
Advanced Importance Sampling
Techniques for Virtual Ray Lights

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Michael Oppitz, BSc
Registration Number 01227129

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dr.techn. Károly Zsolnai-Fehér, B.Sc. M.Sc.

Vienna, 18th April, 2022
Michael Oppitz Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Fortgeschrittene
Stichprobenentnahme nach

Wichtigkeit für Virtuelle
Lichtstrahlen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Michael Oppitz, BSc
Matrikelnummer 01227129

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dr.techn. Károly Zsolnai-Fehér, B.Sc. M.Sc.

Wien, 18. April 2022
Michael Oppitz Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Michael Oppitz, B.Sc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 18. April 2022
Michael Oppitz

v





Acknowledgements

I would like to thank Károly Zsolnai-Fehér who supported and guided me through the
creation of this thesis. I would also like to thank Professor Michael Wimmer for his
support and feedback. Both gave me the necessary time to complete this work, even if it
took a little longer. Additionally, I would like to thank Professor Derek Nowrouzezahrai
who review my initial ideas and provided valuable feedback.

I would also like to sincerely thank my parents, family and friends who supported and
encouraged me to complete this work. Even in difficult times, they always strengthened
and encouraged me.

vii





Danksagung

Ich möchte Károly Zsolnai-Fehér danken, der mich bei der Erstellung dieser Arbeit
unterstützt und begleitet hat. Ich möchte auch Professor Michael Wimmer für seine
Unterstützung und sein Feedback danken. Beide gaben mir die nötige Zeit, diese Arbeit
abzuschließen, auch wenn es etwas länger gedauert hat. Außerdem möchte ich Professor
Derek Nowrouzezahrai danken, der meine ersten Ideen überprüft und wertvolles Feedback
gegeben hat.

Ich möchte mich auch ganz herzlich bei meinen Eltern, meiner Familie und meinen
Freunden bedanken, die mich unterstützt und ermutigt haben, diese Arbeit abzuschließen.
Auch in schwierigen Zeiten haben sie mich immer wieder gestärkt und ermutigt.

ix





Abstract

This thesis provides new importance sampling techniques for Virtual Ray Lights for
Rendering Scenes in Participating Media. We will discuss the foundations of rendering
scenes with participating media first, to get an understanding of this topic. Furthermore,
we will provide an overview of different approaches that can be used for the rendering of
these scenes.

Virtual Ray Lights is an algorithm that traces light rays from the light source through the
scene, which are then evaluated individually for each camera ray. Importance sampling
is used on both rays to get a samples for each ray for which their contribution can be
calculated.

As a solid understanding of the original algorithm is needed to understand the new
approaches that we introduce, a focus is laid on explaining the mathematical foundations
of the approach. We highlight the shortcomings that we found for rendering anisotropic
participating media and introduce our solutions to solve them more efficiently.

We provide two different solutions to the problem that we evaluated in the original
algorithm. Our solutions are explained mathematically, via pseudo code and are evaluated
with a multitude of tests. The goal of this thesis is to provide new, simple, robust and
fast solutions to rendering scenes with anisotropic participating media.
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Kurzfassung

In dieser Arbeit stellen wir neue Techniken zur Stichprobenentnahme nach Wichtigkeit für
virtuelle Lichtstrahlen (Virtual Ray Lights) in Partikelwolken vor. Wir werden zunächst
die Grundlagen des Renderings von Szenen mit Partikelwolken diskutieren, um ein
Verständnis für dieses Thema zu bekommen. Außerdem werden wir einen Überblick über
verschiedene Ansätze geben, die für das Rendering von diesen Szenen genutzt werden
können.

Virtual Ray Lights ist ein Algorithmus, der Lichtstrahlen von der Lichtquelle durch die
Szene verfolgt und dann für jeden Kamerastrahl einzeln auswertet. Die Stichprobenent-
nahme nach Wichtigkeit wird auf beiden Strahlen verwendet, um eine Abtastung für
jeden Strahl zu erhalten, für die ihr Beitrag berechnet werden kann.

Da ein gutes Verständnis des ursprünglichen Algorithmus erforderlich ist, um die von
uns vorgestellten neuen Ansätze zu verstehen, liegt ein Schwerpunkt auf der Erläuterung
der mathematischen Grundlagen des ursprünglichen Ansatzes. Wir heben die Unzuläng-
lichkeiten hervor, die wir beim Rendern anisotroper Partikelwolken gefunden haben, und
stellen unsere Lösungen vor, um diese effizienter zu lösen.

Wir stellen zwei verschiedene Lösungen für das Problem, das wir im ursprünglichen
Algorithmus bewertet haben vor. Unsere Lösungen werden Mathematisch und mittels
Pseudocode erklärt und mit einer Vielzahl von Tests evaluiert. Das Ziel dieser Arbeit
ist es, neue, einfache, robuste und schnelle Lösungen für das Rendern von Szenen mit
anisotropen Partikelwolken bereitzustellen.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

I n computer graphics, there are many different challenges to overcome when simulating
real-world phenomena. Some of these challenges can be solved rather easily, whereas

others require complex ideas to approximate the real world. One of the challenges that
requires complex ideas is light simulation. For realistic imagery, the calculation of light
plays an important role. Therefore, the topic of light simulation is extensively studied.
The issue with light simulation is that an infinite number of light rays has to be traced
through a scene to get realistic results. At an intersection with a surface, the surface
properties determine how the rays will be adjusted for every direction possible. According
to the rendering equation, the incoming radiance from all other points affects the exiting
radiance from a point. Therefore, approximations are needed, as an analytic solution is
impossible.

While the calculation of light is already a complex task, one of the phenomena that make
this task even harder to solve is participating media. There are many different examples
for participating media, but the most common ones are fluids and smoke, as can be seen
in Figure 1.1. In participating media, the light rays can also intersect with the media
itself, not just a surface. For every intersection in the medium, the properties of the
medium at that point determine how the new light rays are traced further. As again,
the contribution of all incoming radiance is needed to calculate the exiting radiance at a
point, a new layer of complexity is added. In most cases, light simulation in participating
media requires complex algorithms, or otherwise, it will take a lot of time to get realistic
results.

For even the simplest of scenes, an infinite number of calculations would be needed to
achieve correct results. Therefore, approximations have to be made. In many cases,
random samples are taken and evaluated and the average of these samples converges to
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1. Introduction

VPM BRE

Figure 1.1: Different variations of participating media. Source: [NSJ14] (left), [KGH+14]
(right)

the correct solution. This is called the Monte Carlo method [PJH16, Chapter 13]. Most
approaches work with statistical methodologies to evaluate which calculations yield a
higher importance to the final result. This method is called importance sampling, as just
randomly picking samples would require much more time, and in some cases, may not
even converge in any reasonable time frame. Therefore, importance sampling is used as a
way to determine which calculations are necessary. Importance sampling is a technique
that uses a probability function to estimate which samples should be taken in various
scenarios.

As an example, a light ray that traveled through thick media may have lost nearly all of
its power before arriving at a point that we want to evaluate. The radiance that this
light ray adds can be so low that it does not add anything to the scene that would be
visible to the naked eye. One scenario to use importance sampling is the calculation
of the direction of a light ray after a surface intersection, another is the calculation
of where a light ray intersects with a medium. A great introduction to this topic was
provided by Steve Marschner from Cornell University [Mar15], in which he describes the
mathematical and pseudo-code formulations of Volumetric Path Tracing.

There are different ways of simulating light in participating media. Out of all these
approaches, there are two groups that introduce common structures to the approximation
of light. One group approximates the incident light via photons. In these approaches,
photons are traced from a light source through the scene, and then their contribution for
points of interest is evaluated. For the second group, virtual lights are created instead
of photons. For a point of interest, these groups of algorithms evaluate the many lights
that were created in the step before. Both of these groups of approaches have different
shortcomings that new variations of them try to correct.

The approach that we will have a look at in detail is Virtual Ray Lights (VRL) [NNDJ12b].
It is part of the group of virtual light approaches, and in contrast to other approaches it
creates virtual ray lights, instead of virtual point lights or virtual lights in other geometric
variations. In this algorithm, light rays are cast from the light source through the scene to
be stored in a data structure. In the next step, camera rays are cast to evaluate the light
rays that were created in the previous step. These first two steps are straightforward, and

2



1.2. Aim of the Work

only the calculation of the new virtual light rays is an innovation compared to virtual
light approaches that were introduced before. The idea is to always evaluate a pair
of rays, one light, and one camera ray, at a time. First, a point on the light ray, and
secondly, a point on the camera ray, is chosen. Then, the contribution of the point on
the light ray is calculated corresponding to the point on the camera ray.

Evaluating which points are chosen is the main focus of the VRL paper. The selection
process is done via importance sampling. Novák et al. evaluated that the inverse squared
distance, and, in the anisotropic case, the product of the phase functions need to be
evaluated to create a conclusive sampling function. For the light ray, the sample is
chosen according to the distance between the two rays. For this process, the closest
points between the two rays are calculated and with the help of the inverse squared
distance between them, a point on the virtual light ray can be sampled. For the sample
on the camera ray, there is a case separation to be made. In the easier case, the media is
isotropic, which means that the light is scattered uniformly in all directions. Therefore,
a very practical approach by Kulla et al. [KF11] can be used to sample the light ray. In
this approach, the inverse squared distance can be used again to create a function for
importance sampling. The probability density function (pdf) is therefore proportional to
the inverse squared distance

pdf(ui, vi) ∝ 1
w(u, v)2 , (1.1)

where pdf(ui, vi) is the probability function for choosing the point ui and vi.

Unfortunately, the case of anisotropic media is significantly more complex. We have
to factor in the direction of both rays, as otherwise the anisotropy of the media is not
properly accounted for. Whereas in the isotropic case, a function approximate to the
inverse squared distance was enough to achieve correct results, in the anisotropic case,
the function has to be approximate to the inverse squared distance times the product of
the phase function fs at both points, ui and vi

pdf(ui, vi) ∝ fs(ui)fs(vi)
w(u, v)2 . (1.2)

As there is no closed-form solution to this problem, Novák et al. propose to construct a
piecewise-linear function from which a corresponding piecewise-quadratic function can
be computed which has to be inverted to create samples. Although this solution creates
accurate results, it is, compared to other importance sampling techniques, notably more
complex, which reduces the comprehensibility and impairs the performance.

1.2 Aim of the Work
The aim of this work is to provide a new importance sampling technique that solves
the anisotropic case of VRL. As the original technique already creates a highly accurate
approximation of the target function, the idea is to find representations that may
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1. Introduction

approximate the target functions slightly worse, but are easier and faster to calculate.
Therefore, more samples can be taken within the same time frame, as a result of
performance improvements with an easier methodology. Additionally, the new importance
sampling approach should also be less complex than the original approach. For these
goals, there are three rules that we have set ourselves as guidelines.

1. The new approach has to be simpler than the original one. As simplicity
is difficult to measure, we will compare the complexity via two different methods.
One method is the comparison of the mathematical formulation. This comparison
may not be of scientific importance, but it can be seen as a way of estimating how
easy it is to understand this approach.

2. All cases that were solved by the original approach, also have to be
solved by the new approach. The new algorithm has to be robust against all
changes of settings the original approach can calculate. If the new approach could
only calculate a subset of the settings that the original approach can, a comparison
of complexity or performance would be invalid.

3. The new approach has to be faster than the old one when comparing
the time it takes to take a single sample. Additionally, although it is not the
main intention, the new algorithm should produce more accurate results, in less
time. This is especially important the more time is given to render.

1.3 Contribution
We evaluated different ways on how to simplify anisotropic importance sampling in VRL.
Some ideas were discarded as they would have been similarly complicated, others were
just too slow, and some did not converge to satisfying results in various cases. However,
we found two methods that actually lead to improvements. Both of them replace the
piecewise approximation of the product of the phase functions by an approximation.

First, we present the idea of using the sum of two Cauchy distributions instead of the
product of the phase function. This solution can even be computed in a closed form,
which results in a clearly defined sampling function. This approach still works in a similar
fashion as the original importance sampling method, therefore it is possible, with just
minimal changes, to replace the original version of the importance sampling with the
new approach.

Second, we present our findings of different mixture models of distributions. In our search
for distributions that can be solved in a closed form, we found that the mixture model of
two probability distributions itself already provides acceptable results. As in the first
approach, the mixture models replace the product of the phase functions. The advantage
of this idea is that mixture models are very common and can therefore be expected to be
understood quite easily. As mixture models are also used in various other fields, there is
a lot of material available online.

4



1.4. Structure of the Thesis

In Appendix B we shortly describe other approaches that we tried and why they did not
succeed.

The implementation of our contribution is made available via a GitHub project.

1.4 Structure of the Thesis
In this thesis, we will first provide some insight into light transport and the notations and
terms of it in Chapter 2. After that, we use this knowledge to discuss photon-based and
virtual light approaches (Chapter 3). With this we want to create a general understanding
of the topic and the challenges that lie ahead. Afterwards, in Chapter 4, we will provide a
detailed explanation of VRL, as this is the basis of understanding the problem. The focus
is hereby laid on the mathematical formulation of the importance sampling techniques,
as this is the foundation of our new ideas.

In Chapter 5 we describe our new approaches. This chapter gives a detailed explanation
and mathematical evaluation, whereas the next chapter targets implementation details
(Chapter 6). After showing the implementation details, we compare our results with
the original approach in Chapter 7. This is done mostly by comparing renderings by
equal sample, equal time and equal error comparisons. Additionally, we will compare the
complexity of algorithms by their mathematical description and implementation length.
In the end we will conclude what has been provided in this thesis and evaluate future
work in Chapter 8.

5
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CHAPTER 2
Light Transport

A key to understanding the complex approaches that will be discussed in the following
chapters is a sound foundation of the basic concepts of rendering. Therefore, this

chapter focuses on the general mathematical formulations that are required for light
transport (Section 2.1). As we show the difficulties in solving this equations, we also
highlight a method of approximating them in Section 2.2. Important participating media
properties are explained in detail in Section 2.3. As this is on the side of general knowledge,
many parts of this chapter follow the theory of excellent lectures [ZF18, Mar15], books
[PJH16] and theses [Jar08, Nov14].

2.1 The Rendering Equation
There are many different ways of calculating light transport in a scene, but the underlying
concept is always the same, the rendering equation [Kaj86, ICG86]. The rendering
equation is a physically correct method of calculating the behavior of light. Therefore, it
is the key for creating realistic imagery.

In 1986 James Kjiya [Kaj86] and David Immel et al. [ICG86] published the rendering
equation simultaneously and it is still one of the most important equations in computer
graphics. The equation can be written as

Lo(x, ω⃗) = Le(x, ω⃗) +
�

Ω
Li(x, ω⃗′)fr(x, ω⃗, ω⃗′) cos θ dω⃗′, (2.1)

which calculates the exiting radiance Lo at a point x in a direction ω⃗. The emission
Le at the point x in the direction ω⃗ is added to the sum of all incoming radiance from
all directions ω⃗′, which is written as the integral of these directions

�
Ω ... dω⃗. For every

incoming direction ω⃗′, the incoming radiance Li at this point, the bidirectional reflectance
distribution function (BRDF) fr at this point and the angle between both directions, the
outgoing direction ω⃗ and the incoming direction ω⃗′, have to be evaluated.

7



2. Light Transport

This already shows the main problem with the rendering equation, it is not solvable in
a closed form. As we need the incoming radiance from all other points to evaluate the
exiting radiance from a point, we would need the result of our calculation in advance,
to calculate the incoming radiance. Therefore, it is only possible to approximate the
rendering equation, but not solve it. Many variations of approaches approximate the
rendering equation, like Recursive Ray Tracing [Gla89, Whi79], Path Tracing [LW93],
Metropolis Light Transport [VG97] and Photon Mapping [Jen01].

2.2 Monte Carlo Estimator
A way of approximating these complex equations that is important to our case, is the
approximation by the Monte Carlo method, which is used in Virtual Ray Lights. This
methodology, also called the Monte Carlo integration, approximates an integral by means
of an estimator, the Monte Carlo estimator. This estimator takes samples and averages
their results to converge to the correct result after many samples taken. For an integral
F (x) of a function f(x) the Monte Carlo estimator is written as

F (x) ≈ 1
N

i=1�
N

f(x)
pdf(x) , (2.2)

where N is the number of samples, x is the current sample, f(x) is the result of the
function with the current sample and pdf(x) is the probability density function (pdf) of
the sample. The pdf can be chosen freely, but the closer it fits to the target function, the
faster the estimator converges. Unfortunately, having an accurate pdf is not enough, as
it also has to be fast to process on a computer. This already describes the goal of this
thesis, finding a pdf for a function that fits closely and is fast to compute.

2.3 Participating Media Properties
There are a few important properties that need to be explained to get a better under-
standing for participating media. These properties define how the media interacts with
light. This is only a general overview to get an idea of the various concepts. In Equation
4.1 of Section 4.1 light transport in participating media is evaluated further, while in this
section the basic participating media properties are discussed. The participating media
properties that are explained in the following sections are visualized in Figure 2.1.

Emission Absorption Out-Scattering In-Scattering

Figure 2.1: The four properties of participating media.
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2.3. Participating Media Properties

2.3.1 Emission
A participating medium can add radiance to a light ray that travels through it, this is
called emission. The emission of a medium is defined by the emission coefficient ε(x) that
defines the amount of radiance that is added at a specific point x. Many participating
media like smokes or most fluids do not emit light, but there are a few that do like fire
or fluorescent liquids.

2.3.2 Absorption
As a medium can add radiance, it can also reduce the radiance. This phenomenon is
called absorption and is defined with the coefficient σa(x). The absorption coefficient is
defined as the percentage of which the radiance is reduced over a unit length distance.
An absorption coefficient of 0.5 reduces the radiance to fifty percent after traveling a unit
distance.

2.3.3 Out-Scattering
As with the absorption coefficient, the scattering coefficient σs(x) defines a reduction of
the radiance. This time, the radiance is not absorbed by the medium, but it scattered
into other directions. Similarly to the absorption coefficient, the scattering coefficient
defines a percentage of radiance lost over a unit distance.

2.3.4 Extinction
The absorption and the scattering coefficient can be combined, as they both represent a
loss of radiance. This coefficient is called the extinction coefficient σt(x) and is defined
as σt(x) = σa(x) + σs(x). As it is sometimes needed to know the loss of light after a
distance t, the absorption coefficient can be expressed with the transmission function

Tr(x, xt) = e−tσt(x). (2.3)

2.3.5 In-Scattering
The In-Scattering is the exact opposite of the Out-Scattering. Instead of the radiance
that is lost into other directions, the radiance that is coming from these other directions
is evaluated and added. It is not straightforward how the light is distributed from a
point, therefore a phase function fs(x, ω⃗, ω⃗′) is used to evaluate this distribution.

In the easiest case, the distribution is even and all directions are used equally. This is
called an isotropic phase function which is always

fs(x, ω⃗, ω⃗′) = 1
4π

. (2.4)

A visual representation of this function can be seen in Figure 2.2 (middle).

9



2. Light Transport

Backward (g < 0) Isotropic (g = 0) Forward (g > 0)

Figure 2.2: The possibilities of scattering in a participating media. The light ray (yellow)
is scattered into various directions depending on the media properties.

In the case of other scattering, there are various options of phase functions to use like
the Henyey-Greenstein phase function [HG41], the Rayleigh phase function [Buc95], the
Mie-Debye phase function [FW59] and many more.

As an example, the Henyey-Greenstein phase function introduces the variable g ∈ [−1, 1]
as a way of adjusting the scattering. A negative g-value creates backwards scattering
(Figure 2.2 left) and a positive g-value creates forward scattering (Figure 2.2 right). The
Henyey-Greenstein phase function for an angle θ is written as

fs(θ) = 1
4π

1 − g2

(1 + g2 − 2g cos θ)1.5 . (2.5)

2.3.6 Homogeneous and Heterogeneous Media
In the real world, two points in a participating medium rarely share the same properties
with each other. There are always differences between the properties, however small they
may be. This type of medium is called heterogeneous (Figure 2.3 (right)). In computer
graphics, the process of evaluating heterogeneous media takes much effort, as the medium
has to be evaluated at all of its points and no shortcuts can be taken. Therefore, in
many cases, homogeneous media (Figure 2.3 (left)) is used to simplify the calculations.
A homogeneous medium has constant properties that can therefore be evaluated much
easier. In this thesis, if not otherwise stated, we work with homogeneous media.

2.3.7 Single and Multiple Scattering
The scattering inside a medium is an important factor in how realistic the final result
looks. So for a perfectly realistic image, that would mean that we should use as much
scattering as possible. Unfortunately, the calculation of the scattering events and the
further evaluation takes a lot of time. We separate here between single (Figure 2.4 (left))
and multiple (Figure 2.4 (right)) scattering. For multiple scattering, the number of
bounces inside the medium can still be adjusted and experimented with. In most cases it
makes sense to find a number of bounces that still creates results in a reasonable amount
of time while still maintaining the visual benefits.

10



2.3. Participating Media Properties

Homogeneous Media Heterogeneous Media

Figure 2.3: Different types of participating media. Source: [Jar08]

Single Scattering Multiple Scattering

Figure 2.4: A visual comparison of single and multiple scattering.
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CHAPTER 3
Related Work

T here are various ways of approaching the rendering of participating media. In this
chapter, we look at two groups of approaches that are very similar. One group

contains the photon-based approaches (Section 3.1), which cast photons through the
scene and estimate the illumination with these photons. In the second group, virtual
lights are created and the contribution of these lights is calculated. This group will be
discussed in Section 3.2. It will be shown that both of these groups share a lot of common
ideas within the development of new approaches. This will guide us towards Virtual Ray
Lights and newer approaches that were developed since then.

3.1 Photon Approaches

Photon Mapping (PM) is a well-known approach for surface rendering, with variations
of it being used in many different areas. The approach was developed by Henrik Wann
Jensen in his PhD thesis [Jen96b] and was first published in 1995 [Jen96a]. PM is
a two-pass approach. In the first pass, the photon map is constructed by casting a
predefined number of photons from the light source through the scene. In the second
pass, Ray Tracing (RT) is used to evaluate the illumination from the previously cast
photons. A visual representation of photons that were created and a reference point
around which the photons are sampled can be seen in Figure 3.1.

For this approach, many different variations were developed. Some of the most popular
are Progressive Photon Mapping (PPM) [HOJ08] and Stochastic Progressive Photon
Mapping (SPPM) [HJ09]. This section focusses on further variations that can calculate
the light transport within participating media.
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x

y

z

Figure 3.1: To search for a specific number of photons (in this case four) around a point.
The sphere is expanded until enough photons are enclosed by it. In the first step (blue,
inner sphere) no photons are found within the area. The sphere is therefore expanded
(green, outer sphere) to find four photons inside of it.

3.1.1 Volumetric Photon Mapping (VPM)
The first variation of PM that was developed for participating media is Volumetric Photon
Mapping [JCKS02]. In PM a photon map is used to store the photons that were traced
through the scene. For VPM, evaluating this photon map can already be an issue. As
photons are not only stored on surfaces, but within the medium as well, an efficient data
structure has to be used. To evaluate the photons in the medium, a process called ray
marching is used. Ray marching evaluates the medium step by step with adjustable step
sizes.

As with the original PM algorithm, VPM still suffers from the same disadvantages. Both
approaches are only theoretically consistent, as only with an infinite number of photons,
there is no error. Unfortunately, the storage of the photons requires a lot of memory,
and the evaluation of them takes a lot of time. Therefore, a compromise has to be found
how many photons are stored and evaluated. Other approaches solve this problems to
a part as they are progressive. With these approaches, the photon-tracing step can be
repeated multiple times and evaluated again.

3.1.2 Beam Radiance Estimate (BRE)
One of the flaws of VPM is the usage of ray marching. Ideally, the steps taken would be
infinitely small to evaluate all points along the ray, but this is not feasible, as this many
evaluations per ray would have a negative effect on the performance of the algorithm.
Choosing a larger step size leads to noise and artefacts. Therefore, the Beam Radiance
Estimate [JZJ08] was introduced by Jarosz et al. to gather the photons over the whole
camera ray. This is formulated as

L(x, ω⃗) =
� s

0
Tr(x, xt)σs(xt)Li(xtω⃗) dt. (3.1)
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For a practical implementation, this formulation has to be slightly adjusted. As currently,
a photon would have to lie directly on the ray, which is practically impossible, the ray
has to be expanded into a beam to evaluate an area around the ray.

The BRE solves multiple problems of VPM. In VPM it is possible that a photon is
evaluated multiple times. Consider a low step size, with a wider area of evaluation, in
this case a photon may be multiple times in the area of evaluation. For the BRE this
cannot be the case, as it evaluates the photons all at once for every beam. Additionally,
the noise is reduced and the convergence is faster. A comparison of these two techniques
can be seen in Figure 3.2.

Reference 02:38:57 VPM 00:04:21 BRE 00:04:15

Figure 3.2: A comparison of VPM, the BRE and a reference solution that was rendered
with VPM and a small step size. The render time is provided in hh:mm:ss. Source:
[JZJ08]

3.1.3 Photon Beams (PB)

An important contribution to the field of photon-based approaches was made by Jarosz
et al. [JNSJ11]. They introduce a new way of presenting photons. Instead of storing a
single point, a whole ray is stored. This ray existed beforehand, but was ended early on
by scattering events that produced the photon. Figure 3.3 shows a comparison on how
photons are stored.

With this new way of storing photons, the data density is increased. Areas that previously
would not have had any data in it, can now be populated by data that was already
evaluated in the tracing step, but is now actually stored. The beams, which are now
additional information sources, can be used to produce results with faster convergence.
Figure 3.4 shows a comparison between VPM and PB. One practical byproduct of this
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VPM PB

Figure 3.3: A visual comparison of the ideas behind VPM and PB.

approach is that the number of traces does not change, but the density of the data still
increases.

Reference BRE 00:00:31 PB 00:00:25

Figure 3.4: A comparison of BRE and the PB, to a reference solution. The render time
is provided in hh:mm:ss. Source: [JNSJ11]

3.1.4 Progressive Photon Beams (PPB)
As for PM, PB is an unbiased approach, but only in the theoretical sense. For it to
be unbiased, an infinite amount of beams are needed, as only then the blur kernel gets
an infinitely small width. Progressive Photon Beams by Jarosz et al. [JNSJ11] solves
this problem by adapting the original algorithm to allow multiple passes that can be
combined. This change has a close correlation as the adaptations that were made from
PM to PPM.

3.1.5 Unifying Points, Beams and Paths (UPBP)
Most of the previous approaches are used only for certain use cases or are mostly just of
scientific importance. Therefore, Unifying Points, Beams and Paths [KGH+14, Vév15]
has such a high significance to the field. In this paper, Krivanek et al. create an
estimator that chooses between different approaches, depending on various media and
scene properties.

As can be seen in Figure 3.5, the candle, to the right of all examples, can be rendered
best with the BRE, whereas other participating media, or just areas of the participating
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VPM BRE

PB BPT

Figure 3.5: A comparison of UPBP, VPM, BRE, PB and BPT. The images for VPM,
BRE, PB and BPT are weighted by their contribution to the overall scene. Source:
[KGH+14]
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media, can be rendered better with other approaches. Therefore, UPBP gathers and
uses the best parts of all approaches. Due to the scope of this thesis, there cannot be a
thorough evaluation of this work, but it is highly recommended to the reader.

3.1.6 Higher-Dimensional Photon Representations
From the following approaches, a clear trend can be seen. The dimensionality of the
photon representation has been expanded, to create a bigger area of data density. Bitterli
et al. [BJ17] take this idea even further and expand the photon representation to planes
and volumes. They determine that when the increase in dimensionality already was an
improvement initially, a further improvement can be made by adding further dimensions.
Although the evaluation of these higher dimensional photon representations can be
costly, it is still an interesting idea that can spark further improvements to the area.
A comparison between renderings with different photon dimensionality can be seen in
Figure 3.6.

PB PP PV

Figure 3.6: A comparison of photon beams, photon planes and photon volumes. All of
these images were created within the same render time. Source: [BJ17]

3.2 Virtual Light Approaches
Only a few years after the invention of PM Alexander Keller introduced Virtual Point
Lights [Kel97] for surface rendering. As described before, PM creates photons that are
evaluated in a second pass. For VPL instead of photons, virtual lights are created that are
evaluated in the next steps. This is the main difference between photon-based approaches
and Virtual Lights (VL)-approaches.

3.2.1 Virtual Point Lights (VPL)
In 1997 Alexander Keller introduced the idea to evaluate the traced data as VLs. This
can be interpreted as rendering the scene many times with a different VL every time.
The final result is given by the sum of all the results with as single VL. This method was
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originally developed for surface rendering, but can be extended to participating media
[NNDJ12b]. The radiance at a point is then given as

L(x, ω⃗) ≈ Le(x, ω⃗) +
N�

i=1
V (xi)G(xi)Li(xi, ω⃗i), (3.2)

where Le(x, ω⃗) is the emitted radiance from all non-VL sources, N is the number of VLs,
V (x) is the visibility at a point x, G(x) the geometric term at a point x and Li(x, ω⃗)
the in-scattered radiance at a point x in the direction ω⃗. This in-scattered radiance is
calculated with

Li(x, ω⃗) ≈ Φfs(θp)fs(θu)Tr(w)
w2 , (3.3)

where Φ is the power of the light source, fs(θp) is the phase function at the position of
the virtual light, fs(θu) is the phase function at the position of estimation, Tr(w) is the
transmission and w is the distance from the light to xu.

Figure 3.7: A scene rendered with VPL. The singularities in the medium can be seen as
there are not enough point lights to illuminate the scene evenly. Source: [NNDJ12b]

One of the main advantages of this method is the speed of evaluation. Rendering a scene
with a single point light is very fast compared to the evaluation of photons. Unfortunately,
local singularities can occur, which can be seen in Figure 3.7. These singularities can be
resolved by either clamping or blurring, as will be discussed in the next section.

3.2.2 Virtual Spherical Lights (VSL)
To solve the issue of singularities occurring, one idea is to blur the single point light over
a certain distance. This results in a sphere around that point, and the corresponding
algorithm is therefore called Virtual Spherical Lights [HKWB09]. VSL was originally
developed for surface rendering, but can be extended to participating media in a similar
way as VPL. The usage of spheres instead of points reduces the number and intensity of
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the singularities significantly. How this method works in theory can be seen in the visual
comparison of Figure 3.8.

VPL VSL

Figure 3.8: A visual comparison of the ideas behind VPL and VSL.

To create the VSLs the VPLs are expanded for the specified radius. The properties, like
the calculation of normals, the BRDF and phase functions stay exactly the same as for
the original corresponding VPLs.

For the evaluation of the radius of the VSL the density of the lights is used. Therefore,
for an infinite number of lights, the radius converges to zero and the approach becomes
identical to VPL. This form of consistency of this algorithm is therefore identical to
the consistency for PM, only in a theoretical sense, with an infinite amount of light or
photons, respectively. Additionally, the blurring of the VPLs introduces bias.

3.2.3 Virtual Ray Lights (VRL)

As PM was further developed to PB, a similar development took place for VLs. In
2012, Novák et al. developed Virtual Ray Lights [NNDJ12b]. This algorithm, and
improvements on it, are the main focus of this thesis. A comprehensive analysis of it is
provided in Chapter 4, whereas this section focuses only on the general contributions for
the completeness of this chapter.

As PB expanded PM from a 1D photon representation to a 2D photon representation,
the same is true regarding VLs in VRL. As the name of the algorithm already reveals,
VRL uses the whole ray instead of a single point. A visual comparison of VRL and VPL,
and the change in data representation, can be seen in Figure 3.9.

Additionally, the BRE is used for the sampling of the camera ray. Therefore, the sampling
takes place from one ray, the camera ray, to another ray, the light ray. The disadvantage
of VPL of having local singularities can be significantly reduced by using the whole ray
instead of a single point. The mathematical formulations and descriptions are omitted in
this chapter, but are evaluated in detail in Chapter 4.
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VPL VRL

Figure 3.9: A visual comparison of the ideas behind VPL and VRL.

One of the main problems is the sampling of the two rays. Another major contribution
of Novák et al. is the introduction of a product importance sampling technique for the
camera and light ray. Especially for anisotropic media, a performant sampling is difficult.
The chosen points on the light ray can be seen as VPLs, which therefore corresponds to
a final gather pass over the light ray. Additionally, VRL is an unbiased method, which
therefore allows progressive updates trivially. A comparison between VPL, PPB and
VRL can be seen in Figure 3.10.

VPL PPB VRL

Figure 3.10: A comparison of VPL, PPB and VRL. All of these images were created
within the same render time (600 seconds). Source: [NNDJ12b]

3.2.4 Virtual Beam Lights (VBL)
Although VRL already reduces the intensity of singularities significantly, a further
reduction is needed for some cases. Especially on glossy surfaces the intensity of single
light rays can stand out compared to others. Therefore, Novák et al. introduce the idea
of Virtual Beam Lights [NNDJ12a]. Instead of using just the light ray, the ray is blurred
into a beam. The properties within the beam stay consistent to the original ray.

This idea is similar to the change from VPL to VSL. Again, the radius of the beam
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corresponds to the density of the rays and once again, the radius converges to zero if
an infinite amount of light rays is represented in the scene. Although bias is introduced,
the progressiveness can be maintained by reducing the beam radius for different passes.
Comparison images of VRL and VBL can be seen in Figure 3.11.

VRL VBL

Figure 3.11: A comparison of VRL and VBL. Both of these images were created within
the same render time (186 seconds for volume to volume events, 363 seconds for volume
to surface events). Source: [NNDJ12a]
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CHAPTER 4
Original Approach

T o understand the new approaches that are discussed in the following chapter, a
sound foundation of the original approach is needed. Virtual Ray Lights (VRL)

[NNDJ12b] was developed by Novák et al. in 2012. It introduces Virtual Lights (VL) in
the representation of rays to also gather the data along the sampled distance, not only at
the intersection points.

4.1 Methodology
How the light data is represented is one of the main changes of the VRL algorithm
compared to VPL. Figure 4.1 shows that not only the intersection points are now
evaluated, but the whole ray is used for the evaluation. Therefore, the data density is
increased marginally.

VPL VRL

Figure 4.1: A visual comparison of the ideas behind VPL and VRL.

The incoming radiance at a point x in a direction ω⃗ can be calculated with
L(x, ω⃗) = Tr(s)Ls(xs, ω⃗) + Lm(x, ω⃗), (4.1)
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Symbol Description
v a sampled point on the light ray
θv the angle of the light ray and the direction from v to the surface point
Φ the power of the light ray
σs(v) the scattering coefficient at the position v
fs(θv) the phase function of the angle θv

fr the BRDF at the surface point
Tr(wu(v)) the transmission from the point v to the surface point
Tr(v) the transmission from the start of the light ray to the point v
Vu(v) the binary visibility from the point on the surface to the point v

1
wu(v)2 the inverse squared distance from the point v to the surface point

Table 4.1: The terms of the equation for the surface radiance.

where s is the distance to the nearest surface, xs is the nearest surface location when
going back along the ray at xs = x − sω⃗, Tr(s) is the transmission from x to xs, Ls is the
surface radiance (Equation 4.2) and Lm the radiance from the medium (Equation 4.3).
For greater clarity, the notation of Novák et al. [NNDJ12b] was used in this equation.
This equation is visualized in Figure 4.2, additionally, the properties of participating
media are discussed in Section 2.3.

Ls ≈ Φ
� t

0

σs(v)fs(θv)frTr(wu(v))Tr(v)Vu(v)
wu(v)2 dv, (4.2)

Equation 4.2 shows the evaluation of the surface radiance where the light ray is evaluated
over its whole length, described by the integral

� t
0 . The variables of this equation can be

seen in Table 4.1.

For the medium radiance

Lm ≈ Φ
� s

0

� t

0

σs(u)σs(v)fs(θu)fs(θv)Tr(u)Tr(v)Tr(w)V
w(u, v)2 dv du, (4.3)

not only the whole length of the light ray
� t

0 has to be evaluated, but also the length of
the camera ray

� s
0 . A visual representation of this equation can be seen in Figure 4.3,

where additionally, h is the closest distance between both rays and the vh and uh are the
closest points along each ray. The other terms of the equation and figure are described
in Table 4.2.

4.2 Algorithm
The main part of the algorithm is relatively simple. First, light paths are traced from
the light sources through the scene, where the light rays are the segments of the path.
The number of light paths that are traced for each light source can be freely adjusted.
For each camera path segment, all light rays are evaluated. Therefore, the evaluation
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Lm(x, ω⃗)

ω⃗ x Ls(xs, ω⃗)

xs
Tr(s)

Figure 4.2: A visualization of the terms of Equation 4.1. The incoming radiance at the
point x in a direction ω⃗ is the sum of the radiance from the nearest surface Ls(xs, ω⃗)
when going back along the ray and the radiance from the medium Lm(x, ω⃗). The radiance
from the surface is attenuated due to the transmittance Tr(s). For the radiance from the
medium, only the gathered radiance from one light path segment is visualized in this
Figure, although all light path segments need to be evaluated.

Symbol Description
v a sampled point on the light ray
u a sampled point on the camera ray
θv the angle of the light ray and the direction from v to u
θu the angle of the camera ray and the direction from v to u
Φ the power of the light ray
σs(u) the scattering coefficient at the position of the point u
σs(v) the scattering coefficient at the position of the point v
fs(θu) the phase function of the angle θu

fs(θv) the phase function of the angle θv

Tr(u) the transmission from the start of the camera ray to the point u
Tr(v) the transmission from the start of the light ray to the point v
Tr(w) the transmission between the point v to the point u
V the binary visibility from the point v to the point u

1
w(u,v)2 the inverse squared distance from the point v to the point u

Table 4.2: The terms of the equation for the radiance from the medium.
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Figure 4.3: A visualization of the terms of Equation 4.3. The green ray is the camera
ray that has the length s. The orange ray is the light ray with the length t. In this case,
the contribution of the point light at the position v on the light ray is evaluated for the
position u on the camera ray.

can always be done pair-wise at path segments from the light path and the camera path.
The equations that were discussed previously can unfortunately not be solved in a closed
form, therefore a Monte Carlo integrator is used.

The surface radiance (Equation 4.1) can be solved by only taking a single sample, on
the light ray. For the medium radiance (Equation 4.2) an additional sample has to be
taken on the camera ray. As the idea for the sampling of the surface radiance can be
derived from the idea of the medium radiance, only the sampling approach of the medium
radiance is discussed in detail.

To create a Monte Carlo estimator, we take the integrand

g(u, v) = Φσs(u)σs(v)fs(θu)fs(θv)Tr(u)Tr(v)Tr(w)V
w(u, v)2 (4.4)

of Equation 4.3 and use it in the unbiased Monte Carlo estimator

Lm ≈ 1
N

N�
i=1

g(ui, vi)
pdf(ui, vi)

. (4.5)

In this estimator, N is the number of samples and pdf(ui, vi) the probability of choosing
theses two samples.

4.3 Importance Sampling
Choosing the samples is one of the main difficulties of this approach. A naïve technique,
like uniform sampling, would take a long time to produce acceptable results. Therefore,
how the samples are chosen is of utmost importance. A case separation is made to
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account for differences of the medium. Section 4.3.1 describes the approach for isotropic
media and 4.3.2 for anisotropic media.

4.3.1 Isotropic Sampling
In the isotropic case, the pdf

pdf(ui, vi) ∝ 1
w(u, v)2 (4.6)

has to be proportional to the inverse squared distance term as it causes the most variation.

Fortunately, there is already a sampling method in place that solves this kind of problem
effectively. Kulla et al. [KF11] created the equi-angular sampling which is a simple,
but very effective, method of sampling a ray corresponding to a point. The method
works in the angular domain, by taking equal steps along the angle, therefore the name,
equi-angular. Figure 4.4 shows a visualization of this method.

h

θ1
θM

θ

tM |
t1|

t|

Figure 4.4: A visualization of the importance sampling by Kulla et al. [KF11]. The pdf
of this technique is proportional to the inverse squared distance.

The first step of this method is to find the closest point on the ray to the point of interest.
This point is used as the center of measurement, therefore the distances are measurements
from this point to both ends of the ray. Therefore, the distances t1 and tM can now be
negative.

To get the probability of choosing a distance t along the ray the pdf can be calculated
with

pdf(t) = h

(θM − θ1)(h2 + t2) , (4.7)

where h is the distance between the point of interest and the closest point on the ray, θ1
is the angle to the start of the ray and θM the angle to the end of the ray.

The inverse transform sampling method

cdf−1(ξ) = h tan ((1 − ξ)θ1 + ξθM )) (4.8)
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is used to get a sampled distance along the ray, where ξ is a random number in the
interval [0, 1) which will be remapped to the desired distribution pdf(t) with this function.

To convert the distance to an angle, the equation

θx = tan−1


x

h


, (4.9)

is used. The inverse is
x = h tan(θx). (4.10)

The approach that was just described can only sample from one ray and a specified point
of interest. Novák et al. tried to sample the light ray uniformly first and then sample the
camera ray with the described method and the light sample as a point of interest. As can
be seen in Figure 4.5 (left), the distribution of these samples is already close, but still
leaves room for improvement as the distribution is not ideally matched to the distance to
the camera ray.

0

t

s

Uniform & Equi-Angular Sampling

0

t

s

Joint Distribution Sampling

Figure 4.5: A comparison between choosing a uniformly distributed sample on the light
ray and an equi-angular sample on the camera ray (left), to choosing these samples with
a joint distribution (right). Source: [NNDJ12b]

Therefore, a joint sampling distribution is created to also account for the distance to the
camera ray. For this joint distribution, a marginal pdf samples the light ray first and is
used within the conditional pdf for the camera ray. The variance of the sampling method
is therefore greatly reduced.

The marginal pdf is first computed to get a light sample. For this, a few variables have
to be computed first, uh and vh, the points with the closest distance to the other rays
and h, the distance between those points. These variables are adapted similar as before
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in the equi-angular case, as they are now used as a center of computation. The distance
û is calculated via û = u − uh and v̂ is calculated via v̂ = v − vh.

The same adaptations have to be made on the light ray with the start and end point v0
and v1. The calculation of the marginal pdf can be done with

pdf(v̂, v̂0, v̂1) =
� û0

û1
w(û, v̂, h, θ)−2dû� v̂0

v̂1

� û0
û1

w(û, v̂, h, θ)−2 dû dv̂
, (4.11)

where the denominator of this equation just serves for the normalization of the pdf.
w(û, v̂, h, θ)−2 can be written as h2 + û2 + v̂2 − 2ûv̂ cos θ with the help of the law of
cosines. cos θ is the angle between the camera ray and the light ray. Currently, there
does not exist an analytic solution for this equation, that means that simplifications must
be made. Therefore, the camera ray is assumed to be infinite. With this the pdf can be
calculated with

pdf(v̂, v̂0, v̂1) = sin(θ)�
h2 + v̂2 sin2(θ)(A(v̂1) − A(v̂0))

, (4.12)

where the term A is used as A(x) = sinh−1 �
x
h sin(θ)

�
. The cdf can be calculated with

cdf(v̂, v̂0, v̂1) = A(v̂0) − A(v̂)
A(v̂0) − A(v̂1) . (4.13)

For the cdf-1, the cdf has to be inverted

cdf−1(ξ, v̂0, v̂1) = h sinh((1 − ξ)A(v̂0) + ξA(v̂1))
sin(θ) . (4.14)

Equation 4.14 samples a point on the light ray with the help of a random number ξ ∈ [0, 1)
as input. The second step is now exactly as described in the beginning of this section.
The equi-angular sampling method can be used with the just created sample as a point
of interest. This corresponds to a VPL where a corresponding sample is created on the
camera ray. This approach will be called the isotropic approach in the following sections.

4.3.2 Anisotropic Sampling
For anisotropic media, if we only account for the inverse squared distance, the results are
not convincing. Specifically, with high anisotropy, the sampled results get further and
further away from our target. Therefore, a new pdf was introduced. This pdf

pdf(ui, vi) ∝ fs(ui)fs(vi)
w(u, v)2 (4.15)

also takes into account the phase functions fs. As can be seen in Figure 4.6, the new pdf
(right) represents our target distribution a lot better than the old, equi-angular approach
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Figure 4.6: A comparison between the isotropic approach (left), to the anisotropic
approach (right). Source: [NNDJ12b]

(left). The inverse squared distance remains an important factor and stays a part of this
pdf.

To construct the new conditional pdf, the equi-angular sampling is advanced further.
As this approach can be seen as uniformly distributing samples along the angle, the
uniformity of this approach is now replaced with a distribution function that is fitted
proportional to the product of the phase functions.

For a visual representation of this problem, Figure 4.7 (top) shows the camera ray (green)
and a light ray (orange). They are encapsulated by a unit sphere to help showcase the
construction of the arc. The light ray is projected onto this arc. The higher values will
always occur either at the projection of the light ray, or the start or end points. It is
therefore important to evaluate these areas with a higher importance.

The bottom left of Figure 4.7 shows the isotropic case. As the results of the phase
function are constant at all points, they do not have to be considered. Compared to
the anisotropic (bottom right), it can be seen that the complexity changes when the
evaluation of the production of the phase functions has to be accounted for. This is the
main reason why the isotropic approach does not lead to sufficient results in all cases.

The representation of the arc as an x-axis where the y-axis represents the result of the
phase function can be seen in two cases in Figure 4.8. The green line represents the result
of the phase function along the camera ray, the orange line along the light ray and the
blue line is the product of both. The phase function along the camera ray will always
be monotonic, it can only have its peak on either end of the spectrum. Differently, the
phase function along the light ray can have the peak anywhere, it can even be outside
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θ1

θM θpeak

vi

Angular Domain around vi

fs(θv)
vi

fs(θu) fs(θu)fs(θu)

θpeak

Isotropic Case

vi

fs(θv)
fs(θu)

fs(θu) fs(θu)fs(θu)

θpeak

Anisotropic Case

Figure 4.7: An illustration of the spherical domain around vi as well as the arc that is
generated by the projection of the camera ray (green) onto the sphere (top). Furthermore,
the projection of the light ray into the angular domain can be seen in the same figure.
The figures on the bottom show the isotropic (left) and anisotropic (right) cases. In the
isotropic case, the product of the phase functions at θpeak is equal to the result at all
other angles.

of the spectrum. The product of the phase functions is our target, of which we want
to have a pdf proportional to it. Novák et al. suggest taking a number of samples that
are distributed around the areas of interest (the ends and the peak) more densely. The
dotted line represents the result of this piece-wise reconstruction.

Distribution of Samples Along the Arc

As previously described, there are between two and three points that the distribution
of the samples is focused on. First, we need to evaluate a few directions to make some
case separations about the peak. The directions a⃗ and b⃗ are from the light sample to the
start and the end of the camera ray, respectively. The plane that is constructed with
these directions has the normal c⃗ = norm(⃗a × b⃗). The projected light direction can be
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θpeak θpeak

Figure 4.8: Two examples of the product of the phase functions (blue). The green line is
the phase function along the camera ray and the orange line the phase function along
the light ray.

calculated with
e⃗ = norm((c⃗ × d⃗) × c⃗). (4.16)

The case separation can now be made by evaluating if e⃗ lies between a⃗ and b⃗. If the peak
does not lie within these directions, the samples are distributed between the start and
end point in cosine-warped uniform spacing.

If the peak does lie within these directions, the index of the sample of the peak has to be
determined. If we would just put half of the samples on either side, the samples might
be distributed unevenly (if the peak is close to the start or the end). The equation for
the evaluation of this sample is

jpeak =


θpeak − θ1
θM − θ1

M − 0.5
�

, (4.17)

where the angles θ are to the corresponding points are used in the evaluation. The
samples are then again distributed between the points in cosine-warped uniform spacing.
Novák et al. suggest using 10 points for the reconstruction as this guarantees a relatively
tight fight and is not getting too costly to compute at the same time.

Construction of the pdf for the Product of the Phase Functions

After distributing the samples, the first part is the evaluation of the samples at the
specified positions. This has to be done to construct the piecewise linear function that
is the reconstruction of the target function. For this reconstruction we first need the
angle θu, which is the angle between the camera ray and the direction from the sampled
position on the light ray to the sampled position along the arc. Similarly, we need the
angle θv, which is the angle between the light ray and the direction from the sampled
position on the light ray to the sampled position along the arc. With these two angles,
we can calculate the phase function along the camera ray fs(θu) and along the light ray
fs(θv). For further calculations we need the product of these phase functions, therefore
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4.3. Importance Sampling

we introduce a simplification in parameter. From here on, the product of the phase
functions at an angle θj on the arc is written as fuv(θj).
The mathematical derivations that follow are not part of the description of the original
paper from Novák et al. In their paper, they only describe the approach formally.
Originally, they were part of the Bachelor Thesis of Michael Oppitz [Opp18] and are
reformulated in this chapter.
The piecewise linear reconstruction is represented in the well-known slope-intercept form
y = kx + d used per segment. In this formulation, k is the slope of the line and d is the
coordinate where the line crosses the y-axis. For our scenario, the x-axis is used for θ
and the y-axis for the product of the phase functions fuv(θ).
The slope-value kj for the segment j can be calculated with

kj = fuv(θj+1) − fuv(θj)
θj+1 − θj

, (4.18)

whereas the coordinate dj at which the slope crosses the y-axis per segment j can be
calculated with

dj = fuv(θj+1) − kjθj+1 = fuv(θj) − kjθj . (4.19)
For every segment, θj is the start of the segment and θj+1 the end of it.

The resulting piecewise linear function already creates our non-normalized pdf �pdffuv
(θ)

�pdffuv
(θ) =



k1θ + d1, θ ∈ [θ1, θ2]

k2θ + d2, θ ∈ (θ2, θ3]

...

kN θ + dN , θ ∈ (θN , θM ]

. (4.20)

The normalization of this function �pdffuv(θ) can be achieved by dividing it through
the corresponding cdf �cdffuv(θ). �cdffuv(θ) is a piecewise quadratic function that can be
written as

�cdffuv(θ) =



� θ2

θ1
k1θ + d1 dθ, θ ∈ [θ1, θ2]

�cdffuv(θ2) +
� θ3

θ2
k2θ + d2 dθ, θ ∈ (θ2, θ3]

...
...

�cdffuv(θN ) +
� θM

θN

kN θ + dN dθ, θ ∈ (θN , θM ]

. (4.21)
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The evaluation of the integral of a segment j can be done via

� θj+1

θj

kjθ + dj dθ =


kj

2 θ2
j+1 + djθj+1


−


kj

2 θ2
j + djθj


. (4.22)

The result of the cdf over the whole length of the area is now on simply called �cdffuv .
We therefore get the normalized pdf pdffuv(θ)

pdffuv(θ) =



�cdf−1
fuv(k1θ + d1), θ ∈ [θ1, θ2]

�cdf−1
fuv(k2θ + d2), θ ∈ (θ2, θ3]

...
...

�cdf−1
fuv(kN θ + dN ), θ ∈ (θN , θM ]

, (4.23)

with the corresponding cdf

cdffuv(θ) =



�cdf−1
fuv

� θ2

θ1
k1θ + d1 dθ, θ ∈ [θ1, θ2]

cdffuv(θ2) + �cdf−1
fuv

� θ3

θ2
k2θ + d2 dθ, θ ∈ (θ2, θ3]

...
...

cdffuv(θN ) + �cdf−1
fuv

� θM

θN

kN θ + dN dθ, θ ∈ (θN , θM ]

. (4.24)

To create samples from the pdf, we have to invert the cdf. The cdf-1 can then be used for
inverse transform sampling. Here, a special case has to be considered, as in cases where
the slope of the segment is 0, the evaluation is different. The piecewise function for this
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4.3. Importance Sampling

evaluation is

cdf−1
fuv

(ξ) =




θ1d1 + ξ�cdffuv − �cdffuv(θ1)


d−1

1 ,

k1 = 0, ξ ∈ [cdffuv(θ1), cdffuv(θ2)]�
k1(θ2

1k1 + 2ξ�cdffuv − 2�cdffuv(θ1)) + 2θ1d1k1 + d2
1 − d1


k−1

1 ,

k1 ̸= 0, ξ ∈ [cdffuv(θ1), cdffuv(θ2)]
θ2d2 + ξ�cdffuv − �cdffuv(θ2)


d−1

2 ,

k2 = 0, ξ ∈ [cdffuv(θ2), cdffuv(θ3)]�
k2(θ2

2k2 + 2ξ�cdffuv − 2�cdffuv(θ2)) + 2θ2d2k2 + d2
2 − d2


k−1

2 ,

k2 ̸= 0, ξ ∈ [cdffuv(θ2), cdffuv(θ3)]

...
θN dN + ξ�cdffuv − �cdffuv(θN )


d−1

N ,

kN = 0, ξ ∈ [cdffuv(θN ), cdffuv(θM )]�
kN (θ2

N kN + 2ξ�cdffuv − 2�cdffuv(θN )) + 2θN dN kN + d2
N − dN


k−1

N ,

kN ̸= 0, ξ ∈ [cdffuv(θN ), cdffuv(θM )]

,

(4.25)

where a random value in the interval [0, 1) creates an angle θ along the arc with a
distribution according to pdffuv(θ). We currently have only used a sampling methodology
that is proportional to the product of the phase functions. In the next step we also
include the inverse squared distance.
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Creation of the final pdf

To create the final pdf, the pdf of the previous section has to be combined with the
isotropic approach. As was explained in that chapter, the equi-angular approach is used
there. The combination of both approaches is the not normalized pdf

�pdf(θ) = pdffuv(θ) pdfw−2(θ). (4.26)

With the corresponding �cdf(θ)

�cdf(θ) =
�cdffuv(θ)�cdffuv(θM − θ1)

= cdffuv(θ)
θM − θ1

(4.27)

that is used to divide it. The final pdf can therefore be written as

pdf(θ) =
�pdffuv(θ)h

h2 + t2 . (4.28)

Fortunately, in the normalization of this pdf, various terms drop out to make the end
step relatively easy. The resulting distribution of the samples can be seen in Figure 4.6
(right), compared to the distribution in the isotropic case Figure 4.6 (left).
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CHAPTER 5
New Approaches

I n our evaluation of VRL we found that in the anisotropic case, the construction
of the piecewise linear function is not only a complication to understanding the

sampling methodology, but also a performance problem. Therefore, we evaluated different
techniques of replacing this piecewise linear function.

As the piecewise linear function approximates the product of two phase functions, the
obvious solution would have been to just use the product of the phase functions for
sampling. Unfortunately, this product cannot be integrated in a closed form and can
therefore not be used in the Monte Carlo sampling approach.

Furthermore, the same complications arose when trying to use the product of two general
probability functions. We evaluated this for a multitude of probability functions, but for
none of them the product of them was integrable.

Therefore, we went on from the multiplication, and evaluated that the sum of two
probability distributions can result in a close approximation of our target functions if the
probability functions are chosen and adjusted accordingly. The sum of two probability
functions can be used as an approximation of the product of the phase functions in
this case as both, the sum and the product, need to be normalized. Only due to the
normalization are the results close enough for a successful approximation. An interesting
case is the Cauchy Distribution, as we will explain in Section 5.1, as it can be used in
the Monte Carlo sampling approach.

For other probability functions, the sum of two of these sampling functions cannot be
used in the Monte Carlo approach. Luckily, we can use the Mixture Model approach to
solve this issue. In this approach, we provide multiple probability distributions and select
one of them randomly in each evaluation. The results of the Mixture Model depend on
how well the probability functions are fitted to our target, but overall, the results are
fast and reliable. This approach is discussed in Section 5.2.
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5. New Approaches

In Appendix B, we will briefly describe all other variations that we tried, even if they
did not provide the desired results or our mathematical analysis failed.

5.1 Sum of two Cauchy Distributions
5.1.1 Description
In this first solution we try to approximate the product of the two phase functions via
the sum of two Cauchy distributions. Although, there is obviously a difference between
the sum of two distributions and the product of them, we find that with a correctional
value, the result is very close in all cases.

We first fit a Cauchy distribution to the phase function along the camera ray fs(θu) and
the phase function along the light ray fs(θv), respectively. Afterwards we create the sum
of these two distributions and invert the corresponding cdf to be able to sample it. The
sampling then takes place in the angular range of θo and θe with the distribution of Kulla
et al. Therefore, some normalization terms have to be accounted for.

5.1.2 Theory
The Cauchy distribution is defined as

f(x) = 1
πs(1 + (x−m

s )2)
, (5.1)

where m is the location and s is the scale. To set the location for one of the phase
functions, we simply set it to the position of its peak. The scale is set to match the value
at the peak. This can be done with the derived formula

s = 1
π max , (5.2)

where max is the value at the peak.

With this setup we can already match the Cauchy distribution to the two phase functions.
As can be seen in Figure 5.1 the matching of the Cauchy distributions (dashed lines) to
the target distributions (solid lines) works well. As the Cauchy distribution does not
work in the angular domain, some differences can be seen, especially for lower anisotropy
values.

We now make a change in parameters, so that we get the two pdfs that approximate the
phase functions on the camera ray fs(θu) and the light ray fs(θv).

pdfu(x) = 1
πsu(1 + (x−mu

su
)2)

pdfv(x) = 1
πsv(1 + (x−mv

sv
)2)
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5.1. Sum of two Cauchy Distributions
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Figure 5.1: The matched Cauchy distributions for the light (dashed yellow) and camera
(dashed green) compared to the Henyey-Greenstein phase function for the light (solid
yellow) and camera (solid green) for different anisotropy values of the Henyey-Greenstein
phase function.

Which have the corresponding cdfs

cdfu(x) = 1
π

arctan


x − mu

su


+ 1

2

cdfv(x) = 1
π

arctan


x − mv

sv


+ 1

2
.

The pdf of the sum with equal weight is therefore simply

pdf(x) =


1
2

1
πsu(1 + (x−mu

su
)2)

+ 1
2

1
πsv(1 + (x−mv

sv
)2)


(5.3)

where as the cdf is

cdf(x) = 1
2

 1
π

arctan


x − mu

su


+ 1

2


+ 1

2

 1
π

arctan


x − mv

sv


+ 1

2


(5.4)
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.

The pdf is currently only normalized to the target pdf over the interval (−∞, ∞), but we
only need it in the interval [θo, θe]. For the pdf this problem can be solved by dividing
the result through cdf(θe) − cdf(θo).

The normalized pdf compared to the normalized target functions can be seen in Figure
5.2. The dashed lines represent our approximation whereas the solid lines represent the
target. As can be seen from this example, our approach works very well in cases of high
anisotropy. For lower anisotropy, our approach is not as close anymore, but as the target
functions are more evenly partitioned, the values are still close.
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Figure 5.2: The pdf of our reconstruction (dashed blue) compared to the actual normalized
target pdf (solid blue) for different anisotropy values of the Henyey-Greenstein phase
function.

For the inversion of the cdf we apply the normalization to the random value ϵ ∈ [0, 1)
beforehand via

u = ϵ ∗ (cdf(θe) − cdf(θo)) + cdf(θo). (5.5)

The addition of cdf(θo) is necessary to not start at 0 automatically.
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5.2. Mixture Model

With this we can start the inversion process.
1
2

 1
π

arctan


x − mu

su


+ 1

2


+ 1

2

 1
π

arctan


x − mv

sv


+ 1

2


= u

arctan


x − mu

su


+ arctan


x − mv

sv


= π(2u − 1)

arctan


x−mu
su

+ x−mv
sv

1 − x−mu
su

x−mv
sv


= π(2u − 1)

Note that in the last equation, the combination of the two arctan can actually result in
the by-product of ±π. As in the next step, this part falls under a tan it was left out, as
tan is π-cyclic and the result is therefore the same in all cases.

(x−mu)sv+(x−mv)su

susv

1 − (x−mu)(x−mv)
susv

= tan(π(2u − 1))

To keep things readable we substitute z = tan(π(2u − 1)).
x(su + sv) − sumv − svmu

susv − (x − mu)(x − mv) = z

x(su + sv) − sumv − svmu − z(susv − (x − mu)(x − mv)) = 0
x(su + sv) − sumv − svmu − z(susv − x2 + x(mu + mv) − mumv) = 0

x2 + x
su + sv − muz − mvz

z
+ −sumv − svmu − susvz + mumvz

z
= 0

As we can now plug this into the reduced quadratic equation formula to get a result for
x, we get

p = su + sv − muz − mvz

z

q = −sumv − svmu − susvz + mumvz

z

for the coefficients. We evaluated that for u < 1
2 the square-root term has to be subtracted

and for u > 1
2 the term has to be added to get the correct results. In the special case

where u = 1
2 the solution simplifies to x = sumv+svmu

su+sv
as in this case z is 0.

5.2 Mixture Model
5.2.1 Description
For this solution, we use the well-known Mixture Model approach to get an approximation
of the product of the two phase functions. The mixture model chooses one of the
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probability functions randomly for each sampling step. as we already used the Cauchy
distribution in the previous approach, we will also use it here. Other distributions can
be used as well, as can be seen in the Appendix.
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Figure 5.3: The matched and normalized Cauchy distributions for the light (dashed
yellow) and camera (dashed green) compared to the Henyey-Greenstein phase function
for the light (solid yellow) and camera (solid green) for different anisotropy values of the
Henyey-Greenstein phase function. Compared to Figure 5.1 the Cauchy distributions are
already normalized as this is a requirement for their use in the mixture model.

5.2.2 Theory
The matching of the Cauchy distribution to our target is done exactly in the same
way as the previous approach.Equivalently to the previous approach, the pdfs and cdfs
are created, this time they have to be normalized beforehand to work in the mixture
model. Therefore Figure 5.3 shows our normalized pdfs (dashed lines) compared to the
normalized target (solid lines). The general pdf and cdf are therefore already normalized.
When it comes to the actual sampling process, we take a random value ϵ ∈ [0, 1) and
select one of the two distributions depending on it. Compared to the previous solution of
Section 5.1, the difference comes with the time of normalization. In the mixture model
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5.2. Mixture Model

approach, the two Cauchy distributions have to be normalized when using them, in the
solution of Section 5.1, they do not have to be, as the sum of the two Cauchy distributions
is normalized in a later step. This leads to slightly different results.
As the pdf and cdf of the single pdfs are only normalized over the interval (−π, π), we
have to make some adjustments. In this case that means adjusting the random value with
which we sample beforehand again, but in this case tailored to the single distributions.
For the camera ray that means

uu = ϵ ∗ (cdfu(θe) − cdfu(θo)) + cdfu(θo) (5.6)

as well as for the light ray

uv = ϵ ∗ (cdfv(θe) − cdfv(θo)) + cdfv(θo) (5.7)

.
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Figure 5.4: The pdf of our reconstruction (dashed blue) compared to the actual normalized
target pdf (solid blue) for different anisotropy values of the Henyey-Greenstein phase
function.

With this we can sample the inverse Cauchy distribution and evaluate the result with the
general pdf of the mixture model. The pdf of this approach can be seen in Figure 5.4.
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CHAPTER 6
Implementation

In this chapter, we will first show implementation details on the isotropic and anisotropic
sampling functions as they were described in VRL (Section 6.1 and 6.2).
In Section 6.3 we will describe the implementation of the sampling with the sum of two
Cauchy distributions, whereas in Section 6.4 we will explain our mixture model approach
for this problem.

6.1 Original Approach - Isotropic Sampling

Algorithm 6.1: IsotropicSampling(s̄, p, cp)
1 dists = (s̄.o − cp).length
2 distcp = (cp −p).length
3 start = tan−1(− dists / distcp)
4 end = tan−1((s̄.dist − dists)/ distcp)
5 dist = distcp · tan((1 − ξ) · start +ξ · end)

6 sample = cp +s̄.d⃗ · dist
7 pdf = distcp /((end − start) · (dist2

cp + dist2))
8 return [sample, pdf]

In the isotropic case, we use the sampling function described by Kulla et al. [KF11]. This
function is used in VRL as the simple version of the algorithm that is then expanded
for anisotropic cases. We call this distribution IsotropicSampling and show it in
Algorithm 6.1. As an input to this function, a segment (either camera or light segment,
depending on the use case) s̄ has to be provided. A sample will be chosen on this segment.
Additionally, the point of interest p, and the closest point cp to the point of interest have
to be provided.
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6. Implementation

First, a change in variables takes place. We calculate dists and distcp, the distance from
the origin s̄.o to the closest point cp and the distance from the closest point cp to the
point of interest p, respectively. The start and end variables that are computed next are
the angles from the point of interest to the start and end of the segment. In Line 5 of
Algorithm 6.1 the cdf-1 (Equation 4.8) is already used to create the distance dist from
the closest point cp to our newly created sample sample. With this distance, we can
compute the sample and the pdf.

6.2 Original Approach - Anisotropic Sampling

The approach to solve anisotropic sampling expands the previously explained isotropic
approach. It still works within the angular domain, but as the result of the product of
the two phase functions is now not a constant anymore, a piecewise linear function is
constructed for sampling.

Additionally to the segment s̄, the point of interest p and the closest point cp, the
direction d⃗ of the point of interest has to be provided. Again, we create the variables
dists and distcp as in the isotropic case. Furthermore, we calculate the direction a⃗ from
the point of interest to the start of the segment, the direction b⃗ from the point of interest
to the end of the segment and the direction c⃗ which is the cross product of the two
directions. The variables θ1 and θM represent the angles to the start of the segment and
the end of it.

With the created variables we can start to distribute the samples along the arc. The
methodology to create the piecewise linear function is explained later on in the Create-
SamplesOnArc-function. Furthermore, the next function ConstructPdfCdf, which
calculates the non-normalized pdf and the corresponding cdf, will also be explained later
on.

The data structure for the piecewise linear function can be seen in Table 6.1. We now
evaluate in a loop for which piece of the function we sample from. Therefore, we adjust
our random value ξ ∈ [0, 1) by our non-normalized cdf. For each segment, we evaluate if
the adjusted random value is part of the linear function area.

If the linear segment is found, there are two cases to evaluate. In the first case, the
linear function is constant. This will always be the case for isotropic media, but can also
happen for anisotropic media. In that case, the calculation of the angle to the sample θs

and the pdf of the phase functions pdffuv is straightforward. If the linear segment is not
constant, the complexity increases. We follow the formula of Algorithm 6.3 in that case.

After we have found the angle to the sample θs and the pdf of the phase functions pdffuv

we have to calculate the actual sample and the final pdf pdf in the last steps.
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6.2. Original Approach - Anisotropic Sampling

Algorithm 6.2: AnisotropicSampling(s̄, p, d⃗, cp)
1 dists = (s̄c.o − cp).length
2 distcp = (cp −p).length
3 a⃗ = s̄.o − p

4 b⃗ = s̄.e − p

5 c⃗ = a⃗ × b⃗

6 θ1 = tan−1(− dists / distcp)
7 θM = tan−1((s̄.dist − dists)/ distcp)

8 CreateSamplesOnArc(θ1, θM , a⃗, b⃗, c⃗, d⃗, s̄.d⃗)
9 cdf = ConstructPdfCdf()

10 ξ̂ = ξ · cdf
11 for all piecewise segments do
12 linear = the current piecewise linear function
13 if cdfcomb < ξ̂ and ξ̂ < cdfcomb + linear.cdf then
14 if linear .k = 0 then
15 θs = (linear.θo · linear.d + ξ̂ − cdfcomb)/ linear.d
16 pdffuv = linear.d/ cdf
17 else
18 temp = linear.k · (linear.θ2

o · linear.k + 2 · ξ̂ − 2 · cdfcomb)+
19 2 · linear.θo · linear.d · linear.k + linear.d2

20 θs = (sqrt(temp) − linear.d)/ linear.k
21 pdffuv = (linear.k · θs + linear.d)/ cdf
22 end
23 end
24 cdfcomb = cdfcomb + linear.cdf
25 end
26 dist = distcp · tan(θs)

27 sample = cp +s̄.d⃗ · dist
28 pdf = pdffuv ·(distcp /(dist2

cp + dist2))
29 return [sample, pdf]

Name Description
θo, θe the interval boundaries
fso , fse the product of the phase functions at the interval boundaries
k the slope of the function
d the y-intercept of the function
cdf the computed definite integral of this function

Table 6.1: The structure of the LinearFunction data type.
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Algorithm 6.3: CreateSamplesOnArc(θ1, θM , a⃗, b⃗, c⃗, d⃗1, d⃗2)
1 e⃗ = (c⃗ × d⃗2) × c⃗
2 θpeak = cos−1(⃗a · e⃗)
3 if θpeak /∈ [θ1, θM ] then
4 e⃗ = −e⃗
5 θpeak = cos−1(⃗a · e⃗)
6 end
7 if θpeak ∈ [θ1, θM ] then
8 jpeak = floor((θpeak − θ1)/(θM − θ1) · M − 0.5)
9 for j < jpeak do

10 θj = (θpeak − θ1)/2 · (1 − cos((π · (j − 1))/(jpeak − 1)))
11 fuvj = PhaseFunctionHG(d⃗1, θj) · PhaseFunctionHG(d⃗2, θj)
12 SaveArcSample(θj , fuvj )
13 end
14 for j > jpeak and j < M do
15 θj = (θM − θpeak)/2 · (1 − cos((π · (j − jpeak))/(M − jpeak)))
16 fuvj = PhaseFunctionHG(d⃗1, θj) · PhaseFunctionHG(d⃗2, θj)
17 SaveArcSample(θj , fuvj )
18 end
19 else
20 for j < M do
21 θj = (θM − θ1)/2 · (1 − cos((π · (j − 1))/M))
22 fuvj = PhaseFunctionHG(d⃗1, θj) · PhaseFunctionHG(d⃗2, θj)
23 SaveArcSample(θj , fuvj )
24 end
25 end

6.2.1 The CreateSamplesOnArc-Function

The CreateSamplesOnArc-function describes how to distribute the piecewise linear
function segments along the arc. There are two cases in this function, either the peak
θpeak lies within the interval [θ1, θM ] or it does not. The peak θpeak is the maximum of
the product of the two phase functions. In addition to evaluating if the peak is in the
interval, if it is not, we also have to evaluate if the negative peak is within the interval.
This happens in the first six lines.

In our first case, the peak θpeak or its negative lies within the interval [θ1, θM ]. Therefore,
we distribute the samples in a cosine-warped distribution in the intervals [θ1, θpeak] and
[θpeak, θM ]. The number of samples in each interval is determined by the position of the
peak, therefore the index jpeak is used to separate the samples in two sets. The second
case distributes all samples within the interval [θ1, θM ].
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6.3. Sum of Cauchy Distributions

The construction of the piecewise linear segments follows a relatively simple process.
First, we create the angle θj per segment, which marks the start of the segment. Then,
we create the product of the phase functions at that point.

6.2.2 The ConstructPdfCdf-Function

Algorithm 6.4: ConstructPdfCdf()
1 for j < M do
2 k = (fuvj+1 − fuvj )/(θj+1 − θj)
3 d = fuvj+1 − k · θj+1
4 end = (k · θ2

j+1)/2 + d · θj+1
5 start = (k · θ2

j )/2 + d · θj

6 cdf = end − start
7 SaveLinearFunction(θj , θj+1, fuvj , fuvj+1 , k, d, cdf)
8 cdfcomb = cdfcomb + cdf
9 end

10 return cdfcomb

To create the actual linear functions, ConstructPdfCdf of Algorithm 6.4 is used.
Here, the sampled data is transformed into linear functions. Additionally, the definite
integral per segment is computed and the sum for all segments is returned.

6.3 Sum of Cauchy Distributions
For the sum of two Cauchy distributions, the creation of our initial variables is identical
to the anisotropic approach that was described by Novák et al [NNDJ12b]. We create
the variables dists and distcp, the distance from the origin of the ray s̄ to the closest
point cp and the distance from closest point cp to the point of interest p, respectively.
The vectors a⃗, c⃗ and e⃗ point from the point of interest p to the start of s̄, the end of s̄
and depict the plane direction spanned by these vectors. The values of θo and θe are
once again the angles to the origin and to the end of the ray.

From this point on, the algorithm has only very little to do with its predecessor. As the
next step we compute the values for the maxima, the scale and the location for both
Cauchy distributions that approximate the Henyey-Greenstein phase functions. The
maximum for the light maxlight uses the Henyey-Greenstein phase function with the
dot product of the direction of the light d⃗ and the plane normal e⃗. This maximum is
used to compute the light scale slight. The location mlight depends on the anisotropy
and the dot product of the plane normal e⃗ and the direction between the closest point
cp and the point of interest p. For the camera, the maximum maxcamera is always the
maximum of the Henyey-Greenstein phase function with the current anisotropy value,
which is constant in a homogeneous medium, therefore the scale scamera is constant as
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6. Implementation

Algorithm 6.5: SumOfCauchyDistribution(s̄, p, d⃗, cp)
1 dists = (s̄c.o − cp).length
2 distcp = (cp −p).length
3 a⃗ = s̄.o − p
4 c⃗ = a⃗ × (s̄.e − p)
5 e⃗ = (c⃗ × s̄.d) × c⃗

6 θo = tan−1(− dists / distcp)
7 θe = tan−1((s̄.dist − dists)/ distcp)

8 maxlight = PhaseFunctionHG(sign(g)(d⃗ · e⃗))
9 slight = 1/(πmaxlight)

10 mlight = (g > 0?0 : π) − arccos(e⃗ · (cp −p))
11 maxcamera = PhaseFunctionHG(sign(g)1)
12 scamera = 1/(π maxcamera)
13 mcamera = sign(g)π/2
14 cdfθo =

0.5 ∗ CauchyCDF(θo, slight, mlight) + 0.5 ∗ CauchyCDF(θo, scamera, mcamera)
15 cdfθe =

0.5 ∗ CauchyCDF(θe, slight, mlight) + 0.5 ∗ CauchyCDF(θe, scamera, mcamera)
16 u = ϵ ∗ (cdfθe − cdfθo) + cdfθo

17 θs = CauchyCDFMixtureInv(u, scamera, slight, mcamera, mlight)
18 dist = distcp ∗tan(θs)
19 sample = cp +s̄.d⃗ · dist
20 pdffuv = 0.5 ∗ CauchyPDF(θs, scamera, mcamera, (cdfθe − cdfθo)) + 0.5 ∗

CauchyPDF(θs, slight, mlight, (cdfθe − cdfθo))
21 pdf = pdffuv ·(distcp /(dist2

cp + dist2))
22 return [sample, pdf]

well. As the location is simply the sign of the g-value times π/2, this term is constant in
homogeneous media as well.

The next step is to calculate the cdf at θo and at θe to get the normalization term. Here
we calculate the cdf of the Cauchy distribution with CauchyCDF for the camera and
the light at the mentioned positions. We then sum their halves. We need these cdfs to
adjust our random value ϵ ∈ [0, 1) to our specified area to get our adjusted sampling
value u. With this value, we can now use the CauchyCDFMixtureInv to get our
sampled θs.

The steps that follow convert the sampled angle θs into a distance dist and furthermore
create our sample and the pdf of the sum of the two Cauchy distributions pdffuv

. As we
work in the angular domain, we finally need to adjust the pdf to get our final pdf pdf .
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6.4. Mixture Model

6.4 Mixture Model

Algorithm 6.6: MixtureModelDistribution(s̄, p, d⃗, cp)
1 dists = (s̄c.o − cp).length
2 distcp = (cp −p).length
3 a⃗ = s̄.o − p
4 c⃗ = a⃗ × (s̄.e − p)
5 e⃗ = (c⃗ × s̄.d) × c⃗

6 θo = tan−1(− dists / distcp)
7 θe = tan−1((s̄.dist − dists)/ distcp)

8 maxlight = PhaseFunctionHG(sign(g)(d⃗ · e⃗))
9 slight = 1/(πmaxlight)

10 mlight = (g > 0?0 : π) − arccos(e⃗ · (cp −p))
11 maxcamera = PhaseFunctionHG(sign(g)1)
12 scamera = 1/(π maxcamera)
13 mcamera = sign(g)π/2
14 cdf lightθo

= CauchyCDF(θo, slight, mlight)
15 cdfcameraθo

= CauchyCDF(θo, scamera, mcamera)
16 cdf lightθe

= CauchyCDF(θe, slight, mlight)
17 cdfcameraθe

= CauchyCDF(θe, scamera, mcamera)
18 if ϵ > 0.5 then
19 u = ϵ ∗ (cdf lightθe

− cdf lightθo
) + cdf lightθo

20 θs = CauchyCDFInv(u, slight, mlight)
21 else
22 u = ϵ ∗ (cdfcameraθe

− cdfcameraθo
) + cdfcameraθo

23 θs = CauchyCDFInv(u, scamera, mcamera)
24 end
25 dist = distcp ∗tan(θs)
26 sample = cp +s̄.d⃗ · dist
27 pdffuv = 0.5 ∗ CauchyPDF(θs, scamera, mcamera, (cdfcameraθe

− cdfcameraθo
)) +

0.5 ∗ CauchyPDF(θs, slight, mlight, (cdf lightθe
− cdf lightθo

))
28 pdf = pdffuv ·(distcp /(dist2

cp + dist2))
29 return [sample, pdf]

In our mixture model approach, the majority of the code is identical to the approach
with the sum of two Cauchy distributions. Therefore, we will omit the explanation of
these parts.

The differences start in Line 14. Here we calculate the cdf of the light and the camera
at the angles θo and θe. Therefore we get four variables cdf lightθo

, cdfcameraθo
, cdf lightθe
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6. Implementation

and cdfcameraθe
.

In the next step we use a random value ϵ ∈ [0, 1) to choose which distribution to sample
from. In our first case, we sample from the light phase function, in the second one from
the camera phase function. From line 25 on, the lines are again almost identical to the
previous approach. Only in Line 27 the normalization terms are for the light or camera,
and not the combined segment.
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CHAPTER 7
Results & Comparison

I n this chapter we are evaluating the results for both of our approaches and compare
them to the results from Kulla et al. [KF11] and Novák et al. [NNDJ12b]. Our

comparison is done with three different scenes:

1. Cornell Box A Cornell Box scene which was inspired by a similar variation by
Novák et al. [NNDJ12b].

2. Unidirectional Light A unidirectional light in an empty space.

3. Bidirectional Light A bidirectional light in an empty space.

For each of these scenes, we evaluate four different cases:

1. Equal Error We render the scene until an RMSE of 1 was reached. We then
compare how long it took to get this result for each approach.

2. Equal Time We render the scene for one minute. We then calculate the RMSE
and number of samples that were reached after one minute.

3. Equal Samples 1000 We render the scene with 1000 samples. We then calculate
the RMSE to compare the results. Additionally, we also compare the time it took
to reach that number of samples.

4. Equal Samples 10000 We render the scene with 10,000 samples. We then
calculate the RMSE to compare the results. Additionally, we also compare the
time it took to reach that number of samples.
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7. Results & Comparison

For each case we render the scene with different anisotropy values. We use the g-value
of the Henyey-Greenstein function to get a wide range of results of forward, backward
and isotropic scattering (g ∈ [−0.9, −0.6, −0.3, 0.0, 0.3, 0.6, 0.9]). Our tests were made
on an Intel Core i7-4770 CPU @ 3.4GHz with 32GB RAM running parallelized over
all cores, with all results having a resolution of 512x512. The reference images were
created by using the original VRL algorithm and using a high sample count (1,000,000
samples). The results of the PSNR and RMSE tables are always comparisons from the
rendered tests to these references. All times in this chapter are provided in the format
hh:mm:ss:ms. While we will only highlight a few representative cases in this chapter, all
results can be seen in Appendix A.

Our expectation is that on a single sample basis, the original approach by Novák et al.
will outperform our approaches, as the time it takes per sample is longer. Additionally,
we expect the approach by Kulla et al. to outperform all other approaches for isotropic
media. As all other approaches are built on top of the approach by Kulla et al. to account
for anisotropic media, for isotropic media, these approaches will therefore be slower. For
the equal time and equal error comparisons we expect our approaches to have at least a
similar, if not better performance than Novák et al. Even a similar performance would
be excellent as both approaches are easier to understand and implement.

7.1 Equal Error
For this test case all scenes were rendered until an RMSE of 1 was reached. We stopped this
test if 100,000 samples were exceeded and the RMSE was still above one. This threshold
of 100,000 samples was reached in the unidirectional light scene with all approaches for
high backward and forward scattering (g = −0.9 and g = 0.9, respectively).

Out of the 21 test cases (3 scenes, 7 anisotropy values) only in two cases was the original
approach by Novák et al. the fastest approach. Both of these cases were with very high
forward scattering (g = 0.9). A plot of the RMSE progression in this case can be seen in
Figure 7.1 where we can see the progression of Novák et al. in red, Kulla et al. in blue,
the Sum of Cauchy distributions in green and the Mixture Model approach in orange.
As can be seen in this figure, although Novák et al. provide the fastest progression to an
RMSE of 1, our approaches are reasonably fast, especially when compared to Kulla et al.

The approach by Kulla et al. was the fastest in all isotropic cases and four out of the six
cases with low anisotropy (g ∈ [−0.3, 0.3]). As Kulla et al. take significantly less time
per sample, more samples can be taken. For low anisotropic media, this therefore results
in faster convergence.

For all other cases our approaches were faster, where the sum of Cauchy distributions was
faster for backward scattering (g < 0) and the mixture model of Cauchy distributions
was faster for forward scattering (g > 0). Representative results can be seen in Figure
7.2 where we can see the progression of Novák et al. in red, Kulla et al. in blue, the
Sum of Cauchy distributions in green and the Mixture Model approach in orange. Both
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7.2. Equal Time

Figure 7.1: The progression of the RMSE values plotted on the y-axis for the corresponding
time in milliseconds on the x-axis. This plot contains the data from the bidirectional
light scene with a g-value of 0.9 for the Henyey-Greenstein phase function.

or approaches outperform Novák et al. and Kulla et al. where the Sum of Cauchy
distributions is especially fast to converge.

7.2 Equal Time
For this test, all scenes were rendered for 60 seconds. Then the RMSE and the PSNR
were calculated by comparing the results to the reference solutions. The insights that
we get from these tests are similar to the ones from the equal error tests. We will again
highlight representative results for the different approaches.

As for the equal error tests, in these tests, the original approach by Novák et al. outper-
formed all other approaches for high forward scattering media (g = 0.9). An example of
this can be seen in Figure 7.3 (top row). The approach of Novák et al. reached a RMSE
of 1.04, whereas Kulla et al. achieved 2.46, the sum of Cauchy distributions 1.42 and the
mixture model with Cauchy distributions 1.25.

As expected, the approach by Kulla et al. was the fastest in all isotropic cases. An
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7. Results & Comparison

Figure 7.2: The progression of the RMSE values plotted on the y-axis for the corresponding
time in milliseconds on the x-axis. This plot contains the data from the bidirectional
light scene with a g-value of −0.9 for the Henyey-Greenstein phase function.

example can be seen in Figure 7.3 (bottom row). For this scene, the approach by Kulla
et al. achieved a RMSE of 0.94 in 60 seconds, whereas Novák et al. achieved 0.99, the
sum of Cauchy distributions 0.95 and the mixture model approach 1.04 in the same time
frame.

For most other test cases, our approaches either outperformed Kulla et al. and Novák
et al. or were at least competitive. Especially for backward scattering media (g < 0),
our approaches outperformed Novák et al. in all test cases. Only in one out of six cases
Novák et al. reached a better RMSE for forward scattering media (g > 0).

In Figure 7.4 (top row) a representative example of the approach with the sum of Cauchy
distributions can be seen. In the 60 seconds that this image was rendered, a RMSE of
2.09 was reached for this scene with high backward scattering (g = −0.9). The approach
by Kulla et al. reached 2.98, Novák et al. 2.44 and the mixture model approach 2.36 in
the 60 seconds they were rendered.

In the bottom row of Figure 7.4 a representative example of the mixture model can
be seen, where it outperforms all other approaches. For this scene with higher forward
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7.3. Equal Sample
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Figure 7.3: Representative examples of the equal time case where other approaches
(Novák et al., Kulla et al.) were faster than our approaches. On the top row, the results
of the Cornell box scene that were rendered for 60 seconds with high forward scattering
media (g = 0.9) can be seen. The approach by Novák et al. achieved a RMSE of 1.04
which was the best result, compared to all other approaches. In the bottom row, the
results of the Cornell box scene that were rendered for 60 seconds with isotropic media
(g = 0.0) can be seen. The approach by Kulla et al. achieved a RMSE of 0.94 which
was the best result, compared to all other approaches. The achieved RMSE for each
approach is displayed within the corresponding image.

scattering (g = 0.6) a RMSE of 2.25 was reached. In this test scenario, Kulla et al.
achieved a RMSE of 2.63, Novák et al. achieved a RMSE of 2.44 and the sum of Cauchy
distributions achieved a RMSE of 2.26.

7.3 Equal Sample
The equal sample test case will not be discussed in detail, but can be viewed in full in
the appendix A. As the approach by Novák et al. can be adapted to have more or less
samples within the importance sampling function, a higher number of samples can be
chosen to match the target function better. As this would result in a slow result per
sample, but an accurate result, it is not a fair comparison, as all other approaches do not
have this option.
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7. Results & Comparison
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Figure 7.4: Representative examples of the equal time case where our approaches were
faster than the other approaches (Novák et al., Kulla et al.). On the top row, the results
of the bidirectional light scene that were rendered for 60 seconds with high backward
scattering media (g = −0.9) can be seen. The Sum of Cauchy distributions approach
achieved a RMSE of 2.09 which was the best result, compared to all other approaches.
In the bottom row, the results of the bidirectional light scene that were rendered for 60
seconds with higher forward scattering media (g = 0.6) can be seen. The mixture model
approach with Cauchy distributions achieved a RMSE of 2.25 which was the best result
compared to all other approaches. The achieved RMSE for each approach is displayed
within the corresponding image.
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CHAPTER 8
Conclusion & Future Work

8.1 Conclusion
In this thesis we have presented two new importance sampling techniques that solve
the anisotropic case of VRL. First, we discussed light transport in general and different
ray-based approaches for rendering participating media. Then we analyzed the work by
Novák et al. in detail and provided two new approaches for solving the anisotropic case
of VRL. We provide them as mathematical formulations, pseudo code and actual code
via a GitHub project. This repository additionally contains further implementations with
other attempted solutions as discussed in Appendix B.

In our first approach we use the sum of two Cauchy distributions to approximate the
product of the phase functions, which is our target function. The sum of two Cauchy
distributions can be integrated and then inverted, which is necessary when being used in
Monte Carlo importance sampling approach. Therefore, this approach provides a solution
that can be directly sampled from.

In our second approach we use a mixture model with two Cauchy distributions. Although
similar, this approach differs from the first approach as the two Cauchy distributions
have to be normalized when used in the mixture model. This therefore leads to different
results and accuracy when comparing it to the target function. The advantage of this
approach is its mathematical simplicity as the Cauchy distributions only need to be
integrated and inverted individually.

Both of our approaches outperform the original approach by Novák et al. in most of our
test cases. Only for high forward scattering media (g = 0.9), Novák et al. still maintain
a better performance. Not only do our approaches outperform Novák et al. in most of
our tests, the mathematical formulation is less complex and can therefore be evaluated
easier for future adaptations. We provide detailed test scenarios in Appendix A which
were analyzed in Section 7.
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8. Conclusion & Future Work

8.2 Future Work
There are many different areas in which the ideas that are presented in this thesis can
be further developed. In Appendix B we discuss other approaches that we have already
evaluated that could be of use for future work.

Other distributions in the mixture model - In our approaches we use the Cauchy
distribution in the mixture model as we found this distribution to fit well to the Henyey-
Greenstein phase function in our application. We tried other distributions with varying
results, but settled on the Cauchy distribution as it seemed the most promising. As there
are many other distributions, there could be one that fits even better to this use case.

Product of distributions - As the target function is a product of two Henyey-Greenstein
functions, the product of two other functions might be a good fit to solve this problem.
We did not find a solution for which the product of two functions that was a good fit
and analytically solvable, but there might be one.

Improved matching for the distributions - In our approaches we kept the matching
of the functions, choosing the location and scale, simple and took the obvious choice.
By adapting those values, the final result could fit even better without much overhead.
There could even be a clear way of finding these values for different medium properties.
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APPENDIX A
Full Results

In this appendix we present the results of the approaches that were introduced and
compare them to the original algorithm. We are evaluating our results in three different
scenes.

1. a variant of the Cornell box that was used in the original paper

2. a single light ray

3. a unidirectional light

For all of these scenes, the following three sets of tests are conducted.

1. equal error

2. equal time

3. equal sample

With these test sets we try to cover the most cases that we can. Our tests were made
on an Intel Core i7-4770 CPU @ 3.4GHz with 32GB RAM running parallelized over all
cores, with all results having a resolution of 512x512.

In our tests we will always use a the same table structure. The columns of the table
represent different anisotropy values of the Henyey-Greenstein phase function, whereas
the rows show the results of different algorithms. In the first row we always show the
reference image (with a green border). The second and the third row show the original
approach, where the second row only uses the equi-angular sampling by Kulla et al.
[KF11] and the third row uses the full implementation of Novák et al. [NNDJ12b]. The
fourth and fifth row show our own implementations with a red border. In the fourth row,
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A. Full Results

the results of the sum of two Cauchy distributions is shown, whereas in the fifth row, the
Mixture Model approach is depicted.

The reference images were created by using the original VRL algorithm and using a high
sample count (1,000,000 samples). The results of the PSNR and RMSE tables are always
comparisons from the rendered tests to these references.

62



A.1. Cornell Box

A.1 Cornell Box
Scene, Light & Medium Settings
Light Position (0, 1.9, -3)
Light Intensity 50,000
Medium (σa, σs) 0.1, 0.01

Table A.1: The light and media properties of the Cornell box scene.

This test case is a recreation of the well know Cornell box scene. The media and light
properties can be seen in Table A.1. This scene was inspired by a similar scene in the
original paper. The starting position of the light rays is chosen randomly within the four
rectangles on the ceiling, the direction is always the same. The surface illumination is
solely calculated by the contribution of the radiance from the media on to the surface.

A.1.1 Equal Error
The equal error comparisons evaluate how long the rendering took until a certain RMSE
threshold was reached.

Equal Error - RMSE 1 Table A.2 shows the results of a Cornell box scene when
rendered until the RMSE is lower than 1.
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A. Full Results
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A.1. Cornell Box

A.1.2 Equal Time
The equal time comparison renders until a time limit is reached. Afterwards, RMSE and
PSNR can be calculated from these results to see how far they have converged in that
time.

Equal Time - 60 Seconds Table A.4 shows the results of a Cornell box scene when
rendered for 60 seconds. The corresponding RMSE and PSNR can be seen in Table A.3.

Kulla et al. Novák et al. sum of Cauchy MM (Cauchy)
HG
-0.9
-0.6
-0.3
0.0
0.3
0.6
0.9

RMSE PSNR
2.74 39.36
2.11 41.63
1.37 45.36
0.93 48.70
1.60 44.03
2.76 39.28
4.01 36.05

RMSE PSNR
1.68 43.61
2.19 41.29
1.78 43.08
1.26 46.08
1.57 44.17
2.33 40.76
1.24 46.25

RMSE PSNR
1.68 43.60
1.72 43.38
1.31 45.78
1.10 47.30
1.68 43.59
2.36 40.64
1.89 42.55

RMSE PSNR
1.66 43.69
2.00 42.08
1.67 43.64
1.19 46.56
1.47 44.72
2.07 41.77
1.74 43.27

Table A.3: Comparison of the RMSE and PSNR of Table A.4.
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A.1. Cornell Box

A.1.3 Equal Sample
The equal sample approach evaluates the efficiency of the algorithm on a per sample
basis. Therefore it is expected that the original algorithm will outperform our approaches
as the time taken per sample is longer. But this test still provides valid insight on how
close the results are.

Equal Sample - 1000 Samples Table A.6 shows the results of a Cornell box scene
when rendered for 60 seconds. The corresponding RMSE and PSNR can be seen in Table
A.5.

Kulla et al. Novák et al. sum of Cauchy MM (Cauchy)
HG
-0.9
-0.6
-0.3
0.0
0.3
0.6
0.9

RMSE PSNR
2.46 40.29
2.12 41.58
1.36 45.41
0.94 48.60
1.44 44.95
2.50 40.14
3.55 37.11

RMSE PSNR
1.04 47.78
1.10 47.26
1.27 45.99
0.99 48.18
1.32 45.67
1.50 44.58
1.06 47.61

RMSE PSNR
1.42 45.04
1.13 47.01
1.22 46.35
0.95 48.53
1.23 46.26
1.85 42.74
1.74 43.28

RMSE PSNR
1.25 46.16
1.18 46.68
1.09 47.30
1.04 47.76
1.23 46.29
1.66 43.69
1.39 45.22

Table A.5: Comparison of the RMSE and PSNR of Table A.6.
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Table A.6: Comparison of the Cornell box scene until 1000 samples are reached. (Time
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A.1. Cornell Box

Equal Sample - 10,000 Samples Table A.8 show the results and times of the scene
being rendered with 10,000 samples. As can be seen from Table A.7, all results have an
extremely low RMSE.

Kulla et al. Novák et al. sum of Cauchy MM (Cauchy)
HG
-0.9
-0.6
-0.3
0.0
0.3
0.6
0.9

RMSE PSNR
0.80 49.97
0.66 51.72
0.49 54.29
0.36 56.87
0.63 52.00
0.89 49.07
1.15 46.85

RMSE PSNR
1.00 48.07
1.24 46.25
0.73 50.79
0.93 48.73
1.24 46.23
1.28 45.96
1.33 45.63

RMSE PSNR
0.53 53.51
0.48 54.45
0.48 54.33
0.39 56.27
0.48 54.37
0.65 51.86
0.55 53.24

RMSE PSNR
0.44 55.24
0.49 54.30
0.62 52.26
0.43 55.42
0.60 52.43
0.60 52.47
0.52 53.65

Table A.7: Comparison of the RMSE and PSNR of Table A.8.
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A. Full Results
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Table A.8: Comparison of the Cornell box scene until 10,000 samples are reached. (Time
in hh:mm:ss:ms)70



A.2. Unidirectional

A.2 Unidirectional
Scene, Light & Medium Settings
Light Position (0, 0, -2)
Light Intensity 100
Medium (σa, σs) 0.1, 0.25

Table A.9: The light and media properties of the Unidirectional scene.

This test case is a recreation of a standard unidirectional light scene. The media and
light properties can be seen in Table A.9. Although there are other approaches that
render unidirectional lights faster, we show in this section that it is still possible with
VRL, although the convergence is relatively slow compared to other test cases.

A.2.1 Equal Error
The equal error comparisons evaluate how long the rendering took until a certain RMSE
threshold was reached.

Equal Error - RMSE 1 Table A.10 shows the results of a unidirectional light scene
when rendered until the RMSE is lower than 1. If this RMSE goal was not reached
within 100,000 samples, a red cross is displayed instead.
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Table A.10: Comparison of the unidirectional light scene until a RMSE of 1 is reached.
If this RMSE was not reached in 100,000 samples, a red cross is displayed. (Time in
hh:mm:ss:ms)72



A.2. Unidirectional

A.2.2 Equal Time
The equal time comparison renders until a time limit is reached. Afterwards, RMSE and
PSNR can be calculated from these results to see how far they have converged in that
time.

Equal Time - 60 Seconds Table A.12 shows the results of a Cornell box scene when
rendered for 60 seconds. The corresponding RMSE and PSNR can be seen in Table A.11.

Kulla et al. Novák et al. sum of Cauchy MM (Cauchy)
HG
-0.9
-0.6
-0.3
0.0
0.3
0.6
0.9

RMSE PSNR
24.73 20.26
8.18 29.86
2.40 40.51
1.83 42.85
2.92 38.80
9.48 28.58
24.15 20.47

RMSE PSNR
21.46 21.49
5.62 33.12
3.34 37.65
2.43 40.38
2.49 40.18
4.53 35.00
18.05 22.99

RMSE PSNR
21.77 21.37
5.52 33.28
2.38 40.59
1.97 42.23
2.48 40.23
5.11 33.94
18.53 22.77

RMSE PSNR
21.73 21.38
4.89 34.34
2.37 40.60
1.93 42.39
2.52 40.09
5.33 33.59
17.08 23.48

Table A.11: Comparison of the RMSE and PSNR of Table A.12.
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Table A.12: Comparison of the unidirectional light scene that was rendered for 60 seconds.
Numbers of samples is provided in the pictures.74



A.2. Unidirectional

A.2.3 Equal Sample
The equal sample approach evaluates the efficiency of the algorithm on a per sample
basis. Therefore it is expected that the original algorithm will outperform our approaches
as the time taken per sample is longer. But this test still provides valid insight on how
close the results are.

Equal Sample - 1000 Samples Table A.14 shows the results of a Cornell box scene
when rendered for 60 seconds. The corresponding RMSE and PSNR can be seen in Table
A.13.

Kulla et al. Novák et al. sum of Cauchy MM (Cauchy)
HG
-0.9
-0.6
-0.3
0.0
0.3
0.6
0.9

RMSE PSNR
29.52 18.72
7.30 30.85
2.90 38.87
2.00 42.07
3.05 38.41
11.84 26.66
25.46 20.01

RMSE PSNR
21.05 21.66
5.22 33.76
2.61 39.79
2.04 41.90
2.28 40.94
5.19 33.82
16.65 23.70

RMSE PSNR
20.97 21.69
5.40 33.47
2.51 40.12
1.99 42.11
2.68 39.55
5.56 33.22
19.60 22.28

RMSE PSNR
22.66 21.02
5.65 33.08
2.43 40.41
2.03 41.95
2.62 39.73
5.70 33.00
19.28 22.42

Table A.13: Comparison of the RMSE and PSNR of Table A.14.
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Table A.14: Comparison of the Cornell box scene until 1000 samples are reached. (Time
in hh:mm:ss:ms)76



A.2. Unidirectional

Equal Sample - 10,000 Samples Table A.16 show the results and times of the scene
being rendered with 10,000 samples. As can be seen from Table A.15, all results have an
extremely low RMSE.

Kulla et al. Novák et al. sum of Cauchy MM (Cauchy)
HG
-0.9
-0.6
-0.3
0.0
0.3
0.6
0.9

RMSE PSNR
12.93 25.89
2.75 39.33
0.93 48.69
0.75 50.59
1.08 47.45
3.36 37.58
18.37 22.84

RMSE PSNR
8.77 29.26
1.80 43.01
0.88 49.15
0.74 50.69
0.85 49.53
1.66 43.68
7.83 30.24

RMSE PSNR
10.20 27.95
1.86 42.70
0.86 49.37
0.75 50.52
0.91 48.90
2.01 42.02
9.37 28.69

RMSE PSNR
10.35 27.82
1.80 43.01
0.91 48.94
0.77 50.31
0.92 48.84
1.77 43.15
8.51 29.52

Table A.15: Comparison of the RMSE and PSNR of Table A.16.
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Table A.16: Comparison of the unidirectional light scene until 10,000 samples are reached.
(Time in hh:mm:ss:ms)78



A.3. Bidirectional1

A.3 Bidirectional1
Scene, Light & Medium Settings
Light Position (0, 0, -2)
Light Intensity 250
Medium (σa, σs) 0.1, 0.25

Table A.17: The light and media properties of the bidirectional light scene.

This test case is a recreation of the bidirectional light scene. The media and light
properties can be seen in Table A.17. This scene was inspired by the general behavior of
the VRL. As there is always a ray to ray light calculation (light and camera ray), it is a
good test scene to just visualize a single ray.

A.3.1 Equal Error
The equal error comparisons evaluate how long the rendering took until a certain RMSE
threshold was reached.

Equal Error - RMSE 1 Table A.18 shows the results of a bidirectional light scene
when rendered until the RMSE is lower than 1. The corresponding data for the progression
of the RMSE per sample can be seen in Figures A.1, A.2, A.3, A.4, A.5, A.6 and A.7.
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A. Full Results

Figure A.1: The progression of the RMSE values plotted on the y-axis for the correspond-
ing time in milliseconds on the x-axis. This plot contains the data from the bidirectional
light scene with a g-value of −0.9 for the Henyey-Greenstein phase function.
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A.3. Bidirectional1

Figure A.2: The progression of the RMSE values plotted on the y-axis for the correspond-
ing time in milliseconds on the x-axis. This plot contains the data from the bidirectional
light scene with a g-value of −0.6 for the Henyey-Greenstein phase function.
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A. Full Results

Figure A.3: The progression of the RMSE values plotted on the y-axis for the correspond-
ing time in milliseconds on the x-axis. This plot contains the data from the bidirectional
light scene with a g-value of −0.3 for the Henyey-Greenstein phase function.
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A.3. Bidirectional1

Figure A.4: The progression of the RMSE values plotted on the y-axis for the correspond-
ing time in milliseconds on the x-axis. This plot contains the data from the bidirectional
light scene with a g-value of 0.0 for the Henyey-Greenstein phase function.
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A. Full Results

Figure A.5: The progression of the RMSE values plotted on the y-axis for the correspond-
ing time in milliseconds on the x-axis. This plot contains the data from the bidirectional
light scene with a g-value of 0.3 for the Henyey-Greenstein phase function.
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A.3. Bidirectional1

Figure A.6: The progression of the RMSE values plotted on the y-axis for the correspond-
ing time in milliseconds on the x-axis. This plot contains the data from the bidirectional
light scene with a g-value of 0.6 for the Henyey-Greenstein phase function.
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A. Full Results

Figure A.7: The progression of the RMSE values plotted on the y-axis for the correspond-
ing time in milliseconds on the x-axis. This plot contains the data from the bidirectional
light scene with a g-value of 0.9 for the Henyey-Greenstein phase function.
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A.3. Bidirectional1
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Table A.18: Comparison of the bidirectional light scene until a RMSE of 1 is reached.
(Time in hh:mm:ss:ms) 87



A. Full Results

A.3.2 Equal Time
The equal time comparison renders until a time limit is reached. Afterwards, RMSE and
PSNR can be calculated from these results to see how far they have converged in that
time.

Equal Time - 60 Seconds Table A.20 shows the results of a Cornell box scene when
rendered for 60 seconds. The corresponding RMSE and PSNR can be seen in Table A.19.

Kulla et al. Novák et al. sum of Cauchy MM (Cauchy)
HG
-0.9
-0.6
-0.3
0.0
0.3
0.6
0.9

RMSE PSNR
2.98 38.65
3.52 37.20
3.19 38.05
3.15 38.17
3.28 37.80
2.63 39.73
1.97 42.25

RMSE PSNR
2.44 40.38
4.36 35.34
4.25 35.57
3.93 36.24
3.60 36.99
2.44 40.39
0.93 48.80

RMSE PSNR
2.09 41.71
3.52 37.19
3.43 37.41
3.39 37.52
3.28 37.82
2.26 41.05
0.90 49.02

RMSE PSNR
2.36 40.65
3.67 36.82
3.41 37.48
3.38 37.54
3.27 37.84
2.25 41.08
0.87 49.33

Table A.19: Comparison of the RMSE and PSNR of Table A.20.
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A.3. Bidirectional1
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Table A.20: Comparison of the bidirectional light scene that was rendered for 60 seconds.
Numbers of samples is provided in the pictures. 89



A. Full Results

A.3.3 Equal Sample
The equal sample approach evaluates the efficiency of the algorithm on a per sample
basis. Therefore it is expected that the original algorithm will outperform our approaches
as the time taken per sample is longer. But this test still provides valid insight on how
close the results are.

Equal Sample - 1000 Samples Table A.22 shows the results of a Cornell box scene
when rendered for 60 seconds. The corresponding RMSE and PSNR can be seen in Table
A.21.

Kulla et al. Novák et al. sum of Cauchy MM (Cauchy)
HG
-0.9
-0.6
-0.3
0.0
0.3
0.6
0.9

RMSE PSNR
3.30 37.76
3.95 36.19
3.57 37.08
3.51 37.21
3.65 36.87
2.94 38.75
2.16 41.46

RMSE PSNR
2.15 41.48
3.86 36.39
3.74 36.67
3.48 37.30
3.21 37.99
2.15 41.49
0.72 51.02

RMSE PSNR
2.16 41.44
3.61 36.98
3.52 37.19
3.52 37.20
3.37 37.59
2.34 40.72
0.93 48.75

RMSE PSNR
2.41 40.50
3.72 36.72
3.54 37.14
3.51 37.22
3.36 37.60
2.33 40.76
0.91 48.92

Table A.21: Comparison of the RMSE and PSNR of Table A.22.
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A. Full Results

Equal Sample - 10,000 Samples Table A.24 show the results and times of the scene
being rendered with 10,000 samples. As can be seen from Table A.23, all results have an
extremely low RMSE.

Kulla et al. Novák et al. sum of Cauchy MM (Cauchy)
HG
-0.9
-0.6
-0.3
0.0
0.3
0.6
0.9

RMSE PSNR
1.11 47.25
1.35 45.49
1.24 46.23
1.22 46.37
1.25 46.18
1.02 47.94
0.71 51.06

RMSE PSNR
0.77 50.42
1.33 45.67
1.30 45.88
1.31 45.79
1.13 47.05
0.78 50.34
0.26 59.67

RMSE PSNR
0.76 50.51
1.26 46.15
1.23 46.34
1.23 46.34
1.17 46.77
0.83 49.73
0.33 57.63

RMSE PSNR
0.83 49.76
1.29 45.89
1.24 46.27
1.23 46.35
1.18 46.71
0.82 49.72
0.32 57.96

Table A.23: Comparison of the RMSE and PSNR of Table A.24.
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APPENDIX B
Other Approaches

In general, it should be noted that although there we only mention probability distributions
being used in the approaches, other functions can be used as well. One of the main
advantages of the probability distributions, being normalized, falls out, as most of the
distributions are matched to their underlying targets in other intervals. Still, the location
and scale parameters of most distributions make the matching easier and that is why
they are used in the approaches.

B.1 Product of two distributions
For a long time during the work on this thesis, it was the main goal to find a solution
where two functions can be multiplied, and the result can be used as a pdf to approximate
the product of the two phase functions. It was believed that the product of two functions
will have the closest fit to the target distribution. After some time it was found out
that two Gaussian distributions can be multiplied, the result can be integrated and
further inverted. These are all steps that are necessary to sample from a distribution.
Unfortunately, the results were very lackluster, as the discovery was that the functions
could not be fitted close enough to the target and therefore the product of them looked
very different. In the case of the Gaussian distribution, there is mainly only one peak at
a completely different position, as the Gaussian approaches zero much faster. In some
tests with higher anisotropy values, convergence could not be reached, as the results were
even worse than a uniform importance sampling function. The implementation of this
case can be seen in the GitHub project.

B.2 Product of two Cauchy distributions
Although the product of two Cauchy distributions is much closer to the target result
than the product of two Gaussians, this approach had to be discarded early on as it
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B. Other Approaches

seems to be impossible to sample from this distribution. It is just mentioned here for
completeness.

B.3 Other Distributions for the Mixture Model
Besides the Cauchy distribution, it is also possible to use other distributions in the
mixture model approach. In this case it was also tested with the Gaussian, Logistic and
a variation of the hyperbolic secant distribution with a scale and location factor, which
are all available in the GitHub project. Although convergence can be reached with all of
these distributions, the Cauchy distribution provides the best results. Still, it is good to
see that this approach is very adaptable.
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