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a b s t r a c t

For over two decades, the OpenGL API provided users with the means for implementing versatile,
feature-rich, and portable real-time graphics applications. Consequently, it has been widely adopted
by practitioners and educators alike and is deeply ingrained in many curricula that teach real-
time graphics for higher education. Over the years, the architecture of graphics processing units
(GPUs) incrementally diverged from OpenGL’s conceptual design. The more recently introduced Vulkan
API provides a more modern, fine-grained approach for interfacing with the GPU, which allows a
high level of controllability and, thereby, deep insights into the inner workings of modern GPUs.
This property makes the Vulkan API especially well suitable for teaching graphics programming in
university education, where fundamental knowledge shall be conveyed. Hence, it stands to reason that
educators who have their students’ best interests at heart should provide them with corresponding
lecture material. However, Vulkan is notoriously verbose and rather challenging for first-time users,
thus transitioning to this new API bears a considerable risk of failing to achieve expected teaching goals.
In this paper, we document our experiences after teaching Vulkan in both introductory and advanced
graphics courses side-by-side with conventional OpenGL. A collection of surveys enables us to draw
conclusions about perceived workload, difficulty, and students’ acceptance of either approach. In doing
so, we identify suitable conditions and recommendations for teaching Vulkan to both undergraduate
and graduate students.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

For many years, OpenGL has remained the default choice for
eaching undergraduate students the use of graphics APIs. Its high
ortability as well as an extensive body of documentation, guides,
nd tooling options (e.g., open-source software emulators) made
t the logical choice for accommodating students from different
urricula. However, there are clear indicators that we are at a
uncture where teaching OpenGL to undergraduate students is
o longer adequate: Its API design as a state machine is often
onsidered bothersome and, in many cases, no longer reflects
he underlying hardware architecture. More severely, several in-
eresting and desirable features of modern APIs, such as push
onstants or hardware-accelerated ray tracing, are simply not
upported by OpenGL. The practical reasons for and against using
penGL today are succinctly illustrated by our own experience
sing it in research. In our work on fast multi-view render-
ng [1], we already felt the age of OpenGL. Its usage turned out
o be more error-prone due to the lack of proper error messages
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when compared to the modern low-level graphics API of our
choice: Vulkan [2]. For our work on computing and exploiting
conservative meshlet bounds [3], we switched to Vulkan, since
it abstracts the hardware on a lower level than OpenGL, offering
more insights and much more fine-grained control over the actual
work that is carried out by GPUs, leading to a better and more
productive development experience once learned. Consequently,
our goal was set towards making the transition from OpenGL
to Vulkan also in teaching in academia. The positive aspects of
Vulkan are appealing, save for the small qualifier ‘‘once learned’’,
which is exactly the crux of the matter.

Before going into details, we should argue about why to se-
lect Vulkan and not one of the other major modern, low-level
graphics APIs: DirectX 12 [4] and Metal [5]. While most modern
graphics APIs are similarly aligned in terms of usage principles
and their level of hardware abstraction, only Vulkan is usable
across all major desktop operating systems and across device
categories (albeit only through an intermediate layer [6] on Apple
platforms). Furthermore, it is an open industry standard defined
by the members of the Khronos group, which includes all major
GPU manufacturers, operating system manufacturers, and other
individual, academic, and industry members [7]. They all con-
tribute to shape and maintain the Vulkan API, while DirectX
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Screenshots of implementations performed in our courses Introduction to Computer Graphics, Computer Graphics Exercise, Real-Time Rendering, and Algorithms
or Real-Time Rendering (from left to right).
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nd Metal are proprietary standards, defined and controlled by
single company each. Vulkan appears to be not only the most

uture-proof API, but thanks to vendor-specific extensions, new
ardware features are accessible in a timely manner. Hardware-
ccelerated ray tracing, for example, was available through an
VIDIA-specific extension [8] only one month after its availability
n DirectX and has later been standardized [9]. Given these con-
itions, Vulkan is the sensible choice in higher education in our
pinion.
The challenge of learning Vulkan is revealed when comparing

ource code and descriptive text for two of the most famous
utorials for drawing a single triangle to the screen: The OpenGL
utorial at LearnOpenGL.com requires fewer than 150 lines of code
LOC) on the host side [10]. In contrast, the de facto entry point
or learning Vulkan at vulkan-tutorial.com ends up with approxi-
ately 700 LOC for achieving the same task and requires a much
ore extensive description for explaining the necessary setup

eading up to this point [11]. The tutorials illustrate how Vulkan
s indeed an API that operates on a much lower abstraction level
han OpenGL. This implies that there are many more factors and
alking points with Vulkan that must be addressed (at least to
ome degree) if taught to students. On the other hand, a poten-
ial upside thereof is that students receive a more fundamental
nowledge about the inner workings of a modern GPU—and
onveying fundamental knowledge constitutes a primary goal of
igher education.
Computer science educators are in a position where they may

truggle to identify a clear path for teaching Vulkan effectively.
n many cases, an established course exists in the curriculum
hat relies on older, higher-level APIs. The big challenge then
ecomes incorporating the introduction of Vulkan and facilitating
he transition to this new API for students, educators, and teach-
ng assistants. This is a delicate maneuver since a hasty transition
ould disrupt and overwhelm each of these groups. In our case,
e pondered different strategies: adding an entirely new course
which would imply a whole series of changes to subsequent
ourses in the curriculum), sticking to OpenGL in undergraduate
nd switching to Vulkan in graduate programs, or trying to in-
roduce Vulkan as early as possible as an alternative to OpenGL.
e ultimately decided to go with the latter, as it turned out to
e minimally invasive curriculum-wise. Furthermore, we argue
hat learning Vulkan early on constitutes the highest benefit for
tudents. After having used Vulkan for selected assignments of
dvanced courses since 2020, we successfully transitioned our
ntroductory graphics course in 2021 into a double-tracked mode:
e offered students the choice to stick with battle-tested OpenGL
r embrace the new and potentially effortful Vulkan route.
We can conclude that supporting a Vulkan route was much

ess bumpy for our students than we initially anticipated, and
herefore, we propose a pragmatic route for transitioning to
156
ulkan in academia for the purpose of teaching real-time com-
uter graphics. In this paper, we describe the changes that we
ave made to transition an introductory graphics course to Vulkan
n detail, and how we manage to keep workload in manage-
ble bounds in an advanced graphics course that exclusively
ses Vulkan. Furthermore, we share some statistics and expe-
iences from several graphics courses where students can or
ust use Vulkan, providing detailed insights from our students’
erspectives based on a set of questionnaires. Fig. 1 shows some
epresentative results of student work that have been created
n the different courses in our curriculum. This paper extends
ur previous work [12] with information about our meanwhile
pen-sourced framework Vulkan Launchpad [13], description of
he whole course structure of our real-time rendering educa-
ion through bachelor and master programs, details about our
ulkan API usage in higher-level courses along with student
uestionnaire results about it, as well as information about the
ulkan frameworks used in higher-level courses: Auto-Vk [14] and
uto-Vk-Toolkit [15].

. Related work

Fundamental difficulties of students learning computer graph-
cs and potential countermeasures are described by Suselo et al.
16]. We consider the difficulties with respect to mathemat-
cs, transforms and projections, and logical problem solving as
reliminary challenges to learning graphics programming. Intro-
ucing graphics programming in an API-free manner is proposed
y Chen et al. [17], which we see as an interesting pathway
f education before learning how to access graphics hardware
hrough a modern industry-standard API.

A possible syllabus for an introductory computer graphics
ourse was described by Fink et al. [18]. Even though their con-
ept of creating a comprehensive software-based rasterization
ramework for teaching graphics programming concepts in a
ore abstract and focused way is intriguing, the low-level as-
ects, which are crucial in real-time rendering, are hidden away
rom students. Students can obtain valuable insights from us-
ng an industry-standard graphics API, and comprehensive doc-
mentation and literature can be expected to be available for it
n contrast to a proprietary framework. Furthermore, a custom
oftware-based rasterization framework might be at high risk of
iverging too much from developments in the industry or causing
igh maintenance efforts.
Based on the analysis performed by Balreira et al. [19], it can

e concluded that OpenGL was the most widely used graphics API
n university education in 2017, given the absence of any mention
f other graphics APIs. We consider our suggestions and expe-
iences described in this paper as being potentially relevant to
very department that is thinking about migrating from teaching
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penGL to teaching Vulkan but also to those who have already
igrated. Experiences with the transition from legacy OpenGL to
odern OpenGL in university education are described by Reina
t al. [20]. They point to increased learning efforts in modern
penGL due to reduced out-of-the-box convenience compared to
egacy OpenGL. A similar point could be made when comparing
ulkan to modern OpenGL.
While Vulkan may provide a reasonable learning curve for

evelopers who are proficient with various other APIs, it is no-
oriously difficult for students without prior experience. To fully
ppreciate Vulkan, users require an in-depth understanding of
he underlying GPU hardware. The fine-grained control over
ork generation and scheduling necessarily make Vulkan ver-
ose. Hence, students are confronted with the task of implement-
ng a significant amount of boilerplate code for leveraging hard-
are features they may not yet fully understand. This situation

s further aggravated by the absence of in-depth teaching mate-
ial for Vulkan: comprehensive, thoroughly researched hands-on
uide books, such as OpenGL’s famed ‘‘Red Book’’ [21] or the
‘OpenGL Superbible’’ [22] are not yet available for Vulkan. Early
ttempts to provide additional abstraction or simplify the inter-
ace had only limited success [23]. However, Vulkan
s an API is still evolving. Recent additions to the SDK,
uch as the VK_KHR_dynamic_rendering and VK_KHR_
ynchronization2 extensions [24], aim to alleviate neuralgic
ressure points of the API.

. Course overview and details

Five courses represent the pathway in our visual comput-
ng curriculum from learning real-time graphics programming
o mastering it. In the first course, no graphics API is used. In
he next three, students can opt to use the Vulkan API. In our
ost advanced course, Vulkan use is mandatory. Our curriculum

ecommends to take the courses in the following order:

1. Introduction to Visual Computing
2. Introduction to Computer Graphics
3. Computer Graphics Exercise
4. Real-Time Rendering
5. Algorithms for Real-Time Rendering

The first three courses target bachelor/undergraduate stu-
ents. Introduction to Visual Computing introduces rasterization
nd several other fundamental concepts of real-time rendering.
tudents are tasked with manually implementing selected parts
f a rasterization pipeline, such as polygon clipping and line
asterization, but we refrain from using a graphics API for any
f its tasks. Introduction to Computer Graphics is our students’ first
ncounter with a graphics API, where buffers have to be prepared
or GPU usage, commands have to be submitted to a GPU, and
lso shader programs are to be implemented. These skills can be
ut to practical use during the Computer Graphics Exercise, where
tudents are tasked with programming a game from scratch based
n a self-written game engine and self-implemented graphics
ffects. Our students may use the programming framework from
ntroduction to Computer Graphics as their technological basis, but
hey are free to implement a completely new one.

The remaining two courses target master/graduate students
nd focus on understanding and implementing state-of-the-art
eal-time rendering graphics effects and techniques. Compared
o each other, these two courses are structured very differently.
eal-Time Rendering features a relatively open mode, where stu-
ents are free to choose from a set of sufficiently complex graph-
cs effects, implement them, and put them to good use in a demo

pplication, the technological basis of which students are free to

157
Fig. 2. Screenshots of correct implementations of Introduction to Computer
Graphics assignments 1, 3, and 5 (from left to right). Task descriptions for each
of them are stated in Table 1.

choose as long as they interface with a graphics API directly and
not through a 3rd party game engine. Algorithms for Real-Time
Rendering, on the other hand, tasks students with implementing
very specific effects or techniques (or parts thereof) in a frame-
work provided by the course organizers. The code framework that
must be used provides a rigid and well-defined track, ruling out
the option to use a different technological base than the provided
one. The often different approaches that students take for solving
a task are then discussed in so-called ‘‘solution presentation
and group discussion’’ sessions. While using OpenGL previously,
since 2022 this course exclusively uses Vulkan as the underlying
graphics API.

As Introduction to Visual Computing does not use graphics
APIs and both Computer Graphics Exercise and Real-Time Rendering
allow students to choose their technological basis relatively freely
– including the graphics API used to interface with the GPU – we
focus mostly on Introduction to Computer Graphics and Algorithms
for Real-Time Rendering in this paper. In Section 4, we describe
how we successfully transitioned Introduction to Computer Graph-
ics to the Vulkan API, its didactic advantages in Section 5, and the
results from a comprehensive student questionnaire about this
transition in Section 6. Our experiences using Vulkan in advanced
graphics courses are described in Section 7, and student feedback
is presented in Section 8.

4. Vulkan in an introductory graphics course

Our course Introduction to Computer Graphics targets bache-
lor/undergraduate students in their third semester and usually
constitutes their first encounter with a graphics API. There are
five assignments throughout the course, the mandatory tasks of
which are listed in Table 1. There are also various bonus tasks
for those who want to learn about additional aspects or improve
their grade. We provide students with a small OpenGL framework
written in C++, which builds and links some helper libraries
(GLEW [25], GLFW [26], and GLM [27]), and provides a few utility
functions, such as drawing a teapot (with source code hidden,
used in the first two assignments), and loading images from file.

If students manage to complete every task on their own,
they end up having implemented the essential steps of a basic
graphics engine using the OpenGL API: loading (self-generated)
geometry data into GPU buffers, providing it to shader programs
via vertex attributes, providing all relevant matrices as uniforms
to shader programs, and rendering to the screen using custom
(self-compiled and linked) shader programs. Should students fail
to implement any of these functionalities on their own, we pro-
vide them with updated versions of the framework after each
assignment’s deadline, which contain the functionalities that are
required for subsequent tasks. Based on our reference implemen-
tation, approximately 1200 LOC have to be written or changed
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Table 1
Course assignments and their subtasks. Results of correct implementations of
assignments 1, 3, and 5 are shown in Fig. 2.
A# Tasks

1 Creating a window; setting up a render loop (where a
teapot is drawn); reacting to user input

2 Writing, compiling, linking, and using custom shader
programs; passing custom transformation matrices as
uniforms to shaders; implementing an orbit camera and
creating appropriate view matrices for rendering a scene,
enabling depth testing

3 Constructing box, cylinder, and sphere geometries as
indexed triangle meshes; loading the data into GPU vertex
buffer objects and creating vertex array objects; passing
vertex positions as vertex attribute to shader programs,
enabling primitive culling

4 Adding normals to geometric objects and passing them as
additional vertex attributes; implementing Phong
illumination [28] combined with Gouraud shading [29] and
Phong shading [28] in shaders; illumination from different
types of light sources

5 Adding texture coordinates to geometric objects and
passing them as additional vertex attributes; loading
images into GPU memory, creating mipmaps, sampling
from textures in shaders

in C/C++ for the host-side code across all five assignments. In
addition, students need to implement approximately 200 LOC in
GLSL shaders.

For transitioning the assignments to Vulkan, we wanted to
tick to the established OpenGL-based syllabus, even though we
nticipated that some tasks would differ quite severely in the
mplementation requirements. Our goal was to offer students
he same tasks, but they would be able to select either OpenGL
r Vulkan as their technological basis for the whole course—
nabling a smooth transition from one API to the other during
his semester and future semesters until we are confident enough
o transition permanently. Offering both an OpenGL route and a
ulkan route in the same course with a fixed budget of three ECTS
redits [30], we strove to create similar workloads for students of
ither route. Given a LOC budget of 1200 and the knowledge that
rawing a single triangle via the Vulkan API already requires 700
OC, we had to introduce more utility functions to the framework
e provide to students. We tried to find the ideal balance be-
ween not sacrificing too much of the learning experience with
espect to the Vulkan API and reducing implementation time.
n the following, we describe the abstractions that we ended
p providing through the Vulkan framework – which we have
eanwhile open-sourced as Vulkan Launchpad [13] – for each
ssignment.
In the first assignment, we let students create a Vulkan in-

tance, a surface, select a physical device, create a logical device,
ueue, and swap chain manually. They directly interface with the
ulkan API for these tasks, because we consider it valuable to
et students get in touch with each one of these fundamental
ypes. The remainder of the required initial application setup is
bstracted by the framework, namely installing a debug callback,
ramebuffer, and render pass creation, as well as the creation of
he synchronization primitives (semaphores and fences) for swap
hain handling [31]. If these had to be set up by students, complex
oncepts like image layout transitions and synchronization would
ave to be learned for the first assignment at the beginning of
he course already, which we deemed to constitute a too steep
earning curve. Students must provide the created handles with
dditional configuration parameters (e.g., clear color values) to an

nitialization function. The resulting render loop implementation

158
after completing Assignment 1 leads to C/C++ source code like
shown in Listing 1.

Listing 1: Render loop implementation after completing the
first assignment. The parameters to the framework initial-
ization function refer to handles of types VkInstance, Vk-
urfaceKHR, VkPhysicalDevice, VkDevice, VkQueue, and
custom configuration struct containing required swap chain
arameters.
1 // Instance , surface, physical device, logical
2 // device, queue, and swap chain configuration
3 // are prepared by students before passing them
4 // to the framework initialization function:
5 vklInitFramework(inst, srf, phd, dev, q, swpcfg);
6
7 while (!glfwWindowShouldClose(window)) {
8 // Handle user input:
9 glfwPollEvents();

10
11 // Wait for swap chain img to become available:
12 vklWaitForNextSwapchainImage();
13
14 vklStartRecordingCommands();
15 vklDrawTeapot();
16 vklEndRecordingCommands();
17
18 // Present rendered image to the screen:
19 vklPresentCurrentSwapchainImage();
20 }

With this approach, we manage to defer teaching image layout
transitions and synchronization to a much later point in the
course. Not before Assignment 5, students have to use these
for image loading and mipmap creation. The downside is that
students do not interface with Vulkan directly in terms of swap
chain handling and command buffer recording. Instead, they use
framework utility functions (those with ‘‘vkl’’ prefixes). The code
of the abstracted functionality in Listing 1 amounts to 300 LOC
(not counting the functionality of graphics pipeline creation).
Tasking students with implementing these functions on their own
during Assignment 1 would have required bigger restructurings
of the assignments and most likely would have required the
removal of some tasks in later assignments. While it would not
be strictly required to draw something to the screen for fulfilling
the tasks of Assignment 1, letting the framework draw a red
teapot to the current swap chain image provides students with
additional feedback on whether their setup code is in a proper
state, in addition to possible framework or Vulkan validation
error messages.

The creation of custom graphics pipelines is the subject of
Assignment 2. The required Vulkan code constitutes another 80
LOC just for graphics pipeline creation, which is why we de-
cided to provide a framework function for it with hard-coded
configuration values for many parameters. A few parameters can
be configured via a custom struct, which is shown in Listing
2. It only supports vertex and fragment shader stages for the
creation of graphics pipelines. Vertex input attribute descriptions
translate directly to Vulkan’s VkPipelineVertexInputState-
CreateInfo [24]. It is supposed to be set up for streaming vertex
positions during Assignments 2 and 3, to be extended by vertex
normals during Assignment 4, and by texture coordinates during
Assignment 5. Further configurable parameters are the polygon
drawing mode and the primitive culling mode, both relevant for
Assignment 3 (Fig. 2 shows the effects of drawing polygon edges
as line segments with back-facing triangles being culled). The
last member is a set of descriptors stating all resources that are
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sed in custom vertex or fragment shader programs, which is
nternally required for pipeline layout creation. For simplicity, we
upport only one descriptor set, but other than that, we do not
bstract or simplify descriptor handling. Instead, students must
andle descriptor set layout creation, descriptor set allocation,
nd descriptor writes manually in Assignments 2 to 5. Several
niform buffers have to be created for storing per-frame uniform
ata, such as colors and transformation matrices for different
bjects. Results of correct implementations are shown in Fig. 2.
We refrain from introducing SPIR-V [32], and from letting

tudents compile shader modules on their own, but handle these
arts internally in the framework using glslang [33]. This further
educes student workload so that they can focus on shader de-
elopment. Compilation errors get displayed conveniently in the
onsole. Further functionality that is abstracted by the framework
s memory handling for buffers and images. Listing 3 shows the
eclarations of the relevant framework functions, the implemen-
ations of which amount to another 100 LOC. To make students
ware of the fact that memory must actually be handled explicitly
n Vulkan, we have chosen corresponding expressive function
ames (including the word ‘‘memory’’) and described them in
etail in our documentation.

For enabling depth testing in Assignment 2, a depth buffer
mage has to be created. Its handle must be provided to the
ramework’s initialization function via the custom swap chain
onfiguration struct, which is mentioned in Listing 1. The decla-
ations of two utility functions for image creation and associated
emory handling are shown in Listing 3.

isting 2: Auxiliary configuration struct with required parame-
ers for custom graphics pipeline creation.
1 struct VklGraphicsPipelineConfig
2 {
3 const char* vertexShaderPath;
4 const char* fragmentShaderPath;
5 std::vector<VkVertexInputBindingDescription >

vertexInputBuffers;
6 std::vector<VkVertexInputAttributeDescription >

inputAttributeDescriptions;
7 VkPolygonMode polygonDrawMode;
8 VkCullModeFlags triangleCullingMode;
9 std::vector<VkDescriptorSetLayoutBinding >

descriptorLayout;
10 };

Listing 3: Convenience functions for creating buffers and images
provided by the framework. Associated device memory is handled
by the framework internally, opaquely to the user.
1 VkBuffer
2 vklCreateHostCoherentBufferWithBackingMemory(
3 VkDeviceSize , VkBufferUsageFlags);
4
5 void
6 vklCopyDataIntoHostCoherentBuffer(
7 VkBuffer , const void*, size_t);
8
9 void

10 vklDestroyHostCoherentBufferAndItsBackingMemory(
11 VkBuffer);
12
13 VkImage
14 vklCreateImageWithBackingMemory(
15 uint32_t , uint32_t , VkFormat ,

VkImageUsageFlags);
16
17 void
18 vklDestroyImageAndItsBackingMemory(
19 VkImage);
159
In Assignment 3, one framework convenience functionality is
removed, namely automatic command buffer recording. It is han-
dled opaquely inside the framework for the first two assignments
as shown in Listing 1. Starting with Assignment 3, students are
required to manually implement command recording in order to
pass further vertex attributes to graphics pipelines, and also for
transferring image data from buffers into images.

Assignment 4 focuses on shader development and encour-
ages students to use the framework tools they have become
acquainted with during the previous assignments. This mostly
refers to the creation and proper usage of additional custom
graphics pipelines for supporting different illumination methods,
and uniform buffers for object data and light-source data.

In Assignment 5, important new concepts are introduced,
namely the usage of sampled textures in shaders, synchroniza-
tion, and image layout transitions. The framework provides func-
tions for loading images from file directly into host-visible buffers.
Backing buffers with host-visible memory simplifies their usage
since they do not require explicit synchronization, which was
exploited in previous assignments. Image memory, however, is
allocated in device memory. We explain to students that this
leads to more performant rendering, but it also makes syn-
chronization necessary when texture data is transferred from
host-visible buffers into the backing memory of images. Students
are required to create images, create command buffers, record
proper layout transitions via image memory barriers, transfer the
image data from a buffer to an image in device memory, submit
the command buffers to a queue, and wait for their completion
with a fence. All of these operations are to be performed using the
Vulkan API directly. Our framework does not provide any further
convenience functionality for these tasks of Assignment 5.

5. Didactic advantages of using Vulkan

One side effect of Vulkan’s verbosity is that it necessarily
reveals more and more underlying hardware details as students
progress. Investigative minds are not easily satisfied by follow-
ing a list of instructions they cannot comprehend. In order for
them not to be deterred, Vulkan forces its users to deal with
several important concepts discussed in this section that OpenGL
does not. Consequently, instructors must address the underlying
processes and hardware modules, while in OpenGL, the same
use cases may ‘‘just work’’ because the details are handled by
drivers internally. Therefore, OpenGL is less likely to encourage
investigations of what is going on under the hood. Just by using a
low-level graphics API like Vulkan correctly, educators are forced
to convey more fundamental knowledge about modern GPUs and
their architecture.

Vulkan implicitly conveys that switching between different
shader programs is never free, as one might come to believe
when developing applications based on OpenGL exclusively. In-
stead, whenever a different shader program shall be used, a
whole new graphics pipeline must be created with all its bulk
of configuration parameters. The extensive code blocks required
to achieve this in Vulkan reflect that changing shaders is rather
invasive to the rendering setup and implies potentially heavy-
weight changes. Users are encouraged by the design of the API
to prepare all potentially required pipelines upfront, selecting
the appropriate one during render-loop execution. In OpenGL,
the driver usually hides this complexity and instead instanti-
ates pipelines dynamically on-demand, reducing the amount of
control the user has over the application’s runtime performance.
For example, when the primitive culling mode is changed, that
change can occur during render-loop execution, which might lead
to an expensive operation being performed within the render
loop.
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Fig. 3. Number of student submissions for all five assignments.

When a uniform buffer is used to store per-frame data specific
o a certain object (e.g., transformation matrices), the same buffer
annot be used for storing per-frame data of another object to be
rawn in the same frame in most situations. Recording the draw-
ng of multiple objects into the same command buffer requires
he usage of different uniform buffers for the objects’ per-frame
ata since otherwise unwanted effects occur. If, for example, the
ame host-visible uniform buffer was used for two objects, only
he last write to this uniform buffer would succeed due to data
eing written at queue submission time [24]. These factors force
sers of the API to think about the reasons why this occurs.
eveloping these thoughts further, it becomes clear that modern
PUs work in a massively parallel way, which can also mean that
oth objects from our example are processed in parallel. As such,
here must be different uniform buffers – one for each object –
ccessible during parallel processing of the objects. In OpenGL,
gain, users do not have to think about these aspects. Uniforms
an just be set and used, and rendering ‘‘just works’’, producing
he correct result. Users are not forced to think about the modus
perandi of modern GPUs and, in the worst case, might think
hat draw calls are processed in a sequential or host-synchronous
anner.
Synchronization, in general, is largely hidden from the API

ser with OpenGL, bearing the danger of drawing false conclu-
ions about the actual command processing on the hardware.
ulkan, on the other hand, does not hide the responsibility of
roperly synchronizing commands from its API users, putting the
assively parallel nature of modern GPUs into the spotlight. The
ecessary synchronization must not only be explicitly defined
ithin shaders or between pipeline stages but also between the

ndividual GPU queues that may receive and schedule incoming
ork. For students who desire to understand and exploit synchro-
ization on a fundamental level, Vulkan provides an additional
enefit over older graphics APIs, namely a clearly-defined mem-
ry consistency model, which is similar to the well-established
++ memory model [34].
Another area where OpenGL hides vital concepts that affect

irtually all modern GPUs is command buffer recording. Com-
ands are simply issued on the fly in OpenGL, completely con-
ealing the possibility of recording and reusing chains of com-
ands, let alone the possible performance implications of com-
and recording. In order to remain efficient, the driver usually
aches and organizes these commands, again performing vital
ork in the user’s stead. In Vulkan, all of these concepts are
evealed to users so that they are forced to think about the

otivation for their presence. From a didactic point of view,
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Fig. 4. Grade distributions of OpenGL students and Vulkan students, where 5
means not passing the course, 4–1 represent positive grades with 1 being the
best grade.

achieving a better insight into the inner workings of modern
graphics devices can never be wrong.

6. Student feedback on introductory graphics course

At the beginning of our university winter term in 2021, we
offered all of our Introduction to Computer Graphics students the
choice between OpenGL and Vulkan for implementing the five
assignments. This course is mandatory for undergraduate stu-
dents enrolled in the bachelor program ‘‘Media Informatics and
Visual Computing’’ and optional for other students. Since our
Vulkan framework was brand-new and we did not have any prior
student feedback, we deployed a corresponding warning message
and told them that they should expect up to 150% of required
effort compared to the OpenGL route. From a total of 123 initial
students, 17 (14%) opted for the Vulkan route. 81 students com-
pleted the course, among them 10 students (12%) who chose the
Vulkan route. In this section, we present insights from a detailed
questionnaire that was completed by 52 OpenGL students (73%
of total OpenGL students who completed the course) and by 9
Vulkan students (90% of total Vulkan students who completed
the course). A diagram showing the development of numbers of
student submissions over the whole course is shown in Fig. 3.

Given our warning about the potentially increased effort using
Vulkan combined with reduced effort having been the top moti-
vator for the students who chose OpenGL (see Table 3) suggests
that students who chose Vulkan may generally have been more
strongly motivated for doing the course. Based on the grade
distributions shown in Fig. 4, this does not necessarily mean that
Vulkan students were more skilled in general, since the relative
amount of negative grades is almost the same for both groups
of students. The positive grades were shifted more towards the
better grades in the Vulkan group, which can be attributed to
higher motivation levels. Students of both groups made use of
consultation hours approximately equally throughout the course.

Fig. 5 shows how students who chose the OpenGL route com-
pare to the students who chose the Vulkan route in terms of
how they perceived the five assignments according to the cat-
egories workload, difficulty, and usefulness of the respective API.
The wording of our questions was as follows:

• ‘‘How was the workload of Assignment X in your opinion?’’
Answers range from ‘‘Almost nothing to do’’ (−2), over
‘‘Adequate workload’’ (0), to ‘‘Too much effort’’ (2).

• ‘‘How was the difficulty of Assignment X?’’ Answers range
from ‘‘Too easy’’ (−2), over ‘‘Difficulty was ideal’’ (0), to ‘‘Too
hard’’ (2).

• ‘‘Do you think that the skills you picked up during Assign-
ment X will be useful in your future career?’’ Answers range
from ‘‘Not useful at all’’ (−2) to ‘‘Extremely useful’’ (2).

Interestingly, the assessments of both groups of students are
similar for Assignments 2 to 5, which is a good sign since it

indicates that the transition to Vulkan did not have a major
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Table 2
Reasons of Vulkan students for choosing Vulkan. The second column states the
percentage of Vulkan students who declared the respective reason.
Reasons given by students for choosing Vulkan %

Wanted to learn this API 100%
Provided framework seemed to be in a better state 33%
Vulkan is more relevant for game development 11%
More modern API 11%

Table 3
Reasons given by students for choosing OpenGL. The second column states the
percentage of OpenGL students who declared the respective reason.
Reasons for choosing OpenGL %

Wanted to reduce the effort required to do this course 60%
Wanted to learn this API 38%
Provided framework seemed to be in a better state 25%
The task descriptions seemed to be clearer 25%
Already had experience with this API 21%

impact in these regards. Only for Assignment 1 we can observe
a higher rating of workload and difficulty for the Vulkan version,
which is unfortunate, as it might have contributed to the higher
dropout rate of Vulkan students (24%) between Assignments 1
and 2 compared to the dropout rate of OpenGL students (14%).
For the subsequent assignments, dropout rates were similar (see
Fig. 3) for both groups. The box plots in Fig. 5 represent students’
perceived workload, i.e., whether they felt that the necessary
workload was appropriate for an assignment or not. The box plots
in Fig. 6 present students’ estimates (or actual amounts) of hours
spent on the mandatory tasks per assignment. It can be inferred
that the initial effort for the Vulkan version of Assignment 1 was
higher than for its OpenGL counterpart. The time investments
for all other assignments, though, were similar for both groups.
The minimum outliers point towards a slightly higher baseline
in terms of required effort across all assignments for the Vulkan
assignments. Interestingly, Vulkan students required less time
for Assignments 2 and 3 than OpenGL students. Across all as-
signments, the maximum outliers indicate a lower upper bound
of effort. This could be an effect of possibly higher motivation
levels among Vulkan students. On the other hand, 0% of students
had prior experience with Vulkan, while 21% of OpenGL students
already had prior experience with the API of their choice. Tables 2
and 3 list further reasons for students deciding in favor of an API.
With 60%, the strongest motivator of OpenGL students was to
avoid the potentially higher workload of the Vulkan route. Only
38% of OpenGL students deliberately wanted to learn the OpenGL
API, so there seems to be a lot of potential for getting students in-
terested in learning a different API. Our newly introduced Vulkan
framework seems to have deterred 25% of OpenGL students, but
on the other hand, 33% of Vulkan students assessed it to be in a
better state than its battle-tested OpenGL counterpart. Students
had the chance to take a look at both frameworks and assignment
descriptions of both routes before deciding upon which route to
take. Although we provided much more extensive and detailed
task descriptions for the Vulkan assignments, 25% of OpenGL
students declare them as a reason for their choice in favor of
OpenGL. None of the Vulkan students mentioned the task descrip-
tions as a deciding factor, but 78% of Vulkan students found them
helpful even as a learning resource for Vulkan overall, as shown
in Table 4. The same amount of students in this group found
the Vulkan specification helpful, while vulkan-tutorial.com was
entioned as a helpful learning resource by the largest number of
tudents. With the intent of explaining fundamental Vulkan con-
epts in a vivid and comprehensible way, we started producing
ulkan lectures and provided them to our students throughout
he course via the ‘‘Vulkan Lecture Series’’ [35]. Unfortunately,
161
Fig. 5. Students’ assessments of the assignments, with respect to workload,
difficulty, and usefulness; all rated on a scale from low (−2) to high (2), where 0
eans adequate, perfect, and medium, respectively for the different categories.

Table 4
Reported learning resources of Vulkan students.
Vulkan resource %

vulkan-tutorial.com [11] 89%
Vulkan specification [24] 78%
Assignment description documents 78%
‘‘Vulkan Lecture Series’’ on YouTube [35] 44%
Official Khronos examples [31] 33%
Sascha Willems’ tutorials and examples [36,37] 22%

some episodes were running late and, thus, were not available to
our students timely. We hope that providing these lectures right
from the beginning of the semester will lead to better and faster
learning success in the future.

As far as problems during implementation of the assignments
are concerned, a larger amount of OpenGL students mentioned
problems with graphics API usage than their colleagues on the
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Fig. 6. Hours it takes to complete all mandatory tasks per assignment, as
eported by students.

Fig. 7. Vulkan students’ assessments of the assignments, with respect to the
framework’s level of abstraction, and their API learning experience. The level
of abstraction is rated from a too low level of abstraction (−2), over a perfect
alance between learning the API and saving time (0), to a too high level of
bstraction (2). Learning experience ranges from having learned nothing (−2),
ver a medium amount (0), to having learned a lot (2) about the Vulkan API.

ulkan route. Graphics API usage turned out to be problematic
o 52% of all OpenGL students (see Table 5), while only 22% of
ulkan students reported problems with direct Vulkan API usage
see Table 6). One reason for the high percentage of students
eclaring problems with C/C++ programming stems from the fact
hat many students get in touch with C++ programming for the
irst time during this course in their bachelor program. Many
ad mainly experience with the Java programming language and
ad not used C or C++ before. Although the Vulkan framework
ontains a lot more functionality than its OpenGL counterpart,
nd Vulkan students must interface with the provided frame-
ork on more occasions, framework usage was not declared as
eing problematic by a larger fraction of Vulkan students when
ompared to the fraction of OpenGL students reporting problems
ith framework usage (see Tables 5 and 6). Overall, Vulkan
tudents stated to be pretty happy with the framework’s level
f abstraction (see Fig. 7(a)). Some had even hoped for a lower
evel of abstraction for Assignment 1, although the workload of
ssignment 1 was rated as being too high (see Fig. 5(b)). These
tudents were eager to acquire the knowledge about the details of
he abstracted functionality. Nevertheless, Vulkan students were
enerally satisfied with their learning experience (see Fig. 7(b)).
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Fig. 8. ‘‘Harder’’ refers to the question: ‘‘Which API do you think is harder to
learn, OpenGL or Vulkan?’’. ‘‘Studies’’ refers to the question: ‘‘Which API do you
think will be more useful during your studies, OpenGL or Vulkan?’’. ‘‘Industry’’
refers to the question: ‘‘Which API do you think would be more useful for
working in the industry, OpenGL or Vulkan?’’.

Table 5
Biggest problems of OpenGL students during development.
Problems with the OpenGL route %

Graphics API usage (direct OpenGL API usage) 52%
Programming in C/C++ 42%
Using the provided OpenGL framework 35%

Table 6
Biggest problems of Vulkan students during development.
Problems with the Vulkan route %

Programming in C/C++ 56%
Using the provided Vulkan framework 33%
Graphics API usage (direct Vulkan API usage) 22%

Fig. 8 shows that both groups of students think that Vulkan is
much harder to learn than OpenGL. OpenGL students are indeci-
sive whether OpenGL or Vulkan might be more helpful in their
further studies, while Vulkan students lean towards Vulkan in
that regard. Each group of students thinks that their respective
API of choice will be more useful for working in the industry,
while Vulkan students show a higher degree of confidence. A
multi-platform framework for Windows and Linux was strongly
requested by some of our students.

This concludes our discussion of student feedback that we
obtained during Introduction to Computer Graphics in 2021. In
the next sections, we describe Vulkan utilization in our more
advanced graphics courses, which frameworks we use, and we
present further student feedback on these advanced courses.

7. Vulkan in advanced graphics courses

The mode that we employ in our advanced graphics course
Algorithms for Real-Time Rendering, targeted to graduate stu-
dents, tasks students with the implementation of a set of well-
defined and well-bounded state-of-the-art real-time rendering
techniques and effects. Topics include proper implementation of
normal mapping using tangent space, handling a large number of
light sources, hardware tessellation, view-frustum and backface
culling in tessellation control shaders, dynamically adaptive levels
of tessellation, deferred shading, deferred shading in combination
with multisample anti-aliasing, manual multisample resolve in
compute shaders, tile-based deferred shading, physically based
shading, screen-space ambient occlusion, tone mapping, temporal
anti-aliasing, and real-time ray tracing using ray query and ray
tracing pipelines. While using OpenGL previously for all tasks
(except ray tracing), then starting the transition to Vulkan for
some tasks while leaving some in OpenGL, we switched to Vulkan
completely for all tasks in 2022. This allowed us to address
some advanced low-level GPU topics in teaching that were im-
possible to cover with the OpenGL API: Real-time ray tracing is
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Fig. 9. Student numbers in the different courses across three years, grouped by
inter term and subsequent summer term: 2019W/2020S, 2020W/2021S, and
021W/2022S.

ot supported at all by the OpenGL API, but it is with Vulkan.
n a more fundamental level, fine-grained synchronization and
ts effects can only be analyzed and discussed properly with a
ow-level API like Vulkan since all the synchronization primi-
ives which would allow fine-grained synchronization are missing
rom OpenGL. Having the possibility to discuss them enables
s to teach low-level concepts which we consider being very
mportant for acquiring in-depth knowledge about GPU program-
ing. A further benefit of using the Vulkan API is the explicit
nd precise specification of when multisample resolve operations
re performed by the GPU along with appropriate framebuffer
ttachment usage and synchronization. While inclusion of more
ow-level concepts like buffer sub-allocation would have been
nteresting topics to cover additionally, we were unable to fit
ore such topics into the scope of this course—not least because

ts main focus is on rendering algorithms.
Vulkan’s high verbosity poses two main challenges: First, it

equires a lot of code to be implemented and second, it can con-
titute quite a big challenge to present such large amounts of code
o other people. To counteract both of these challenges, we do not
se the Vulkan API directly, but instead we use two frameworks
hat were developed by our research group and help to solve
hese problems pretty well according to the feedback that we
eceived from our students: Auto-Vk [14] and Auto-Vk-Toolkit [15].
he former provides a low-level abstraction layer over the Vulkan
PI (more precisely over Vulkan-Hpp [38]), enabling code that is
uch more concise and possibly faster to write. To accomplish

hat, it uses many advanced C++ features and some sensible
efaults, which can be overwritten by users. Auto-Vk-Toolkit adds

a multitude of useful functionality to it like window system inte-
gration, input handling, render-loop handling, model and image
loading, and utilities like asset management, serialization, and
shader hot-reloading. These functionalities help to reduce devel-
opment and project setup efforts, letting users focus on Vulkan
development.

During our grading events – called ‘‘solution presentation and
group discussion’’ events – we ask students to present their
solutions to the group of students on a big screen. The big benefit
of using Auto-Vk manifested in the effect that in many cases, the
relevant code for a task could be shown on one single screen. For
example, a graphics pipeline can be created like shown in Listing
4 with just a few LOC, while raw Vulkan code for the same task
can easily require 80 LOC or more.
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Listing 4: C++ source code for creation of a graphics pipeline
using Auto-Vk. The parameters refer to shader files, specify vertex
buffer input binding locations matched with a data format and
shader input location, a renderpass, front-facing configuration,
and several descriptor bindings to various resources.
1 using namespace avk; using namespace glm;
2
3 // Create a new graphics pipeline consisting of
4 // a vertex shader and a fragment shader:
5 auto p = context().create_graphics_pipeline_for(
6 // Specify shaders for this pipeline:
7 vertex_shader( " my_shader.vert " ),
8 fragment_shader( " my_shader.frag " ),
9

10 // Specify buffer bindings to target locations:
11 from_buffer_binding(0)
12 ->stream_per_vertex <vec3>()->to_location(0),
13 from_buffer_binding(1)
14 ->stream_per_vertex <vec2>()->to_location(1),
15
16 // Use a renderpass created previously:
17 renderpass ,
18 // Further config parameters:
19 cfg::front_face::

define_front_faces_to_be_counter_clockwise(),
20
21 // Define resource bindings:
22 descriptor_binding(0, 0, mMaterials),
23 descriptor_binding(1, 0, mUniformsBuffer),
24 descriptor_binding(1, 1, mLightsBuffer)
25 );

Listing 5: C++ source code using Auto-Vk for declaring that
a framebuffer attachment in a certain format shall be cleared
on load, used as depth/stencil attachment in the first subpass,
used as input attachment bound to location 1 in the second
subpass, used as depth/stencil attachment in the third subpass
and resolved to the attachment at index 3 after the third subpass.
1 using namespace avk;
2
3 attachment::declare(
4 vk::Format::eD32Sfloat ,
5 on_load::clear,
6 usage::depth_stencil
7 >> usage::input(1)
8 >> usage::depth_stencil+usage::resolve_to(3),
9 on_store::dont_care)

Listing 6: C++ source code using Auto-Vk for creating a global
memory barrier that synchronizes a transfer operation (making
its write accesses available) with a compute pipeline (ensuring
the memory is visible for read access).
1 using namespace avk;
2
3 auto barrier = sync::global_memory_barrier(
4 stage::transfer >> stage::compute_shader ,
5 access::transfer_write >> access::shader_read
6 )

Listing 4 shows that Auto-Vk manages to require fewer LOC
by establishing some default configuration but still enables fur-
ther configuration options, which can be added to the function
call through C++ variadic templates. Another example is attach-
ment declaration for renderpass creation as shown in Listing 5.
It allows expressively specifying the attachment usage across
different subpasses and also where a resolve operation should
happen precisely. The setup code is arguably as concise as it
can be for that purpose while not hiding any conceptual low-
level details. A final example presented in this paper is the code
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Table 7
Students’ answers to the question whether they liked that some/all tasks of
Algorithms for Real-Time Rendering were based on the Vulkan API.
Did you like tasks based on Vulkan? 2020 2022

Preferred not to use Vulkan. 12.5% 0%
Don’t care. 12.5% 0%
Using Vulkan was good. 25% 71%
Using Vulkan was great. 50% 29%

for establishing a global memory barrier in a concise manner
as shown in Listing 6. Also in this case, the corresponding raw
Vulkan code would require many more LOC.

Besides being well suited for teaching purposes, the two
rameworks are furthermore intended to be used for rapid pro-
otyping and general Vulkan development. We have success-
ully used them in our published research, like for our work
n exploiting conservative meshlet bounds using graphics mesh
ipelines [3]. Some of their advantageous properties are reflected
n student feedback on our advanced graphics courses.

. Student feedback on advanced graphics courses

In this section, we present results from student feedback based
n anonymous questionnaires about their individual assessments
nd experiences with Vulkan in advanced graphics courses. Fig. 9
hows the average student numbers in the last three years. It
an be seen that the vast majority of our students still used the
penGL API. They can choose between OpenGL and Vulkan in
ntroduction to Computer Graphics, as described in Section 6, since
inter term 2021 (2021W). The effects on the subsequent courses
omputer Graphics Exercise and Real-Time Rendering, where stu-
ents are free to choose any graphics API, are not yet measurable.
lgorithms for Real-Time Rendering – which is conducted bi-yearly
dictates an API to be used for each assignment. In 2020, 50% of

he assignments were based on OpenGL and 50% were based on
ulkan. In 2022, 100% of the assignments were based on Vulkan.
In our more advanced courses, we noticed a rise in interest in

he Vulkan API in recent years. In 2020, 60% of students answered
hat they would have liked to learn more about Vulkan in the
ontext of Real-Time Rendering. This number increased to 89% in
021, but these numbers might not reflect all students too well
ince only 22% and 35% of participating students provided feed-
ack, respectively. Interestingly, in 2020, 29% of students chose
he Vulkan API for implementing their demos. Of this group, 83%
sed Auto-Vk-Toolkit to interface with the Vulkan API. In 2021,
he number of students using Vulkan dropped back to 7%, which
s similar to previous years (4% in 2019).

Basing 100% of the assignments of Algorithms for Real-Time
endering on Vulkan in 2022 led to a generally increased engage-
ent with the Vulkan API. Additionally, we also slightly increased

he number of Vulkan-centric tasks, so that students got to learn
ore aspects of the API. In 2020, 62% of students provided feed-
ack through a questionnaire. In 2022, 58% provided feedback.
lmost all students appreciated that our tasks were based on
ulkan as Table 7 shows. This is quite remarkable given the fact
hat more than half of participating students had absolutely no
rior Vulkan experience, and none rated themselves as having a
ot of prior Vulkan experience. The exact percentages are listed in
able 8.
Students replied that Auto-Vk-Toolkit eases development with

he Vulkan API, as attested by the numbers in Table 9. We believe
hat the shift from mostly ‘‘Helps a lot’’ in 2020 towards ‘‘Helps
bit’’ in 2022 does not indicate a decline in framework quality
ut is merely a side-effect of us putting more focus on low-
evel details in certain new or reworked Vulkan-centric tasks in
164
Table 8
Students’ answers about their Vulkan experience prior to starting the course
Algorithms for Real-Time Rendering.
Prior experience with Vulkan 2020 2022

Zero. 50% 57%
A little bit. 12.5% 14%
Used it for a small project. 25% 29%
Used it for a bigger project 12.5% 0%
A lot/used it for several projects. 0% 0%

Table 9
Students’ answers whether they had the feeling that Auto-Vk-Toolkit helped to
make Vulkan development easier.
Is Auto-Vk-Toolkit helpful w.r.t. Vulkan? 2020 2022

No, makes it harder. 0% 0%
Barely helps. 12.5% 0%
Helps a bit. 25% 57%
Helps a lot. 62.5% 43%

2022. For example, students had to pay attention to establishing
proper synchronization between commands or renderpass sub-
passes. Some students would have preferred a higher level of API
abstraction in Auto-Vk, while others would have preferred less
abstraction to learn direct Vulkan API usage. Most students seem
to agree, though, that using Vulkan directly would have imposed a
much too high workload in the context of this course. One student
pointed out that Auto-Vk is especially well suited for teaching
purposes and that the code presentations and discussions during
our ‘‘solution presentation and group discussion’’ events would
probably have been cumbersome without it.

9. Conclusion

We successfully employed Vulkan for teaching the use of a
real-time graphics API in an introductory course and for teaching
selected state-of-the-art techniques and low-level GPU concepts
in advanced courses. Abstracting some functionality of early as-
signments was key to enabling a manageable and fair workload.
Flattening the learning curve of Vulkan for first-time graphics
API users enabled us to provide a similar challenge as previously
established OpenGL assignments. But also in advanced courses,
the use of a framework that abstracts the Vulkan API and reduces
implementation effort turned out to be crucial to stay within
sensible boundaries in terms of student workload. However, in-
troductory and advanced courses have different requirements in
terms of Vulkan API abstraction. Therefore we propose to use
Vulkan Launchpad [13] for the former to hide several complex con-
cepts for Vulkan first-time users—and for the latter we propose
using Auto-Vk [14] and Auto-Vk-Toolkit [15], which do not hide any
fundamental Vulkan concepts but just aim to make development
more efficient and code more concise.

Interestingly, the biggest hurdle for many students in intro-
ductory graphics courses was C/C++ usage, constituting a bigger
problem for Vulkan students since they had to write more code
in their first assignment. More efficient C/C++ learning resources
and lectures should allow students to focus better on graphics API
usage. The biggest hurdles for students with respect to graphics
API usage in our advanced courses seemed to be some of the
advanced low-level concepts like synchronization. Since the vast
majority (presumably all) of students in advanced courses did not
learn graphics programming using the Vulkan API, but instead
using a higher-level API like OpenGL, many of them had to learn
concepts like fine-grained synchronization at a later point in time
in the context of our courses. We think that teaching Vulkan
from the start will have a positive effect on our students for
becoming proficient users of modern graphics APIs and, thereby,
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n more advanced courses when they encounter Vulkan again.
sing a low-level API enables students to learn about the mas-
ively parallel operation mode of modern GPUs early in their
isual computing education. Our evaluation has shown that stu-
ents appreciate the skills and knowledge they picked up through
sing the Vulkan API. We believe that teaching Vulkan is both
iable and beneficial to students who aim to become competent
ractitioners of visual computing. While the transition may be
hallenging, it appears to be a worthwhile investment to provide
tudents with future-proof education.
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