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Kurzfassung

Jede Bewegung, die ein Mensch macht, bietet durch den Zugriff auf verschiedene Sensorda-
ten von Smartphone-Geräten eine Vielzahl von Informationen über die Art des gewählten
Fortbewegungsmittels. Das Reiseverhalten beeinflusst viele Bereiche wie Stadtplanung
und Umwelt.

Ziel dieses Projektes ist es, genauere Ergebnisse bei der, von einer Künstlichen Intelligenz
(KI) unterstützten, Reisemodus-Erkennung zu erhalten. Dazu werden Methoden verwand-
ter Studien in der Vorverarbeitungsphase kombiniert. Die analysierten Forschungsartikel
basieren entweder auf dem Global Positioning System (GPS) oder verschiedenen anderen
Sensordaten wie Beschleunigungsmessern oder Gyroskopen und verwenden Datensegmen-
te mit festgelegter Länge oder Änderungspunkt-basierte Segmentierung. Diese Arbeit
profitiert von der gemeinsamen Verwendung verschiedener Input-Typen, d. h. Sensorda-
ten, GPS und Indikatoren, die aus einem eingebundenen Geo-Informations-System (GIS)
geliefert werden, und der Implementierung einer Kombination verschiedener Segmentie-
rungsansätze.

Um eine automatisierte Information über die verwendeten Reisemodi zu erhalten, müssen
der KI im ersten Schritt gekennzeichnete Trainingsdaten bereitgestellt werden. Dazu
wurden Mobilitätsdaten von 19 Nutzern über einen Zeitraum von etwa zwei Monaten von
einer Android-Anwendung (TMD-App) aufgezeichnet. Nach dem Hochladen der Dateien
vom Gerät auf einen Server werden die geografischen Daten mittels Analyse der Reise-
geschwindigkeit und verwandter Parameter wie Beschleunigung, Zeit und Distanz zum
Trennen der Wege in „Gehen“- und „Nicht-Gehen“ Segmente verwendet. Diese werden an-
schließend in Abschnitte fester Länge, einschließlich Sensordaten sowie Navigationsdaten,
aufgeteilt. Im nächsten Schritt werden diese Segmente mit einem neuronalen Netz (nicht
Bestandteil dieser Arbeit) verarbeitet, das dann die genaue Transportart bestimmen soll.
In dieser Arbeit unterscheiden wir zwischen sieben Arten der Fortbewegung, nämlich
Gehen, Radfahren, Autofahren, Bus, U-Bahn, Zug und Straßenbahn.

Das in dieser Studie verwendete Gefaltete Neurale Netzwerk (CNN) benötigt eine Daten-
sequenz mit einer definierten Länge von einer Minute. Daher werden die gespeicherten
Tracks in nicht überlappende Samples von 60 Sekunden Länge zerteilt, also 6000 Daten-
zeilen, die mit einer Frequenz von 100 Hertz aufgezeichnet wurden. Um jedoch falsche
Zuordnungen innerhalb der Ein-Minuten-Zeitfenster zu den entsprechenden Labels zu
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reduzieren, wird ein Vorsegmentierungsschritt durch Änderungspunkterkennung ange-
wendet. Da Geh-Phasen einen Wechsel der Fortbewegungsarten nahelegen, wurde Gehen
als Wechselpunkt in dieser Arbeit ausgewählt.

Des Weiteren werden verschiedene weitere nützliche Indikatoren wie Entfernung, Dauer,
Geschwindigkeit und Höhenangaben auf Grundlage der Daten berechnet. Im Gegenzug
liefert der Server den CO2-Fußabdruck der Mobilität an die TMD-App.



Abstract

Every movement people make offers a variety of information about the type of chosen
transportation mode by accessing different sensor data of smartphone devices. Travel
behavior strongly influences many fields such as city planning and travel impacts.

This project aims to get more precise results in travel mode detection by combining meth-
ods in the pre-processing stage of related surveys. The reviewed research is either based on
the global positioning system (GPS) or various other sensor data such as accelerometers or
gyroscopes and uses fixed length - or changepoint-based segmentation. This study benefits
from using various input types i.e. sensor data, GPS, and Geographic-Information-System
(GIS) together, and implementing a compound of different segmentation approaches.

To get the information on which travel mode is used automatically, a set of labeled
training data has to be provided in the first step. Therefore mobility data of 19 users
over a period of about three months was tracked by an Android Application (TMD-App).
After uploading the files from the device to a server, the geographical data is used for
splitting tracks into "walk-" and "non-walk" segments by Analysis of traveling speed
and accompanying parameters, such as acceleration, time, and distance. These newly
determined segments are divided into fixed-length parts including sensor data as well as
navigation data. In the next step, these segments are processed with a neural network
(not part of this paper) which should then determine the exact mode of transportation.
In this work, we differ between seven types of locomotion i.e. walking, biking, car driving,
bus, subway, train, and tram.

Since a data sequence with a defined length of one minute is a precondition in this
study for the downstream convolutional neural network (CNN), the stored tracks are cut
into non-overlapping samples of 60-seconds length, i.e. 6000 data lines recorded with a
frequency of 100 Hz. However, to reduce incorrect allocations within the one-minute time
windows to the corresponding labels, a pre-segmentation step by changepoint detection
is applied. As there is evidence that walking phases suggest a transition in modes of
transportation, walking was selected as a changepoint in this paper.

Besides that various useful indicators and features such as distance, duration, speed, and
elevation are calculated based on the data coming from the Android App and stored
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in a SQL database on the server. Further conclusions such as the carbon footprint of
mobility, are provided from the server to the TMD-App as well.
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Glossary

Certain Segment
A Walking- or non-Walking segment is a Certain Segment if its distance lies above
a lower limit (default: 200 m). Otherwise, it is considered to be an Uncertain
Segment.

Changepoint
The position when switching from a Walk- to a non-Walk segment or vice versa.

Fixed-size Segment
A single mode segment with a defined duration of n seconds (default: 60 s).

GPS coordinates
Latitude and longitude, which are acquired from a global positioning system.

GPS log
A sequence of GPS points in chronological order.

GPS point
Every hundredth data line of the 100 Hz recorded track including latitude, longitude,
and timestamp.

Non-Walk Segment
A segment with the mode of transportation biking, car driving, bus, subway, train,
or tram.

Rest period
Part of a track, in which no traveling is assumed with an upper threshold for the
speed (default: 2 km/h) within a lower threshold for the duration (default: 20
min).

Segment
A Data set of a trip that includes only one type of transport mode.

Track
The recorded path from the TMD App, the entire data set included. A track may
contain more than one trip, different modes of transportation as well as lengthy
stops.

xiii



Trip
Part of a track without rest periods. In the event of interrupted travel, a track is
separated into trips, excluding the data points, which form together the enduring
break. Like a track, one trip can have several transportation modes.

Trivial Segment
A Walking- or non-Walking segment is trivial if its distance is below a threshold
(default: 20 meters) or the period between its start- and end time lies below an
upper limit (default: 10 seconds).

Walk Segment
A segment traveled on foot.



CHAPTER 1
Introduction

How behavior in traveling changes over time and what the trends regarding transportation
modes used by humans are, can provide the foundation for future mobility policies as
well as urban- and traffic planning. Mobility is a key factor in smart city planning, which
aims to accomplish the best quality of life by conserving nature’s resources [Wie14]. Not
only sustainability [BAT16] but also prosperity can be ensured by traffic- and transport
management [NDC+14].

The basic categories of modes of transportation are road, railroad, air, and waterways.
Since the preferred way of getting around in cities is walking, riding a bicycle, or car-
driving, and considering that public transport of course also holds an important share,
especially in big cities, this paper focuses mainly on the road and public transport.

To get insight into people’s travel behavior, the kind of transportation modes people
choose, to get from a starting point to their desired destination must be identified. For
this purpose, cities all over the world frequently carry out surveys. Residents often still
get invited to provide information about their travel habits by telephone and/or (online)
surveys, which use conventional questionnaires [Aus20]. The participants are asked to
describe which mode of transportation they used on a certain day for their trips. The
obvious drawbacks are among others enormous administrative management and limited
coverage. - If only one day is taken into consideration, other influencing factors such as
weather conditions or variations in selecting the means of transport in the course of a
week are ignored. The results of these studies provide the most characteristic fact in the
transport policy, which is represented by the modal split (see Figure 1.1 for an example).

As in other disciplines, reliable and complete data based on frequent and thorough
acquisition is essential to understand the needs of people. Modern technology offers the
possibility of gathering such data collections conveniently and much more effectively than
traditional procedures. Ubiquitous mobile devices all contain motion sensors required for
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1. Introduction

Figure 1.1: Modal Split 2022 in Vienna

Source: Wiener Linien

obtaining useful information about the user’s surroundings. Considering multiple sensor
readings including an accelerometer (the rate of change in velocity), gyroscope (sense of
angular rotational velocity and acceleration), magnetometer (measures the intensity of
Earth’s magnetic field), etc., we can observe movement as a reflection of the environment.
A smartphone application is used to record such a wide range of information, which then
can be used for further processing.

It is in the nature of things that each transportation mode has its typical properties
such as speed or acceleration, which can disclose if a person is more likely walking or
driving a car for instance. However, some activities may differ less from each other than
others. To allow a distinction between closely related categories, especially in motorized
transportation modes, hints from a Geographic-Information-System (GIS) for public
transportation can be used as well. By distinguishing public transportation routes from
a GIS and the local position of a user, which is recorded by a built-in Global Positioning
System (GPS) sensor of the smartphone’s device, conclusions about the transportation
mode can be drawn.

To exploit the many data collected, and to identify the exact modes of traveling correctly,
methods of human activity recognition (HAR), of which transport mode detection is
a sub-field, are applied. The common process of HAR will follow the steps of (1) pre-
processing of the raw data, (2) segmentation, (3) feature extraction, (4) dimensionality
reduction, and (5) classification, the core machine learning, and reasoning [RMM16].
This work has to provide appropriate input data for a Convolutional Neural Network
(CNN) scheme for deep learning, which is again a subset of machine learning. A CNN
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is capable of handling very large datasets as well as many different input parameters.
Furthermore, features from the raw signal input data can be generated automatically by
this method. Because segments in a fixed size (e.g. segments that each hold 60 seconds
of a track) are required by a CNN, it is possible that within such a segment a change of
transportation mode can take place. To reduce errors caused in the classification thereby,
often overlapping of neighboring segments is applied in the reviewed literature. This
study tries to solve the problem of redundant data caused by this design by introducing
a pre-segmentation step using changepoints.

In this project, a smartphone application TMD-App, which collects sensor and location
data, was extended to upload these collected data to a server. The server pre-processes
the raw data, stores it in the database, and prepares structured data that includes various
indicators and features of movements. By combining different methods described in
related works, this project is trying to find an improved way for data preparation to
provide a better basis for deep learning algorithms. For the distribution of the TMD-App
and to give users information about usage and project background, a small responsive,
and accessible website was built. Also, features that could give some incentives for users
to regularly interact with the application were added. For example, a feature that shows
the CO2 footprint regarding the mobility of the user. Privacy is another important
aspect of working with a large amount of data. To ensure data privacy, various additional
functionalities had to be implemented in the app as well as in the server component.

This bachelor’s thesis is structured into five chapters: in the beginning, related work
focusing on different approaches of segmentation gets analyzed. The next chapter
introduces the description of the project’s implementation. The results are covered in
chapter four. And, finally, a conclusion and future work is offered.
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CHAPTER 2
Related work

Human activity recognition (HAR) finds its application in various fields such as healthcare,
ambient assisted living, or security. Numerous studies have already addressed the
possibility of identifying the movement of a person based on vision- or sensor information.
At the present time, where telecommunication networks have developed into a significant
and widely accepted market, methods in transport mode detection rely mainly on
gathering different data from smartphone devices such as GPS or accelerometer-based
information.

As an example of transport mode detection from GPS trajectory data, Dabiri et al.
[DH18a] present a model based on GPS-based features computed from the collected raw
GPS data such as speed, acceleration, jerk, and bearing rate with the aim to predict five
classes which are walking, bike, bus, driving, and train. The data pre-processing steps
include the clearance of possible outliers and inaccurate GPS points and the division
of GPS tracks into trips that are further split into segments of the same length. For
determining the uniform segment size, the median of the number of GPS points in all trips
is used. After the segmentation into single-mode parts of the same size, Convolutional
Neural Network (CNN) architectures are applied to the input samples to recognize
patterns in the data. The best model in this study reaches 84.8 percent test accuracy.

In contrast, the acceleration sensor of a smartphone is used by Nick et al. [NCGG10]
for differentiating three modes of transportation: cars, trains, and pedestrians. Before
splitting the sensor data into windows of four seconds with a 50 percent overlap features
like mean value, standard deviation, or maximal and minimal value of a window are
calculated either on the normalized acceleration values or the cumulated sensor data
during the pre-processing stage. In their work, they manage to achieve over 97 percent
prediction accuracy by the use of a Support Vector Machine which is used to analyze the
data for classification.
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2. Related work

While the papers mentioned above are making use of a uniform-based segmentation
approach Zheng et al. [ZCL+10] introduce a method drawing upon change-point detection.
They suggest dividing a GPS trajectory into alternating Walk- and Non-Walk segments
depending on upper threshold values of velocity and acceleration. For keeping the resulting
single-mode sequences as long as possible respectively to avoid an over-segmentation
segments are merged into their previous ones because of short distance or time span.
Besides basic features such as the average velocity a set of advanced features which is
stable to real-world traffic conditions consisting of change rate in direction and in velocity,
and stop rate are determined for each segment then. The deployment of a Decision
tree-based inference model is used for the classification into four means of transportation
(driving, walking, taking a bus, and riding a bicycle). By the additional application of
a graph-based post-processing algorithm, a result of 75 percent inference accuracy is
presented.

Whereas this work relies on different sensor information (acceleration, gyroscope, magne-
tometer) as well as on GPS data of smartphone devices for the users’ transport mode
inference, Li et al. [LYL+22] employ a smartwatch-based segmentation approach to
realize long-term activity monitoring and recognition of a wider range of human activities
such as staying, walking, climbing stairs, jogging, running, and jumping. Only the regular
movement of the smartwatch on the wrist enables an arm-swing-wise segmentation. After
extracting the start and end points of each arm swing from the square wave resulting
from the raw data an adaptive sliding window method is used which changes the size of
the window and step along with the amplitude and speed of arm swings.

However, segmentation methods are not only used in the context of human recognition
activity but find wide applications in other fields like digital image processing also. Here,
for example, related regions are created by grouping together neighboring pixels that
correspond to a certain criterion with the aim of identifying objects that are logically
related. Cheng et al. [CJW02] propose a method for image segmentation using two
steps: homogram thresholding and region merging. First, local thresholds are defined
to categorize pixel values with the aim to find coherent objects. Depending on whether
a threshold is exceeded or not reached homogeneous clusters are composed in a color
image. Then, the region merging approach is applied to join clusters that are sited very
close together on the one hand and take into account clusters that include too few pixels
to be relevant on the other.
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CHAPTER 3
Methodology

This chapter is composed of three sections: Architecture, Client, and Server. An overview
of the main modules, their interaction, and used tools for implementation is provided in the
first part (Architecture 3.1). The following Section (Client 3.2) gives the background on
the Client module, introducing the functioning of the TMD-App. Server-side components
are explained in the final section (Server 3.3), which includes the major part of this work’s
efforts. This passage will describe the server-side infrastructure, the implementation of
the segmentation, and its preparatory steps.

3.1 Architecture
The implemented software consists of two main modules:

1. the Client Module which is responsible for recording the tracks and uploading the
collected data to the server side,

2. the Server Module where the data gets processed and stored in a database.

This chapter will further explain the interaction of processes and used tools.

As shown in Figure 3.1 in the first step users have to record their tracks by using the
TMD-App via an Android Smartphone. The client Android application is written in
Kotlin [Fou22a], which is the favored programming language for such purpose since Google
I/O in 2019. The recorded tracks include various sensor data and GPS coordinates.
During the AI training process, the travel mode, which has to be manually selected by
the user, is attached as well. The data of each track gets temporarily saved into a new
Comma-separated value (CSV) file and uploaded via HTTP post request to the Server.
The status of the upload process is sent from the Server as an HTTP response, which is
displayed in the App.
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3. Methodology

Figure 3.1: TMD Architecture Diagram

For the server-side implementation Python (v3.10) [Fou22b] was chosen. For this choice,
there are many reasons why. Among others, Python is considered to be highly productive
and can be used to support machine learning. As server software, Apache/2.4.41 on
Ubuntu Linux and as a database MySQL is used.

The server applications consist of 3 main components:

1. The main component “tmdlearn.py” implements the main logic of importing the
data, applying various calculations (features) like determining the length of the
track, elevation, etc. as well as segmenting the track. The prepared data is stored
in a MySQL database.

2. The watcher is a component that uses the watchdog Python library to watch the
upload folders and monitor whether new files have been uploaded. If the watcher
finds new files they are sent to the main module to be processed. The watcher also
shows basic information about up-time and status on a basic web page.

3. Django Rest framework [Inc22b]: Django was used for the communication with the
Client, handling the uploads of the CSV files as well as providing information for
the user, like for example the covered distances per travel mode and CO2 emissions
accrued thereby, which can then be shown in the Client App.
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3.2. Client

In order to separate the application layer from the infrastructure level the Python
Application was "dockerized" [Inc22a]. Docker of course helps by segregating and isolating
the dockerized app, minimizing the impact on the host system. Also - and that’s the
main advantage - it makes moving the application to another infrastructure very easy.
Docker compose was used for creating a script that sets up two interacting containers,
one for the Python app and another one for the database.

The prepared segments can be fetched from the database by a Deep Neural Network
as implemented in the thesis of my colleague Jakob Lang [Lan23], which determines
the transport modes then. The outcome may be used to represent the Modal split for
example.

Tools that were used:

• Server Development: Pycharm (Python IDE)

• Client Development: Android Studio (Android IDE)

• Various: Putty (SSH client for Windows), Filezilla (SFTTP utility), PhpMyAdmin
(interface to the SQL database), Postman (tests API endpoints based on HTTP),
Bootstrap v5.1.3

Used Python libraries:
Django 4.0.4, djangorestframework 3.13.1, geopy 2.2.0,
mysql_connector_repackaged 0.3.1, numpy 1.22.3, requests 2.27.1, scipy 1.8.1, watchdog
2.1.8, etc.

3.2 Client

A basic Android Application named "TMD App" for recording sensor and GPS data was
built by my colleague Jakob Lang using Kotlin as the programming language. The TMD
App was expanded in this work with a function for the automated upload process of the
stored tracks from the Android device to the server (Subsection 3.2.2). Furthermore, the
TMD App was extended through the addition of two more features (Subsection 3.2.3).

3.2.1 Overall functioning and Data gathering

After the installation of the TMD App, which is available for download on the TMD
website (https://kontor.cg.tuwien.ac.at/tmdlearn/), the main activity is
presented as shown in Figure 3.2. The user first will be asked to select the training
label that indicates the used transportation mode. After starting the recording of a track
by tapping the "Start Tracking" button, the following data from the user’s smartphone
device is recorded into a stream:
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3. Methodology

• GPS coordinates (longitude and latitude)

• Transport Mode label (as selected by the user)

• other sensor data (acceleration, gravity, gyroscope, rotation, magnetic field, pressure)
with a sampling period of 100 Hz including the current timestamp

• a numeric value based on the Android Device ID.

Figure 3.2: Main screen

At all times during the recording of a track, the
user may change the transportation mode by
tapping the corresponding option. In this case,
the transport-mode label of the current track
will be changed but the recording of the track
continues otherwise uninterrupted. When the
recording of the track is stopped by the user
by tapping on the "Stop tracking" button, the
stream is saved into a CSV file. As soon as a
WIFI connection is available, all the recorded
tracks are uploaded to the server, where the
datasets are further processed. When the user
stops a recording and the device has only inter-
net access via cellular there is the possibility to
start the file upload manually by clicking on the
button "Upload via Data". If the client receives
a successful response from the server (HTTP
200), the corresponding track is deleted from
the device’s file system. After the successful
upload and processing of the data, the over-
all distances tracked by the user per transport
mode are calculated and will be queried by the
client on the next refresh of the activity. This
data is then displayed next to each transporta-
tion mode as an additional incentive for the
user to collect more data.

In order to make the TMD App accessible for
potential test users it was distributed by send-
ing the link to the TMD website where among
other things the information is provided that
no individual-related data gets recorded and a

list of all data types used can be found. The TMD App was used by 19 volunteers over
about three months. More than 360 tracks with a total of 26.741.588 data points were
recorded so far. Please refer to Figure 3.3 for more details on that.
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3.2. Client

Figure 3.3: Recorded distance and duration per label

3.2.2 Client-side file upload

As soon as a WIFI-connection is available on the smartphone device or the Button
"Upload via Data" was activated, the class UploadUtility.kt, which includes information
about the designated server URL and the upload path of the server, is called. For each
stored file in the tracks directory of the device, an HTTP-POST request is generated
by okhttp3.RequestBody (MultipartBody), which consists of the track file in CSV
format and its source path. During the transfer of the files to the server URL (https:
//kontor.cg.tuwien.ac.at/tmdlearn/tmd_upload/upload/), the user
gets information about the upload status using the Android toast notification system
("Currently Uploading...", "Upload Successful!"/"Upload failed!"). The upload directory is
monitored by the “Watcher” module (see Subsection 3.3.6) for file changes. If the Watcher
detects a new file, it will be sent to the main TMDLearn module for pre-processing and
segmentation of the data. For more information about the server-side upload process,
please see Subsection 3.3.1.

3.2.3 Additional App activities

In order to create additional incentives for the app users and satisfy their requirements
concerning privacy aspects, two extra activities were added to the main functionality of
the TMD App. To meet the standard for a responsive design, the UI of these views was
built with ConstraintLayout, a support library for Android systems.

CO2 Footprint

Transport produces almost a quarter of carbon emissions and is the main reason for air
pollution in cities. Understandably, people may be curious about the impact caused
by their own choice of transportation. Knowing and comparing the carbon footprint
can encourage the user to adapt travel behavior towards more conscious travel choices.
On that account, the TMD App tracks automatically transport emissions and delivers
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3. Methodology

Figure 3.4: CO2 footprint Figure 3.5: Privacy spot

insights about carbon pollution from the mobility of daily life through the CO2 Footprint
section (Figure 3.4).

The carbon footprint including average wastage per travel mode is represented on an
extra view, which is divided into two main parts:

1. The user’s last seven days and the seven days average overall of the produced carbon
are displayed in relation to a reference value, which was 2.760 kg for an Austrian
resident in 2019 [VCO21] (52.9 kg/week, respectively). If the value exceeds the 100
percent threshold, its color will change from green to red.

2. The CO2 wastage in kg caused by the App-User is displayed for the last seven
days and the overall seven-day average per travel mode. The calculations take
into account the different travel modes car, bus, and railway (train, tram, and
subway together) and are based on emission values 2022 of the Austrian Federal
Environmental Agency [Umw22].

12



3.2. Client

The time of the first track recorded by the App-user is defined to be the start of the
calculations, which is also shown in the status line.

All the values are updated every time the button "CO2 footprint" is tapped in the main
activity by calling the updateFootprintUI()-method of the class FootprintActivity.kt.
This method calls the emissions(request, UUID)-method on the server, passing the User
device ID, which then queries the database (e.g. 3.1), getting the result of produced
emissions simply by multiplying the covered distances per travel mode with the respective
matching CO2 values (stored in the config.ini file on the server). The result is returned
to the client as a JSON file.

Listing 3.1: SQL statement CO2 emission for travel mode car
1 SELECT 'last_seven_days',
2 COALESCE((SUM(length_car)/1000*{co2_car}),0) AS s_car,
3 MIN(tracking_date) AS start_time
4 FROM tracks
5 WHERE tracking_date IS NOT NULL
6 AND uuid LIKE '{uuid}'
7 AND augment_factor = 0
8 AND tracking_date > DATE_SUB(NOW(), INTERVAL 7 DAY)

Privacy spots

In order to design a privacy-friendly application, an overview of the transmitted data is
listed on the TMD website. The app does not track any personal data except for the
user ID, which is linked to the recorded tracks. This ID is hashed from the device ID,
which can not - or at least not easily - be linked to a person. However, the users are
offered an additional possibility to assign geographical areas, in which no coordinates are
recorded at all. Therefore, an according feature was implemented (Figure 3.5), which
can be activated by tapping the button "Add private spot".

When entering an address, providing street name and postal code, the proper values of
latitude and longitude are found by Geocoder, a geocoding library written in Python,
using its method getFromLocationName(String locationName, int maxResults). The
determined coordinates are stored as a key-value pair locally, using Kotlin’s Shared-
Preferences interface. If such a private spot was specified before starting tracking, a
random point displaced within a distance threshold (default: 50m) in x- and y-direction
is calculated per track. The generation of a uniform, random, and independent point
within a circle was implemented based on this post https://stackoverflow.com/
questions/36905396/randomly-generating-a-latlng-within-a-radiu
s-yields-a-point-out-of-bounds provided by Markus Kauppinen. That way
identification of the private circles’ center is impossible. On every service update then,
the distance between the current and the randomly offset location gets checked. In the
case where the current coordinates of the device’s position are inside a radius threshold
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value (default: 100 m) of this/these random point(s), they are not recorded by the TMD
App. Instead, a new track starts if a user travels between a private and a non-private
sector.

This activity was extended to save more than one address and to show the chosen private
zones on a map by my colleague Jakob Lang.

3.3 Server
A multi-container application was created for server-side development using Docker and
Docker Compose. The latter automates the creation of the two containers that are used
for our project: “web” and “db”.

docker-compose.yml:
version: "3.3"

services:
web:

build: .
command: python manage.py runserver 0.0.0.0:8000
volumes:
- .:/code

ports:
- "8001:8000"

db:
image: mysql
restart: always
environment:
MYSQL_USER: ’tmdlearn’
MYSQL_ROOT_PASSWORD: ’****’
MYSQL_PASSWORD: ’****’
MYSQL_DATABASE: ’tmdlearn’

ports:
- "3307:3306"

volumes:
- ./database:/var/lib/mysql

volumes:
my-db:

The compose file includes instructions to build the database service by downloading and
installing the latest MySQL image, mapping the appropriate ports, and creating the
environment by setting up a database and the credentials. Additionally, a local folder is
mapped to the var/lib/mysql folder where the database files are stored. In upgrading the
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database docker, these files will not be overwritten. For the web service, the compose file
includes instructions to first build the contents of a Docker file, which installs Python as
well as all the libraries as described in the requirements.txt file.

Docker-File:
FROM python:3
ENV PYTHONDONTWRITEBYTECODE=1
ENV PYTHONUNBUFFERED=1
WORKDIR /code
COPY requirements.txt /code/
RUN pip install -r requirements.txt
COPY . /code/

Like with the database container, a local folder is mapped, where all the Python files
will be accessible from the local file system. After building the Docker file, the docker-
compose file includes a command to start the Django Server (“python manage.py runserver
0.0.0.0:8000”).

3.3.1 Server-side file upload

The main methods for communication with the client can be found in the view.py file in
the tmd_upload folder. The post() method gets passed a request object when it is called
by the client. Some basic security checks are being done, a filename based on the user Id
and current date time is generated, and the file is saved into the settings.MEDIA_ROOT
folder as defined Django settings file (settings.py). Based on the success of the operation,
a JSON response, that includes a basic message as well as the status code (201 for success
or 500 for failure), is returned to the calling client.

3.3.2 Server process overview

The main() method of the main program "tmdlearn.py" handles a few basic tasks: reading
the config.ini file that defines the required paths (uploads, archive, augmentations,
augmented), parsing the two possible arguments (-include_gis: whether GIS Data should
be used, -offset: in case you want to augment the file), connecting to the TMDLearn
database, and setting up the logging. Then a list including the names of all uploaded
and not yet processed files of the designated directory is created. In case this list returns
at least one file, the GIS Data Map gets opened (if the -include_gis parameter was set
to 1 when starting the program). - The GIS transport network of Vienna was integrated
for better differentiation between motorized vehicles. In that regard, the value of the
distance to the nearest public transportation station for a given latitude and longitude is
saved in the database. Looking at the file size of the GIS Data Map, which is more than
300 MB, it is necessary to make sure, that this file is opened only once since it is a quite
lengthy process.
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After that, a for loop iterates over the list of files, calling the method "process_one_file".
This method checks first the number of lines of the imported file. If the duration of a
track is below a defined threshold value (default: 120 seconds, resp. 12000 lines at a
record rate of 100 Hz) it gets discarded from further processing, because constant time is
required for CNN, besides recognition may not be good enough. The next steps include
the import of the logged track into the database (Subsection 3.3.3), computations of
several indicators and features (Subsection 3.3.4), and segmentation (Subsection 3.3.5).
After successful processing, the uploaded track file is moved to an archive directory.

During the whole processing, the Python logging module is used for providing proper info-,
debug- and error messages. The logger uses Streamhandler for displaying the log in the
console and Filehandler for saving it in a file. Three different log files are created: execution
via console with no offset given ("TMDLearn.log"), "TMDLearn_Augmenter.log" in the
case an offset greater than zero is passed (Subsection 3.3.6), and "TMDLearn_Watcher.log"
(Subsection 3.3.6).
Besides that, the use of global exception handling shall lead either to timely termination
at fault or proper error information, depending on the severity of the problem. In case
of a keyboard interruption or an abortion after an error, a clean-up routine should be
called, which tries to delete the incomplete track in the database.

3.3.3 Importing samples

The python class "CsvImporter" is responsible for reading an incoming CSV file with its
included User ID, filename, timestamp, GPS (latitude and longitude), and sensor data
(linear acceleration, gravity, gyroscope, rotation, magnetic, pressure), and optional label
and loading it into the TMD database. Firstly, the User ID, which was checked for validity
before, and the filename are inserted into a new entry in the databases table "tracks"
(please reference Figure 3.6). This SQL INSERT statement generates a unique track
ID for the related data record, which can be accessed using the MySQLCursor.lastrowid
Property.

In the next step, all the logged values, including the newly created track ID as a foreign
key, are stored in the table "trackpoints". The import is done line per line using Python’s
Built-in CSV Library for parsing the CSV File. To identify invalid records of the track,
the expected file structure gets checked and an invalid line is discarded if necessary.
At this stage, some basic calculations are done, like time- and distance difference and
totals, checking whether the line contains valid coordinates and the elevation (details:
Subsection 3.3.4). If a line is valid, the sensor as well as GPS data, and computed values
are collected into a multidimensional array. For every 50.000 lines, the contents of the
array are committed to the trackpoints table. Figure 3.7 shows by way of example an
excerpt from such a result of an import into the database table "trackpoints".
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Figure 3.6: Excerpt of TMD database, table "tracks"

Figure 3.7: Excerpt of TMD database, table "trackpoints": import of logged values

3.3.4 Indicators and features

Speed related characteristics

Since speed-related attributes are instrumental in detecting travel modes, movement
attributes based on GPS data are provided in addition to the sensor records in this
work also. As recent papers, describing transport mode detection methods based on
GPS tracking data, use mainly speed, acceleration, jerk, and bearing rate [LZZ+20,
MJ20, DLHR19, DH18b], these very same features have been selected to be implemented
in advance. For a list of the features use, see the thesis of my colleague Jakob Lang.
However, speed and acceleration are needed for change-point segmentation anyway.

Whenever work is performed with GPS data, the occurrence of signal loss must be
considered in the first step. If latitude and longitude have zero values, or consecutive
coordinates have the exact same values, a lost GPS signal can be assumed. To assure
correct results related to the distance traveled of the time elapsed, lines containing such
invalid GPS points are treated specially. To this end, the latitude and longitude values
of each data row are screened during the import processing while keeping the last valid
GPS position and the so-far cumulative duration memorized.

While reading the recorded track, distance, and duration, derived from the location, are
computed per line. These indicators are on the one hand the basis for further calculations
such as speed or acceleration and on the other hand supply interesting aspects for users
and analysis. To obtain the cumulative sum of the track distance, the distances between
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each of two consecutive GPS points are determined by the Python Geopy library, using
the geodesic distance based on the Vincenty formula and added up then:

distance_diff_m = geopy.distance.geodesic(current_coords,
last_valid_coords).m

In order to speed up calculations and subsequent changepoint segmentation steps, only
every hundredth line of the 100 Hz recorded track is taken into consideration. A flag
named "is_gps_point" is set in the database to identify only the affected lines after
computation.

After these preparatory measures, the speed is calculated by dividing the differences in
the distance through time:

speed_unfiltered = distance_diff_m / time_diff_sec

Since errors in GPS logging can lead to a considerable source of noise, center-weighted
averaging by a Gaussian distribution is applied using the 1-D Gaussian filter of the scipy
library. This frequency filter turns a distribution of a large number of measurement
points into the Gaussian distribution curve (bell curve). By attenuation of the high
signal components, noise and details are removed. The definition of the one-dimensional
Gaussian filter is:

g(x) = 1
σ

√
2π

e− x2
2σ2

Where x is the distance from the origin on the horizontal axis and σ is the standard
deviation of the distribution.

As higher sigma values blur over a wider radius on the one hand but mean a slowdown
in computation time on the other hand, sigma = 1 seemed practical for this work. For
recognizing the effect of filtering a car-labeled track recorded by the TMD App, see
Figures 3.8 and 3.9 as an example.

The computations of the remaining characteristics, which are acceleration/deceleration,
jerk of a point (the rate of change in the acceleration), and bearing rate (angle between
the line connecting two successive points and a reference), are based on the work of Sina
Dabiri et al. [DH18b] and applied by converting the suggested calculations into proper
SQL statements.
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Figure 3.8: Speed (unfiltered)

Figure 3.9: Smoothed speed

This is illustrated by the extract of the class feature.py below:

import l o gg ing
import mysql . connector

# a(P1) = ( speed (P2) − speed (P1) )/ time−d i f f
def ge t_acc e l e r a t i on ( s e l f ) :

s e l f . my_logger . i n f o ( " S ta r t c a l c u l a t i n g a c c e l e r a t i o n " )

s q l : str = f "
UPDATE track_points A, track_points B
SET A. a c c e l e r a t i o n = (B. speed − A. speed ) / B. t ime_di f f_sec
WHERE B. pointID = (A. pointID + 100) AND A. is_gps_point = 1
AND A. trackID = { s t r ( s e l f . track_id ) }
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AND B. t ime_di f f_sec > 0 "

try :
mycursor = s e l f . db . cur so r ( )
mycursor . execute ( s q l )
s e l f . db . commit ( )

except mysql . connector . Error as e :
s e l f . my_logger . e r r o r ( f " Could not commit a c c e l e r a t i o n :

mysql Error : {e . e r rno } , {e} " )
return 0

s e l f . my_logger . i n f o ( " Committed a c c e l e r a t i o n " )
return 1

Elevation

Having tracked the GPS coordinates by the TMD App, the elevation can be determined
for each GPS point as an additional feature. There are several methods for retrieving the
desired data. One option would be to apply the getAltitude() function on the location
object, which is obtained from the Android location listener on the client. This approach
is practicable but involves the major drawback, that the altitude is either retrieved from
pressure sensors, which are not built in on devices generally, or by Google. In the latter
case, there could arise privacy issues. Another widespread possibility would be to use an
Elevation API Web Service, which responds in general to HTTP queries. The drawback:
this could cause heavy data traffic and potential payment requirements.

However, in this work, a digital terrain model (DTM) of Vienna and Lower Austria was
made available as a Geo Tiff file according to the WGS84 coordinate system and with an
accuracy of ten meters. When processing an incoming track, the RAW image of the Geo
Tiff file (converted by the software suite ImageMagick) is loaded by using the imread()
method of the OpenCV-Python library, which returns a NumPy N-dimensional array
containing the coordinate and elevation values for each pixel. If the tracked coordinates
of the TMD App have valid values, the method for determining the elevation of this
GPS point is called already during the import process. Knowing the width and height
as well as the corner points of the grid from the metadata of the Geo Tiff file, OpenCV
enables access to the designated elevation value by passing the determined pixels for a
given latitude and longitude. To ensure the accuracy of the results, random checks were
performed, using the height service of the Austrian Geo service [bÄdL22].

If an exception is thrown during calculating indicators or features further computation
and segmentation steps are discarded.
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3.3.5 Segmentation

Essentially, the aim of segmenting the movement data is to provide single-mode data
sets, which help the machine learning to create a reliable Transport Classifier during the
training phase and help the downstream classification process.

The segmentation process is done in three basic, consecutive steps:

1. A track, respectively the entire GPS-Log, is divided into trips, where longer
interruptions in the logging are omitted (see the next Subsection 3.3.5 for details).

2. Trips are classified into single-mode segments in the case of a labeled record
during the training phase or by change point detection otherwise. Detailed infor-
mation about the implementation of the change point detection can be found in
subsection 3.3.5.

3. Finally, these alternate Walk-/Non-Walk segments are split into fixed-
size segments to meet the requirement of the Neural Network. Please see the
description below 3.3.5.

In Figure 3.10 you will find the individual phases of the segmentation as described above
illustrated.

Figure 3.10: Understanding Segmentation

Step 1: Segmentation of a track into 1, . . . , n trips separated by longer pauses. Step 2: Change-Point Segmentation of a
trip into 1, . . . , n alternate Walk-/Non-Walk segments per trip. Step 3: Segmentation of a Walk-/Non-Walk Segment into
1, . . . , n fixed-size Segments.

Each step of the segmentation process further details the data in the track points table
by setting various flags and fields instead of moving the data to different tables. For
example, if a track point is detected to be part of a trip, the field "trip" will be set to
the number of the trip. Or, if a track point is considered to be part of a trivial segment,
the flag trivial_segment is set to 1, etc. All segmentation steps are implemented in the
Segmentation class which can be found in the segment.py module.
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Segmentation of tracks into trips

The division of a track into trips, split by and omitting longer pauses, is used by
segmentation methods using fixed-sized segments as well as using segments, which shall
be as long as possible. Contrary to longer interruptions, waiting- or stop time is considered
an attribute of the transport mode and therefore remains part of a trip.

To verify an effective pause, a time frame is used, in which either a certain distance (as
suggested by Paulo Ferreira et al. [FZV20]) or velocity is not exceeded. Looking at other
eligible papers [ZCL+10]), tracks are split up into trips if the time difference between two
consecutive GPS points exceeds twenty minutes. This seemed a reasonable time span
and was therefore also used for this work. As 3,6 km/h can be understood as the average
walking speed or even only 3 km/h unhurried average, a speed threshold of 2 km/h is set
in this thesis. This value is mentioned for the stop-change point by P. Sadeghian et al.
[SZGH22] as well. In other terms, a track gets separated into trips if the speed is less
than 2 km/h over more than 20 minutes. Under those conditions, it may be assumed
that no traveling takes place.

This first step of the segmentation is implemented in the method tracks_to_trips(),
which is the first method called in the Segmentation class. It identifies all windows
over a minimum of 20 minutes inside a track, in which the speed limit of 2 km/h is not
exceeded. In order to do that, the point IDs with their speed and time differences (which
were calculated in one of the previous steps) of the track to be processed are fetched
from the track_points table. The results are iterated through with a for-loop. If the
absolute speed drops below the threshold of 2 km/h for the first time, we assume this
point to be a potential starting point of a rest period, and the subsequent entries are
examined. As long as the speed stays less than the threshold, we assume these points
to be part of a longer pause and store them in an array ("rest list") temporarily. If the
time gap of collected points exceeds 20 minutes in the end, there is an actual rest period.
The data points of the "rest list" are marked accordingly by updating the corresponding
field rest_period to 1 in the database. The rest list is cleared and the next points are
examined until another potential starting point is found.

After this, the method trip_numbers() again fetches the track points but leaves out the
rest periods, that were set in the previous method. The result is ordered by pointID.
If the difference between two subsequent pointIDs in this result set is greater than 1 it
means that the track points in between have been set as a rest period and therefore are
not present in the result set. All track points after this point will be updated with a new
trip number until the next gap in pointIDs occurs. Figure 3.11 shows an example of the
outcome of the procedure described above. In the subsequent steps, only the trips are
used for further processing.
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Figure 3.11: Example of the partition of a track into trips

Segmentation of trips into segments by changepoint detection

After extraction of the trips, they get separated into segments, which are logically
connected by the classification type and consecutive timestamps. In the case of labeled
trips, which are used to train the Neural Network, a new segment starts based on the
change in the labeled transport mode. The segmentation of unlabeled data records (after
the training process) raises the question regarding the choice of the appropriate change
point to use. For instance, there can be found papers describing change point detection
by stop and move segmentation. But this approach has a major drawback in that a
transport mode could be often changed without stopping. It seems more likely that a
starting- or endpoint of walking marks such a change point. This assumption is supported
by the analysis of the behavior of mobility patterns amongst the Viennese population
([Wie21]), which documents that the most commonly used form of travel on the way to a
stop of public transport is by walking (97,5 percent). Furthermore, this study proves
that Vienna is a pedestrian town, as 99,9 percent of the city’s population is walking daily,
and 37 percent of journeys are taken on foot in the year 2020. For these reasons, walking
was chosen to be a change point between different modes of transportation in this work.

The change point segmentation was realized based on the work by Zheng et al. [ZCL+10],
where segments are categorized into two classes ( Walk, Non-Walk) first, trivial segments
are merged into the previous segment then, and finally, segments of short distances are
concatenated together as one segment. In the following, the steps of the implementation
are described more in detail:

1. First, the data lines of each trip of a track, which were marked as GPS points
beforehand (3.3.4), are grouped into 1, ..., n alternate walking and non-walking
segments. To achieve this, each GPS point is assigned to the correspondent category
Walk or non-Walk using an upper bound of velocity and acceleration
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(default: v = 9 km/h, a = 1.5 m/s2). - In comparison, the average speed of cycling
is 16-22 km/h at a beginner’s level.

2. Due to possible inaccuracies of the GPS signal a walking segment could be wrongly
detected as not walking. On the other hand, in the case of a vehicle, the presence of
heavy traffic may lead to a false identification as walking. In order to improve the
result of the segmentation, an upper distance- and time threshold are introduced
and used to describe trivial segments. Zheng et al. demonstrate in their work, that
the best results could be achieved by using 20 meters as a Minimal Distance Bound
and 10 seconds as minimal time. To indicate such a trivial segment, the distance,
and duration of each Walk and non-Walk segment retrieved from the first step of
this method are checked against their thresholds. If one of the parameters is lower
than its boundary value, the respective segment gets merged into the previous one
by updating the segment numbers 1, ..., n per trip accordingly.

3. It seems unlikely that people change their transport type several times over a
relatively short distance. Therefore the mode of transportation in a segment below
a particular distance can not be assessed with certainty. To counteract a trivial
partition, uncertain segments are concatenated as one non-Walk segment, in the
case of occurring successively more often than a threshold. As Zheng et al. realized
the most acceptable outcome for their experiments by selecting 200 meters for
the distance threshold (DT) and the value of 2 for the number of consecutive
Uncertain Segments, these settings were also taken over by this work. In Figure
3.12 the concatenation of uncertain segments and concluding segment numbers
is demonstrated in an exemplary manner. In this example, a track t consists of
two trips, which indicates a longer pause (length = j) in between. During the first
trip, six alternating phases of walking/non-walking were determined (already after
applying step 2 of this method, which is not listed separately in this Figure), from
which four had less than the traveling distance bound. These parts are recognized
as Uncertain Segments and are merged as one non-Walk segment. The Segment
number is the result of the fourth step in the method, which combines sequences of
the same walking/non-walking categories.

4. In a post-processing stage, successive sequences with the same label are merged.
Ascending segment numbers per trip, which increase at each change of walk/non-
Walk segments are finally set.

Creation of fixed size segments

The segments created by change point detection, as outlined above, are not directly
meeting the requirements of the convolutional Neural Network that we use in the thesis
of my colleague Jakob Lang, as they expect an input of fixed size. To this end, the
previously determined walk/non-Walk segments are split into segments of equally sized
parts of 60 seconds in this work, which corresponds to several 6.000 lines at a record
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Figure 3.12: The result of getting consecutive segment numbers after
merging uncertain segments

rate of 100 Hz. The required fixed size (number of data lines) is passed as a parameter
"segments-size" when calling the method "set_fix_size_segments()" and can easily be
adjusted, if necessary. During the process of breaking down the data into fixed-size
segments, they are numbered 1, ..., n per label respectively walk/non-walk segment.

3.3.6 Tools

Watcher

One possibility to handle receiving upload requests from the URL of the server is to
execute the method process(request) of the class views.py, which calls the tmdlearn.main
method. Since preprocessing a track is heavy on the processor and memory and takes
quite some time to be finished, this method can lead to the server becoming unresponsive
and not accepting new files. To facilitate the execution of continuous incoming files,
this work takes advantage of monitoring file system events via a Python library, called
Watchdog (https://pypi.org/project/watchdog/). For that purpose, the
program watcher.py was created, which includes the watchdog’s FileSystemEventHandler
and Observer. The Observer is configured with the upload directory to watch and
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a handler. If a change is happening on the monitored filesystem, the event handler
object gets notified. It is first checked whether the event was triggered by a deletion,
modification, or the creation of a new file. After ensuring that the new file is a CSV file,
the method "process_one_file" of the main program tmdlearn.py, as described in the
previous Chapter 3.3.2, is called. The watcher runs continually on the server until it is
quit by killing the process.

To trace the watchers’ activities, two watcher URLs were added. One shows the current
status of the watcher, including its PID and which files were processed, including the
corresponding track_IDs: https://kontor.cg.tuwien.ac.at/tmdlearn/watc
her. The second provides detailed log- and debug information by reading the log file
created by the logger (https://kontor.cg.tuwien.ac.at/tmdlearn/watche
r_log).

Augmenter

During the phase of data gathering by test users, it became apparent, that some transport
modes - especially city buses and trams - were currently not used as much as other ones.
To compensate for the comparatively short distances covered by these, an opportunity is
provided to create augmented tracks by using already existing ones, just with another
offset. If an offset is specified as "3.000" for instance, the first 3.000 lines (e.g. 30 seconds
at a rate of 100 Hz) of the track are not taken into account when processing the file.
This creates additional tracks on the same data that are sufficiently different from the
original and therefore provide a bigger sample for the training of the neural network.
The solution was implemented through an offset counter during the import process of
the files.

The augmentation of tracks can be enabled in the terminal in two ways:

1. through directly calling the main program tmdlearn.py with the desired offset as
an input parameter:

docker exec -it tmdlearn_web_1 python tmdlearn.py
--include_gis 1 --offset 3000

This approach processes all currently existing track files within the upload folder
with the given offset.

2. through the augmenter script with a given augmentation factor and label as input
parameters:

docker exec -it tmdlearn_web_1 python3 augmenter.py
--augm 4 --label bus
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The following applies if ai is the augmentation factor with i = 1, ..., n, and x is the
number of lines in the fixed-size segments:

Offset(ai) = x

n
(i − 1)

This method provides the possibility to batch files with a given label and create n-1
augmentations of them. When starting the augmenter script, tracks, containing
the label that was passed as an argument, are selected from the database, and the
corresponding archived CSV files are temporarily copied from the archive- to the
augmentations folder. The augmenter then loops through the list of files and first
checks whether the file includes also transportation modes that are not needed for
the augmentation. If this is the case the unnecessary lines are deleted. After that,
the augmenter cycles through the n factors by calling the main process_one_file()
method of tmdlearn.py and passing the corresponding offset.

Anytime an offset different from zero is passed, the additional tags augment_offset,
augment_factor, and augment_label are stored in the database table "tracks", indicating
that this track represents an augmentation. In this way, it is ensured, that augmented
data can be filtered in the database for any queries easily. So that they are only used for
the training of the neuronal network. To ensure server responses to requests of the TMD
App, regarding covered distance and produced CO2 emissions, are not corrupted, tracks
with an augmentation factor greater than one are excluded in these cases.

Patcher

Using a database to store the analysis provides the possibility to easily make changes
in specific parts of the pre-processing without having to completely re-import the CSV
file. For example, a better method of creating the fixed-size segments was discovered
after most of the training data had already been imported. The patcher program made
it possible to apply the changes in the segmentation logic to all tracks that are stored in
the database in this case. To take another example, after analyzing the imported tracks
considerable variations in the recording frequency were evidenced. For this purpose, a
new method, which interpolates possible missing values, was implemented. To change
the already existing tracks in the database automatically, the patcher was used as well.

On the console, the program patcher.py can be started by specifying the following two
parameters:

1. "mode": an improved method, which is implemented in the main program, can be
reapplied to any set of the database. Currently, changes in the CSV import- and
segmentation module are implemented. If "interpolate" is selected as the mode,
the data points of the specified track are deleted in the first step. After that, the
associated file is accessed and manipulated by running the revised method for the
import before applying the preprocessing steps in consideration of the interpolated
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lines. When "Segmentation" is set as a parameter for the mode, the entries of the
database, which are related to segmentation steps, are reset before the enhanced
method is executed on the chosen track(s). This method could also be expanded
for other stages of pre-processing.

2. "trackID": a single track ID or a range between two given track IDs, to which the
chosen mode should be applied.

3.3.7 Database

All the information and records of a track, which was transmitted to the server, are
stored in a mySQL database. After the computation of various features and division into
appropriate segments, the database is updated accordingly. By querying the database,
the relevant segments including all the required indicators are made available to the AI.
This database consists of two tables "tracks" and "track_points" forming a one-to-many
relationship and having an actual storage location consumption of about 16 GB for the
245 hours of data.

The table "tracks" supplies the global data, which are: track ID (unique primary key,
auto_increment), filename, labeled (boolean), tracking date, date time of import, user
ID, the cumulative distance of each label, and the augmentation tags.

The second table "track_points" contains the track ID as a foreign key and a unique
point ID as the primary key. As this table has a size of 27 Mio lines so far, BigInt
was used for the point ID. All recorded sensor and GPS data, as well as the mentioned
features and results of the segmentation, are stored in this table. In order to improve
the databases’ query performance, indexes of the type B-tree were created using the
columns pointID, point_time, longitude, latitude, and combined trackID with segment
and segment_fix_size.

3.3.8 Website

In order to distribute the TMD App to test users, a static website was built. After giving
a basic insight into the purpose of transport mode detection information is offered on
how the recorded data is used by this project. A detailed list of the data recorded by the
TMD App can be found and a description regarding privacy settings. Besides a detailed
explanation of the TMD-App installation and usage additional benefits such as the CO2
footprint are presented. For users with any more questions, the website contains the
project’s contact information. In the section "Preliminaries" a download button for the
TMD App can be found. The TMD website can be accessed under the following URL:
https://kontor.cg.tuwien.ac.at/tmdlearn/.

As the implemented Django framework embraces the Model-View-Controller (MVC)
pattern, the Hypertext Markup Language (HTML) page is stored as a template in
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Django views. The website was built using the Bootstrap framework, which supports
responsive web design, mobile-first sites, and high browser compatibility. Of course, in
the implementation accessibility aspects are taken care of as well.
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CHAPTER 4
Evaluation

The evaluation is focused on the efficiency of the change point segmentation method,
which splits the trips into Walking- and Non-Walking segments including the accuracy
of the detected change points. Also, the subsequent fixed-size segmentation is checked
for correctness. As there is no ground data present a very costly manual acquirement of
additional records which meet the requirement for the evaluation was necessary. Although
it has only been tested on a small scale it could be confirmed already that the method is
very efficient. The evaluation approach described below is demonstrated with a single
track (Subsections 4.2.1, 4.2.2) while in Subsection Results 4.2.3 the findings of a total of
ten trips consisting of 27 segments and 17 change points are presented.

4.1 Settings
For recording the tracks to be evaluated the TMD App on a smartphone device OnePlus
7TPro equipped with version 12 of Google’s Android operating system was used. Like
other ubiquitous mobile devices, it features a built-in GPS sensor whose accuracy should
be around less than 5 meters. At each change of transportation mode, a timestamp with
a precision of one second was noted separately.

During the segmentation step of processing a GPS log, the data set of each trip is split
into Walk- and Non-Walk segments based on change point detection in the first step.
Next, each of the resulting intervals is divided into fixed-size segments.

4.2 Evaluation Approach

4.2.1 Ground Truth

In Figure 4.1 a track is shown which consists of four alternating Walk and Non-Walk
segments (when the transportation mode is "bike" or "car" we are dealing with a Non-Walk
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segment). A user drives by car from 10:33:22 followed by walking from 10:34:52 before
transferring to biking from 10:37:55 and traveling on foot from 10:40:56 to 10:44:42 at
the end.
The labeled ground truth is supposed to be as follows:

"2023-05-09 10:33:22 to 2023-05-09 10:34:52 Non-Walk 0.869 km";
"2023-05-09 10:34:52 to 2023-05-09 0:37:55 Walk 0.241 km";
"2023-05-09 10:37:55 to 2023-05-09 10:40:56 Non-Walk 0.695 km";
"2023-05-09 10:40:56 to 2023-05-09 10:44:58 Walk 0.332 km".

In this case, three change points should be detected.

Figure 4.1: Ground truth data of track ID 518
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4.2.2 Criteria

This section includes three aspects that are examined: the accuracy of detected Walk-
and Non-Walk segments (Subsection 4.2.2), the accuracy of identified change points
(Subsection 4.2.2), and the correctness of the creation of fixed-size segments (Subsection
4.2.2).

Detection of Walk- and Non-Walk mode

We first identify the success of the segmentation into Walk- and Non-Walk segments.
This entails defining the Accuracy by Segment (AS) and Accuracy by Distance (AD) as
suggested by Y. Zheng et al. [ZCL+10]:

AS = m/N

AD =
∑m

j=0 CorrectSegment[j].Distance∑N

i=0 Segment[i].Distance

where N is the total number of segments and m is the number of correctly estimated
segments.

The SQL statement as shown in Listing 4.1 is applied to the database to obtain the
required information of the exemplary track for the previously defined criteria.

Listing 4.1: SQL statement for retrieving values needed for computing AS and AD values
1 SET @groupNumber := 0;
2 SET @prev_status := NULL;
3 SELECT MIN(pointID), MAX(pointID),
4 round(sum(distance_diff_m)/1000,3) as km, segment_name
5 FROM (SELECT track_points_511_520.*,
6 @groupNumber := IF(@prev_segment_name != segment_name,
7 @groupNumber + 1, @groupNumber) AS gn,
8 @prev_segment_name := segment_name
9 FROM track_points_511_520

10 WHERE is_gps_point = 1
11 ORDER BY pointID) sq
12 WHERE segment_name IS NOT NULL
13 AND longitude > 0.0 AND latitude > 0.0
14 AND trackID = 518 AND is_gps_point = 1
15 GROUP BY gn, segment_name
16 ORDER BY max(PointID);

Comparing the outcome of this query which is presented in Figure 4.2 to the ground
truth data of the related track we can recognize that AS = 1 is reached in this case.
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Figure 4.2: Result of segmentation into Walk-
and Non-Walk segments of track ID 518

The result of the AD values in this example can be seen in Figure 4.3.

Figure 4.3: The resulting AD-value of
track ID 518

Accuracy of Change points

After switching the transportation mode, the first data line is defined as a change point.
The accuracy of the derived change points is determined by comparing the distance
between the GPS coordinates at the time of occurrence and their equivalent ground truth
(whereas for checking the above-mentioned AS- and AD values the calculated distances
are independent of the time recorded). A change point counts as a correct conclusion if
the resulting difference is less than a given threshold (default: 150 meters, cf. [ZCL+10]).

Functioning of uniform duration segments

After the change point segmentation into walking- and non-walking parts, each resulting
segment gets further split into segments of the same duration respectively an equal
number of data lines of the recorded track. To prove the correctness of the retrieved
number of fixed-size segments (SegmentFixSize.Count) the following applies:∑n

i=0⌊ Segment[i].Duration
t

⌋
SegmentF ixSize.Count = 1

where n is the total number of walk- and non-walk segments and t is the committed
duration of the fixed-size segment (default: 60 sec. respectively 6.000 data lines at a
recording rate of 100 Hz). Any leftover track points from the first division are eliminated
by the floor function and will not be included in any fixed-size segment. The result of
another SQL query (please see Figure 4.4) shows the comparison between duration and
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the number of fixed-size segments per segment. Looking at Figure 4.4 segment number 2
has a duration of between 3 and 4 minutes and therefore consists of 3 fixed-size segments.
The database holds 6.000 data lines for each of these parts.

Figure 4.4: Result of a SQL-Query showing the fixed-size segments of trackID 518

4.2.3 Results

The achieved success of dividing the recorded paths of the TMD App into Walk- and
Non-Walk segments can be seen in Figure 4.5. As presented here, the accuracy by
segment (AS) result demonstrates that each Walk and Non-Walk segment could be
predicted correctly. In the Accuracy by Distance (AD) outcome, only minor variations
were detected.

Figure 4.5: Result of AS and AD trackID 518-527

The distance of Change points between ground truth and those which were identified by
the segmentation method is shown in Figure 4.6. As all distance values are clearly less
than the threshold all examined Change points are assumed to be predicted correctly.
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Figure 4.6: Result of Change points Accuracy applied to track ID 518 - 527

The evaluation of the retrieved fixed-size segments of the examined tracks (trackID
518-522) led to the following results for the criteria laid down by the above-mentioned
equation:∑n

i=0⌊Segment[i].Duration
t ⌋ = 43 and SegmentF ixSize.Count = 43

It therefore follows: 43
43 = 1 is valid.

36



CHAPTER 5
Conclusions and future work

This paper proposes a client- and server-side implementation which pre-processes raw
GPS and sensor data of people’s locomotion for further usage by a transport mode
inference model. To this end, single-mode segments of recorded trajectories are provided
in a fixed size by a database. A particular emphasis was put on the pre-processing steps
and segmentation.

Adequate features were calculated using GPS data for a change point-based segmentation
leading up to the creation of altering walk and non-walk sections keeping them as long
as possible to avoid over-segmentation. By applying this methodology a very high test
accuracy in the detection of walking and non-walking sequences could be recognized.
Taking these results into consideration by the appliance of further inference models the
complexity for the identification of other transportation types can be reduced considerably.
Because the fixed-size segments - as required by a CNN - being generated from the result
of the change point segmentation are single-mode window-overlapping can be neglected.
Thereby, redundancy in the data basis is avoided. Together with the GPS data including
several features sensor data recorded in high frequency was stored in the database which
enables the use of the desired combination for the applied inference model.

The next step could include data gathering of people’s movements not only at a higher
scale but also focusing on achieving a reliable quality in labeling the training data as
the accuracy in the classification is highly dependent on this. In the future traditional
questionnaires could become obsolete by using smartphone data for analyzing the travel
behavior of different individuals.
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