 1.6min 9.1GB
PPSURF 25NN 1.7min 9.1GB
PPSURF 50NN 1.9min 9.3GB
PPSURF 100NN 2.6min 13.7GB
PPSURF 200NN 3.5min 13.2GB

Table 3: Branch Ablation Study. Using the ABC var-noise test set,
we compare PPSURF Full to variants with disabled branches. The
only-local variant failed to produce some meshes, which are ig-
nored in the metrics. The best results per column are marked in
bold.

Model Chamfer (x100) ⇓ F1 Score ⇑ Normal Error ⇓

Only Local 2.69 0.36 1.56
Only Global 0.70 0.89 0.33
PPSURF Full 0.66 0.90 0.30

face to some extent towards the distributions learned by the priors.
This results in some loss of accuracy when applied to noise-free
point clouds compared to some of the non-data-driven methods (see
Figure 6). Learning a prior that is specialized to noise-free point
clouds, or including more noise-free point clouds in our training
set would alleviate this issue.

While PPSURF is better than the baselines in filling scan shad-
ows, it is not a generative method and cannot generate new geo-
metric detail in large missing regions. This limits the size of miss-
ing regions that can be filled with plausible geometry. Combining
PPSURF with a generative model would be an interesting direction
for future work. See Figure 7 for an example of inaccurately filled
scan shadows.

5. Conclusion

In this paper, we have introduced PPSURF as a method for surface
reconstruction from raw, unoriented point clouds. In contrast to pre-
vious methods, PPSURF incorporates strong local and global priors
learned from data. Whilst our global prior is based on a point con-
volutional neural network that processes the point cloud as a whole,
fine details are preserved through the local prior based on dense lo-
cal point cloud patches. We have shown in extensive studies that
PPSURF is able to achieve better surface reconstructions than pre-
vious data-driven and non-data-driven methods, being more robust
to noise in the input point cloud and preserving fine details at the
same time.

Table 4: Patch Size Ablation Study. Using the ABC var-noise test
set, we compare PPSURF Full (which is 50NN) to variants with
different patch sizes. The best results per column are marked in
bold.

Model Chamfer (x100) ⇓ F1 Score ⇑ Normal Error ⇓

PPSURF 10NN 1.10 0.90 0.40
PPSURF 25NN 0.66 0.90 0.31
PPSURF Full 0.66 0.90 0.30
PPSURF 100NN 0.66 0.90 0.30
PPSURF 200NN 0.67 0.89 0.31

Table 5: Miscellanous Ablation Study. Using the ABC var-noise
test set, we compare PPSURF Full (which uses Merge Sum and
Sym Att) to more variants. The best results per column are marked
in bold.

Model Chamfer (x100) ⇓ F1 Score ⇑ Normal Error ⇓

PPSURF Sym Max 1.11 0.90 0.40
PPSURF QPoints 0.67 0.89 0.31
PPSURF Merge Cat 0.66 0.90 0.30
PPSURF Full 0.66 0.90 0.30

In the future, we would like to investigate how modern tech-
niques borrowed from generative models could improve the ob-
tained reconstruction from sparse point clouds where large parts
of the shape are missing.
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