Concept Clusters
Project Report

Dominik Wolf
February 2023

Supervisor: Assistant Prof. Dr.techn. Manuela Waldner, MSc

1 Introduction

The Motivation for this work is to explore methods for visualizing high-dimensional
datasets, with a specific focus on understanding the inner workings of Deep Neural Net-
works (DNNs). DNNs are a type of Artificial Neural Network (ANN) that consist of an
input layer, an output layer, and multiple hidden layers. They are able to make predic-
tions or decisions based on unseen observations, but the way that they arrive at these
decisions can often be opaque, or difficult to interpret. By exploring the similarities of
feature vectors in the latent space created by the network, it is possible to gain insight
into how the network organizes and classifies observations with similar properties that are
also interpretable to the human eye.

A common approach to visualize the clusters of observations in high-dimensional fea-
ture spaces is dimensionality reduction (DR). By reducing the number of dimensions to
a lower number, typically two or three, the observations can be plotted on a surface and
can be visually inspected and interpreted. Although this technique already can reveal pat-
terns and trends, much information on the neighborhood relationships between individual
observations in the high-dimensional space can be lost. Furthermore, DR introduces er-
ror phenomena like missing neighbor and false neighbor [1], both related to the issue of
preserving the intrinsic structure of the data: Missing neighbors occur when important
information is discarded, causing observations that should be close to each other in the
original space to be separated in the reduced space. This results in missing or incomplete
clusters in the reduced space. False neighbors occur when artificial relationships between
observations are introduced, causing observations that are not similar in the original space
to be grouped together in the reduced space. This may result in the formation of false
clusters in the reduced space.

Previous work includes Concept Splatters by Grossmann et al. [2], which served as the
starting point for this project. Concept Splatters allows users to explore similarities within
datasets in a two-dimensional visualization space. Grossmann et al. proposed a method to
visualize large latent spaces by displaying a select number of representative items for each
cluster. However, this approach suffered from typical DR issues because the features were
reduced to two dimensions utilizing UMAP [3] and clusters were computed afterwards
in this two-dimensional visualization space. This work seeks to address this limitation
by performing clustering in high-dimensional space before visualizing the clusters using
representative samples and their connections in the original feature space.



In related work for clustering data in a high dimensional feature space, Ventocilla et al.
[4] present two methods to improve the Growing Neural Gas (GNG) algorithm. GNG is
a topology learning algorithm which models a data space using a Hebbian learning rule,
originally proposed by Fritzke [5].

The goal of this work is to develop a prototype that enables interactive exploration
of data clusterings in high-dimensional feature spaces, instead of the traditional two-
dimensional visual representation. Since this project pursued a similar goal as Concept
Splatters, but clustering is carried out in the high-dimensional feature space, the project
is subsequently referred to as Concept Clusters.

2 Implementation

The following sections explain various aspects of the components of Concept Clusters
which were incorporated into the final interactive visualization.

2.1 Clustering

For the development of the first prototype, the Fashion-MNIST dataset [6] was utilized.
This dataset includes 70,000 grayscale images, each with a resolution of 28x28 pixels and
divided into ten distinct classes.

Various clustering algorithms were evaluated for their suitability for clustering data sets
in a high-dimensional feature space. The algorithms were tested for both runtime perfor-
mance and their mean silhouette coefficient, a measure of the similarity of an observation
to its own cluster compared to other clusters. The silhouette coefficient ranges from -1
to 1, where a value of 1 indicates that the data point is highly similar to its own cluster
and dissimilar to neighboring clusters, while a value of -1 indicates the opposite. A value
of 0 means that the data point is close to the boundary between clusters. The clustering
algorithms used were K-Means, DBSCAN and agglomerative clustering, all of which are
available in the scikit-learn Python library. Additionally, a mini-batch variant of K-Means
was also tested which uses a randomly selected subset of the input data, thus providing
faster computation times.

The results showed that K-Means, especially in the mini-batch variant, produced the
fastest results by a significant margin, making it the only algorithm considered for use
in an interactive visualization. The mini-batch variant of K-Means consistently had a
runtime of around two seconds for clustering the whole Fashion-MNIST dataset (n =
70,000), regardless of the number of clusters to be formed (k). In contrast, the standard
variant’s runtime increased as k increased, but still remained below 30 seconds for up
to k = 21 clusters. On the same machine, DBSCAN took approximately 50 seconds to
complete a clustering, while agglomerative clustering took over six minutes. Furthermore,
the evaluation of the clusters showed that K-Means produced good results in terms of the
mean silhouette coefficient. Given the fast runtime and good clustering performance, no
further steps were taken to improve the clustering using other methods such as compressing
the feature vectors with autoencoders or using a random subsample.

The mini-batch variant of the K-Means algorithm achieved the highest mean silhouette
coefficient with £ = 8 clusters. This value is close to the number of ground-truth classes
in the Fashion-MNIST dataset of ten classes, therefore £ = 10 was selected for use in the
visualization process. Running times and mean silhouette coefficients for clustering the
Fashion-MNIST dataset with different numbers of clusters are depicted in Figure 1.

For datasets with a small number of classes, setting the value of clusters k based on the
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Figure 1: Running times and mean silhouette coefficients for K-Means clustering of the
whole Fashion-MNIST dataset (n = 70, 000).

number of ground-truth classes is feasible. However, this approach becomes impractical for
datasets with a large number of classes. A more efficient approach would be to determine
an optimal value or a range of values for k£ in a preprocessing step or enable setting it
through user input, allowing for greater flexibility.

2.2 Interface Areas

The visualization is divided into three distinct areas, each serving a specific purpose.

In the visualization area (see Figure 2, A), clustering results are rendered as an undi-
rected graph, where each cluster is represented as a node. The visual representation of a
node is chosen based on the image of an observation in the cluster, that is closest to the
cluster center. The relative size of a node in comparison to the other nodes in the graph
is determined by the number of observations inside the cluster, where larger clusters are
represented by larger nodes. The edges of the graph and the proximity of nodes to each
other are determined by the distance between the cluster centers. As the distance between
two cluster centers decrease, the edges connecting the corresponding nodes becomes more
visible and the nodes are placed closer together in the visualization.

The concept space area (see Figure 2, B) is used to visualize the hierarchical relation-
ship of labels in the data set using an icicle plot. The higher up on the icicle plot, the
more general the labels are, while the labels become more specific as the plot progresses
downward. The root and the inner nodes of the tree are “virtual” labels used solely for
the hierarchy, while the leaves of the tree correspond to the ground-truth labels of the
observations in the clustering graph.

A detail area (see Figure 2, C) allows for switching between the available data sets,
resetting the current display each time. If a cluster is selected in the main view, various
information about the selected cluster is displayed in this area. This includes the cluster’s
internal ID, the number of observations contained within the cluster, and examples of the
images in the cluster. For each contained ground-truth label, up to ten random images
from the corresponding observations are displayed, along with their relative and absolute
representation within the selected cluster. In this area, it is also possible to create a
sub-cluster from the selected cluster, which is further described in subsection 2.3.
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Figure 2: User interface of Concept Clusters. The three main areas are the visualization
area (A), the concept space area (B), and the detail area (C).

2.3 Interaction

The three areas described above are strongly connected in terms of interaction.

2.3.1 Cluster Selection and Sub-Clustering

The visualization area displays the cluster graph, allowing users to select a specific cluster
for further inspection in the detail area. Here, a sub-clustering can be performed by
clicking on a designated button. This will re-cluster all elements of the selected cluster.
To aid in navigation, a breadcrumb is also created for each sub-clustering and displayed in
the upper area of the visualization. This allows users to easily return to previous cluster
graphs and track the sub-clustering history.

In addition, the icicle plot in the concept space area also allows users to perform sub-
clustering on the currently displayed cluster graph by clicking on a label. This filters the
observations of all nodes in the graph by the selected label and its corresponding sub-
labels in the hierarchy and clusters the data again. The visualization is updated to reflect
the new cluster graph. Similar to sub-clustering in the detail area, a breadcrumb is also
created for navigation purposes.

2.3.2 Hover Effects

To provide additional context and make related data more visible, various hover effects
have been implemented that highlight certain elements in the visualization. When the
mouse pointer is moved over a label in the icicle plot in the concept space area, all nodes
in the cluster graph that contain at least one element of the respective label or one of
its sub-labels in the hierarchy will be highlighted (see Figure 3). To further clarify the
relationship, if an image of the corresponding label is not currently being used as the
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Figure 3: Hovering over a label in the concept space highlights matching elements within
the other clusters, while blurring out clusters without any matching elements.

image of the cluster node, it will be temporarily replaced with the image closest to the
respective cluster center for the duration of the hover effect.

A similar interaction option is also available in the detail area. If a cluster is selected
and its contained sample images are displayed, hovering over a contained label will also
highlight all clusters that contain observations of the respective label.

2.4 Technology Stack

The application is designed with a client-server architecture, where the server is imple-
mented in Python and uses Flask as a web server. Data is transferred to the client as JSON
(JavaScript Object Notation) objects. The NetworkX library was used for implementing
the internal representation of the clustering graphs and label hierarchy trees. Scientific
computing libraries such as NumPy, SciPy, and scikit-learn were used for the clustering
calculations, including the computation of the silhouette coefficients and pairwise distances
between observations, as well as basic array creation and manipulation.

On the client-side, the application is implemented in TypeScript, a typed superset of
JavaScript. React was used as the Ul framework and Bootstrap as the CSS framework.
The clustering graph and icicle plot are rendered using D3. The state-managing library
zustand was used to manage the application state.

2.5 Additional Datasets

The application is designed to be extensible, allowing for easy integration and analysis
of additional datasets. Along with the Fashion-MNIST dataset, the 17 Category Flower
Dataset [7] has been included into the application, which comprises 1,360 images of var-
ious flowers across 17 ground-truth classes, with 80 images for each class. At k& = 10,



(a) Clustering in Concept Clusters. (b) Clustering in Concept Splatters.

Figure 4: Initial clustering of the 17 Category Flower Dataset in Concept Clusters and
Concept Splatters.

the silhouette coefficient of this dataset is approximately 0.1, indicating that its clustering
performance in high-dimensional feature space is inferior to that of the Fashion-MNIST
dataset. Since the 17 Category Flower Dataset is also available in Concept Splatters, it
makes sense to compare the initial clustering results of both applications. As depicted
in Figure 4, both applications produce similar clusters, with detached clusters contain-
ing significant proportions of ground-truth labels such as “Sunflower,” “Dandelion” and
“Coltsfoot,” and “Daisy.” Meanwhile, other classes appear to be closer to each other
in the feature space, which is visualized in Concept Clusters through the edges connect-
ing individual clusters. These similarities between the two applications suggest that the
implemented approach is effective.

3 Results

This section presents some insights that were uncovered via the visualization prototype,
focusing on different clusterings.

3.1 Bag Clustering

By only clustering elements within the “Bag” label, K-Means effectively separates the
images into two distinct groups of clusters: bags without handles or with minimal handles,
and bags with prominent handles. The result of this clustering is depicted in Figure 5a.
This suggests that the model has effectively learned the presence and size of a handle as a
distinct characteristic in the high-dimensional feature space. Furthermore, if the clustering
algorithm is applied to the whole dataset, it again becomes evident that the bags tend to
cluster into two main groups. As previously observed, one cluster consists of bags with
handles, while the other cluster is comprised of bags without handles. As depicted in
Figure bb, Concept Splatters likewise separates bags well from the rest of the dataset.
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(a) Concept Clusters: Bags are clustered (b) Concept Splatters: Bags are well sepa-
into two groups: bags with and without rated from the rest of the dataset.
handles.

Figure 5: Clustering of bags in Concept Clusters and Concept Splatters.

3.2 Sleeve Clustering

When clustering the whole Fashion-MNIST dataset, it becomes apparent that the length
of the sleeves of clothing items is a discriminative feature regardless of their actual ground
truth labels. While the label “Shirt” encompasses both long and short sleeves, images
of short-sleeved shirts tend to cluster with T-shirts that have similar sleeves, while long-
sleeved shirts are often grouped with sweaters and jackets that feature long sleeves. Results
of these clusterings are depicted in Figure 6.

4 Conclusion

In conclusion, the visualization of the results of the K-Means algorithm can reveal inter-
esting findings about the underlying structure of the data. This prototype offers similar
insights as Concept Splatters, but with improved responsiveness. The 2D representation
in Concept Splatters often results in excessive overplotting, while the undirected graph
visualization utilized by this prototype eliminates this issue. The K-Means algorithm is
heavily dependent on its hyperparameter k, which determines the number of clusters that
will be created in the data. The value affects the shape and size of the clusters, the
distances between the centroids and the data points, and the overall performance of the
algorithm. If £ is set too low, the clusters may not accurately reflect the underlying struc-
ture of the data, while if set too high, the algorithm may become too complex and produce
clusters that are overly specific. For future improvements, k could be configurable via the
user interface. This would allow users to experiment with different clusterings and help
finding an optimal value that best suits the data. Additionally, allowing different values
of k for each sub-clustering would provide further flexibility and allow for a more nuanced
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Figure 6: Various sleeve lengths of Fashion-MNIST items are clustered together (k = 10).

analysis.
The source code for this implementation is available at https://gitlab.cg.tuwien.
ac.at/waldner/concept-clusters.
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