
Authoring Tool Prototype for
Dashboard Onboarding

Generation

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Ivaletta Shakhova
Matrikelnummer 01327973

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: DI Vaishali Dhanoa

Wien, 1. Mai 2023
Ivaletta Shakhova Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Authoring tool prototype for
dashboard onboarding

generation

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Ivaletta Shakhova
Registration Number 01327973

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: DI Vaishali Dhanoa

Vienna, 1st May, 2023
Ivaletta Shakhova Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Ivaletta Shakhova

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Mai 2023
Ivaletta Shakhova

v

Danksagung

An dieser Stelle möchte ich mich bei meinem Betreuer, Univ.Prof. Dipl.-Ing. Dr.techn.
Eduard Gröller, für die Unterstützung bei meiner Bachelorarbeit, das weitergegebene
Wissens und die wertvollen Feedbacks herzlichst bedanken. Besonderer Dank gilt Vaishali
Dhanoa und Vanessa Fediuk, die mir bei der Festlegung der Ziele und der Definition der
Herausforderungen geholfen und mich in allen Phasen der Entwicklung begleitet und
unterstützt haben.

vii

Acknowledgements

Firstly, I would like to express my gratitude and appreciation to my supervisor, Univ.Prof.
Dipl.-Ing. Dr.techn. Eduard Gröller, for conducting my bachelor’s thesis, sharing the
knowledge, and providing valuable feedback. Special acknowledgements go to Vaishali
Dhanoa and Vanessa Fediuk, who assisted me in setting the goals and defining the
challenges, guided and supported me in all phases of the development.

ix

Kurzfassung

Datenvisualisierung ist ein effektiver Weg, um Einblicke in verschiedene Probleme zu
gewinnen und den datengetriebenen Entscheidungsprozess zu fördern, allerdings kann
diese Methode oft komplex und überfordernd sein. Um die korrekte Interpretation und
das Verständnis von Daten zu ermöglichen, ist ein angemessener Onboarding-Prozess
erforderlich. Onboarding schafft Klarheit über den Anwendungsbereich und den Zweck
der Visualisierung für Benutzer mit unterschiedlichem Fachwissen. Allerdings kann die
Erstellung eines Onboarding-Prozesses mithilfe eines Authoring-Tools eine Herausfor-
derung darstellen, insbesondere für Autoren mit unzureichenden Fähigkeiten in Sachen
Design.
In dieser Arbeit stellen wir ein Interface-Design für das Authoring-Tool im Rahmen
des Dashboard-Onboarding-Prozesses vor. Wir haben die Herausforderungen analysiert,
denen sich ein Neueinsteiger bei der Erstellung explorativer Erzählungen aus komplexen
Daten gegenübersieht. Zu diesem Zweck haben wir bestimmte Storytelling-Szenarien auf-
gearbeitet, um die Aktivitäten nachzuvollziehen, die ein Autor an den Daten durchführen
sollte, um zum Ziel zu gelangen. Wir konzentrieren uns auf die bedingte nicht-lineare Er-
zählung und wenden den Ansatz eines verzweigten Story-Graphen an, der als Knoteneditor
implementiert ist. Die bereitgestellte Schnittstelle kann erweitert werden, um tiefgreifen-
dere Storytelling-Strategien zu entwickeln und einen komplexeren und hochinteraktiven
Onboarding-Prozess zu schaffen.

xi

Abstract

Data visualization is an effective way to gain insights into various problems and improve
the data-driven decision-making process, however it can often be complex and overwhelm-
ing. To enhance the interpretation and understanding of data, a proper onboarding
process is required. Onboarding provides clarity on the visualization scope and purpose
for users with different levels of expertise. The development of the onboarding process is
facilitated with a suitable authoring tool. Though utilizing authoring tools, especially by
creators with deficient visual design skills, can be quite challenging.
In this thesis, we introduce an interface design for the authoring tool within the scope
of the dashboard onboarding process. We are focusing on the constrained non-linear
narrative and applying the approach of a branching story graph that is implemented
as a node editor. The provided interface can be extended to develop more profound
storytelling strategies and aim to create a more complex and highly interactive onboarding
process.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Related Work 5

3 Mock-up Creation Stage 9

4 Implementation and Results 19

5 Conclusion and Future Work 25

List of Figures 27

Bibliography 29

xv

CHAPTER 1
Introduction

Data visualization is a powerful technique of data-driven problem-solving process and
employs graphical elements such as plots, charts, graphs, etc. To display these graphical
elements in an accessible format, a graphical user interface called dashboard tool is
widely used [EAB13]. Dashboard tools, or simply dashboards, are used to analyze and
overview data sets, and the process of explaining the data components to novices is called
onboarding. The onboarding process can be carried out in many ways. One of the powerful
techniques to carry out the onboarding process is storytelling, which as an effective
approach for explaining disparate data is widely employed in various professional fields,
especially for business purposes [BDF15]. Among the common onboarding techniques
or means, can be presentations with explanation text or an author’s voice-over, video
presentations, or automated tours. Regardless of which approach is adopted, designing
an onboarding process can be cumbersome for an analytical data expert who needs to
prepare a thorough onboarding for various users.[Dha+22].
The primary objective of our authoring tool is to present the dashboard information in a
way that can be easily adapted by the dashboard author to create engaging onboarding
stories to fill the knowledge gap of the onboarded user.
Our contribution is to provide a congruous graphical user interface for the authoring stage
of dashboard onboarding, that employs the process model proposed by Vaishali et al.
[Dha+22]. Since the described onboarding technique is flexible, specific, and actionable
[Dha+22], the introduced interface should assist this interactive storytelling approach
[SMR03].
When using an authoring tool, usability and design are fundamental parts of interface
development, since both have a great impact on user behavior and experience. Great
authoring experience implies the production of impactful and comprehensible stories that
are aligned with the author’s objectives.
Thus, we have defined a set of requirements that our interface should meet:

1

1. Introduction

• Simplicity and Comprehensibility. Since most users of the interface might not
have much experience in creating visual narratives, the decision-making process
should be reduced to the essentials. We need to avoid cluttered and overwhelming
layouts and excessive information overload so that the interface communicates a
sense of clarity [Gal07].

• Unambiguity. Each element of a successful design must serve a single purpose.
Its meaning should be clear and unambiguous so that the user is not confused
[Nie94]. Since we introduce icons to indicate major data components, tooltips
have to be foreseen. The main purpose of tooltips is to convey the meaning of
symbols through the user interface. To avoid any confusion about what a particular
symbol represents, textual support is required. This considerably enhances the
understanding of abstract symbols.

• Intuitivity. An interface is considered user-friendly if it reacts as expected. Users
should not ponder for a long time what action they have to perform or element to
click to get the information they need, but do so unconsciously. The user should
be able to freely navigate and easily access the necessary components. Navigation
bar tools should always be visible [Gal07].

• Coherence. Data components and interface elements must fit together in a
coherent way, which means that particular elements belonging to a group should be
recognised naturally [Nie94]. We use symbols and icons in our design that describe
certain components and elements. We need to ensure that each element is always
described by the same symbol throughout the interface.

• Scalability and Flexibility. The interface is supposed to be extensible [Gal07],
which means that it is not only tailored to a specific scenario but can be adapted for
various purposes. Parts of the interface must be encapsulated so that the interface
possesses a high degree of integrity.

Pointing out and analyzing the challenges that a novice person faces when creating
exploratory narratives of complex data is indispensable to developing a functional interface.
For that purpose, we went through particular storytelling scenarios to understand the
actions that an author should perform on the data to achieve their goals.

The first challenge we faced was information overload. All components and interactions
must be visualized in such a way that the author can keep an overview without being
overwhelmed. We also have to take into consideration that the stories can be arbitrarily
extensive, thereby making the problem more complex. Graph-based systems are found to
be ideal for such complex, interwoven narratives, as their ability to visualize data makes
them the most accessible [GHC18].

The most challenging, however, is to allow an onboarded person to decide whether they
want to have a closer look at specific data, skip some parts of the narrative, or review
the narrative sequence. In this case, a deviation from the linear sequence should be

2

possible to achieve this level of interactivity. Unfortunately, we are not able to provide
an interface for highly interactive dashboard onboardings at the current stage, therefore
it is crucial to define the boundaries of end-user interactions.

Within the scope of our research, we want to achieve a set of goals: (1) fill the lack of
existing authoring tools for producing data-driven explanatory narratives in the context
of dashboard onboarding; (2) design and implement a user-friendly, efficient, clear, and
expressive user interface for an automated onboarding solution proposed by Vaishali et
al. [Dha+22], thus (3) supporting creators in developing appealing and comprehensible
narratives that will be perceived by the end-user in the most efficient way; (4) allow
analysts to create an adaptive and interactive dashboard onboarding process; and (5)
meet the aforementioned design requirements and overcome the challenges.

3

CHAPTER 2
Related Work

The potential of exploratory narratives of visual data is vast and has not been thoroughly
studied [Zha+22]. While reviewing the existing tools for generating narrative sequences in
different areas, we found some ideas, approaches, and interface representations beneficial
for our research.
We were interested in finding an authoring tool that could be combined with a process
model for dashboard onboarding and that enables analytics to sequentially describe
data visualizations such as charts, KPIs etc. by generating rule-based narratives and
employing various presentation means.

Roslingifier [Shi+22] proposes "a data-driven narrative method for animated scatter plots"
and introduces a semi-automated authoring tool to facilitate the production of powerful
in-person presentations.

The Roslingifier interface, consists of three visual components: a Presentation Output
View, an Event Exploration View, and a Presentation Editor, gives us a basic idea how
an authoring tool for data presentations can look like.

The main components are called events, which consist of a group of entities and are
depicted as gray rectangles. A story is a linear chronological presentation sequence of
event segments. The events can, however, overlap or be displayed simultaneously. Users
can add and delete events and change the order of the events or segments. These actions
on data are essential when developing an authoring tool.

The authoring process begins with an automatically generated story, then the creator can
edit and play the presentation interactively using temporal branching, natural language
narratives, and visual effects methods.

The temporal branching technique delivers a certain level of interactivity, where the
presenter sets rewinds at several time points in the narration sequence and adds other
playback or highlighting techniques to describe other aspects of an event. This approach

5

2. Related Work

seems to be practical for dashboard onboarding, however, it is not clear how it would
perform if a great number of rewinds are utilized for multiple narrative trajectories. From
our point of view, it could lead to a loss of overview.

The natural language narrative method is provided by the system in a written form. The
presenter can add an explanation or a short description in the text field mapped directly
into the presentation view. We found the design and placement of the description field
reasonable, so we are going to incorporate it into our interface.

To highlight entities, trends, or insights visual effects such as labeling, spotlighting,
tracing, and accumulation are used. Moving the position of labels and turning on and off
the colored bubble labels is also possible. For now, we consider applying labeling and
spotlighting to emphasize dashboard components and elements for different purposes.

From the very beginning of our research, we considered the presentation editor as part
of the dashboard onboarding user interface, though in the mock-up phase we realized
that this structure does not provide the desired level of interactivity of the dashboard
onboarding process. The analysis of the Roslingifier user interface has revealed that the
data-driven storytelling creator is not a perfect fit for the dashboard onboarding interface,
but we can adapt some parts of the Roslingifier interface, such as the Presentation Output
View, the narrative description field, and highlighting techniques.

Another authoring tool that has similarities with our approach is Novella proposed
by Green [Gre18]. Novella is realized by using a node-based diagram, elements of a
simple text editor, and directly mapped fields that require data entry. We found both
the overall interface layout and most of the visual elements and interface features very
conducive to the dashboard onboarding process model. Most of the authoring process
is handled by the central node-based graph, with the nodes representing distinct forms
of narrative elements. This kind of interface structure solves the problem of multiple
narrative trajectories. The graph nodes are linked to each other through pins. Each node
has at most one ingoing and at least one outgoing pin, which aids the development of
interactive systems.

The nodes’ data can be edited via popover windows, thus minimizing the need for screen
space despite extensive content. If required, a popover can be detached to retain its
visibility. We also foresee a field for a textual description of the dashboard component,
so this feature might be useful.

The tool also provides undoing and redoing of the editing actions, which allows non-
technical creators to learn the system by doing without being afraid of performing a
wrong action.

Abstract data extracted from the system model that is mapped into nodes is indicated
by a colored flag in the upper left corner. In this way, the type of node can be easily
identified. We also strive for increased ease of data recognition, therefore we assign a
distinct color and an icon to each dashboard component.

6

Another advantageous graphical feature that enhances the user experience is the high-
lighting of empty or incomplete states. No color is assigned to the unconnected pins, and
unidentified nodes are labeled with a light placeholder text to indicate an incomplete
state.

The Novella interface enables users to completely hide the panels that are employed less
frequently, such as Story Preview, Variable Editor, and Entity Editor. This reduces
the clutter of the user interface while working with complex data. We will definitely
implement this feature in the development stage.

Nonetheless, we have found that no information about possible narrative means, such as
human narration or screen recording and traversal strategies, was pointed out, which is
an essential aspect of our research. Furthermore, the Novella interface offers superfluous
features for the current stage of development of our interface, such as the trash function.
Most content within the interface goes to the recycle bin before it is deleted. In our case,
a deleted component moves to the component graph from the sidebar, since it must be
used at least once in the narration sequence.

Despite the fact that Novella’s interface meets most of our requirements and tackles
some of the problems described, it cannot be leveraged for the dashboard onboarding
process model without modifications. We would need to eliminate redundant functions,
introduce dashboard components and interactions, change the appearance of the nodes,
and implement some additional functions, such as the drag-and-drop feature.

Narvis Authoring Narrative Slideshows [Wan+18] enables teachers to produce narrative
slideshows for introducing data visualization designs. Here, visual primitives, visual units,
and visual views form a hierarchical structure of the model that reflects the component
structure of the dashboard onboarding process model. The user interface consists of
a Source Panel with input data, a unit panel, where the components’ dependency is
described, a Channel Panel where transitions and comments are added, and an Editing
Panel that appears as the floating annotation window, where created annotations and
transitions are modified.

The Narvis developers describe the relationships between the conceptual components,
leading us to the notion of how we can achieve a certain degree of interactivity. They
identify two types of relationships between visual units: independent, where no logic
dependency exists between two visual units, and dependent, where one visual unit “A”
depends on another visual unit “B” and must be explained before “B”.

Since we are interested in the authoring phase, we analyzed the organizing and introducing
units that are conducted in different panels.
The organization of the units is accomplished in the unit table, where the creators define
the interrelationships between the units. The exact method of setting these relationships
is, however, not further explained.

In introducing units, the Channels Panel and the Editing Panel are involved. The
Channels Panel is responsible for displaying attributes of visual units that need to be

7

2. Related Work

explained. To explain certain attributes, animated transitions, and annotations must be
inserted and then manipulated in the editing area, i.e., resized or moved, for example.
Even if the dashboard’s components and interactions can be mapped out as visual
channels, it is difficult to comprehend how a more extensive set of attributes explaining
complex data could be displayed in such a compact format.

As we have learned from analyzing the Narvis authoring tools, defining relationships
between visual elements can be helpful in producing interactive stories, but the complete
tool and its interface are also not a perfect fit for a dashboard onboarding interface.
Despite the extensive number of existing tools developed for generating visual nar-
ratives, we could not find any tool that fits the determined design requirements and
addresses and tackles the described challenges within the scope of interactive onboardings.

8

CHAPTER 3
Mock-up Creation Stage

Throughout all the stages of the research process, diverse mock-ups were developed. For
creating interface mock-ups, Adobe Illustrator [Ado23], a vector-based drawing software,
and the graphic design platform Canva.com [PAO12] were employed.

The complete dashboard onboarding process involves two main user roles, namely, the
author, who creates a narrative sequence, and the end-user, for whom a dashboard is
designed and presented [Dha+22]. When developing an interface for the process model
within this research, we only focus on the authoring part, which means no presentation
preview design is foreseen.
At the initial stage of the research, we determined the primarily global interface structure,
considering the Roslingfier [Shi+22] and Novella [Gre18] interfaces. The main layout
is divided into three sections: Presentation Output View, Component Graph, and a
Presentation Editor.

The main purpose of the Presentation Output View is to provide a preview of the
generated narrative sequence. Furthermore, in this panel, the author can add annotations
in a directly mapped text field shown in Figure 3.1. The text volume of the annotations
needs to be restricted, as the presentation area offers limited preview space. Completely
limiting the number of words is not something we want to pursue, since we want to
provide the creators with more control over the authoring process. Instead, we put
constraints in the form of a warning message (Figure 3.2).

The Component Graph consists of three levels of components [Dha+22] that build the
hierarchy of the introduced onboarding process model: dashboard components, dashboard
interactions, and dashboard data. As a rule, developers have to visualize extensive data
on a relatively restricted layout. To save design space, the dashboard components
and interactions are organized in collapsible tabs (Figure 3.3) and can be added to
the narrative sequence by clicking on them or dragging and dropping them into the
presentation editor.

9

3. Mock-up Creation Stage

Figure 3.1: An annotation box, directly mapped into the Output View layout section.

Consequently, icons and symbols are employed for the sake of saving as much space
as possible while still ensuring good readability (Figure 3.4). To improve the usability
of our interface, we introduced a set of icons that identify data components. For the
representation of the icons, metaphors from the real world are used to depict objects and
activities in the digital world. We take advantage of previously learned correlations and
reuse common or recognizable symbols so that users do not have to guess the meanings
of functions. This ensures the coherence of the interface.

The design of the Presentation Editor was adopted from the Roslingfier interface layout.
We have slightly modified its appearance so that it fulfills the functionality we have
defined for onboarding purposes. The editor is depicted as a timeline with colored
rectangles that represent different dashboard components (Figure 3.5). As the name
implies, the entire authoring process takes place in this area.

As was already mentioned above, an element that describes a particular data component
can be dragged and dropped from the component graph into the editor. By default,
a group of elements describing the same main component is assigned a specific color.
However, authors could assign their own color via a color picker, found in the component
graph, to enhance the recognition of related elements. For instance, a bar chart is
attributed a blue color. Consequently, the elements such as labels, axes, etc. that
describe the bar chart are colored blue. All the elements of the Presentation Editor can
be scaled, moved, or deleted. The scaling of the component determines the duration of
its presentation in a narrative. To display several elements concurrently or time-shifted,
the author could add several timeline tracks and place the rectangles parallel to each
other on different tracks so that they overlap. This functional side of the Presentation

10

Figure 3.2: The warning message about exceeding the allowed length of the author’s
annotation.

Editor makes it suitable for producing narratives in linear, chronological order. However,
after the cognitive walkthrough and delving deeper into the functions of the Presentation
Editor, we faced a major challenge.

When an author conceives a story, the data arrangement is often intuitively determined,
and the structure of the narrative is ordered according to the relevance of the data
to certain end-user groups. Therefore, we should allow the author to stipulate certain
conditions for narrative segments or to generate alternative narrative trajectories. It
appeared to be troublesome to conceive of this scenario, and in our opinion, it is practically
intractable to produce multiple storylines with the editor in timeline form. This problem
prompted us to rethink the concept and redesign the interface.

After research, we found the solution – to develop an interactive narrative that allows
the end user to steer the narrative flow [SMP03]. A suitable approach is to embody
the data as a directed graph, where the nodes represent the dashboard components
and interactions, and the arcs between the nodes represent the decisions that the end
user can take. However, the amount of the narrative content can increase exponentially
with the number of alternative trajectories, so that the authoring process becomes
incomprehensible and infeasible [RB13]. Therefore, the dashboard onboarding system
limits the degree of variation at certain parts of the narrative flow.

As we have already mentioned in the related work section, the Novella interface [Gre18]
is implemented utilizing a node graph. Hence, we were looking for node editor designs
that would serve our purposes and created a mock-up of the Node Editor whose design
was adopted from the open source animation software Blender 3.0.1 [Com22] (Figure

11

3. Mock-up Creation Stage

Figure 3.3: The Component Graph of the onboarding authoring tool with accordions for
each dashboard component.

3.6). Each node in the Node Editor has a distinct color, heading, and icon that are used
consistently throughout the interface so that it is recognized instantly on the canvas.

As the editor occupies the majority of the layout space, the Presentation Output View is
moved to a separate, hidden window that can be accessed by changing the select option.
In this way, the author can toggle between the Node Editor and the Presentation Output
View.

By adopting the Node Editor, the need for the Presentation Editor is considered su-
perfluous. However, we have not removed this panel, but have significantly reduced
its functionality. The current purpose of the Presentation Editor or from this moment,
renamed to a Narrative Sequencer, is to project an active narrative trajectory when the
author clicks on a branch in the Node Editor. Additionally, the author is only able to set
a duration of the specific elements in the narration flow by scaling them. To provide an
indication of the currently active branch, the system highlights the element on which
an action is being performed. For example, if the author clicks on an element in the
narrative sequence, the corresponding node is highlighted in the Node Editor (Figure
3.7).

As we aim for semi-automatic authoring for dashboard onboarding, we need to specify an
incomplete state of the entities after a primary narrative sequence has been created. Each
dashboard component is required to be part of the narrative sequence. Consequently, if
a component is missing, it can be highlighted in the component graph to indicate that
the author has to manually insert it into the sequence (Figure 3.8). However, after some
consideration, we have decided to omit this feature, as it makes the development process

12

Figure 3.4: Icons used throughout the interface that depict objects and activities in the
digital world.

needlessly complicated at the current stage.

With this state of the design, the goal of enabling the author to generate rule-based
narratives with variations so that the end user has the ability to decide how the narrative
unfolds seems to be achievable. Thus, we decided to move on to the implementation
phase.

13

3. Mock-up Creation Stage

Figure 3.5: The Presentation Editor that was adopted from the Roslingfier [Shi+22] and
modified according to authoring tool purposes.

14

Figure 3.6: The Node Graph Editor that allows creators to produce different narrative
trajectories.

15

3. Mock-up Creation Stage

Figure 3.7: Node Graph Editor that allows creation to produce different narrative
trajectories.

16

Figure 3.8: Incomplete state indication in the Component Graph after a narrative
sequence is generated.

17

CHAPTER 4
Implementation and Results

In the development phase, we aim to incorporate the knowledge gained from the review of
the related works, taking into consideration the described interface design and usability
requirements, to tackle the identified challenges. To implement the graphical interface
for the authoring tool, we utilise HTML, JavaScript, React, React Flow and Bootstrap
libraries in the integrated development environment PHPStorm. The source code of the
implemented part is available on GitHub [Dha23].

The first step towards deployment of the authoring tools is to set up a basic layout with
three panels: the left panel for displaying the traversal strategies and entities of the
Component Graph (Figure 4.1a), the middle panel for the Node Editor (Figure 4.1b),
and the right panel for the Presentation Output View (Figure 4.1c). To achieve that, we
create React components for resizable panels, set the initial width and also minimum
and maximum width values to avoid content overlap.

1 <ResizePanel initialWidth={250} maxWidth={400} minWidth={250}>
2 <ResizeContent/>
3 </ResizePanel>

The left panel is organized into several sections for the traversal strategy options and
for the dashboard components and sub-components. As there are many components to
be displayed in the component diagram, we need to spare space, therefore we pack the
elements into collapsible Bootstrap accordions.

The Node Editor is the main part of our system, where most of the authoring process
is accomplished. It is implemented with the aid of an interactive, node-based editor
provided by the customizable library React Flow [web22]. The node canvas on which all
node sequences are rendered is generated by adding a <ReactFlow/> component.

React Flow offers different built-in node types, depending on the number of handles
[web22]. We decide to remove the incoming and outgoing handles and therefore implement

19

4. Implementation and Results

Figure 4.1: First prototype of the Dashboard Onboarding Authoring Tool consists of
three resizable panels: the Component Graph, the Node Editor, and the Output Editor.

a custom node, which is additionally assigned a title and a corresponding color. Since we
want to achieve a certain degree of interactivity, the system should allow the setting of
change points and relationships between node segments.

Another type of node that we use is a group node. Since we want to provide a certain degree
of interactivity, the system should allow the setting of change points and relationships
between the nodes or the node segments. To achieve this, nodes are grouped together
and a desired type of connectivity is specified (Figure 4.2). The segments that define
different alternative narrative trajectories are arranged parallel to each other. One of
three types of connectivity can be assigned to a group of nodes. The author can define
whether all, at least one, or only one sequence of the group must be traversed in arbitrary
order.

To render the nodes on the canvas, we pass base properties with the initial nodes to the
<ReactFlow/> component, and since the native nodes have no default styling, we add
CSS classes and attributes to render the nodes as they appear in mock-ups:

1 <ReactFlow
2 nodes={nodes}
3 onNodesChange={onNodesChange}
4 nodeTypes={nodeTypes}
5 onInit={setReactFlowInstance}
6 snapToGrid
7 fitView
8 >
9 </ReactFlow>

React Flow contains a variety of built-in functions that we utilize and extend. All

20

Figure 4.2: The Dashboard Components can be grouped together to define a particular
dependency between them.

methods are called by passing the properties to the <ReactFlow/> component. Moving
nodes around the canvas and selecting and deleting nodes are already supported by
the library. However, to delete a node, the creator should press the backspace key,
which seems intuitive, although not sufficient from our point of view. Therefore, we
create a context menu that appears on right-click on a node and enables the author to
delete any node, including group nodes. The action is invoked by passing the property
onNodeContextMenu. Afterwards, we append a delete option to the context menu. To
delete a node from the canvas, we simply update the node array by filtering all nodes
with a different ID than the node to be removed.

1 const [position, setPosition] = useState({x:0, y:0});
2 const [isOpen, setIsOpen] = useState(false);
3
4 <ContextMenu
5 isOpen={isOpen}
6 position={position}
7 onMouseLeave={()=>setIsOpen(false)}
8 actions={[{label: 'Delete', effect:deleteNode}]}>
9 </ContextMenu>

The significant function that we want to provide is dragging the nodes from the Component
Graph into the Canvas. The drag-and-drop option outside of the React Flow area is not
integrated, although it can be implemented with the native HTML Drag and Drop API
[web22].

First, we determine which elements should be draggable by assigning the draggable
attribute and the onDragStart event handler to the nodes in the Component Graph.

21

4. Implementation and Results

With the onDtagStart event handler, we pass the event’s data, i.e., the type and the
title of the node, to create a corresponding node on the canvas after dropping:

1 <div className="dndnode dashboard"
2 onDragStart={(event) => onDragStart(event, 'simple', 'dashboard', '

Dashboard')}
3 draggable>
4 Dashboard
5 </div>

The dropping behavior is realized with the onDrop event handler, where the node data
is retrieved and processed. Then a new node is created and added to the array of nodes
accordingly.

1 const onDrop = useCallback(
2 (event) => {
3 event.preventDefault();
4
5 const reactFlowBounds =

reactFlowWrapper.current.getBoundingClientRect();
6 const type = event.dataTransfer.getData('nodeType');
7 const data = event.dataTransfer.getData('data');
8 const title = event.dataTransfer.getData('title');
9

10 // check if the dropped element is valid
11 if (typeof type === 'undefined' || !type) {
12 return;
13 }
14
15 const position = reactFlowInstance.project({
16 x: event.clientX - reactFlowBounds.left,
17 y: event.clientY - reactFlowBounds.top,
18 });
19 const newNode = {
20 id: getId(),
21 type,
22 position,
23 data: {
24 title: title,
25 type: data,
26 },
27 };
28
29 setNodes((nds) => nds.concat(newNode));
30 },
31 [reactFlowInstance]
32);

The React Flow library contains many useful features that we find very helpful, such
as controls for the Node Editor like zooming and panning. The control panel is always
accessible to the author, which helps to maintain an overview. For even better orientation
across the graph, a mini map can be integrated. The minimap is a React Flow component

22

which provides an interactive minimap to React Flow that displays the entire flowchart
[web22].

The implementation of the preliminary designs involves constant changes, e.g., the
annotation field is moved from the Output View to the foot of the Node Editor. The
annotation box appears as soon as a node is selected, which saves space and reduces UI
clutter.

In the first stage of prototype development, we achieved to implement the basic function-
ality of the authoring tool. With the current state of the user interface it is possible (1)
to display the dashboard components in the Component Graph as nodes with predefined
attributes: the title and corresponding color; (2) to drag the nodes from the Component
Graph and drop them into the canvas in the Node Editor panel ; (3) to select and deselect
the nodes, move them freely around the canvas and delete them; (4) to group the nodes
and define the desirable dependency between them by choosing the corresponding option
in the context menu; (5) to pan the Node Editor canvas by dragging and zoom in or out
by using React Flow controls.

Since this research is an ongoing process, the interface design and its functionality will
be drastically modified and expanded in the further stages of development to facilitate
an understanding of the analytical data.

23

CHAPTER 5
Conclusion and Future Work

In this thesis, we have created a first prototype of the authoring tool interface for
generating dashboard onboardings. We have learned what challenges non-technical
creators face while producing visual explanations of complex analytical data and how
they can be overcome by using a well-designed interface.

We intend to continue extending the authoring tool functionality and improving the
usability of the interface design. Learning from the observations made in this paper, some
improvements are already planned. We will implement state notification to facilitate the
exploration of constructed narratives and encourage learning from experience with the
system. The state notification includes undoing and redoing state changes or displaying
an alert message if an action is not reversible. Then the presentation means, such as
guided tours, audio and video presentations, and scripts and tree traversal strategies, will
be added.

As system functionality increases, so do the demands on design, therefore, usability has
to be constantly refined to ensure a great user experience.

25

List of Figures

3.1 An annotation box, directly mapped into the Output View layout section. 10
3.2 The warning message about exceeding the allowed length of the author’s

annotation. 11
3.3 The Component Graph of the onboarding authoring tool with accordions for

each dashboard component. 12
3.4 Icons used throughout the interface that depict objects and activities in the

digital world. 13
3.5 The Presentation Editor that was adopted from the Roslingfier [Shi+22] and

modified according to authoring tool purposes. 14
3.6 The Node Graph Editor that allows creators to produce different narrative

trajectories. 15
3.7 Node Graph Editor that allows creation to produce different narrative trajec-

tories. 16
3.8 Incomplete state indication in the Component Graph after a narrative sequence

is generated. 17

4.1 First prototype of the Dashboard Onboarding Authoring Tool consists of three
resizable panels: the Component Graph, the Node Editor, and the Output
Editor. 20

4.2 The Dashboard Components can be grouped together to define a particular
dependency between them. 21

27

Bibliography

[Ado23] Adobe Inc. Adobe Illustrator. Version CC 2020 (24.0.2). Mar. 25, 2023. url:
https://adobe.com/products/illustrator.

[BDF15] Jeremy Boy, Francoise Detienne, and Jean-Daniel Fekete. “Storytelling in
information visualizations: Does it engage users to explore data?” In: Proceed-
ings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. 2015, pp. 1449–1458.

[Com22] Blender Online Community. Blender - a 3D modelling and rendering package.
Blender Foundation. Stichting Blender Foundation, Amsterdam, 2022. url:
http://www.blender.org.

[Dha+22] Vaishali Dhanoa et al. “A Process Model for Dashboard Onboarding”. In:
Computer Graphics Forum (EuroVis ’22) 41.3 (July 2022), pp. 501–513.
doi: 10.1111/cgf.14558. url: https://doi.org/10.1111/cgf.
14558.

[Dha23] Vaishali Dhanoa. Dashboard Onboarding UI. 2023. url: https://github.
com/jku-vds-lab/dashboard-onboarding-ui (visited on 05/01/2023).

[EAB13] Micheline Elias, Marie-Aude Aufaure, and Anastasia Bezerianos. “Storytelling
in visual analytics tools for business intelligence”. In: Human-Computer
Interaction–INTERACT 2013: 14th IFIP TC 13 International Conference,
Cape Town, South Africa, September 2-6, 2013, Proceedings, Part III 14.
Springer. 2013, pp. 280–297.

[Gal07] Wilbert O Galitz. The essential guide to user interface design: an introduction
to GUI design principles and techniques. John Wiley & Sons, 2007.

[GHC18] Daniel Green, Charlie Hargood, and Fred Charles. “Contemporary issues
in interactive storytelling authoring systems”. In: Interactive Storytelling:
11th International Conference on Interactive Digital Storytelling, ICIDS
2018, Dublin, Ireland, December 5–8, 2018, Proceedings 11. Springer. 2018,
pp. 501–513.

[Gre18] Daniel Green. “Novella: an authoring tool for interactive storytelling in
games”. In: Interactive Storytelling: 11th International Conference on In-
teractive Digital Storytelling, ICIDS 2018, Dublin, Ireland, December 5–8,
2018, Proceedings 11. Springer. 2018, pp. 556–559.

29

https://adobe.com/products/illustrator
http://www.blender.org
https://doi.org/10.1111/cgf.14558
https://doi.org/10.1111/cgf.14558
https://doi.org/10.1111/cgf.14558
https://github.com/jku-vds-lab/dashboard-onboarding-ui
https://github.com/jku-vds-lab/dashboard-onboarding-ui

[Nie94] Jakob Nielsen. “Enhancing the explanatory power of usability heuristics”.
In: Proceedings of the SIGCHI conference on Human Factors in Computing
Systems. 1994, pp. 152–158.

[PAO12] Melanie Perkins, Cameron Adams, and Cliff Obrecht. 2012. url: https:
//www.canva.com/.

[RB13] Mark Owen Riedl and Vadim Bulitko. “Interactive narrative: An intelligent
systems approach”. In: Ai Magazine 34.1 (2013), pp. 67–67.

[Shi+22] Minjeong Shin et al. “Roslingifier: Semi-Automated Storytelling for Ani-
mated Scatterplots”. In: IEEE Transactions on Visualization and Computer
Graphics (2022).

[SMP03] Daniel Sobral, Isabel Machado, and Ana Paiva. “Managing authorship in plot
conduction”. In: Virtual Storytelling. Using Virtual RealityTechnologies for
Storytelling: Second International Conference, ICVS 2003, Toulouse, France,
November 20-21, 2003. Proceedings 2. Springer. 2003, pp. 57–64.

[SMR03] Nicolas Szilas, Olivier Marty, and Jean-Hugues Réty. “Authoring highly
generative interactive drama”. In: Virtual Storytelling. Using Virtual Re-
alityTechnologies for Storytelling: Second International Conference, ICVS
2003, Toulouse, France, November 20-21, 2003. Proceedings 2. Springer. 2003,
pp. 37–46.

[Wan+18] Qianwen Wang et al. “Narvis: Authoring narrative slideshows for introducing
data visualization designs”. In: IEEE transactions on visualization and
computer graphics 25.1 (2018), pp. 779–788.

[web22] webkid. React Flow, a library for building interactive node-based UIs. we-
bkid GmbH. Kohlfurter Straße 41/43, 10999 Berlin, 2022. url: https:
//reactflow.dev/ (visited on 05/01/2023).

[Zha+22] Yangjinbo Zhang et al. “A Visual Data Storytelling Framework”. In: Infor-
matics. Vol. 9. 4. MDPI. 2022, p. 73.

30

https://www.canva.com/
https://www.canva.com/
https://reactflow.dev/
https://reactflow.dev/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Mock-up Creation Stage
	Implementation and Results
	Conclusion and Future Work
	List of Figures
	Bibliography

