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Kurzfassung

Stoffwechselwege stellen miteinander verbundene Reaktionen chemischer Entitäten dar,
die in Zellen stattfinden. Diese Wege werden in domänenspezifischen Notationen darge-
stellt, welche in den Biowissenschaften dem Wissensaustausch dienen. Da sie Tausende
von Knoten enthalten können, sind automatische Anordnungen erforderlich, die die
Bedeutung dieser Wege bewahren. Es gibt viele Algorithmen zum Zeichnen von Graphen,
darunter hierarchische, topologisch-metrische, kraftbasierte und bedingungsbasierte An-
sätze. Diese berücksichtigen in der Regel nur eine Teilmenge der Anforderungen, die für
eine getreue Visualisierung von Stoffwechselwegen erforderlich sind, und unterstützen
selten domänenspezifische Notationen. In dieser Arbeit stellen wir einen ganzheitlichen
Ansatz zur Visualisierung von Stoffwechselwegen vor, der mit der Systems Biology Graph
Notation (SBGN) konform ist. Unser Ansatz beginnt mit dem Laden eines Stoffwechsel-
weges und dessen Abbildung auf einen gebündelten Graphen, um die Hierarchie seiner
subzellulären Positionen zu modellieren. Die Knoten werden anschließend durch vektori-
sierte Stress-Majorisierung unter Verwendung domänenspezifischer Bedingungen in einem
mehrstufigen Aufbau angeordnet. Dies führt zu einer SBGN-konformen Anordnung. Um
bestimmte Reaktionen an subzellulären Orten zu unterscheiden, haben wir eine Visuali-
sierungstechnik entwickelt, die in Analogie zu einem elastischen Band unterschiedliche
Formen erzeugt. Um große Netzwerke zu erforschen, bieten wir eine Expansions- und
Kollaps-Interaktion in Kombination mit einer Motiv-Vereinfachung. Wir bestimmen den
Grad der Übereinstimmung der Anordnung mit der SBGN, indem wir domänenspezifische
Qualitätsmetriken vorschlagen. Unsere Ergebnisse zeigen, dass die Formulierung von
SBGN-spezifischen Bedingungen im Rahmen der vektorisierten Stress-Majorisierung
machbar ist. Schließlich bestätigt unsere Auswertung, dass unser Anordnungsansatz
Stoffwechselwege getreu darstellen kann.
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Abstract

Metabolic pathways represent interconnected reactions of chemical entities, which take
place within cells. These pathways are represented in domain-specific notations, which
are used for knowledge exchange in the life sciences. Since they can contain thousands
of nodes, automatic layouts are required that conserve the meaning of these pathways.
There are many graph drawing algorithms including hierarchical, topology-shape-metric,
force-directed, and constraint-based approaches. They typically consider only a subset of
the requirements needed to faithfully visualize metabolic pathways and rarely support
domain-specific notations. In this work, we present a holistic approach to visualize
metabolic pathways compliant with the Systems Biology Graph Notation (SBGN). Our
approach starts with loading a metabolic pathway and mapping it to a clustered graph
structure to model the hierarchy of subcellular locations. The nodes are then arranged
through vectorized stress majorization using domain-specific constraints in a multilevel
setup. This leads to a SBGN-compliant layout. To distinguish certain reactions at
subcellular locations, we developed a visualization technique that produces distinct
shapes in analogy to an elastic band. To explore large pathways, we provide an expand
and collapse interaction in combination with motif simplification. We determine the
degree of the layout’s compliance with the SBGN by proposing domain-specific quality
metrics. Our results demonstrate that the formulation of SBGN-specific constraints
in the framework of vectorized stress majorization is feasible. Finally, our evaluation
corroborates that our layout approach can faithfully represent metabolic pathways.
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CHAPTER 1
Introduction

In this chapter, the motivation for this thesis is presented and the problem statement is
defined. An overview of the contributions is given and finally a short outline of the work.

1.1 Motivation
Graphs and networks are widely used to describe biochemical reactions in life sciences such
as biology and chemistry. For example, a series of successive reactions within a cell are
connected to form metabolic pathways. Those pathways transform, produce, or consume
biochemical compounds, called metabolites, along the way. One cell is home to many
metabolic pathways and linked together they form the metabolic network of a cell [80]. In
short the transformations of metabolites into each other can be represented as metabolic
networks [71]. Other biological processes have their own network representations, e.g.,
protein interaction networks or gene regulatory networks [80].

Visualizations of these biological networks support domain experts in gaining insights
into biochemical processes [14] and in communicating this knowledge. To this end the life
science community developed diverse visual representations. One of them is the Systems
Biology Graph Notation (SBGN), which aspires to provide a unified and standardized
visual language [77].
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1. Introduction

Biological networks are complex networks [76], that can contain several thousand nodes
and edges [14], and are constantly growing [71]. This makes navigation, analysis, and
comprehension very challenging [45]. Therefore, an automated visualization approach is
needed [90] that supports SBGN and promotes understanding.

1.2 Problem Statement

On the one hand, there are existing software tools and libraries to visualize graphs and
network, but they do not usually support the established drawing conventions of life
sciences [14]. On the other hand, there are more than 170 specialized tools for modeling,
analyzing, and visualizing biological pathways [14, 71]. However, most of these specialized
tools only support standard force-directed or hierarchical graph drawing techniques and
do not include state-of-the-art layout approaches. Kerren et. al. stated in 2002 that
these standard techniques and even a combination of them do not yield visualizations,
which satisfy the established conventions of biology and chemistry [71]. As a result, such
visualizations tend to be difficult to understand [71]. Consequently, there is an open need
for automatic layouts of biological networks with state-of-the-art techniques in the life
sciences’ drawing conventions [14].

In addition to the drawing conventions, an important aspect of metabolic networks is
their nested nature. Biochemical processes take place within cells, subcellular locations,
or molecular complexes. This is modeled through nested compound structures. Including
this information yields additional insight into the reactions, because metabolites can
only interact directly with others in the same compound structure. Such structures
are rarely considered during automated layout calculations [45]. The integration of
the metabolites’ subcellular locations into the overall layout and conveying the nested
structure of metabolic networks are still open problems [14].

Visualizing large networks is a common problem that exists throughout all domains and
needs to be addressed for metabolic networks as well [14, 45]. Possible solutions are
complexity reduction techniques such as focus+context [71, 104], expand+collapse [14],
hierarchical clustering and nesting [45], visual aggregation [47], semantic zooming [71], or
motif simplification [47, 106]. However, these techniques often change the topology and
the existing layout, which affects the user’s ability to retain the mental map. Therefore,
a combined solution must be researched that not only reduces complexity, but also
preserves the reader’s mental map [14].

There are already works that study these problems independently with idealized data or
data not specific to an application domain. Moreover, these works do not consider these
problems as parts of a holistic problem that should be solved together.
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1.3. Contributions

1.3 Contributions
There is an open need for a layout strategy that takes the graphical notation of life
sciences into account, visualizes a metabolic pathway’s compound structure and data
flow while keeping the complexity of the network minimal. In this work, we provide a
rather holistic approach for the visualization of metabolic pathways. Our contributions
are the following:

C1 A graph drawing technique that adheres to the SBGN and considers subcellu-
lar locations is proposed. This is accomplished by formulating domain-specific
layout constraints in the general graph drawing framework of vectorized stress
majorization [103] to arrange metabolic pathways. Because metabolic path-
ways can consist of disconnected components and disjoint subgraphs within
subcellular locations, we augment the vectorized stress majorization with a
multilevel layout approach.

C2 The visualization of large networks is improved twofold. Firstly, we provide
a tailored cluster visualization technique for subcellular locations, called
elastic band, that generates distinguishable shapes through analytical implicit
blending. Secondly, we use these shapes to abstract subgraphs within sub-
cellular locations to motifs. These motifs facilitate preserving the mental
map and reduce the complexity of large metabolic pathways by means of an
expand and collapse interaction.

C3 An end-to-end approach to create a metabolic pathway visualization in
the SBGN is described. Firstly, a unified definition framework for graphs,
networks, and graph drawing requirements is given, since the literature uses
different terminology. Secondly, a holistic pipeline for creating an SBGN
drawing is presented. This includes a hierarchical network structure that
serves as the foundation for our SBGN-specific graph drawing and interaction
techniques. Finally, we introduce quality metrics to evaluate the SBGN-ness
of a drawing. Novel problems encountered during the development of this
holistic approach are formulated.

We reference these contributions at the appropriate places in this thesis.

1.4 Outline of the Thesis
The state-of-the-art of relevant fields is reviewed in Chapter 2. The definitions of graphs
and networks are reviewed and set into context of biological pathways. An overview of the
visual mapping of networks to an application domain is given, along with an explanation
of the SBGN. Graph drawing requirements and the domain-specific layout requirements
of SBGN are discussed and analyzed, followed by an overview of techniques for graph
drawing and visualizing cluster information. Various databases for biological pathway

3



1. Introduction

data and existing software support are listed at the end of this chapter. In Chapter 3 we
present our pipeline to generate visualizations of metabolic networks in SBGN. It consists
of the following seven steps: acquire and prepare, load and preprocess, data structure,
layout, postprocess, visualize, and reduce complexity. Subsequently, we describe every
step in detail, including its relevant graph drawing requirements, examples, and potential
alternative approaches. In the final part of this chapter we describe our implementation.
In Chapter 4 we present metabolic networks arranged with our approach and discuss
them in comparison with manually-curated layouts from domain experts. To evaluate the
SBGN-ness of our results, we introduce several quality metrics. In the final Chapter 5,
we conclude our work. We also discuss open problems and future improvements.
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CHAPTER 2
Related Work

The first visualizations of metabolic networks were hand-made and appeared in textbooks
and on posters. In the 1990ies, electronic information systems such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [69] emerged, which is an online database
of manually created maps of biological systems such as biological processes. They were
viewable but not changeable and, therefore, only static visualizations. Fueled by the
accessibility of biological networks through these online databases, the visualization of
biological networks has since evolved to dynamic visualizations, that aim to be generated
automatically and on-demand, are interactive, and can be visually analyzed and explored.
The purpose of visualizing a biological network is to promote understanding of biomolecules’
interactions to the reader. This can by achieved by translating the underlying graph
structure of a biological network into a diagram [19, 106]. A self-explanatory way to
visualize a graph is a node-link diagram [98], where data entities are depicted as nodes
and relationships as lines [23, 65]. The placement of these nodes and links must be
done in a meaningful way [84], as it has a significant impact on the readers ability to
understand the visualized biological system [101]. An arbitrary placement, would hide
the underlying structure of the data [84]. Since biological networks are multivariate
networks and not just simple graph structures, it is not sufficient to map them to simple
node-link diagrams and apply a standard drawing algorithm to obtain a meaningful
placement [71]. The domain-specific information of biological networks can be translated
into visual representations using visual metaphors. Such a translation is called visual
mapping [71]. The definition of a node’s appearance is often depending on the application
domain, e.g., biological networks typically use glyph-based definitions [71]. Incorporating
this contextual information can improve biological network diagrams in general [19].
Beside node-link diagrams, there are other ways to visualize graphs such as space-filling
techniques, treemaps, matrix representations, or 3D layouts [98]. However these are
rarely used to visualize biological networks and are only mentioned for completeness. The
knowledge and techniques from many different research areas are combined to provide
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2. Related Work

the foundation for biological network visualization, such as graph theory, information
visualization, and graph drawing [71]. There are a numerous surveys on these topics,
including the following:

• Tarawneh et al. [98] gives a general introduction to graph visualization techniques,

• Kerren et al. [71] focus on biological network visualizations, and

• Gibson et al. [65] provide an overview of general force-directed layouts, dimensional-
ity reduction, multilevel techniques, computational improvements, and comparisons.

In the subsequent sections, we provide an overview of the relevant foundations and
describe the state-of-the-art techniques for visualizing biological networks and metabolic
pathways.

2.1 Graph and Network Definitions
In many areas of the life sciences networks are used to model relational data [71]. Graphs
and networks are also mathematical concepts and common data structures [68, 98]. Since
the definitions and notations of graphs and networks slightly vary in the literature [22,
33, 46, 61, 71, 92, 96, 97, 98, 106], we provide a brief outline for the used definitions and
notation (C3) throughout this thesis:

Definition 2.1.1 (Graph). A graph G(V, E), or in short G, consists of V , the finite set
of vertices, and E, the finite set of edges. An edge consists of a pair of vertices (u, v)
with u, v ∈ V , and describes a binary relationship between them.

Definition 2.1.2 (Undirected and directed). If an edge is an unordered vertex pair
{u, v}, where {u, v} = {v, u}, then the graph is called undirected. If an edge is an ordered
vertex pair (u, v), where (u, v) ̸= (v, u), then the graph is called directed. A directed
graph is also called digraph.

Definition 2.1.3 (Simple). G is called simple if E does not contain self-loops and every
edge is unique.

Definition 2.1.4 (Path). A connected sequence of edges is called path.

Definition 2.1.5 (Acyclic). If there is no possible path for any vertex to itself, the graph
is acyclic.

Definition 2.1.6 (Directed acyclic graph). If the graph is acyclic as well as a directed
graph, it is called Directed Acyclic Graph (DAG).

Definition 2.1.7 (Connected). A graph is connected if there is a path between u and v
for each pair of vertices (u, v).

6



2.1. Graph and Network Definitions

Definition 2.1.8 (Bipartite). A graph G is bipartite if it is 2-colorable.

Definition 2.1.9 (Neighborhood). The adjacent vertices of a vertex are called its
neighborhood.

Definition 2.1.10 (Degree). The degree of a vertex is the number of its neighbors.

Definition 2.1.11 (Subgraph). If G ∪ G′ = G, then G′ is a subgraph of G. A subgraph
G′(V ′, E′) can be induced by V ′ ⊆ V , then the set of edges E′ consists of edges where
(u, v) ∈ V ′. A subgraph G′(V ′, E′) of G(V, E) can also be induced by E′ ⊆ E, then the
set V ′ consists of vertices incident to E′.

Definition 2.1.12 (Hypergraph). The hypergraph H = (V, E) consists of the finite vertex
set V and the hyperedge set E, where e ∈ E is a subset {u0, . . . , un} of V compared to a
conventional edge, that consists of a pair of vertices {u, v}.

Definition 2.1.13 (Network). A network N is a graph where each vertex and/or edge
is associated with an attribute w(v) ∈ R or w(e) ∈ R, respectively. This attribute can
represent a length, a weight, a capacity, a cost, etc. The network is multivariate if it
has more than one attribute attached to its vertices and/or edges.

Definition 2.1.14 (Multi layer/level network). The graph is partitioned into layers
(levels), such that a node of a level is connected to a node residing in the next level,
resulting in a multilevel digraph.

Definition 2.1.15 (Clustered graph). A clustered graph is a multivariate network, where
every vertex is part of at least one cluster. Cluster membership can be encoded as vertex
attribute. Clusters can either be disjoint or form a hierarchy, with the latter being
represented as cluster tree.

Definition 2.1.16 (Embedding). The mapping of a graph into R2 is also called its
embedding.

Definition 2.1.17 (Drawing). A graph can be represented as a drawing Γ in R2 if its
vertices are mapped to points on a plane Γ (v) and if its edges are mapped to simple
open Jordan curves Γ (u, v). A Jordan curve has no self-intersections in R2.

Definition 2.1.18 (Layout). An arrangement of vertices and edges in a drawing is called
layout [84]. Whenever we use the term graph drawing in this thesis, we assume that such
a drawing includes a layout.

Definition 2.1.19 (Network diagram). A drawing of a network, is called a network
diagram or a network map. We refer to the visualization of a network as network diagram.

Definition 2.1.20 (Planar). A graph is planar if it assumes a drawing without edge
crossings. A planar graph separates a plane into faces.

7



2. Related Work

2.2 Biological Pathways as Graph Structure
Biological pathways are complex real world networks, which cannot be completely
represented by one simple graph structure. To support the multivariate nature of
biological pathways, a suitable data structure needs to be chosen [71]. The graph
structure is also shaped by the underlying application, use-case, or questions being
addressed.

Simple graphs are used for substrate graphs, where every vertex represents a substrate,
and reaction graphs, where every node stands for a reaction [106]. Metabolic networks
can be represented as directed graphs, to convey which entities are consumed to produce
other entities [71]. Another common way to map biological pathways to a graph structure
is by mapping, both metabolites and reactions to vertices. This leads to a bipartite graph.
Alternatively, reactions can be mapped to edges instead of vertices, which leads to a
hypergraph, since more than two entities can be involved in a reaction. A hypergraph
can usually be converted into a bipartite graph and vice-versa.

Wu et al. [106] proposed a multilayer graph, which is a graph G = (V, E) with addi-
tional layers L = {l1, l2, . . . , ln} representing domain-specific information. For example,
subcellular locations of a metabolic network can be modeled through these layers. The
multilayer graph can be transformed into other graph structures, providing access to a
wide range of common graph algorithms [106].

A clustered graph, a specific transformation of a multilayer graph, can be used to show
subcellular locations of reactions and metabolites. These locations are stored as vertex
attributes, and reactions as well as metabolites belonging to the same subcellular location
are grouped in the same cluster. Usually, clusters are made disjoint by duplicating
unimportant, highly-connected entities, e.g., Adenosintriphosphat (ATP) [106]. We
model biological pathways as clustered graphs throughout this thesis.

2.3 Systems Biology Graph Notation
In order for authors and readers of diagrams to communicate with each other, they must
agree on the glyphs used, their arrangement rules, and how to interpret the results [77].
If there is no uniform definition for these aspects, it is a time-consuming task to become
familiar with and understand each unique graphical notation, which also opens up room
for misinterpretation [71]. There were many of these non-standardized visual mappings in
the literature, which were only designed for special use-cases. They described biochemical
interactions, inter- and intracellular signaling gene regulations, and others. Later, by a
staggering increase of data, the need for a standardized, unambiguous graphical notation
grew. The establishment and use of such notations made it possible for other fields to
thrive, e.g., electronics industry [77], but finding a suitable visual representation for an
application domain is challenging [71]. The success of a standardized notation depends
on its acceptance in a diverse community as well as its fulfillment of the practical needs of
that community [77]. For our use-case this community consists of biologists, biochemists,
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2.3. Systems Biology Graph Notation

(a) (b) (c)

Figure 2.1: The three SBGN diagrams: (a) process diagram, (b) entity relationship
diagram, (c) activity diagram. They visualize the same data, but focus on different
aspects of the biological information. (Images adapted from Le Novere et al. [77])

bioinformaticians, geneticists, and software engineers [77]. Several attempts were made
to define a uniform representation for biological networks, e.g., Molecular Interaction
Maps (MIM) and the notation used by KEGG, but none of them reached community
standard [77].

Since 2006, a diverse community of biochemists, modelers, and computer scientists thrive
to establish the Systems Biology Graph Notation (SBGN) as community standard for
biological networks [71, 77]. This notation is specifically designed to be visually and
syntactically as well as semantically consistent, concise, modular, scalable, unambiguous,
and to support automated diagram generation, while still being easy to learn. With the
SBGN, the community aims not only to establish an efficient and accurate representation
of biological knowledge, but also to preserve this knowledge and provide open-access. This
knowledge includes, for example, gene regulation, metabolism, and cellular signaling [77].

Because representing all possible reactions and interactions in one diagram would be too
complex, the SBGN is designed as three complementary notations to keep the diagrams
comprehensible: the process diagram, the entity relationship diagram, and the activity
diagram. These three diagrams are projections of the same biological information, but
focus on different aspects [77]. Figure 2.1 shows the same biological information depicted
by these three diagrams.

The process diagram (see Figure 2.1a) depicts biological entities and the molecular
processes and interactions in which they are consumed to produce new biological entities.
It also represents the temporal flow of these transitions, the different states assumed by
entities, as well as the subcellular locations they occur in. Since the process diagram
represents multiple states of entities, it has more nodes than the other two diagrams [77].

While the process diagram focuses on biological entities and their transitions, the entity
relationship diagram (see Figure 2.1b) focuses on an entities’ influence on the transforma-
tion of other entities. All entities appear only once, which makes the entity relationship
diagram smaller than the process diagram and, therefore, easier to follow. The temporal
flow of events is not as explicitly displayed and more difficult to comprehend [77, 95].
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2. Related Work

Figure 2.2: The glyphs of an SBGN process diagram. Entity pool nodes, like simple
chemicals or macromolecules, are biological entities that participate in a chemical reaction.
Different kinds of reactions are depicted as different process nodes. How entities react
with each other is represented by connecting entity pool nodes to process nodes through
connecting arcs. The different connection arc glyphs depict how the participances react
with each other, e.g., an entity can be consumed while another is produced. If the
reaction takes place within one cellular location it can be placed within a container node,
e.g., a compartment. (Image taken from Moodie et al. [84])

The activity diagram (see Figure 2.1c) represents influences between entities directly and
omits biochemical details of processes. Therefore, the number of nodes in this diagram is
greatly reduced. Since this diagram could include ambiguities, it should only be used in
addition to a process or a entity relationship diagram [77, 82].

These three diagrams of the SBGN define the visual mapping of nodes and edges, as
well as their connectivity, but they do not specify their layout. We focus on progress
diagrams, because they are very suitable to represent metabolic pathways [101]. The
process diagram definition includes seven major types of glyphs (see Figure 2.2): (a) entity
pool nodes, (b) auxiliary units, (c) process nodes, (d) container nodes, (e) reference
nodes, (f) connecting arcs, and (g) logical operators [77]. In the subsequent paragraph,
we only describe the most relevant glyphs for our work.
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Entity pool nodes represent biological entities, whereas process nodes represent biochem-
ical reactions. Entity pool nodes can only connect with arcs to the handles of process
nodes. Hence, the process diagram is a visual representation of a bipartite graph [101].
Connecting arcs can represent the consumption or production of an entity through a
reaction, but they can also represent the influence of an entity on a reaction. For example,
an entity node connected to a process node by a catalysis arc symbolizes that its entity
is a catalyst for that reaction. Multiple arcs can be connected to the same handle of a
process node, which makes these arcs hyperedges and, consequently, the process diagram
a hypergraph. Since arcs are read in a specific direction, the process diagram is a directed
(hyper)graph. Compartments are a type of container node, which contain entity pool
nodes and process nodes. An entity pool node can belong to multiple compartments,
making the process diagram a clustered (hyper)graph [84].

Even though the SBGN does not encode concrete node placement, it acknowledges that
a meaningful layout leads to insights about the underlying data. Therefore, the SBGN
provides guidelines for the arrangement of SBGN process diagrams, in addition to their
appearance. These apply to hand-drawn as well as to automatically drawn diagrams [84].
It is stated that the SBGN is independent of color and glyph size and no guidelines
are provided for user interactions [84]. General and SBGN-specific requirements for the
arrangement of diagrams is the topic of the next section.

2.4 Graph Drawing Requirements
To clarify the underlying meaning and structure of a diagram, the drawing of the
diagram must be readable. Readability is related to aesthetics, so it is desirable to design
an aesthetically pleasing diagram. Aesthetic aspects have the added effect of making
the reader more receptive, and making them invest more effort in understanding [25].
Graph drawing research developed a set of requirements, whose adherence steers the
creation of aesthetically pleasing graphs. They are based on intuition, experiments, on
perceptual as well as Gestalt principles [25]. Usually, these requirements are quantitative
measurements [71]. In the literature they are listed under different names: aesthetic
heuristics [25], principles of graph drawing [65], graph drawing aesthetics, aesthetic
criteria [71], and quality metrics [81, 86].

The task of arranging graphs to be pleasing and readable can be viewed from a syntactic
or semantic perspective. While the syntax considers, e.g., edge crossings, node overlap,
or edge length, the semantics deal with highlighting the important characteristics of
the underlying data. Additionally to general semantic requirements, application-specific
semantic requirements should influence the graph arrangement to support understand-
ing [25].

In the following we list known graph drawing requirements that affect the positioning
of nodes, links, or the diagram as a whole. These requirements were examined for their
perceptual basis. Hence for each requirement, if known, we state the perceptual principles
from which it derives [25]. We separate them into syntactic and semantic graph drawing
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requirements and address the application-specific needs of the SBGN. We start with
syntactic requirements:

R01 Node: Size [71, 84]. The nodes of a SBGN diagram have different sizes,
depending on the used glyph and the encapsulated label. The SBGN regulates
the placement of labels inside nodes. If possible they should be completely
enclosed by their node.

R02 Node: Non-overlap [25, 65, 84, 92]. None of the graph nodes should
overlap, there should be a minimum distance between them. An exception of
this rule are the SBGN Multimer glyphs, which are visually represented by
identical entity pool nodes stacked on top of each other, but are considered as
a single node [84]. Nested nodes are also allowed, but they must be completely
enclosed by their container node, e.g., the SBGN complex glyphs. These
nodes can contain other entity nodes, but not process nodes or edges. This
requirement aims to avoid ambiguity in the linking of nodes as well as a false
impression of clustering. It originates in the perception of connectedness [25,
65]

R03 Node: Uniform distribution [65, 92, 98]. This requirement is also known
as unit grid alignment. As the name suggests, the nodes are distributed on a
uniform grid. This requirement prevents distortion, but it has no perceptional
support [25, 65].

R04 Node: Orthogonality [65, 92, 84, 98]. It is also known as the alignment of
nodes. It demands that a node’s shape shall not be rotated, e.g., a rectangular
node shape shall be axis-aligned. The SBGN extends this requirement
to a node’s label [84]. This requirement originates in the perception of
orientation [25].

R05 Link: Crossings [25, 65, 68, 71, 84, 86, 92]. There is general agreement
that there should be as few edge crossings as possible. If it is unavoidable,
the crossings shall be as orthogonal as possible [84]. The SBGN states that
edges should not cross themselves. It also states that labels associated with
edges should be placed close to them, and should not cross other edges or
their labels. This requirement aids the reader in finding paths, and improves
the readability of the graph because it seems less complicated [65]. The
perception of continuation provides the basis for this requirement [25].

R06 Link: Bends [25, 71, 84, 86, 98, 92]. In graphs as well as in SBGN diagrams,
edge bends should be avoided, because they make it difficult to follow an
edge. If an edge bend cannot be avoided, it should be introduced with
the following considerations. The edge should be divided into equal parts.
The edge should bend with a maximal angle, since a sharp angle could be
perceived as two individual objects instead of one continuous entity. This
requirement originates in the perceptions of similarity and continuation [25].
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R07 Link: Uniform length [25, 65, 68, 71, 92]. Edges with the same length are
more aesthetic, because regular structures prevent clutter. As a side effect
the area of the graph is minimized [65]. This requirement is based on the
perception rule of similarity [25].

R08 Link: Maximize orthogonality [25, 86, 92]. Edges should follow an
imaginary grid. As a side effect, edge crossings are reduced and nodes are
aligned on this grid, see (R03). Because of the perception of orientation,
horizontal and vertical lines are more likely to be seen as a memorable
figure [25].

R09 Node-Link-Connection: Minimize edge length [65, 84, 98]. Adjacent
nodes should be close together because the perception of proximity implies a
relationship, consequently non-adjacent nodes need to be further apart.

R10 Node-Link-Connection: Non-overlap [25, 65, 84, 92]. To avoid misin-
terpretation caused by proximity, edges and nodes which are not associated
with each other need to be kept apart. Ideally, edges should also not overlap
with nodes. But in a real-world application with highly-connected nodes,
this is difficult to accomplish. If a node-link overlap cannot be avoided, the
SBGN allows edges to pass over nodes and intersect them in two points. This
requirement originates in the resolution limits of the human eye and the
perception of proximity [25].

R11 Diagram: Aspect ratio [25]. The ratio of the graph should match that of
its container, e.g., a screen or a page. This reduces the number of distinct
shapes in the layout and thus, the complexity. This requirement has no basis
in perceptional principles [25].

R12 Diagram: Minimize area [25, 71]. This is a side-effect of minimizing the
edge length, and leads to the perception of a good figure [25].

These syntactic requirements were evaluated for their influence on the readability of a
graph as well as a readers performance through user-studies [25, 86]. The outcome of these
studies showed inconsistencies between the influence of syntactic requirements on general
graphs and on application-specific graphs. For example, avoiding edge crossings (R05)
and bends (R06) had a significant effect on readability for general graphs, but were
less significant for application-specific graphs. Additionally, it is difficult to directly
connect syntactic requirements to understanding, since they are influenced by a reader’s
environment, culture, and education. In contrast, semantic requirements are directly
linked to understanding, because the meaning of the data is directly connected to the
layout of the graph. The studies conclude, that semantics are equally or even more
important than syntactics when creating diagrams [25, 86]. In the following we list known
semantic requirements:
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R13 Node: Fixed position [52, 65]. It should be possible to assign nodes of
special interest to a fixed position, along one or both axis in 2D.

R14 Node: Clustering and containment [25, 72, 84, 92]. Nodes with a seman-
tic relation should be placed in close proximity to form a cluster. Clusters
can be placed in containers. To model such containers, the SBGN provides
compartments. They group biological entities and processes that occur in
the same subcellular location. The nodes representing these entities and
processes as well as their edges are placed inside their associated compart-
ment. Compartments can also contain other compartments. Consequently,
one compartment in the SBGN represents exactly one cluster. A process
node cannot be placed in a compartment where it is not connected to at
least one biological entity. There is also the possibility to place nodes on
a compartment’s boundary, to convey e.g., that a process is taking place
in the cell membrane [84]. In our work, we assume that the clustering into
compartments is predefined by domain-experts. The SBGN suggests that a
different background coloring of compartments may support the clarity of
the diagram. This requirement is based in symmetry and proximity [25].

R15 Link: Flow direction [25, 84, 92]. A directed graph tells a story with a
defined flow. This is best represented by ensuring that the graph follows
a consistent overall flow direction. Cycles should flow in a clockwise di-
rection [92]. In the SBGN the flow direction represents the temporal flow
of processes. It is suggested to keep the main flow direction vertically or
horizontally, starting from the top left corner [84]. The requirement of flow
direction is based on the perception of orientation [25].

R16 Node-Link-Connection: Maximize minimum angles [25, 86, 92]. Edges
connected to a node should be distributed evenly around it. As side-effect
high-degree nodes, which are most likely important nodes, are placed at the
center of the graph. Such a centering of important nodes moves them to the
center of attention. Thus, this requirement gets a semantic meaning. This
requirement is based on the resolution limits of the human eye [25].

R17 Node-Link-Connection: Connection points [84, 92]. Processes are
represented in an SBGN diagram as process nodes. The process node’s
glyph consists of a square and two handles on opposing sides of the square.
Consumption and production arcs are only allowed to be connected to one
of these handles. In contrast, modulatory arcs can only be connected to
the square’s two sides without handles. A process glyph and its allowed
connectivity is demonstrated in Figure 2.3. This requirement is not derived
from the underlying graph structure, it is a semantic restriction defined in
SBGN.

R18 Diagram: Similarity [25, 65, 84, 91, 92]. Since elements with common
features, such as color or shape, appear grouped together, similar subgraphs
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Figure 2.3: A process node and its required connectivity defined by other nodes. A
process consists of a square (the center) and two handles, shown in black. Consumed
and produced entities connect to these handles on opposing sides, while modulatory arcs
connect to the center of the process perpendicular to the handles, shown in gray.

should be drawn in a similar manner. Such similar subgraphs, or reoccurring
network structures, are also called motifs [47]. The SBGN also suggests using
a standard layout for similar sub-components. Similarity itself is a perceptual
principle [25].

R19 Diagram: Symmetry [25, 65, 68, 98, 86, 92]. To aid the reader in un-
derstanding the underlying graph structure, symmetric structures should
be drawn symmetrically [65]. This way, they can be perceived as distinct
figures. The symmetry should be maximized locally as well as globally [25].
The SBGN also suggests drawing sub-components involved in parallel and
reversible processes symmetrically [92]. Symmetry itself is a perceptual
principle [25].

R20 Diagram: Display structure of the data [52, 65, 98]. A graph’s nodes
should be structured or separated into different layers based on a semantic
criterion, this helps to convey the underlying structure.

R21 Diagram: Preserving the mental map [92]. Traditionally, metabolic
pathways are static layouts. Since they became dynamic, it is important
to preserve the reader’s mental map. If pathways are filtered, combined, or
created, existing nodes and links need to stay at their previous positions, to
prevent the reader from loosing orientation.

R22 Diagram: Node degree reduction through cloning [84, 92]. High-
degree nodes could have a negative impact on overall readability. If edges
connected to a high-degree node are distributed with an equal angle around
it, i.e., maximizing the minimum angle (R16), this node moves into the center
of the graph and, therefore, becomes focused. If this happens to a rather
unimportant but highly connected node, e.g., a node representing ATP, it
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distracts attention from more important nodes. To solve this problem the
SBGN supports cloning of elements. Cloned nodes need to be marked with a
black bar at the bottom. However, this should not make the diagram disjoint
or more difficult to interpret.

R23 Diagram: Expand & collapse [84, 92]. To reduce complexity of the
graph, the SBGN introduces the submap node. It hides its content and
represents connections to elements inside the submap as terminals. In
dynamic diagrams, submaps can be expanded and collapsed within the same
diagram or be opened in another one.

A diagram following the syntactic and semantic requirements may not always result
in a better layout, it could also lead to an ambiguous and unintuitive graph [65]. In
comparison, a human curator might choose to ignore certain requirements to achieve
better readability [92]. Many of these requirements are also conflicting, e.g., node
clustering is adverse to an even node distribution. Complying with one requirement
means breaking another, therefore trying to satisfy them all is infeasible [25, 65]. Often it
is less important that an individual requirement is satisfied, but that a combination and
prioritization according to a task is fulfilled [86]. Finding an appropriate compromise
between the requirements should be the goal [86, 98]. Usually, a trade-off between the
requirements is made based on the semantics of the graph and its intended use [25]. The
optimal way of selecting and balancing application-specific requirements to maximize
understanding is a separate challenge that has not been solved yet [25, 65].

2.5 Graph Drawing Algorithms

The general goal of drawing diagrams is to convey relational information in a way that
makes it more readable, understandable, and usable [86]. Most often, this goal is achieved
by considering the graph drawing requirements during the layout progress [65].

Automatic drawings of biological networks were initially generated by common graph
drawing algorithms. However, many of these algorithms are designed for simple, idealized
graphs, and do not achieve similarly useful results for biological networks [52]. These ap-
proaches include hierarchical approaches, the topology-shape-metrics approach, algebraic
approaches, force-directed, and constraint-based approaches [71, 91, 98]. Hierarchical
and force-directed approaches are among the most popular ones [71, 98]. The automatic
drawing process then evolved by extending these approaches to consider the specific
requirements of biological networks [71].

In the following sections we review the most relevant approaches and introduce some of
their domain-specific extensions. For a more detailed overview of general graph drawing
techniques, we refer to the surveys of, e.g., Gibson et al. [65] and Tarawaneh et al. [98].
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(a) (b)

Figure 2.4: Different drawing conventions of hierarchical graph structures. (a) shows the
tip-over convention and (b) displays the inclusion convention.

2.5.1 Hierarchical Layout
The hierarchical drawing is also known in the literature as level or layered, as monotone
drawing, or as tip-over convention. It is characterized by edges pointing in a common
direction and nodes being separated into different layers based on predefined criteria [22,
71]. An alternative way to visualize a hierarchical data structure is by using the inclusion
convention, where a parent-child relationship is mapped to a container holding another
container [22]. The difference between the tip-over and the inclusion conventions is
illustrated in Figure 2.4.

A fundamental approach to create hierarchical drawings is the Sugiyama algorithm, also
known as the Sugiyama method or Sugiyama framework [96]. Since the diagram is solely
build upon the hierarchy encoded in edge directions or, alternatively, in node-attributes,
no initial layout is required. The Sugiyama algorithm consists of tree steps:

1. Cycles are removed, since the algorithm is designed for DAGs. This is commonly
done by reversing the direction of some edges.

2. A multilayered digraph is constructed. This is done by partitioning the nodes into
layers in such a way that a node is only connected to another node in the next
layer. The layers are vertically arranged, i.e., every node on the same layer has
the same y-coordinate. If a node has multiple parents on different layers, dummy
nodes are added to form long edges over multiple layers.

3. Edge crossings are minimized by reordering nodes on the same layer, i.e., changing
a node’s x-coordinate.
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Hence, the y-coordinate emphasizes the graph hierarchy, while the x-coordinate is
responsible for satisfying the graph drawing requirements. Various algorithms exist for
each of these steps [96].

The Sugiyama algorithm results in a hierarchical drawing with non-overlapping nodes (R02),
minimal edge crossings (R05), and minimal edge length (R09). It does not inherently
consider node sizes, but can be extended to do so [90]. The Sugiyama algorithm can be
successfully applied for graphs of up to 500 nodes.

Most of the hierarchical approaches derive or evolved from the Sugiyama algorithm [71].
Schreiber [90] adapted the Sugiyama algorithm to fit the requirements of biological
networks. He mapped the networks to an ordered bipartite, directed graph, extended the
algorithm to consider variable node sizes, and grouped disjoint subgraphs into dummy
nodes. Each subgraph can be arranged separately with an arbitrary graph drawing
algorithm. The flow direction (R15) of the graph is considered during the layout process
by forcing nodes of the same hierarchical layer into vertical alignment, and enforcing a
horizontal ordering. Since the algorithm is at its core still the Sugiyama algorithm, it
shares its characteristics. Cycles have to be removed in a separate step and it reduces edge
crossings (R05). Additionally, Schreiber’s variation of the Sugiyama algorithm can handle
disjoint subgraphs and draws diagrams of biological networks with up to 300 nodes in a
layered fashion, thereby emphasizing the chronological order of its processes (R15) [90].

Barsky et al. [19] developed a layered layout, called Cell Region-Based Rendering And
Layout (Cerebral), for biological networks. It aims to visualize the nodes’ subcellular
locations, resulting in a cross-sectional view of a cell [19]. Thereby, domain-specific
information is integrated into the layout, which furthers the possibility of gaining insights
about the biological network. All nodes are placed on a grid, starting with a random
placement, which is then improved via a stochastic sampling and a scoring function, while
keeping the nodes in their designated subcellular layer. Edge-bundling and interaction
techniques, like panning and zooming, intelligent labeling at multiple zoom levels, and
highlighting, make their approach feasible for networks with a few hundred nodes.
Pathway products, which share molecular functions within a subcellular location, are
grouped visually by enclosing them in their convex hull. The approach is accessible as
open source plugin for Cytoscape [58].

The discussed algorithms generate drawings in the tip-over convention. They do not
consider nodes as containers of other nodes and can, therefore, not map the SBGN
process description, which uses diagrams in the inclusion convention.

2.5.2 Topology-Shape-Metrics Layout

The common use-case for Topology-Shape-Metrics (TSM) approaches is the drawing of
undirected graphs as orthogonal grid layouts, therefore satisfying uniform node distri-
bution (R03) and orthogonality of edges (R08). The TSM approach consists of three
steps:
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1. The planar step, calculates a planar embedding of the graph. If a planar embedding
is not possible, the graph can be temporarily made planar by inserting dummy
nodes.

2. The orthogonalization step changes the shape of the edges without changing the
planar embedding. Every edge is replaced by an orthogonal path consisting of
vertical and horizontal lines. In this step, the number of edge bends can be
minimized (R06).

3. Finally, the compaction step calculates the positions of all nodes and bends by
placing them on a unit grid without producing overlaps. In this step, the graph
drawing’s area can be minimized (R12).

Each of these steps can be solved by many heuristics and approaches.

Siebenhaller et al. [92] demonstrated the use of the TSM approach to draw biological dia-
grams in the SBGN. They extended the TSM approach to support hierarchical clustering
and the modeling of compartments (R14). However, disjoint subgraphs are not mentioned,
the results only show graphs with maximum node degree of 4 and neither demonstrate nor
discuss the impact of higher degree nodes on the orthogonality of the layout. The results
also only show comparatively small diagrams, and the SBGN requirements are only
partially satisfied, e.g., hyperedges as well as the correct connectivity and visualization of
process glyphs are not supported [92]. The approach of Siebenhaller et al. [92] is available
in the yEd Graph Editor [12].

2.5.3 Force-Directed Layout
The basic idea of force-directed algorithms is to model a physical system of attraction and
repulsion to optimally place the graph’s nodes [71]. An optimal placement is most often
defined by graph drawing requirements [65, 86]. Force-directed algorithms developed into
two main approaches, spring-embedded ones and energy-based ones [71].

The spring-embedded approach interprets nodes as steel rings and edges as springs con-
necting them. This spring system is then set into a random initial state and released [71].
When the spring-embedded approach approximates an equilibrium in this spring sys-
tem, i.e., the forces influencing each node sum up to zero, then optimal placement is
achieved [65, 71].

Dogrusoz et al. [43, 44] used a spring-embedded approach to design a compound layout
for biological networks that visualizes the correct placement of processes and biological
entities in their designated compounds. The authors introduce the relativity force
that aligns processes into a certain flow direction. In the first step, a skeleton graph
(without trees) is placed with a basic spring-embedding, but without relativity and
gravitational forces. Then, the previously removed trees are re-added, level-by-level,
while considering relativity and gravitational forces. In the last step, node positions and
compartment bounds are optimized. Inter-graph edges are elongated proportionally to
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their nesting depth. This approach addresses the following requirements: clustering and
containment (R14) as well as flow direction (R15). It is implemented in the Pathway
Analysis Tool for Integration and Knowledge Acquisition (PATIKA) editor [40] and
demonstrated on small biological networks up to 50 nodes without SBGN. This approach
is also versatile as it can be used in other domain applications, e.g., on brain network
data as demonstrated by the work of Wißmann [83].

Energy-based approaches consider the layout problem as an optimization problem, where
an energy function F (X) (also known as cost or objective function) over the positions of
nodes X is minimized [65, 91]. The energy function encodes the desired graph drawing
requirements and measures the quality of the layout [91]. Its minimization leads to
an optimal drawing [61]. In contrast to spring-embedded approaches, energy-based
approaches need an initial layout to start their minimization process.

One of the fundamental energy-based approaches has been designed by Kamada et al. [68,
91] and later improved by Gansner et al. [61]. They interpret a graph as a spring system
where nodes are connected by springs of a desirable target distance, i.e., the graph
theoretical distance. A balance of the spring system can be reached, when all pairwise
Euclidian distances ∥xi −xj∥ of nodes i and j approach the corresponding target distances
dij of nodes i and j [49, 61, 68]. This is formulated in an energy function, which defines
the imbalance of the spring system, as the square summation of the real distances between
all pairs of nodes minus their desirable target distance. Minimizing the imbalance of the
spring system results in an optimal layout considering the graph drawing requirements of
uniform edge length (R07), and symmetry (R19) [49, 61, 68]. This imbalance function, is
more popularly known as the stress function in the Multi Dimensional Scaling (MDS)
community [49, 61, 91]. The stress function is described in the following equation:

stress(X) =
�
i<j

wij(∥xi − xj∥ − dij)2, (2.1)

where the matrix X = {x1, . . . , xn} contains the positions of the nodes. The normalization
constant is defined as wij = d−α

ij . The value of α varies in the literature, it ranges from 0
to 2 [49]. dij is set to the graph theoretical distance [49], or as suggested by Cohen [36]
to the linear-network distance, which reflects a graph’s distance as well as its structure.
Kamada et al. [68] place all nodes on a circle as initial layout, which can lead to edge
crossings in the result layout. Gansner et al. [61] recommend instead to use multiscale
techniques or subspace-restricted computation for the initial layout, both techniques
also improve the speed of the subsequent stress computation. It is noted at this point
that different initial layouts lead to structurally identical graphs with different layouts,
i.e., isomorphic graphs. The minimum of the stress function can be calculated by a
two-dimensional Newton-Raphson method, where in each iteration only one node is
moved [68], or by gradient descent [49]. However, both methods could lead to local
minima, i.e., while the resulting layouts are locally optimal, globally there is still room for
improvement [91]. Gansner et al. [61] solved this issue by minimizing the stress function
using stress majorization, which is an approach from the field of MDS. In contrast to
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Newton-Raphson or gradient descent, it is a global approach and guarantees a monotonic
decrease of the energy value, improved robustness against local minima, and shorter run
times. Therefore, Gansner et al. [61] improves Kamada et al. [68] in terms of layout
quality, monotonicity of convergence, and run time. Using the stress function is simple,
intuitive, and works for connected, undirected, symmetric, asymmetric, or weighted
graphs with straight-line edges. It shares strong similarities with MDS [61, 68].

Force-directed algorithms in general are intuitive and easy to understand because of their
real-world metaphor. They are also easy to implement and extend with additional con-
straints [71]. They preserve proximity (R09), do a clear decomposition of clusters (R14),
and display a graph’s symmetry (R19) [49]. Basic force-directed approaches are for
graphs of moderate size with fewer than 100 nodes and underlying graph structures of
grids, trees, or sparse graphs [65, 98]. They generate an organic appearance, but that is
not necessarily the desired outcome or application-specific goal [49]. The minimization of
edge crossings is not taken into account, which can lead to confusing results for highly
connected graphs. Preserving the mental map is not supported, since a rerun of the
algorithm would lead to a different result [49]. They are considered expensive, in terms
of run time with O(n3), where n is the number of nodes. For dense graphs, they perform
poorly as they tend to generate hair balls [65, 98]. Force-directed algorithms are among
the most frequently used and modified layout algorithms [65]. They were revised and
optimized to improve the listed drawbacks many times [98]. Meanwhile, they can handle
thousands of nodes and the results are suitable for various applications [65, 71]. A general
overview and comparison of force-directed algorithms is provided by Gibson et al. [65].

2.5.4 Constraint-Based Layout
Constraint-based techniques extend force-directed approaches by incorporating additional
constraints into the layout process. These constraints are usually derived from graph
drawing requirements, recall Section 2.4, some user-defined placement criteria, or from
an application domain’s node attributes [65, 91]. Because biological data already have
notations with associated placement rules that standard approaches cannot satisfy,
the biological community has strongly advocated the development of constraint-based
approaches [65]. The aim of these approaches is not only to support understanding of
graph structures, but also to place them in a biological meaningful way [19]. Firstly, we
discuss a number of general constrained-based approaches that were applied to biological
networks, and then discuss approaches specifically tailored to them.

Dwyer et al. [49, 52, 53, 50, 48] developed multiple approaches, from general ones to
approaches specifically targeting biological networks. They started with an approach
named Constrained Layout of Digraphs (Dig-CoLa) [49], which was applied to gene-
expression networks [49]. It is designed for general digraphs rather than biological
networks and is based on the idea of the Sugiyama algorithm [96], but reformulated as
force-directed approach with additional constraints to visualize the overall graph flow
direction (R15). The algorithm requires prior knowledge of the data’s relative hierarchy,
which is encoded as node attribute and describes which node precedes another one. If
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node i precedes node j, then i is drawn above j. This constraint is imposed onto the
edges as weight. If a substructure does not have a clear hierarchy, e.g., a circle, the edge
weight can also be zero and represent thereby undirected edges. Because constraints can
be better integrated into the global stress majorization [61] than into the local one [68],
the global version is used to solve the resulting constraint stress function [49]. Dig-CoLa
differs from other approaches, which are based on the Sugiyama algorithm, by calculating
the horizontal and vertical layout positions simultaneously. This is possible by using a
force-directed instead of a hierarchical approach. Dig-CoLa emphasizes the hierarchical
structure of a graph along a vertical or horizontal axis, while preserving the proximity
relations of nodes (R09) and symmetries of substructures (R19). The algorithm can
handle a substructure without a clear hierarchy, like a circle, with the same quality as
an undirected layout approach would. Dig-CoLa is better suited to draw hierarchies
than other force-directed approaches designed for undirected graphs and gives a good
indication of the temporal flow (R15) of processes encoded in the graph. Dwyer et al. [49]
state that Dig-CoLa is more suited for large digraphs than the Sugiyama algorithm, but
is not optimized to reduce edge crossings. Dig-CoLa is implemented in the open source
graph visualization software Graphviz [56].

Another approach by Dwyer et al. [52] is Incremental Procedure for Separation Con-
straint Layout of graphs (IPSep-CoLa). This time, stress majorization is extended with
separation-constraints in each dimension, formulated as u + d ≤ v, where u and v are
horizontal and vertical positions, respectively, and d is the minimum separation to be
achieved. With this approach, the following graph drawing requirements can be addressed:
fixed position (R13), clustering and containment (R14), flow direction (R15), display of
the structure (R20), and preservation of the mental map (R21). The stress function is
solved iteratively by alternately minimizing quadratic functions in the horizontal and
vertical direction. The minimization is done by a specialized gradient projection that
performs at comparable speeds as unconstrained stress majorization [54]. By using
diagonally scaled gradient projection in a follow-up paper, speed and convergence were
improved [50]. IPSep-CoLa is demonstrated on gene-activation networks among others
and can handle large graphs with thousands of nodes. Although the authors state that
non-rectangular bounding boxes are possible, it is complicated and computationally
expensive to implement. They also state that the constraints can become hard to satisfy
for large graphs and, therefore, improvements are still necessary, e.g., in preprocessing or
by using softer constraints [52].

Dwyer et al. [53] also extended their constraint stress majorization to integrate edge
routing. They added an additional layout step and considered polyline edges with their
separation constraint during the layout process. After the initial layout step, created
with planarization-based methods, they added an additional edge routing step. This step
performs edge routing, while considering node sizes, and reducing edge crossings. It adds
polyline edges to the graph. Subsequently, the edge bending points are included in the
following constraint layout step, considering the separation constraints of Dwyer et al. [48,
52] with the aim of straightening edge bends and reducing edge length. This approach
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facilitates the integration of edge routing into a force-directed layout process and the
support of polyline edges, while keeping crossings (R05) and bends minimal (R06) [53].

Schreiber et al. [91] together with Dwyer, demonstrated that separation constraints
solved via gradient projection are applicable to biological networks. They showed that
the separation constraints can be customized to emphasize pathways, draw cycles, and
satisfy the drawing requirements of clustering and containment (R14) as well as flow
direction (R15). Their approach gives a layout framework for different types of biological
networks. It can also arrange parts of a large network differently and supports interactive
exploration while preserving the mental map (R21) [91].

The literature suggests applying different approaches to different parts of a network
rather than developing a general-purpose approach that meets all the requirements of
biological networks [24]. The benefit lies in the possibility of using multiple automated
layout techniques, which are specifically designed to handle certain substructures, or
utilizing the human’s intelligence to find an aesthetically pleasing layout [107]. The
overall layout is the result of merging an initial layout with automatically- or user-defined
layouts of substructures. This way, the layout can also meet domain-specific needs,
which would otherwise not be possible with a holistic layout technique [107]. While
Becker et al. [24] demonstrates this via a combination of customized spring-embedding
approaches, Yuan et al. [107] formulates such a combined approach as an extension
of the stress function called Laplacian Constrained Distance Embedding (LCDE) and
solve it via a stress majorization technique. The predefined layouts of the subgraphs
are used as constraints for the stress function. Opposed to Dig-CoLa and IPSep-CoLa,
they do not aim for a hard constraint satisfaction, but for a softer way that allows each
subgraph to be preserved as much as possible (R21). LCDE does this well through
distance preservation even if more than one constraint influences a subgraph. It was
demonstrated, among others, on a biochemical metabolic pathway, by merging multiple
pathways with user-defined layouts into a single one.

2.5.5 Comparison and Discussion
The graph drawing approaches reviewed so far have different capabilities. In this section,
we summarize and compare them as well as discuss their suitability for drawing biological
networks in the SBGN.

Most hierarchical drawing algorithms are designed to draw diagrams in tip-over convention.
This makes them unsuitable to visualize subcellular locations in SBGN, since such
locations are displayed in the inclusion convention. While Barsky et al. [19] is able to
visualize subcellular locations as cross-sectional, i.e., layered, views, their approach cannot
visualize a subcellular location being contained in another one. Hierarchical algorithms
could be used to highlight the temporal flow of SBGN process diagrams by aligning their
execution trajectory with a predefined flow direction.

TSM approaches can be used to create orthogonal grid layouts. However, such layouts
do not satisfy domain-specific requirements of the SBGN. The extension of Sieben-

23



2. Related Work

haller et al. [92] successfully integrates compartments and, therefore, subcellular locations.
However, the authors do not demonstrate scalability of their method to large and complex
data sets.

Force-directed approaches are able to handle graphs with many thousands of nodes.
If they include constraints, these approaches are referred to as constraint-based. The
constraints usually model graph drawing or domain-specific requirements. Formulating
and combining the needed constraints to completely satisfy the needs of biological
networks is an ongoing challenge. Dwyer et al. [49, 52, 53] and Schreiber et al. [91]
proposed several approaches, none of them was demonstrated in the SBGN, but each
deal with different requirements of biological networks. Combining several approaches to
meet all requirements in a single layout is usually not possible. The reason for this is that

Table 2.1: Graph drawing approaches, categorized into hierarchical, TSM, force-directed,
and constraint-based ones. For each approach, we indicate whether it has been demon-
strated on biological networks, can visualize subcellular locations, can handle hypergraphs,
whether it supports disconnected components, and whether the SBGN has been used.
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Sugiyama et.al [96] ✓

Schreiber [90] ✓ ✓ ✓

Barsky et al. [19] ✓ ✓ ✓

Siebenhaller et al. [92] ✓ ✓ ✓ (✓)
Dogrusoz et al [43] ✓ ✓ ✓

Kamada et al. [68] ✓

Gansner et al. [61] ✓

Dwyer et al. [49] ✓ ✓

Dwyer et al. [52] ✓ ✓ ✓

Dwyer et al. [53] ✓

Schreiber et al. [91] ✓ ✓ ✓

Becker et al. [24] ✓ ✓

Yuan et al. [107] ✓ ✓
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these approaches are often based on different theoretical foundations. Becker et al. [24]
as well as Yuan et al. [107] attempted to combine the advantages of different approaches
by applying them to subgraphs and combining their results into a single layout.

Table 2.1 shows an overview of the graph drawing algorithms we discussed, including their
categorization and capabilities. In general, these approaches do not consider hyperedges
and only Schreiber et al. [90] mention disjoint subgraphs in biological networks. While
some approaches were demonstrated on biological networks, only Siebenhaller et al. [92]
use data in the SBGN.

2.5.6 Quality Metrics
The literature defines a number of quality metrics to evaluate the quality of node-link
diagrams, also called aesthetic or quality measures. Metrics that are commonly used
include the number of edge crossings, the number of edge bends, and the symmetry [81,
86, 87]. There are also more specialized quality metrics like the clustering metric, which
evaluates the visual clustering quality of a clustered graph [81], or the so-called sprawlter
metric [79], which measures the space efficiency of a layout. Graph drawing approaches
based on the stress function additionally evaluate the stress value and the number of
iterations [61, 103]. Those metrics correlate with a user’s ability to perform tasks on a
graph and focus on the evaluation of syntactic graph drawing requirements. However,
none of the above-mentioned metrics evaluate domain-specific characteristics of a graph
drawing, e.g., those specific for the SBGN.

2.6 Visualization of Compound Structures
In addition to a network’s connectivity, its compound structure and cluster information
should be integrated into a network’s layout or visualized in its drawing [37]. In metabolic
networks, this information describes the parts of a cell where a reaction occurs. This is
done in the SBGN by drawing compartments as bounding boxes [84]. Other common
approaches that visualize cluster information, add visual attributes to identify cluster
membership such as texture, color, symbols, or bounding outlines after all cluster members
are moved into close proximity. If a close proximity is not possible, cluster discontinuities
emerge [37]. In this section, we review advanced techniques to visualize cluster relations
as overlays on a graph layout.

Gansner et al. [62] introduced an approach to represent cluster relations in a graph as
a geographic-like, natural-looking map, called GMap. Since GMap requires a graph
layout that emphasizes the underlying cluster information of the graph, their approach
starts with creating a layout. Firstly, an initial embedding is calculated, e.g., using MDS,
followed by a cluster analysis, e.g., with k-means. After an optional node overlap removal
step, the initial embedding and clustering are subsequently used to generate the map.
This is achieved by adding random points to the original embedding before creating a
Voronoi diagram from the nodes’ positions and random points on the bounding boxes
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of their visual representation. The random points are added to create non-uniform but
map-like Voronoi cells. The size of the bounding boxes is scaled by an application-specific
weight derived from the data set. Voronoi cells belonging to the same cluster are then
merged and assigned the same color. This results in a map with natural-looking outer
and inner boundaries, and cluster sizes representing their importance. Adjacent clusters
are colored with maximal color distance, which is achieved by solving a vertex labeling
problem. GMap only supports disjoint clusters, but a cluster does not necessarily have
to be represented as a contiguous area. This map-like approach visualizes structural
information of the underlying data, such as clusters and neighborhoods. It is aesthetically
pleasing and encourages users to interact with the map more than traditional graph
drawings [62].

Another approach called Bubble Set overlays continuous bounding contours on existing
graphs [37]. In contrast to GMap it does not require an explicit layout step and thus
can be applied to any graph. It also creates contours that look hand-drawn instead of
bounding areas. These continuous contours are created at interactive speeds using implicit
surfaces, followed by marching squares. These contours include all cluster members,
but exclude and navigate around non-cluster members. This is done by connecting all
cluster members with virtual edges to the cluster’s center of mass. The authors explicitly
decided against using real edges to connect members, because a node-link relation does
not implicitly define a cluster relation. If the virtual edges would intersect other clusters,
edge routing steers these edges around the clusters. This results in blobby looking,
aesthetically-pleasing shapes and reduces cognitive load of keeping track of spatially
dispersed clusters. Bubble set handles cluster overlaps by adding transparency.

The Line Set approach draws a continuous curve with a distinct color through all members
of a cluster. This curve should be smooth without self-crossings and minimize bends. The
shape of the curve depends on the order in which the members of the clusters are visited.
Finding a proper visiting sequence can be accomplished by solving the traveling salesman
problem. Line set is stated to improve readability of cluster membership, because it
introduces less clutter than traditional bubble techniques [15].

Jianu et al. [67] compared and evaluated GMap, Bubble Set, and Line Set through user
studies in terms of their limitations and their effectiveness in conveying cluster information
to a reader. These three approaches can be used on graphs containing spatially dispersed
clusters. In GMap these dispersed clusters result in non-contiguous cluster areas, called
islands, their cluster relation is only apparent through color association. In contrast,
Bubble and Line Set handle these spatially dispersed clusters by connecting them visually.
Bubble and Line Set achieved the best results in terms of accuracy at tasks to identify
cluster memberships. For general network tasks like path tracing, GMap achieved the
best results. The visual overlay with cluster information introduced a 25% accuracy
penalty for all approaches, possibly caused by their induced visual clutter.

While these approaches are able to visualize cluster memberships, even of spatially
dispersed clusters, none of them were designed for biological networks. Also none of
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these approaches discuss clusters contained in other clusters or consider edges as part of
clusters.

A cluster visualization technique that is demonstrated on biological pathways is described
by Wu et al. [105]. It embeds a clustered graph into an area-balanced partitioning
of the screen space through a top-down hierarchical Voronoi tessellation. While this
approach can handle disjoint subgraphs, the visualization of multiple hierarchy layers
of the clustered graph is considered future work. In summary, an approach that is
compatible with the requirements of the SBGN has yet to be developed.

2.7 Interaction and Complexity Reduction
Nowadays, a common problem in visualization is the huge amount of data. Real-life
networks are often too complex and too large to be understood or even displayed as a
whole [13, 45]. One way to visualize such networks, which can consist of thousands of
nodes, is to reduce their complexity using clustering, nesting, and interaction techniques.

Dogrusoz et al. [45] propose a method to reduce network complexity through an expand
and collapse technique. Their underlying data model is a compound graph C = (V, E, F ),
where V includes next to normal nodes also compound nodes, E is the set of adjacent
edges, and F is the set of inclusion edges. Inclusion edges describe in which compound
node a node is nested. The proposed method expands and collapses these compounds
and adapts the existing layout through a specialized incremental force-directed layout
method together with a heuristic for the placement of reappearing nodes in the expand
operation. This keeps layout changes minimal during expand and collapse operations,
and, therefore, preserves the mental map. The authors demonstrate their method on a
biological network in SBGN by expanding and collapsing compartments. The method
is available as extension for Cytoscape [58]. There are still many open issues related to
such expand and collapse techniques, e.g., preserving the mental map, ensuring smooth
transitions, and efficiency [13, 45].

2.8 Databases, File Formats, and Software Support
Since a wealth of biological information is collected in databases, it is important to
know how to access, store, and analyze these data [17, 106]. Bader et al. [17] provide
pathguide, a list of databases for biological pathway data. Among others, BioPath [31],
Reactome [57], and KEGG [69] are listed. For another overview, we refer to Wu et al. [106].
An increasing number of pathways are drawn according to the SBGN and then stored
and made available in these online databases.

There are different data formats used by the life science community. All these data
formats aim to define standards, share information, and promote cooperation [66]. The
Systems Biology Markup Language (SBML) is primarily used for simulation and analysis
tools, because it allows users to include mathematical models of reactions and to represent
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networks through different equations [66]. The basic version of SBML does not support
storing the layout and visual representation of a network. However, it can be extended
by a layout and render package [26, 64]. A C++ implementation of an SBML parser is
provided by the software library LibSBML [30].

Since SBML does not faithfully store biological networks drawn in the SBGN, another
file format called Systems Biology Graph Notation - Markup Language (SBGN-ML)
was introduced. As the SBGN defines how the diagrams are visualized, SBGN-ML
defines how these diagrams are stored. SBGN-ML stores the structure of a network
and the SBGN glyphs as annotated nodes and arcs. The layout of a network is also
stored by SBGN-ML for the following reasons: (a) good layouts should be preserved,
(b) recomputing a layout is costly and time-consuming, and (c) manually-curated layouts
usually communicate a specific message. To read, write, and modify SBGN-ML files, the
software library LibSBGN was developed [101]. The library also supports the validation of
diagrams according to the SBGN’s definition. SBGN-ML and LibSBGN do not describe
the appearance of glyphs. The goal of this file format is to increase the interoperability
between SBGN-compatible software. For this purpose LibSBGN was written in several
languages, e.g., in C++ and Java.

There are more than 170 specialized software tools for modelling, analyzing, and visualizing
biological pathways [14, 71, 77, 101], e.g., PATIKA [40], Cytoscape [58], CellDesigner [59],
and Vanted [88]. For a detailed overview please consult the work of Wang et al. [102].
There are also software solutions for network visualization of general graphs, but they
usually do not support the established drawing conventions of biological networks [14],
e.g., Graphviz [56].
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CHAPTER 3
Methodology

In this chapter we define an approach to generate drawings of metabolic networks
that satisfy the syntactic and semantic requirements (Section 2.4) of the SBGN. The
created drawings need to faithfully represent the data, while supporting comprehension
and readability. For this purpose we design a holistic pipeline (C3) that is divided
into several steps, from data loading to complexity reduction. Each step addresses a
set of requirements through selected methods. We discuss each step in detail, review
alternatives, and provide examples. In the following we present our pipeline.
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1. Acquire & Prepare

2. Load & Preprocess

3. Data Structure

4. Layout

5. Postprocess

6. Visualize

7. Reduce Complexity

SBGN-ML

SBGN-ML

data structure

data structure,
positions

data structure,
positions

drawing,
interaction

Firstly, we acquire metabolic pathway data and prepare
them for our usage. We specifically obtain SBGN maps,
saved in the SBGN-ML file format, from the Reactome
pathway knowledgebase [57].

Afterwards, we load and preprocess the data to recalcu-
late or remove unnecessary information, e.g., entity sizes
and arc bends.

In the next step, we parse the loaded SBGN-ML file
into a data structure. Since we plan to give special
attention to the visualizations of subcellular locations,
the data structure should allow us to access the nesting
information of compartments. For this purpose, we chose
a clustered graph structure.

Based on the literature, we chose a constraint-based
layout algorithm, since they can be adjusted to model
the requirements of SBGN. The layout consists of the
following sub-steps:

(4.1) initial embedding,

(4.2) initial layout, and

(4.3) constraint layout.

For the first sub-step we chose the pivot MDS ap-
proach [32], for sub-steps 2 and 3, we chose the versatile,
extendable, scalable, and constrainable vectorized form
of the stress function introduced by Wang et al. [103].
It combines an unconstrained and constrained layout
algorithm into one uniform framework.

In this refinement step, we possibly reroute edges to re-
duce remaining edge-edge or node-edge crossings, e.g., by
introducing edge bends using an edge routing algorithm.

We visualize the now positioned nodes and edges accord-
ing to the SBGN and visualize compartments in a motif
like way.

Finally, we provide an adaptive version of expand and
collapse interaction for clustered graphs to reduce the
complexity of the graph and handle large data sets.
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Table 3.1 gives an overview of our approach’s capabilities, the detailed workflow, and
the applied techniques. It recaps the requirements of graph drawings as well as the
requirements of the SBGN and relates them to our approach. Requirements (rows) can
be satisfied in one step or across multiple steps (columns) in our pipeline. The steps that
are involved to satisfy a requirement are depicted by check marks. Black filled check
marks indicate the steps we currently implemented in our prototype, whereas white filled
check marks are considered future work. Unsupported requirements, i.e., the limitations
of our approach, are crossed out. To convey this information in the text of this thesis as
well, we highlight the implemented requirements in bold, e.g., (R02), the requirements
we defer to future work in regular font, e.g., (R11), and the limitations by crossing them
out, e.g., (R03).

The table shows that most requirements need several consecutive steps to be fulfilled. For
example, it takes preparation, the proper data structure, constraints, and a visualization
technique, to satisfy the clustering requirement (R14). Not all requirements can be
handled independently, e.g., node sizes (R01) need to be determined first, to subsequently
remove possible overlaps (R02) using a constraint. These dependencies cause a specific
order in which the requirements need to be processed. Limitations are caused by the
choice of the underlying techniques, e.g., a uniform node distribution (R03) is not an
inherent result of the chosen layout technique. The table clarifies the overall goal of
our entire process, as each step serves to faithfully represent the nested structure of the
data (R20).

In the following sections we elaborate on all steps of our approach and how they contribute
to satisfy the requirements of graph drawing. In each step, we discuss the necessary
implementations to fulfill the relevant requirements, mention possible implementation
alternatives, and their limitations in creating an automated SBGN graph drawing.

3.1 Acquire & Prepare Metabolic Pathways
There are many publicly available biological databases for metabolic pathways, e.g.,
Reactome [5, 57], BioModels [1], UniProt [10]. We chose to acquire real-life data sets
from the pathway knowledge-base Reactome. It provides manually-curated open source
and open-data resources of human pathways and reactions [38, 57]. All data sets
provide an existing layout that was hand-made by domain experts. Reactome supports
data exchange with a variety of data formats like SBML [94] and SBGN-ML [77] and
additionally provides the data sets in other common formats, such as JPEG, PNG, and
PDF. Through Reactome’s online visual pathway browser, different data sets can be
selected by visual exploration, as shown in Figure 3.1. The data sets include biological
pathways from different species, e.g., homo sapiens, gallus gallus and plasmodium
falciparum. We selected different data sets with varying numbers of nodes and edges to
demonstrate the possibilities of our method. We acquire the selected pathways’ SBGN-ML
files as well as their image representation, as a layout reference, and the descriptions of
their function.
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Table 3.1: The syntactic and semantic graph requirements and their relation to the
individual steps of our approach. Steps involved in fulfilling a requirement are denoted
by check marks. Black filled check marks indicate the steps we currently implemented in
our prototype, whereas white filled check marks are considered future work. Limitations
are crossed out.
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3.1. Acquire & Prepare Metabolic Pathways

Figure 3.1: The Reactome pathway browser [5, 57].

Figure 3.2: Example SBGN drawing to demonstrate its SBGN-ML structure in Listing 3.1.

An example SBGN-ML file representing the SBGN drawing from Figure 3.2 is given
in Listing 3.1. An SBGN-ML file holds an SBGN map that contains different glyph and
arc entities. These glyphs and arcs contain an identifier and the attribute class, which
is their SBGN entity type. Glyphs contain a label, a position, its size (R01), as well
as its parent compartment as the attribute compartmentRef (R14). The compartment
reference holds the identifier of a compartment as value. It can also be empty if the node
is not included in a compartment, or it can be entirely missing, because it is an optional
attribute. The class process is a special glyph with two additional ports that have a
position. We also refer to these ports as handles. An arc has a designated start and end,
but could also consist of a sequence of points, i.e., a path. Arcs are not explicitly part of
a compartment and, therefore, do not contain the attribute compartmentRef. All entities
are connected via ids and the arc’s attributes source and target.
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1 <?xml version=’1.0’ encoding=’UTF-8’ standalone=’yes’?>
2 <sbgn xmlns="http://sbgn.org/libsbgn/0.2">
3 <map language="process description">
4 <glyph id="nwtN_1feb78a0" class="compartment">
5 <label text="parent"/>
6 <bbox x="281.68" y="280.15" w="223.19" h="94.5"/>
7 </glyph>
8 <glyph id="nwtN_c90b149a" class="macromolecule" compartmentRef="

nwtN_1feb78a0">
9 <label text="A"/>

10 <bbox x="297.31" y="312.38" w="60" h="30"/>
11 </glyph>
12 <glyph id="nwtN_33aed61d" class="compartment" compartmentRef="

nwtN_1feb78a0">
13 <label text="child"/>
14 <bbox x="427.00" y="296.77" w="61.25" h="61.25"/>
15 </glyph>
16 <glyph id="nwtN_dfc66e7a" class="simple chemical" compartmentRef="

nwtN_33aed61d">
17 <label text="B"/>
18 <bbox x="442.63" y="312.40" w="30" h="30"/>
19 </glyph>
20 <glyph id="nwtN_9aec2f54" class="process" compartmentRef="nwtN_1feb78a0">
21 <bbox x="386.40" y="320.30" w="14.28" h="14.28"/>
22 <port id="nwtN_9aec2f54.1" x="383.54" y="327.44"/>
23 <port id="nwtN_9aec2f54.2" x="403.54" y="327.44"/>
24 </glyph>
25 <arc id="nwtE_faa8664d" class="consumption" source="nwtN_c90b149a" target

="nwtN_9aec2f54.1">
26 <start x="357.93" y="327.41"/>
27 <end x="382.91" y="327.44"/>
28 </arc>
29 <arc id="nwtE_70bb781f" class="production" source="nwtN_9aec2f54.2"

target="nwtN_dfc66e7a">
30 <start x="404.16" y="327.44"/>
31 <end x="438.88" y="327.41"/>
32 </arc>
33 </map>
34 </sbgn>

Listing 3.1: The SBGN-ML data representing the SBGN drawing shown in Figure 3.2.
Identifiers and decimals are shortend for better readability.

Unfortunately, SBGN-ML files acquired from Reactome do not provide compartment
references for its nodes as this information is only an optional attribute of SBGN-ML.
Because this information exists semantically in the layout made by domain experts, we
can add it manually to the SBGN-ML. We wrote a small editing option for our tool that
allows users to load an SBGN map from its SBGN-ML file, multi-select entities, and
insert them via a context menu into their corresponding compartments, see Figure 3.3.
Finally, the SBGN map with the additional compartment references can be saved as
SBGN-ML file.
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Figure 3.3: Our solution to add compartment information to entities.

Figure 3.4: Newt online editor [4, 89].

Compartment references could also be added with existing tools, e.g., the Newt online
editor [4, 89], shown in Figure 3.4. Newt is an SBGN editor, implemented as a web
application that allows users to create and edit existing pathways, and export them in
different formats, e.g., SBML as well as SBGN-ML. In Newt, one can load data sets
and add entities to existing compartments as follows: Entities are first selected, then a
targeting cursor is activated by clicking on the selection again while pressing ctrl, the
cursor is then dragged over the target compartment, where it is released. Subsequent
saving includes the newly added compartment references to the SBGN-ML file. Since
this interaction is hidden and unintuitive, we preferred our own editing tool.

With this minimal preparation using visual editors, we were able to supplement the
data from Reactome with the missing compartment information. The recovering of
entity and compartment relationships could also be done automatically. The nodes’
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(a)

(b)

Figure 3.5: Illustration of the community convention placing entities on double compart-
ment boundaries. (a) shows a hand-curated SBGN map where the author placed entities
on the compartment’s double boundaries (the two orange lines in the zoom-in placed in
the top-right corner) to convey that processes occur within the membrane. (b) shows
the SBGN map loaded from the SBGN-ML file associated with the hand-curated map
from (a). The blue nodes originally placed on the compartment’s double boundary are
now placed on the single boundary or within the compartment. The original compartment
affiliation is lost, as shown in the detailed zoom-in for comparison. The reason for this is
that the community convention cannot be represented in SBGN-ML.
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positions and sizes as well as the compartments’ positions and bounding boxes are known
through the SBGN-ML, and a simple point-inside-bounds-test would suffice to compute
the missing information. One obstacle to this procedure is a community convention
that has evolved to represent a process occurring within a cell membrane in an SBGN
map. In this convention two compartments are drawn in close proximity to create a
double boundary, representing a cell membrane. Within this double boundary, processes
and entities are placed, as shown in Figure 3.5a. This convention has currently no real
mapping to an SBGN-ML description, as SBGN-ML only maps an inclusion relationship
between one entity and one compartment. Hence, the double boundary is resolved as
one compartment, this is shown in Figure 3.5. While this is a known limitation between
the SBGN definition and its mapping to SBGN-ML or other file formats [84], it is not
discussed in the literature (C3). We exclude the community convention for simplicity
and only choose metabolic pathways where this convention is not used or not necessary.
From now on, we assume to have the compartment glyph relation to its nodes available
as compartment references in the SBGN-ML files.

Another aspect of real-life data sets is the cloning of nodes (R22). Choosing the nodes to
be cloned depends on a domain-specific consensus by the life science community, e.g., a
commonly cloned node is ATP. If this is performed, the number of high degree nodes and
edge intersections can be reduced, and the overall readability of the graph is improved.
We assume that all cloned nodes are already included in the data, hence, we do not have
to take special care when loading the data.

Additionally to the real-life data sets from Reactome, we manually generated several
phantom datasets with the Newt online editor. These phantoms were deliberately
designed to depict various graph structures with different numbers of nodes, node sizes,
different connectivities, and various compartment nestings. They are used to develop,
test, verify, and identify limitations of different aspects in a controlled way.

To summarize, as first step of our approach we acquired real-life data of biological
pathways in SBGN from the pathway knowledge database Reactome in the file format
SBGN-ML. This data was edited to reconstruct the missing compartment entity relation
via a simple visual editing tool. We also created phantom data sets using the Newt online
editor.

3.2 Load & Preprocess of SBGN-ML Files
We used the C++ software library LibSBGN to load the SBGN-ML files [39]. After
loading we preprocess the data.

Complex glyphs are a special kind of container that hold only glyphs but not arcs, shown
in Figure 3.6. Arcs from other entities do not connect to entities contained inside the
complex but to the complex itself. As Siebenhaller et al. [92] suggest, a complex is
represented as one node in the graph, and we consider the contained nodes only during
visualization (R02).
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Figure 3.6: A special container entity, a complex glyph. Since there are no arcs connecting
to the entities inside the complex, it can be represented as one node in a graph.

In an SBGN-ML file arcs are depicted as start and end points, but can also consist of a
sequence of points, i.e., a path. Hence, an SBGN-ML file supports polyline edges. These
polyline edges usually represent edge bends created in the loaded layout. Neither of the
chosen layout algorithms support graphs with polyline edges, neither the pivot MDS
for the initial embedding [32], nor the vectorized stress majorization for the constraint
layout [103]. Since our approach generates a new layout, the existing polyline edges are
ignored. We discard all paths loaded from the data and replace them with a straight edge
from the start to the end points of the polyline edge. This removes all edge bends (R06)
from the loaded data.

Entities contain their predefined sizes in the SBGN-ML file in pixels. For entities with
labels, their sizes are not always defined to fully encapsulate the node labels. To ensure
labels are included in the nodes, we chose to resize entities with a user-defined maximum
width and a user-defined padding. Entities containing their labels may result in larger
nodes, but the overall layout might be less cluttered. All entities have now a fixed size
and contain their labels before starting the layout process (R01).

Neither the node labels nor the nodes themselves contain rotation information in SBGN-
ML. Hence, we consider them axis-aligned. Since no rotation is introduced later, nodes
and labels stay orthogonal (R03).

The original positions of nodes and edges are not required for our approach, so we could
have discarded them too. Instead, we load them to visualize the data after the initial
loading step for convenience. To summarize, we load the SBGN-ML via a software library,
merge complexes and their contained entities to one node, remove edge bends, and resize
nodes to contain their labels.
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3.3 Data Structure
The data loaded from the SBGN-ML files need to be transformed into a data structure,
specifically, a graph representation that incorporates all information required during the
layout process [49, 90, 107]. This graph representation needs to support the multivariate
nature of biological pathways [71], and to facilitate the creation and visualization of the
layout.

Firstly, we recap the properties of the SBGN process notation to select a suitable data
structure. The process notation describes processes which consume biological entities
with a possible involvement of a catalyst or an inhibitor to become other biological
entities, as demonstrated in Figure 3.7. This gives the data an inherent direction, which
needs to be modelled in our data structure, making the graph a directed graph. Biological
entities and processes are both mapped to vertices. Since biological entities are only
allowed to connect to processes, the data translates to a bipartite graph. This also means
the graph contains no self loops, which makes it a simple graph.

A biological network can consist of disconnected components and can contain cycles.
This needs to be considered when using graph algorithms. One or multiple metabolites
are connected to a handle of a process glyph. This translates to a one-to-many and
many-to-one relationship in the graph representation, which can be mapped to hyperedges.
Hence, a hypergraph is an accurate representation of the SBGN process notation [80], as
shown in Figure 3.8.

Maniadi et al. [80] investigated the suitability of hypergraphs as representation of
metabolic pathways. In their data model, every node represents a biological entity and
every edge is a reaction. Therefore, process nodes do not exist and hyperedges represent
many-to-many relations. To use conventional graph drawing techniques and visualize
such hypergraphs, they transform them into common graphs. Hyperedges are simplified
by inserting dummy nodes at the hyperedge’s branching points. One dummy node qu

connects all source nodes ui, while the other one qv connects all target nodes vj . This is
only done when the hyperedge has multiple source or target nodes. If the hyperedge has

Figure 3.7: An example biological process in SBGN process notation. The macromolecule
A becomes the simple chemical B under the influence of the catalyst C. The graph flows
from A over the process node to B as well as from C over the process node to B.

39



3. Methodology

Figure 3.8: Example SBGN drawing showing a hyperedge. The macromolecules A and B
are connected to the process node from the left through a hyperedge.

one source and one target node, it is treated as common edge and no dummy nodes are
inserted. Consequently, at most two dummy nodes are inserted per hyperedge. With this
approach, the problem of drawing a hypergraph (recall Definition 2.1.12), can be reduced
to the problem of drawing a graph G = (V, E), where e = {ui, qu} are edges from the
source to its dummy node, e = {qv, vi} are edges from the other dummy node to the
target node, and e = {qu, qv} is a dummy edge if qu ̸= qv. Conventional techniques can
be used now at the only expense of an increased network size caused by the insertion
of the dummy nodes [80]. The approach of Maniadi et al. [80] is used in other relevant
works, e.g., Becker et al. [24].

We adapt the approach of Maniadi et al. [80] to the SBGN process notation. To recall,
this notation requires to explicitly model process glyphs as (real) nodes in the graph. For
each handle of every process glyph, we now insert a dummy node and make no exceptions
for hyperedges with only one source or target node. As shown in Figure 3.9, consumed
and produced entities are only connected to these dummy nodes (blue dots), while nodes
connected through regulatory arcs are connected to the real node (red dot).

With the insertion of dummy nodes we introduce two different edge types: real edges and
dummy edges. The dummy edges connect the handles’ dummy nodes to the center node
of the process glyph and have a shorter edge length than real edges. The edge type is
important for the layout process and, therefore, is imposed upon the edges as attribute,
making our data structure a multivariate network. Every entity node has a label that is
fully enclosed in its node’s boundary, resulting in different node sizes. The node sizes are
added as node attributes to our data structure.

So far, our data structure is able to model a metabolite’s transformation from one entity
into another one, but we have not yet considered the location of the transformation
within a cell. The location is displayed as compartment glyph in SBGN, and represented
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Figure 3.9: Mapping of a process glyph to dummy nodes. The two blue dots represent
the inserted dummy nodes, while the red dot represents the real process node.

as compartments and compartment references in SBGN-ML. Compartments can hold
entity nodes, process nodes including their dummy nodes, and other compartments. To
represent this hierarchical structure, we use a clustered graph [71]. Alternatively, we
could encode the relationship between a node and a compartment as a node attribute,
where every node holds a list of compartment references. In such a case, selecting all
nodes of a compartment would not be efficient, since every compartment list of every
node would need to be queried.

For that reason, we construct a clustered graph C = (G, T ), where G is the input graph
without cluster information and T is a rooted tree, referred to as cluster tree and every
node of T is a cluster c. From now on, we refer to nodes of T simply as clusters. The
cluster tree T describes an inclusion relationship between clusters [13, 18], i.e., clusters can
contain child clusters, recall the tip-over convention shown in Figure 2.4a. Every cluster
relates to a subgraph G′ of G, chosen according to a cluster information or grouping
criterion. A child cluster relates to a subgraph G′′ of its parent cluster’s subgraph G′

of G. As the depth and width of the cluster tree increases, the number of vertices that
a cluster or subgraph can have decreases. The root cluster of T contains all vertices
of G. The leaves of T are exactly the vertices of G. The nodes of T at depth or level i
represent the subgraph Gi = (Vi, Ei) of G. These levels can be visualized as a multilevel
view of the clustered graph, where every cluster level is drawn on a different plane and
represents a different abstraction level of the graph [13].

When loading an SBGN-ML file, we generate its representing clustered graph C1 recur-
sively by using compartment affiliations as clustering information. A directed graph G
is constructed from the SBGN-ML file, where every glyph’s compartment reference is
added as attribute to every vertex v ∈ V (G). Then, we construct the cluster tree T .
We add G to the tree’s root node and refer to it as dummy cluster, as the root has
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no actual representation in the SBGN-ML file. Subsequently, we recursively add child
nodes by, firstly, identifying clusters in the current node of T , and, secondly, adding
the corresponding subgraph G′ to this node. Then, we continue the procedure at the
child node level. As SBGN-ML already contains the cluster information in the form of
compartments and compartment references for every glyph, there is no need to apply
a clustering algorithm to G to identify clusters. An actual compartment is translated
to a cluster c by adding a node to T with the compartment reference as node attribute.
The subgraph G′ of G contained in cluster c includes a vertex v, if v has the same
compartment reference as c, or if v is included in a child cluster of c. Edges are implicitly
part of a cluster, if its start and end vertices are part of the same cluster. The result
of this procedure is a graph that is clustered by compartment affiliation and represents
an SBGN-ML file. This graph allows us to access individual subgraphs included in a
compartment as well as all subgraphs on a specific viewing level. In Figure 3.10a we
see an example SBGN network with three compartments and one of them being nested.
Figure 3.10b shows its corresponding cluster tree, where the rectangular nodes represent
clusters and the elliptic leaf nodes represent actual vertices in G. The corresponding
multilevel view is depicted in Figure 3.11.

For the purpose of a more granular control and flexibility in the upcoming layout step,
we decided to subdivide the clustered graph further by additionally including graph
connectivity as clustering information. Again, we start to construct a clustered graph C2
from the root node of T . Firstly, we add G to the root node of T and then we subdivide G
into clusters. As described in the previous paragraph, the clustering is initially performed
according to compartment affiliation. For each compartment, we add a new child node
to the root node of T . Additionally, we now determine all disconnected components
or disjoint subgraphs of G that are not part of any compartment. For each of these
components, we add a new child node to the root node of T and, therefore, represent
them as separate clusters. These component clusters are depicted as magenta boxes
in Figure 3.12b. Since these components are originally not represented in the SBGN-ML
file, we refer to their nodes in T as dummy nodes. Again, every cluster is a subgraph G′

of G. This subdivision procedure (see Algorithm 1) is then repeated recursively on every
subgraph contained in a compartment cluster, until there are no more child compartments
remaining. Figure 3.12b presents an example SBGN network with its corresponding
cluster tree. The multilevel views of this network are presented in Figure 3.13.

We compare the clustered graph C1 constructed by compartment clustering with the
clustered graph C2 constructed by compartment and connected component clustering on
the basis of their multilevel views. The root viewing level Level(0, C1) (Figure 3.11a)
as well as Level(0, C2) (Figure 3.13a) show the whole graph. The next viewing level
Level(1, C1) has two clusters (Figure 3.11b), while Level(1, C2) has four (Figure 3.13b).
Level(2, C1) has one cluster (Figure 3.11c), compared to four clusters in Level(2, C2)
(Figure 3.13c). Every cluster in C1 contains a subgraph of G that includes all vertices of
the cluster’s compartment and disregards their connectivity. In contrast, every cluster
in C2 contains a connected subgraph of G only. C2 allows us to address connected
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(a)

(b)

Figure 3.10: An SBGN drawing and the visualization of its graph’s cluster tree. (a) shows
an SBGN drawing and (b) presents the cluster tree of its clustered graph, performed
with compartment clustering. The gray nodes represent clusters associated with the
compartments depicted with gray rectangles in (a), the blue node is a dummy cluster.
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(a)

(b)

(c)

Figure 3.11: The multilevel view of the clustered graph of the SBGN drawing shown
in Figure 3.10a. The clustering was performed with compartment clustering. The
rectangular outlines depict the cluster tree’s clusters, the blue outline represents the root
node’s dummy cluster, while the black outlines are clusters made from compartments.
(a) displays the cluster level zero, the root level, while (b) shows cluster level one, and
(c) cluster level two.

44



3.3. Data Structure

Algorithm 1 Cluster tree algorithm with compartment and disconnected component
clustering for an SBGN-ML file.
Input: G = (V, E) // directed graph built from SBGN-ML
Output: T // cluster tree

1: T ← tree with single root node
2: subgraph(root(T )) ← G // assign the whole graph G as subgraph to the root
3: attr(G, ‘CompartmentRef’) ← ∅ // G has no compartment affiliation
4: CreateTreeLevel(root(T )) // start building the cluster tree from the root
5: return T

6: procedure CreateTreeLevel(N) // N is a node in T
7: clusters ← Cluster(subgraph(N)) // find clusters in the subgraph of N
8: for each c ∈ clusters do
9: Nchild ← new child of N // add new child node to N

10: subgraph(Nchild) ← c // assign the cluster to the child node
11: if ∄ attr(c, ‘Dummy’) then // if the cluster is not a dummy...
12: CreateTreeLevel(Nchild) // ...recursively continue building T
13: end if
14: end for
15: end procedure

16: // find clusters in the subgraph G with clustering criteria:
17: // compartment affiliation, disconnected components, disjoint subgraphs
18: function Cluster(G)
19: // get compartment affiliation of G
20: k ← attr(G, ‘CompartmentRef’)
21: // get list of subgraphs assigned to child compartments of compartment k
22: compartments ← compartments p ∈ G where attr(p, ‘CompartmentRef’) = k
23: // get list of remaining subgraphs consisting of components that are children of k
24: components ← disconnected components of G \ compartments
25: components ← components ∪ disjoint subgraphs of G \ compartments
26: for each c ∈ components do
27: attr(c, ‘Dummy’) ← true // mark components as dummy clusters
28: end for
29: // return a list of subgraphs
30: return compartments ∪ components
31: end function
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(a)

(b)

Figure 3.12: An SBGN drawing and the visualization of its clustered graph’s cluster
tree. (a) shows an SBGN drawing and (b) presents the cluster tree of its clustered graph,
performed with compartment and connected component clustering. The gray nodes
represent clusters associated with compartments shown with gray rectangles in (a), the
magenta nodes are clusters derived from compartment-based connectivity, the blue node
is a dummy cluster.
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(a)

(b)

(c)

Figure 3.13: The multilevel view of the clustered graph of the SBGN drawing in Fig-
ure 3.12a. The clustering was performed with compartment and connected component
clustering. The rectangular outlines depict the cluster tree’s clusters, the blue outline
represent the root’s dummy cluster, while the black outlines are clusters made from
compartments and the magenta outlines are clusters made from connected components.
(a) displays the cluster level zero, the root level, while (b) shows cluster level one, and
(c) cluster level two.
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components in a compartment separately and, therefore, consider them separately in the
following layout step, for details go to Subsection 3.4.4.

To summarize (C3), we model the underlying graph structure of an SBGN drawing as a
multivariate clustered graph C = (G, T ) with clustering information from compartments
and connected components, where each subgraph is a simple directed graph G. All
hyperedges are removed through the insertion of dummy nodes. The SBGN glyph’s node
sizes are incorporated as vertex attributes in G. The different edge lengths are added as
edge attributes in G. The compartment affiliation is encoded as vertex attributes in G,
but also as clusters of T . The multivariate clustered graph forms the basis for considering
the clustering of nodes (R14) and for applying expand and collapse (R23) techniques to
reduce complexity in the following layout steps. This data structure serves as the input
for the following layout steps.

3.4 Layout
Decisive for the choice of the layout approach are the domain-specific requirements
of biological networks. The approach has to be customizable as well as scalable to
large networks. For these reasons and based on recommendations of the related work,
recall Section 2.5, we decided to use a constraint-based layout approach. Concretely, we
choose the vectorized stress majorization of Wang et al. [103] as layout framework. Their
approach combines unconstrained and constrained layouts into one and is able to model
a variety of constraints proposed by earlier works on layouts for biological networks. For
example it can mimic the separation constraint of IPSep-CoLa [52, 103] and models
circular shapes with fewer constraints than Dwyer’s approach [48, 103]. In contrast
to IPSep-CoLa, the approach models soft constraints and, therefore, is able to merge
conflicting constraints with weights [52, 103]. Like the approach of Yuan et al. [107] it
is able to merge multiple subgraphs into one layout while preserving each subgraph’s
mental map. It is said that stress majorization creates layouts with an overall smaller
stress value than approaches based on gradient descent [61]. Wang et al. [103] state
that the vectorized stress majorization can handle any constraint that can be modeled
using vectors. While the vectorized stress majorization has yet to be demonstrated on
metabolic pathways, it was shown to be versatile and extendable. Therefore, we consider
it a suitable framework to automatically create drawings of biological networks in the
SBGN process notation.

Firstly, we recap the vectorized stress majorization in detail [103]. The basic concept is
the stress function, recall Equation 2.1 [61, 68]:

stress(X) =
�
i<j

wij(∥xi − xj∥ − dij)2.

This original stress function aims to create a graph where a predefined target edge
length dij is reached between vertices i and j. X describes the positions of all vertices.
Wang et al. [103] extended this function to achieve not only a target edge length but also
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a target direction by replacing all distances and positions with vectors:

stress(X) =
�
i<j

wij(∥xi − xj∥ − dij)2. (3.1)

This is achieved be reformulating the original function through the use of an auxiliary
variable Z = {z1, . . . , zn}T and the Couchy-Schwarz inequality ∥x∥∥y∥ > xT y leading to
the target edge vector dij :

dij = dij
zi − zj

∥zi − zj∥ . (3.2)

In this equation the target edge length dij is used as a scale factor and zi−zj

∥zi−zj∥ is a
normalized vector, i.e., a direction. The target edge vector dij therefore encodes a target
length as well as a target direction. By replacing the target edge length dij with the
target edge vectors dij in Equation 2.1, we obtain the vectorized form of the stress
function, shown in Equation 3.1. The weight is defined as wij = (dij)−2 and is used as
normalization factor. The vectorized stress function considers the complete graph G,
where actually existing edges between i and j are termed real edges, all others virtual
edges. G is an undirected graph. Equation 3.1 minimizes the sum of squared differences
between the edge vectors dij instead of the difference between a real and a target edge
length, as it was done in the original Equation 2.1. The equation is solved by bringing it
into a matrix form, differentiating it with respect to X, and setting the result to zero.
The outcome is the following linear system:

LX = JD, (3.3)

where L is the weighted Laplacian matrix, J is the matrix of weights of the edge vectors,
and D is a matrix holding all dij vectors of all real and virtual edges in G, referred to
as the vector of directions. This final equation is solved by a block-coordinate descent
method, by alternately updating the vector directions D with the current configuration
of X, called D-step, and calculating the new vertex positions by solving the linear system
from Equation 3.3, called P-step.

Constraints can be directly integrated into the vectorized stress function by extending it
as follows:

stress(X) =
�
i<j

wij(∥xi − xj∥ − dij)2

� �� �
considers real and virtual edges in G

+
�

(i,j)∈E′
vij(∥x′

i − x′
j∥ − d′

ij)2

� �� �
considers real and virtual edges in G′

, (3.4)

where G′(V ′, E′) is a constraint graph with V ′ ⊆ V and E′ ⊆ E. E′ includes real as well
as virtual edges and G′ is a directed graph. Equation 3.3 is extended to

(L + L′)X = JD + J′D′, (3.5)

where L′, D′, and J′ are the matrices corresponding to L, D and J, but only hold data
from G′.
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The constraints are derived from user input, or, as in our case, from requirements of
an application domain, and are defined through the target edge vectors d′

ij . These
vectors give an edge a specific length and direction, imposing a constraint on the edge.
The target edge vectors d′

ij are weighted by the application-specific weight vij . This
way each constraint is weighted individually, which allows conflicting conditions to be
satisfied, making them to soft constraints. Solving Equation 3.5 only differs from the
unconstrained version in the D-step, where d′

ij and, consequently, D′ may need to be
recalculated in every iteration, depending on the constraints. The stress majorization
stops at a user-defined number of iterations. With this integration of constraints into the
vectorized stress function, Wang et al. [103] created a unified framework for constrained
as well as unconstrained graph visualizations.
Based on the literature, we perform the following sub-steps to create a constraint layout:
initial embedding, initial layout, and constraint layout. Since we chose an energy-based
layout approach, an initial embedding is necessary and it influences the basic properties of
the resulting drawing, like orientation. The initial layout step untangles the graph. The
choice of the approach also influences which characteristics of the graph are highlighted
in the final drawing. The constraint layout modifies the initial layout according to the
application-specific requirements.
In the following sections, we discuss how to find a suitable initial embedding, adjust
the initial layout to fit the needs of the application domain, formulate the necessary
constraints to enforce the rules of the SBGN, and how to define the order of the constraint’s
application.

3.4.1 Initial Embedding
The first step in creating a constraint layout, or generally an energy-based layout,
is the creation of an initial embedding. The initial embedding defines the starting
positions of the graph’s vertices in a two-dimensional space and is used as input for the
actual layout process. The initial embedding influences the subsequent layout steps by
contributing to the orientation of the graph, the number of edge intersections (R05), and
the convergence speed of the layout algorithm, among others. Choosing an appropriate
method for generating an initial embedding facilitates the creation of a favorable layout.
Subsequently, we discuss several initial embeddings that we explored throughout the
course of our work.
A straightforward initial embedding is to use the one stored in the SBGN-ML file. Since
our goal is an automated layout without user interaction, we ignore the stored glyph
positions and replace them with a newly calculated initial embedding.
Another simple initial embedding is a random initialization of the vertex positions. This
approach was used as an initial embedding in the work of Wang et al. [103]. An exemplar
random embedding is shown in Figure 3.14a.
Kamada et al. [68] and Yuan et al. [107] define the initial embedding by placing all
vertices on a circle. This circle’s diameter is the screen width and all vertices are placed
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(a) (b)

(c) (d)

Figure 3.14: Different initial embeddings created for the example SBGN drawing shown
in Figure 3.10a. (a) shows a random embedding. (b) presents a circle embedding with the
vertices being placed in the same order as the nodes are stored in the graph. (c) shows
an ordered circular embedding following a depth-first traversal of the nodes. (d) displays
the pivot MDS embedding with the MinMax strategy and four pivots.
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equidistantly on it [68]. Having a fixed diameter is suitable for cases with a small number
of vertices, but does not scale well as vertices might be placed too close to each other.
Initially, we place the vertices on the circle in the same order as the nodes are stored
in the graph. An example of a circle embedding is shown in Figure 3.14b. The circular
placement order of the vertices strongly affects the subsequent layout step. For example,
the number of edge crossings can be reduced, if the order is chosen properly. For that
reason, we order the vertices based on a depth-first traversal of G. The first node stored
in the graph is selected as start vertex for this traversal. An example of this ordered
circular embedding is shown in Figure 3.14c. The subsequent layout step depends now on
the chosen start vertex for the depth-first traversal, but finding a favorable root vertex of
a graph is a non-trivial problem.
Multi Dimensional Scaling (MDS) is another technique suggested by the literature to
create initial embeddings. Combined with layout techniques based on stress majorization,
favorable final layouts are created since these two techniques are related in a mathematical
sense [61]. MDS is a dimensionality reduction technique to represent high-dimensional
data in a low-dimensional space. In general, MDS can be used to visualize the structure
of a graph. The first version of MDS, known as classical MDS, has a global optimum and
can be directly computed by spectral decomposition [100]. It has a high computational
complexity, i.e., quadric with respect to the input data, and, thus, is not suitable for
large graphs [32].
Classical MDS was improved by distance scaling [75]. Distance scaling tries to match the
Euclidean distance to the graph theoretical distance by minimizing a stress measure on
the graph. Stress is modeled with retracting and repelling spring forces [32]. This idea
inspired the layout approach of Kamada et al. [68] and makes the mathematical relation
to the stress function apparent.
Another evolution of classical MDS is landmark MDS [93], an efficient approximation of
classical MDS. It selects a set of pivot nodes, also called landmarks. A matrix of squared
distances, referred to as distance matrix, is obtained by computing the shortest path
only from each landmark to all other nodes. The initial embedding is then calculated
through eigen decomposition. Landmark MDS has a smaller time and space complexity
than classical MDS.
Another improved version of classical MDS is pivot MDS [32]. It is based on the same
idea as landmark MDS and also approximates the classical MDS through a set of pivot
nodes. But instead of using only the distance information of these nodes in the distance
matrix, it uses the distances from all nodes to these pivots, and, therefore, includes the
complete graph’s distance information. Moreover, instead of squared distances it uses
rectangular distances to construct the distance matrix. Pivot MDS is faster than the
classical MDS and makes it thereby suitable for large graphs. It facilitates progressive
computation as well as iterative refinement. Compared to landmark MDS it needs fewer
pivots to reach the same stability. While landmark MDS is faster, pivot MDS results
in more informative layouts [32]. An example of the pivot MDS embedding is shown
in Figure 3.14d. Pivot MDS is recommended for the efficient generation of an initial
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embedding, which is then used as input for subsequent algorithms [32]. Consequently, we
are also using pivot MDS to generate our initial embedding.

There are different strategies to select the pivots. One of them, which reportedly gives
good results, is MinMax sampling [73]. The first pivot k0 is chosen randomly from the
vertex set V , and the next pivot ki is chosen from the i − 1 vertices such that it has the
longest path possible from k0. This minimizes the longest distance from V to its pivots.
The minimum number of pivots is d + 1, where d is the dimensionality of the embedding,
but a larger number than d + 1 is recommended [93]. The optimal selection of pivot
points as well as their optimal number are still open problems [73].

We decided to select all nodes of G with node degree ≥ 4 as pivots. We consider them
strongly connected and, therefore, important to approximate G. In case this selection
strategy leads to less than three selected pivots, which is the absolute minimum for

(a) (b)

(c) (d)

Figure 3.15: The pivot MDS embedding of an asymmetric graph introduces a slight
rotation in comparison to its symmetric counterpart with a vertical symmetry axes.
(a) shows a pivot MDS embedding of a symmetric graph with its unconstrained stress
layout presented in (b). (c) shows a pivot MDS embedding of an asymmetric graph with
its unconstrained stress layout presented in (d).
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(a) (b)

Figure 3.16: Comparison of circle embedding and pivot MDS embedding and an uncon-
strained stress layout, applied on a path-like graph. (a) shows an unconstrained stress
layout made from a circle embedding, while (b) uses pivot MDS.

a two-dimensional embedding [93], we use a fallback selection strategy. It defines the
number of pivots as 10% of the vertices in G, but if there are less than three, MinMax is
used. This fallback strategy can become necessary for small and simple graphs.

We found that the orientation of the pivot MDS embedding depends on the structure
of the graph. A symmetric graph has a uniform weight distribution, in terms of graph
theoretical distance, and the graph is aligned with the canvas. If we unbalance the same
graph by adding vertices on one side of its symmetry axis, the initial embedding will start
to rotate due to the unequal weight distribution. This orientation is then propagated to
the initial layout, as demonstrated in Figure 3.15.

In a direct comparison between a circle embedding and the pivot MDS embedding, we
can see the limitations of the circle embedding for straight path segments [61], as shown
in Figure 3.16. The circle embedding in combination with the unconstrained stress layout
cannot straighten line segments. In contrast, pivot MDS followed by an unconstrained
stress layout can achieve this.

In summary, we evaluated several methods to find an initial embedding: random, circle,
circle with depth-first traversal, and pivot MDS. Finally, we decided to use pivot MDS with
highly-connected vertices as pivots, because it leads to good final layouts in combination
with stress majorization [61]. The initial embedding is used as input for the subsequent
step to calculate the initial layout.

3.4.2 Initial Layout
The purpose of the initial layout step is to unravel the graph. This is accomplished by
computing a force-directed layout, but without considering any constraints [48]. An
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initial layout can be calculated by solving the unconstrained stress function, recall Equa-
tion 3.1 and Section 3.4, using any undirected, connected, weighted graph with an initial
embedding and a desired edge length as input. This initial layout step does not enforce
specific edge directions. This is accomplished by updating the direction vectors in the
D-step, recall Equation 3.6, with the vertex positions of the previous iteration, as seen
in [103]:

dij = dij
xi(t) − xj(t)

∥xi(t) − xj(t)∥ , (3.6)

where the distance dij between two vertices i and j is usually defined as dij = sij , with
sij being the graph theoretical distance or shortest path distance [61, 68]. The stress
majorization is finished, if a user-defined maximum number of iterations is reached or
if the stress value drops under a specified minimum. The result of this process is an
organic-looking layout with a uniform edge length (R07), preserved proximities between
related nodes by minimizing the edge length (R09), and with an emphasis on the graph’s
symmetry (R19) [49, 61, 68]. This layout approach can lead to hair balls in dense
graphs, and is limited to connected graphs [61, 65, 98]. It does not inherently reduce edge
crossings or enforce a uniform node distribution on a grid (R03). To support uniform
node distribution, other layout approaches would be more suitable, e.g., one derived from
TSM [92]. TSM-based approaches support orthogonal edges (R08) and consider uniform
node distributions (R03). Since an orthogonal layout and a uniform edge distribution is
not strictly required by the SBGN, we accept at least a uniform node distribution (R03)
as a limitation of our approach.

We modulate the vectorized stress majorization to fit our application domain, the
visualization of biological pathways. Since the graph obtained from the SBGN data is a
directed graph, but the unconstrained stress function only considers undirected graphs,
we ignore edge directions for the initial layout. We further redefine the distance dij as
follows:

dij = sij · l · nij , (3.7)

where sij is the shortest path distance calculated with the Dijkstra algorithm [41], l is
the predefined length of its edge type, and nij is the neighborhood weight. Instead of
a uniform edge length as in general graphs, the SBGN requires different edge lengths
for process handles and arcs. We accomplish this by scaling the shortest path distance
with length l that depends on the edge type, as shown in Equation 3.8. We need two
lengths, one for the real edges as well as virtual edges, referred to as l1 and another one
for dummy edges, referred to as l2:

l =
�

l1 if eij ∈ (real edges ∪ virtual edges),
l2 if eij ∈ dummy edges.

(3.8)

The lengths of the edges are user-defined in pixels and are encoded as edge attributes in
the graph. Using pixels instead of the graph theoretical distance in the layout process,
has the advantage of having, both, the edge length and node size in the same unit (pixels).
This is necessary to calculate the constraints in the subsequent step. Alternatively,

55



3. Methodology

(a) (b)

(c) (d)

Figure 3.17: Different initial layouts without neighborhood weights of the SBGN drawing
from Figure 3.10a with the initial embeddings shown in Figure 3.14. (a) shows an
initial layout using random embedding. (b) displays an initial layout derived from circle
embedding. (c) shows an initial layout obtained from an ordered circular embedding.
(d) shows an initial layout using a pivot MDS embedding.
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to integrating the edge length into the initial layout, we could enforced different edge
lengths via constraints, but this would potentially add more conflict between constraints
and introduce unnecessary stress to the system. In real life graphs as well as SBGN
networks, the distribution of node degrees is often highly non-uniform [61]. A uniform
edge length causes the neighborhood of high-degree nodes to become dense, resulting in
visual hairballs in the graph [61]. In SBGN data sets, nodes with the highest degrees are
usually process glyphs or submap glyphs, leading to dense and cluttered areas around
them. This can be improved by weighting edges by their nodes’ neighborhood sizes [61].
We calculate the neighborhood weight nij as follows:

nij = nw · |Ni ∪ Nj | − |Ni ∩ Nj |
= nw · |Ni| + |Nj | − 2,

(3.9)

where Ni is the neighborhood of vertex i defined as Ni = {j|(i, j) ∈ E} and nw is an
additional weight based on the edge type. The introduction of nw allows us to follow the
SBGN process description recommendation by placing process ports near the process
symbol [80]. While the neighborhoods of real and virtual edges are not further weighted,
we weight the neighborhood of dummy edges by 0.25. The reason for this weight is to
give a pair of dummy edges half the weight of real and virtual edges:

nw =
�

1 if eij ∈ (real edges ∪ virtual edges),
0.25 if eij ∈ dummy edges.

(3.10)

Including the neighborhood weight in the calculation of the distance dij , generates more
space around high-degree nodes and, thereby, reduces node overlaps (R02), edge crossings
(R05), and node-edge overlaps (R10). This results in a more informative layout [61].
For our experiments, we chose a maximum of 50 iterations to solve the vectorized stress
function. Larger graphs may require more iterations, although their number increases
only moderately [61]. An example calculated from different initial embeddings, but
without neighborhood weighting can be seen in Figure 3.17.

An example of an initial layout including neighborhood weights can be seen in Figure 3.18b.
Compared to its equivalent drawing without neighborhood weights (see Figure 3.18a),
the resulting layout is more spread out and less cluttered.

To summarize, we calculate the initial layout based on the unconstrained vectorized stress
function of Wang et. al. [103], but modified it to integrate requirements of the SBGN
process notation, without relying on constraints and introducing additional stress. We
can scale edges based on their edge type to their final size, resolve dense graph areas,
and reduce edge crossings as well as node overlaps.
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(a) (b)

Figure 3.18: Effect of neighborhood weights on the initial layout created from a pivot MDS
embedding. (a) shows the initial layout without neighborhood weights and (b) displays
the initial layout of the same graph with neighborhood weights. These weights lead to
extended edges and a graph that takes up more area. This can be seen from the zoom
out and the resulting smaller displayed nodes.

3.4.3 Constraint-Based Layout

At this point, we are able to generate force-directed layouts, which enhance symmetry,
inherently reduce edge crossings and overlaps, and aim at the desired edge lengths.
To further support the requirements and layout guidelines of the SBGN, we need to
customize the initial layout further by applying constraints.

The vectorized stress majorization supports three types of constraints: direct, metrics-
based, and shape-based constraints. Direct constraints define target edge vectors d′

ij

with a certain length and/or direction. Metrics-based constraints calculate target edge
vectors from a set of nodes through a quality metric, while shape-based constraints define
a reference shape to which the associated nodes are fitted [103]. We already derived
syntactic as well as semantic graph drawing requirements from the literature as well as the
SBGN definition [77] in Section 2.4. In the following paragraphs, we discuss requirements
that we can formulate through edge vectors as constraints in the framework of vectorized
stress majorization, recall Table 3.1. Firstly, we review requirements that are already
implicitly addressed in the previous layout steps, then we discuss the requirements we
consider future work, followed by requirements we consider limitations, and finally we
present requirements that we formulate as constraints.
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We already addressed the reduction of edge crossings while creating the initial embed-
ding (R05), but it is possible to consider it in this layout step as well. In their work
Wang et al. [103] demonstrate a metric constraint to minimize edge crossings for small
graphs or subgraphs. However, they mention, that the reduction of edge crossings is still
an open problem for large graphs and cannot be solved with their constraint [103]. For
this reason, we do not minimize edge crossings (R05) with a constraint in our work.

The initial layout step optimizes the graph to have a uniform edge length (R07), but
does not consider the nodes sizes. Two large nodes connected by an edge can visually
appear closer together than two small nodes connected by an edge of the same length.
This could be remedied by a constraint, which augments the edge length through the
node sizes, but we consider this an improvement and therefor future work.

Dwyer et al. [49] demonstrated that the flow direction (R15) can be incorporated into
a constraint layout with Dig-CoLa. An equivalent constraint can be formulated as
direct constraint in the vectorized stress majorization. Since we could not estimate the
interference of this constraint with other ones and our main focus is on an SBGN-compliant
layout, we decided to leave this constraint for future work.

The initial stress function inherently enhances global symmetry (R19), so we already
addressed this requirement in previous layout steps. Wang et al. [103] demonstrate an
additional symmetry constraint for user-defined subgraphs to increase local symmetry.
In our work, we consider only global symmetry and see local symmetry as future work.

Similar subcomponents and substructures should be drawn in the same way (R18).
Possible relevant information are graph substructures like circles or the relative hierarchy
of biological reactions [49], and also repeating processes. By finding topologies of
substructures and semantic matching, a shape catalogue can be build. This shape
catalogue can then be used to formulate shape constraints. These can then be applied
on similar topologic or semantic substructures to achieve similar sub-layouts. Since
satisfying this requirement is beyond the scope of this thesis, we consider it a future
endeavor.

The requirement to allow fixed positions for nodes of special interest (R13) is difficult
to realize in the context of vectorized stress majorization. Since the framework defines
constraints through vectors they enforce relative layout rules. While it is possible to
remove the influence of all other nodes to a node of special interest by modeling an inverse
weight function, this does not fit into the concept of the approach. If only one node
would be fixed in position the layout would revolve around this point, only changing its
reference point and not its shape. Therefore we consider this requirements as limitation.

The initial layout does not inherently produce orthogonal edges (R08). This behavior can
be accomplished with a constraint, namely the general orthogonal constraint, as shown
in Figure 3.19. The aesthetic of orthogonal edges in combination with a uniform node
distribution (R03) could be enforced with alternative approaches [92]. Since the SBGN
does not expect edge orthogonality on all edges, we do not use the general orthogonal
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Figure 3.19: Result of the general orthogonal constraint, which forces edges to become
orthogonal.

constraint. For the sake of understanding and completeness, we have nevertheless
formulated and implemented it.

Some SBGN glyphs, e.g., complexes or multimers, are specifically designed to represent
the nesting or stacking of nodes. The standard glyph representation of a single node
forbids the overlapping of nodes. The stress function does not inherently consider node
sizes, it models nodes only as sizeless points. Therefore, a constraint is required to prevent
nodes from overlapping (R02). We formulate this constraint as the non-node overlap
constraint.

Disjoint compartments should should not overlap (R14). The initial layout has no
knowledge of clusters or containers and, therefore, cannot take them into consideration.
The knowledge of compartments can be integrated into the layout via a constraint, to
avoid compartment overlaps and to repulse nodes unrelated to a compartment. We name
this constraint compartment constraint.

The initial layout does not inherently maximize the minimum angles between edges.
While Wang et al. [103] demonstrate a star constraint for this purpose, it is not customized
to the special layout definitions of process glyphs. Instead of spreading out evenly around
a process handle, incoming edges (consumption arcs) and outgoing edges (production
arcs) must stay in one hemisphere. Modulatory arcs are placed ideally perpendicularly to
the process handles or evenly spread on their respective side. To satisfy the maximizing
minimum angles (R16) and the connection point requirement (R17) in a manner
consistent with the SBGN definitions, we define the process node constraint as well as the
modulatory arc constraint. While we rejected a global orthogonal edge behavior, we apply
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a localized orthogonal constraint (R8) on process handles only to achieve the defined
visual representation of process glyphs.

The constraints are formulated by defining d′
ij of Equation 3.4 and are subsequently

applied on the initial layout. As suggested by Dwyer [48], the constraints are applied in
separate refinement steps after an initial layout was computed. This improves the layout
iteratively. Every refinement step has a maximum number of user-defined iterations.
In the following, we formulate a direct and an iterative non-node overlap constraint,
a compartment constraint, a general orthogonal constraint, a process node constraint
consisting of a process orthogonal constraint as well as a process equal angle constraint,
and a modulatory arc constraint. With these newly formulated constraints we aim to
satisfy the SBGN (C1).

Direct Non-Node Overlap Constraint

Node overlaps can be caused by large nodes with long node labels or high connectivity
of nodes. Reducing overlap, improves readability. We achieve this by adapting the non-
overlap constraint of Wang et al. [103] for clusters in such a way that it can be applied
on nodes. The direct non-node overlap constraint is formulated as metric constraint,
which pushes overlapping nodes apart. The distance required for two nodes i and j to no
longer overlap is referred to as Minimal Penetration Depth (MPD) and is calculated with
the help of the Minkowski Difference as follows [48]. Firstly, we calculate the two nodes’
individual convex boundaries, depicted as shapes A and B, as shown in Figure 3.20a.
Then, we reflect shape B at one of its vertices, which we choose as the origin of the
shape, and denote the reflection with −B. This is equivalent with a 180◦ 2D rotation
around the shape’s origin, as shown in Figure 3.20b. We then build the Minkowski Sum
A + (−B), which results in the Minkowski Difference A − B [48]. Geometrically, this
means −B is placed with its origin at every vertex of A and the convex hull of this new
shape is A − B, see Figure 3.20c. The minimum distance of B’s origin to the boundary
of the shape A − B is the MPD [48], as shown in Figure 3.20d. The MPD vector m
is the minimum displacement of node j required to no longer overlap with node i, as
demonstrated in Figure 3.20e.

Instead of using the nodes’ convex hulls for shapes A and B, we could have defined these
shapes as rectangular bounding boxes. However, the convex hull provides a versatile
non-overlap metric for convex shapes in general. We included a user-defined node margin
when calculating A and B to account for space between nodes. The MPD vector m is
then used to calculate a target edge vector d′

ij between i and j, as shown in Figure 3.20e
and Figure 3.20f:

d′
ij = (xi − xj) + m, (3.11)

We apply d′
ij on a virtual or real edge between the nodes i and j to force them apart,

if they overlap in the initial layout. d′
ij is only calculated once before the refinement

step, a node displacement can cause a new overlap with another node. This problem is
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Figure 3.20: The non-node overlap constraint is calculated using the vector Minimal
Penetration Depth (MPD) depicted as m. It is geometrically defined as follows: (a) shows
the convex boundaries of example shapes A and B. (b) reflects shape B by rotating it by
180◦ around a point, the origin visualized as the magenta dot, of the convex boundary of
B, denoted as −B. (c) presents the Minkowski Difference A − B by placing −B with
its origin at every point (gray dots) of the convex boundary of A and by calculating the
convex boundary of this new shape. (d) shows the MPD vector m, calculated as the
minimum distance between B’s origin and the boundary of A − B. In (e) the vector m is
added to the node j’s center position. This is the minimum displacement required that
A and B no longer overlap. (f) The vector between node j’s new center and the node i’s
center is the target edge vector d′

ij , which is used as constraint.
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addressed by repeating the refinement step while still including the non-overlap constraint
from the previous refinement step to prevent oscillating behavior. The non-node-overlap
refinement is repeated until all overlaps are resolved, or as user-defined number of
iterations is reached.

Iterative Non-Node Overlap Constraint

This constraint is an alternative constraint to the direct non-node overlap constraint and
also aims to remove node overlaps. We apply this constraint on every real and virtual
edge of the graph. We calculate the MPD and d′

ij analogously to the direct non-node
overlap constraint, but instead of calculating d′

ij once, we calculate it for every iteration
of the stress minimization, as long as node i and j overlap:

d′
ij = xi − xj

∥xi − xj∥ ·


(wi + wj)
(hi + hj)


· 0.5, (3.12)

where wi and hi are the width and height of node i, and wj and hj are the width and
height of node j. The width and height of a process glyph exclude the handles. The
extent of the glyphs of all other objects includes the rectangular boundaries of their
labeled boxes. Instead of moving one node the entire length along direction d′

ij both
nodes i and j are moved half the way in opposite directions. This leads to a diagonal
displacement. Alternatively, we could move them only along the shorter axis, leading
to an axis-aligned displacement [48]. With the iterative non-node overlap constraint no
additional refinement steps are necessary apart from the user-defined number of maximum
iterations.

Compartment Constraint

Compartment glyphs represent subcellular locations and contain, for example, macro-
molecules, simple chemicals, and process glyphs as well as other compartments. They
form a nested graph structure. Since the initial layout does not consider compartment
boundaries, nodes could be placed inside a compartment without having an associated
parent child relationship in the data structure, as shown in Figure 3.21b, we refer to these
nodes as misplaced. This is a visual falsification of the original information and needs to
be rectified. We define a compartment constraint based on the non-overlap constraint of
Wang et al. [103] and our direct non-node overlap constraint to place a compartment’s
children only inside it. After the initial layout, we use the positions and boundaries of
the compartment’s child nodes as well as user-defined node margins to determine the
convex hull of the compartment. Subsequently, we determine the MPD of overlapping
compartments on the same nesting level, as described concerning our direct non-node
overlap constraint. This is done for real and dummy compartments, recall Section 3.3,
and allows us to move the entire content of a compartment in a specific direction, as
presented in Figure 3.21c and Figure 3.21d. If we would individually consider the nodes
of a dummy compartment, they could be moved out of the overlapping compartment into
different directions, increasing edge length and preventing a consistent flow direction, as
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(a)

(b)

(c)

(d)

Figure 3.21: Applying an initial pivot MDS embedding to the graph of the manually-
arranged drawing in (a), followed by an unconstrained stress layout, produces the drawing
in (b). As the compartment affiliation of nodes is not depicted correctly, it is necessary to
apply the compartment constraint. (c) shows the result of the compartment constraint,
where the compartment is visualized as a box and (d) shows the same result as (c), but
visualizes the compartment as convex hull.64



3.4. Layout

(a)

(b)

Figure 3.22: Comparison between applying the compartment constraint on individual
nodes and a cluster of nodes contained in a dummy compartment. (a) shows the result of
the compartment constraint applied to individual nodes, the layout appears cluttered and
the flow direction is obscured (real compartment shown as gray filled area). (b) shows
the result of the compartment constraint applied on a whole dummy compartment, the
flow direction of its nodes remains straight and the layout looks clear (real compartment
shown as gray bounding box).

shown in Figure 3.22a. We exclude compartments with a parent-child relationship from
the compartment constraint, because in such cases an overlap is intentional. Analogously
to the direct non-node overlap constraint, a displacement of one compartment can cause
an overlap with another compartment, which then demands a further refinement step.
Since we use a compartment’s convex boundary to remove overlaps, the compartment’s
visualization must also become a convex shape instead of a box, as shown in Figure 3.21d.

General Orthogonal Constraints

The general orthogonal constraint is designed to align all edges of the graph to be as
orthogonal as possible. The constraint is inspired by the edge direction constraint of
Wang et al. [103], which is defined as follows:

d′
ij = ∥xi − xj∥ · uij , (3.13)
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where uij is a direction vector in unit length, defined by a user or application [103]. We
adapt this general definition to form a general orthogonal constraint. The direction uij

is limited to adopt the directions of the x and y-axis, both in positive as well as negative
direction, depending on the coordinate system:

uij =



(1, 0)T right,
(0, 1)T up,

(−1, 0)T left,
(0, −1)T down.

(3.14)

For every node pair i and j, their individual uij is automatically chosen by a heuristic,
that uses the initial layout or a previous constraint step as input. For every input edge
(i, j), we calculate its direction and determine its corresponding sector on the unit circle:
C0 = 315◦ − 45◦, C1 = 45◦ − 135◦, C2 = 135◦ − 225◦, C3 = 225◦ − 315◦. The direction
vector uij is then selected accordingly: for C0 right, for C1 up, for C2 left and for C3
down, as illustrated in Figure 3.23. This heuristic leads to an alignment of edge (i, j)
that changes the previous layout as little as possible. uij is then scaled by the original
distance between the nodes i and j, thereby defining the general orthogonal constraint
d′

ij . If applied to an edge, the edge is forced to align with uij while preserving its length.
To generate an orthogonal graph this constraint is applied to every edge of the graph.
For completeness, we have described this constraint, but we do not use it for any of our
results. This constraint would result in orthogonal layouts that do not conform to the
SBGN, as shown in Figure 3.19.

45◦135◦

225◦ 315◦

C0

C1

C2

C3

right

up

left

down

ij

uij

d′
ij

Figure 3.23: The direction vector uij of the orthogonal constraint is defined by considering
the direction of the edge between the nodes i and j regarding its placement on a unit
circle. Depending on the associated circle sector Cn with n ∈ {0, . . . , 3}, uij is chosen
as right, up, left or down vector. The resulting vector d′

ij is axis-aligned and of length
∥xi − xj∥.
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Process Node Constraints

The SBGN defines the handles of a process glyph as a continuous straight line in horizontal
or vertical direction. We represent process glyphs with three dummy nodes, as shown
in Figure 3.24a. This allows the handles to move individually during the layout process,
resulting in handles that are bent at the center of the process node, seen in Figure 3.24b,
and, thereby, are not compliant with the layout rules of the SBGN.

To ensure compliance, a constraint is required. For this reason we introduce the process
orthogonal constraint with the following two objectives:

1. Both handles should be collinear, i.e., point in the same direction, to appear as one
line.

2. Both handles should either be horizontally or vertically aligned.

We meet both objectives by adjusting the general orthogonal constraint to consider the
three dummy nodes of process glyphs. The input for this constraint is the initial layout
or the layout of a previous refinement step. For every process glyph we automatically
select its three dummy vertices. In the following we refer to the node of the incoming
handle as i, to the center node as j, and to the outgoing handle node as k. For these
three vertices we define two constraints:

d′
ij = ∥xi − xj∥ · uik, (3.15)

d′
jk = ∥xj − xk∥ · uik. (3.16)

To determine the process direction uik we calculate the handle direction from handle
node i to handle node k. For this handle direction, we determine its unit circle sector

(a) (b)

Figure 3.24: The structure of a process node and its impact on the layout. (a) shows
the SBGN-compliant appearance of a process glyph, with collinear handles on the left
and right sides, and the blue dots representing the underlying dummy nodes. (b) shows
the result of an unconstrained layout, with bent handles that are not compliant to the
SBGN.
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analogously to the general orthogonal constraint (Figure 3.23). Since the direction uik

is shared by the constraints d′
ij and d′

jk, imposing them on their associated edges (i, j)
and (j, k) will force them into the same direction. Similar to the general orthogonal
constraint, the edge length is not changed. Applying these two constraints on every
process nodes’ handles, aligns them in the same direction, either horizontally or vertically,
while ensuring collinearity of the handles’ edges. This way, both objectives are fulfilled.

In addition to the layout of the process glyphs’ handles, the SBGN defines how incoming
and outgoing edges connect to the handles (R19). The incoming edges represent
consumption arcs and connect to one handle, the outgoing edges represent production
arcs and connect to the other handle. This connectivity information is already defined
through our data sets. The incoming and outgoing edges should be evenly distributed
in the half-spaces before and after the process glyph in process direction. To align and
distribute the edges properly, we use a shape-based constraint, referred to as process
angle constraint. Wang et al. [103] formulate shape-based constraints as follows: A
shape-based constraint defines a reference shape on which a local subgraph is fit. Once a
local subgraph is selected by a user or application, the reference shape is discretized to
fit the number of nodes of the selected subgraph. The nodes of the selected subgraph
{pi} are matched to the nodes of the discretized reference shape {qi} using a modified
version of the Iterative Closest Point (ICP) algorithm, which is widely used in the area
of point set registration [103]. In every iteration of the ICP, the affine transformation M
is calculated to minimize the following equation:�

ωi∥Mpi − qi∥2. (3.17)

The matrix M describes the minimal transformation of {pi} to approximate {qi}. The
weight ωi is the vertex degree of node i at pi. The weight favors highly-connected nodes
and highlights the reference shape within the layout. The matrix M is then used to
define the target edge vector d′

ij and, therefore, defines the shape-based constraint:

d′
ij = M(pi − pj), (3.18)

where pairs of pi and pj describe edges in the selected subgraph. By using the ICP
approach for shape matching, the initial layout changes as little as possible if applying
the shape-based constraint. We now formulate our process angle constraint on the basis
of the star constraint of Wang et al. [103], which distributes edges evenly around a center
node and generates star-like shapes. For our constraint we limit the edge distribution of
incoming and outgoing edges to two separated semicircles relative to a reference direction,
defined by the process handles. The two semicircles of the process angle constraint
are visualized in Figure 3.25a in blue. For each process glyph we define an individual
reference shape consisting of the nodes {qi}. It consists of the following vertices: three
vertices on a horizontal line representing the three dummy vertices of a process glyph, for
each incoming edge a vertex in equal distribution on the left semicircle of the reference
shape, and for each outgoing edge a vertex in equal distribution on the right semicircle of
the reference shape. An example reference shape for a process glyph with three incoming

68



3.4. Layout

(a) (b) (c)

Figure 3.25: The process angle constraint is defined for each process glyph individually to
model the needed number of incoming and outgoing edges. (a) shows a reference shape for
a process glyph with three incoming and three outgoing edges (dark blue). The edges are
evenly distributed in there respective semi circle. (b) visualizes the edge fitting process
between a process glyph and its reference shape. Each edge is fit to the nearest vertex in
the reference shape and moved during the layout procedure accordingly, visualized as the
magenta arrows. (c) presents a layout result after applying the constraint.

and three outgoing edges is shown in Figure 3.25a with dark blue lines. During the layout
process the edges of a process glyph are fit to this reference shape by identifying the
closest vertices of its reference shape and calculating the transformation M. Since M
considers translation, rotation, and scale, our reference shape was defined in arbitrary
orientation. The closest point matching process is visualized in Figure 3.25b. A small
example of an SBGN map modified according to our process angle constraint is shown
in Figure 3.25b. The three incoming and three outgoing edges are constrained to their
respective semicircles and evenly distributed.

Alternatively to the ICP shape matching approach, the route and shape matching
approach from Batik et al. [21] could have been used to match the process glyph to its
reference shape. While the shape would have been more stable, because the approach
is edge and routing aware, we would have lost the rotation invariance of the reference
shape.

By combining the process orthogonal constraint and the process angle constraint, we can
achieve SBGN compliance for process glyphs and their connections.

Modulatory Arc Constraint

So far, we described how to connect consumption and production arcs to process glyphs
while complying with the SBGN. Additionally, modulatory arcs can be connected to
process glyphs. They are connected to the center node of the process glyph and should
be spread out in the semicircle perpendicular to the process handles while maximizing
the minimal angle to other modulatory arcs (R17). To satisfy these requirements we
define a modulatory arc constraint. We apply a similar procedure as for the process angle
constraint. Firstly, we define a reference shape consisting of the following vertices: three
vertices on a horizontal line representing the three dummy nodes of a process glyph and
one extra vertex placed perpendicularly to this line for the modulatory arc. The result is
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(a) (b) (c)

Figure 3.26: The modulatory arc constraint reference shape is visualized in (a) as dark
blue T-shape. It consists of four vertices, three for the process glyph and one for a
modulatory arc. (b) shows an example modulatory arc being matched to its reference
shape and moved during the layout procedure accordingly, visualized as the magenta
arrow. In (c) we see the result of an applied modulatory arc constraint.

a T-shape, visualized in Figure 3.26a with dark blue lines. In contrast to the process angle
constraint we do not create individual shapes for each process glyph. Although multiple
modulatory arcs can be connected to a process glyph, we constrain every modulatory arc
with the same shape, since we assume that already existing virtual edges will force them
apart. The shape matching between a process glyph and its modulatory arc with the
reference shape is visualized in Figure 3.26b. A result example of an applied modulatory
arc constraint is shown in Figure 3.26c.

Constraints Combination

Selecting and combining a set of constraints is still an open problem [25, 65]. Not all
constraints work well together, some work even against each other. The vectorized
stress majorization enables the combination of constraints in a soft way by weighting the
constraints, recall Equation 3.4. Defining favorable weights that highlight the preferred
graph and layout properties is also still an open problem [86, 98].

The order in which the constraints are applied influences the result in our case. The
reason for this is that some of our constraints use the current layout to calculate their
metrics. Therefore, we define the constraints’ order as follows:

1. Iterative Non-Node Overlap Constraint with weight v1
ij

2. Compartment Constraint with weight v2
ij

3. Process Orthogonal Constraint with weight v3
ij

4. Process Angle Constraint with weight v4
ij

5. Modulatory Arc Constraint with weight v5
ij

The application-specific weights vij are user-defined. If we apply a new constraint, the
previous constraints remain active to enforce them at the next refinement step. We choose
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the weights according to v1
ij < v2

ij < v3
ij < v4

ij < v5
ij , assuming that it becomes more

difficult to enforce layout changes with an increasing number of active constraints. The
behavior of these weights is demonstrated and evaluated in the results, see Chapter 4.

3.4.4 Multilevel Layout
With the workflow consisting of an initial embedding, an initial layout, and the application
of constraints, we can achieve layouts of metabolic networks. Such layouts emphasize
symmetry, have a uniform process edge length, and a uniform edge length for production,
consumption, and modulatory arcs. We can modulate these edge lengths to reduce
the occurrence of hairballs around highly-connected nodes. We can reduce overlap of
nodes and compartments and support the special layout of process glyphs with their
connections. While this workflow allows us to produce reasonable results, we discovered
two limitations (C3):

1. In metabolic networks, not every entity is connected to other entities by a path,
the underlying graph may rather consist of disconnected components. Such graphs
are not supported in the layout procedure so far. The literature does not discuss
this topic in the context of biological networks.

2. If a compartment consists of disjoint subgraphs, the compartment will not minimize
its area.

The first limitation is caused by the choice of the techniques: the pivot MDS for the initial
embedding and the vectorized stress majorization for the initial and constraint layout.
Both techniques do not support graphs consisting of disconnected components [103]. To
address this limitation we modify these approaches. We calculate the initial embedding
with pivot MDS for each disconnected component individually, instead of calculating
it for the whole graph. This results in an initial embedding where every component
is placed at the origin, i.e., they are placed on top of each other. For our purpose
this behavior is sufficient, since the subsequent initial layout takes responsibility for
the component’s arrangement. The vectorized stress majorization, does not support
disconnected components since it uses the graph theoretical distance between two nodes
to calculate dij . If two nodes are not connected, as is the case for two nodes in different
components, the graph theoretical distance is defined as +∞. But dij has to be a finite
and displayable value. A rather straightforward solution is to connect the disconnected
components with dummy edges to make the layout calculation possible. By selecting
two nodes randomly and connecting them with an edge, we could introduce a wrongly
perceived connection through the optical proximity relationship which is not present in
the data set. This can cause a misinterpretation of the graph. Therefore, we decided on
a redefinition of dij in the case that nodes i and j are in different components.

Depending on how dij is defined between two nodes in different components, the initial
layout will arrange them differently. One option is to specify dij as a user-defined or
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(a) (b)

(c) (d)

Figure 3.27: Redefining the graph theoretical distance between nodes of disconnected
components as a multiple of the target edge length instead of +∞ leads to a circular
subgraph arrangement in the initial layout. The initial layout of two, three, and four
disconnected components is shown in (a), (b), and (c), respectively. (d) shows the layout
of four disconnected components with process constraints applied, which lead to overlaps,
as indicated by the magenta arrow.
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application-specific constant distance, e.g., a multiple of the target edge length. This sets
the disconnected components into a relation to each other, while enforcing the selected
distance between them. Setting dij to a fixed distance means that each node in one
component is now connected to all nodes of the other component at a constant distance
and vice versa. This leads to a highly interconnected graph which hinders the unfolding
of the layout. This is demonstrated in Figure 3.27. The constant distance forces the
components into a circular arrangement and introduces a curvature to the layout of each
component. While our constraints can remove this curvature, as shown in Figure 3.27d,
they can introduce a component overlap. This would make an additional non-component
overlap constraint necessary.

Alternatively, we can redefine dij as the largest value a signed 32-bit integer field can hold,
mimicking +∞. This leads to a very small wij , thereby removing the relation between

(a) (b)

Figure 3.28: A manually-arranged graph with two disconnected components is shown
in (a). The same graph is presented in (b) using the unconstrained vectorized stress
majorization. The graph theoretical distance of disconnected nodes is set to the largest
32-bit signed integer value to mimic +∞. Consequently, the disconnected components
are untangled without exhibiting any influence between each other and are placed at the
same position (origin). As a result, the two components are plotted above each other.
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nodes without direct connection. This results in a separate layout for each component, all
placed at the origin and stacked on top of each other, as seen in Figure 3.28. In contrast
to setting dij to a constant distance, no curvature is introduced into the separate layouts.
They are placed freely without external dependencies. To make the graph readable, we
could again remove the overlap by an additional non-component overlap constraint, or by
a subsequent arrangement step. An arrangement could be performed by a bin packing
algorithm [27]. While both, setting dij to a constant distance and setting dij to a value
mimicking +∞ enables the vectorized stress majorization to run the layout computation,
the results require further refinement.

The second limitation is caused by the inherent behavior of stress majorization, which
distributes the nodes of a graph according to their graph-theoretical distance, together
with its unawareness of compartment relations. Figure 3.29 shows nodes inside a
compartment that are arranged according to their graph-theoretical distance. Since they
are not connected with each other in their compartment, e.g., they are disjoint subgraphs,
a large region of empty space is created between them. The requirement of minimizing
the area (R12) is not fulfilled within compartments.

Connecting disjoint subgraphs with one dummy edge, or by connecting them with virtual
edges of a constant distance, is a possible solution for this behavior. These solutions
introduce the same problems as for disconnected components, i.e., either unwanted
relations or circular arrangements. In the literature, only Schreiber et al. [90] discussed
disjoint subgraphs in layout arrangements. They composed the subgraphs into one node
to integrate them into one layout. The routing of edges into these assembled nodes is a
difficult and unsolved problem.

We chose to further address both limitations, the disconnected components and the
disjoint subgraphs, through a multilevel approach. The idea is to improve a coarse layout
recursively into a detailed one, while traversing through a hierarchical graph [16], like

(a) (b)

Figure 3.29: The vectorized stress majorization does not inherently minimize the used
area. It also has no inherent knowledge of compartment affiliation and does not place
nodes that belong to the same compartment in proximity if they are not connected by an
edge. (a) shows a compact layout made by hand. (b) shows the same graph after placing
it with our approach including all constraints.
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Figure 3.30: Illustration of the cluster tree traversal for the multilevel layout of Figure 3.31.
The magenta rectangles depict cluster nodes and the green rectangle depict leaf nodes.
The numbers in the top-left corners indicate the order of traversal (depth-first).

our clustered graph structure. We follow a top-down approach by starting the layout
at the root level of the cluster tree and by finishing it at the tree’s leaves. Firstly, we
create a global reference layout by applying the initial embedding and the initial layout
on the whole graph at the root node. The cluster tree’s nodes are then visited through
depth-first traversal. This is visualized in Figure 3.30 with the numbers in the top-left
corners of the colored rectangles indicating the order of traversal. If a visited node is not
a leaf, we choose between two layout strategies. Disjoint subgraphs are arranged either
horizontally or vertically, while connected subgraphs are placed by unconstrained stress
majorization. If a visited node is a leaf, we can apply our layout approach consisting of an
initial embedding, initial layout, and a constraint layout. The global reference layout is
now used as initial embedding for the leaf nodes. This influences the starting orientation
of the local layouts of the leaves’ subgraphs and facilitates a consistent integration into
the final global layout. Before visiting the next node in the cluster tree, we apply the
local layout changes to the global layout of the graph. To provide sufficient space when
integrating the local layout into the global one, we use the bounding rectangle of the
local layout to move its surrounding nodes aside. Figure 3.31 shows a result layout of
our multilevel approach. The two disjoint subgraphs at the bottom of the SBGN map
are arranged compactly next to each other. Alternative multilevel approaches [20] could
also be integrated into our pipeline.

To summarize, in this section we discussed how we could extend pivot MDS and the
vectorized stress majorization to support disconnected components in metabolic net-
works (C1). We also presented a multilevel layout approach using our clustered graph
data structure to handle disconnected components and disjoint subgraphs of a metabolic
network (C1). It improves the diagram’s aspect ratio (R11) and minimizes the used
area (R12).
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Figure 3.31: Result of out multilevel approach. The disjoint subgraphs in the lower
compartment are moved together to minimize the used area in the compartment.

3.5 Postprocess
Although the preceding layout step has already considered the most important require-
ments, there is still room for improvement to the final drawing. These improvements can
be accomplished as postprocessing operations. One aspect that can be improved upon is
the alignment of the graph’s flow direction (R15) with the reading direction. In western
cultures the typical reading directions would be from left-to-right and top-to-bottom.
The flow direction is not automatically aligned with the reading direction during the
layout process. Therefore, we adjust it during postprocessing as follows. Firstly, we
determine a flow direction f by selecting the visually most prominent arcs responsible
for visualizing the direction, i.e., the production arcs drawn as arrows. We calculate the
average direction of all production arcs, resulting in a vector representing the average flow
direction of the graph. Then, we define the left-to-right reading direction as r1 = (1, 0)T

and the top-to-bottom direction as r2 = (0, −1)T , assuming the positive y-axis pointing
upwards. To improve the alignment between flow and reading direction, the layout can
be flipped horizontally and vertically. A vertical flip of graph G is done if f̂ · r̂1 < 0.
Analogously, the graph G is horizontally flipped if f̂ · r̂2 < 0. This approach results in an
approximated alignment of the flow direction with the reading direction. An example of
this approach is shown in Figure 3.32. Alternatively, we could have rotated the layout
from its flow direction to the vertical or horizontal axis, but then we would have lost the
alignment of the process node handles to the axis, so we decided against rotation.
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reading direction reading
direction

flow direction

(a)

flow direction

(b)

Figure 3.32: The layout can be improved if the graph’s overall flow direction is aligned
with the reading direction. This is achieved in a postprocessing step. (a) shows an
example biological process (without a previous layout) with a flow direction of (−1, 1).
(b) shows the biological process from (a) after applying a horizontal and vertical flip
operation. The flow direction is now oriented in the same direction as the reading
direction.

Another way to improve the layout, is to further remove edge crossings (R05) and edge-
node overlaps (R10). Ideally nodes and edges should not cross. Even with the measures
taken in the previous pipeline steps, crossings can still happen for highly connected graphs
or big node sizes. This issue can be resolved in the postprocessing step through the
use of edge routing algorithms. They usually resolve crossings by routing edges around
nodes. This prevents nodes from being obscured by edges crossing on top of them, or
misunderstandings about the connections between nodes and edges if edges cross under
nodes [51]. The drawback of reducing crossings with edge routing is the introduction of
edge bends into the layout. Since there are various existing approaches [42, 51, 60], we
leave the integration of an existing algorithm into our pipeline as future work.

There are many possibilities to improve the layout with postprocessing. For example
Siebenhaller et al. [92] proposed to flip subgraphs out of enclosed graph parts like circles,
but discussing all of these possibilities is out of scope of this work.

3.6 Visualize Compound Structures
Entities of a biological network and their reactions are located in nested structures of a
biological system. A metabolite lives in a cell, or more precisely in a sub-compartment
of a cell, called the subcellular location. Examples are the cytosol, the nucleus, or the
chloroplasts in plants. A metabolite’s location could be described even more accurately
by providing its affiliation to molecular complexes. This information yields additional
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Figure 3.33: An example process encapsulated by a compartment that is visualized as a
bounding box.

insight into the reactions, because metabolites can only interact directly with others in
the same compartment. Therefore, it is beneficial to integrate an entity’s location into
the layout process [14, 45] and to visualize the nested structure.

The layout process aims to move entities of the same compartment into proximity of each
other. Entities that are not part of the compartment, should be kept at a distance from it.
Compartments can be visually represented by boundaries that should only encapsulate
affiliated entities.

Barsky et al. [19] invented Cerebral, where entities of the same subcellular location are
placed on bands of cell slices. Their approach does not appear to be compatible with the
data described in the SBGN, as the cell hierarchy is represented in a tip-over convention
instead of the inclusion convention used by the SBGN. The methods of Schreiber et al. [91]
and Dwyer et al. [52] use a separation constraint to move compartments apart, and
therefore, prevent subcellular locations from overlapping. Their approaches only consider
rectangular bounding boxes of compartments, potentially resulting in significant empty
space between nodes (depending on the network). They do not consider compartment
nesting. Our layout approach, recall Section 3.4, is designed for layouts in inclusion
convention and is able to handle convex compartment bounds, overlaps, and disconnected
components. To visually enclose compartments, we have deliberately decided to develop
our own approach, which is introduced in this section (C2). This way, we are more
flexible and can design custom representations (R18). Ultimately, we aim to generate
distinguishable shapes, i.e., motifs, for compartments to facilitate the mental map during
browsing biological networks.

After the layout process is finished, there are different options to visualize a compartment’s
cluster information. Compartments are usually visualized by drawing their bounding box,
shown in Figure 3.33. While the bounding box is suggested as glyph for compartments
in the SBGN, alternative encapsulations are also valid [84].

Our layout process considers the non-overlap constraint for compartments (R14) to
avoid placing nodes and edges in compartments where they do not belong. For nested
subgraphs with disjoint subgraphs this can potentially result in drawings with compart-
ment bounding boxes enclosing large empty areas, long edges connecting to outside
nodes, and with an overall sparse as well as scattered looking appearance. An example
is shown in Figure 3.34a. The usage of screen space could be improved by enclosing
the compartments with a convex hull instead of rectangles, shown in Figure 3.34b. The
convex hull is calculated from points sampled along the shape of each node. Convex
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(a) (b)

Figure 3.34: Comparison of compartment visualizations of two disconnected processes
within one compartment with a layout that does not optimize the area. (a) displays
the encapsulation of both processes with a standard bounding box. (b) depicts the
encapsulation of both processes in the convex hull. Both compartment visualizations
encapsulate a large empty area additionally to the contained processes, (b) less than (a).

hulls can also be used during the layout process. Nevertheless, neither the bounding
box nor the convex hull create distinct figures [28], that would aid the identification and
recognition of compartments.

There are other options to visualize cluster relations in graphs, such as the area-based
GMap [62], the contour-based approaches Line Set [15] as well as Bubble Set [37]. While
all of them can handle spatially dispersed clusters, GMap cannot handle cluster overlaps.
Line Set and Bubble Set do not handle overlaps appropriately for our application domain.
Also none of them consider edges to be part of the clusters, but this is a requirement of
the SBGN. Since Line Set and Bubble Set visualizations lead to more accuracy in cluster
identification tasks compared to GMap [67], and, perceiving shapes through boundaries
is faster than using areas [55], we designed a new boundary-based approach to visualize
compartments.

Boundaries communicate shape information, and a boundary is perceived by processing
local convexities and concavities. Convexities are perceived as parts, nodes in our case,
and concavities are perceived as boundaries between them, edges in our case. Concavities
also improve the speed of visual target search [28]. For this reason, we further improve the
compartment boundary by introducing concavities. For performance reasons, concavities
are omitted during the layout process.

Subsequently, we describe our approach for creating compartment boundaries. We enclose
nodes with circles whose diameter is the longer side of the node. Process nodes are
enclosed by ellipses, which are placed at the center of a process node and are wide enough
to contain its two handles. These shapes are sampled and the resulting points are added
to the set of hull points. By computing the concave hull [2, 85] of these points, we obtain
the compartment boundary. Figure 3.35 shows different compartment boundaries (filled
gray shapes) containing a single entity. The shape of the concave hull using only the
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(a) (b) (c)

Figure 3.35: Example entities encapsulated by gray circular and elliptic shapes repre-
senting compartments. (a) shows a macromolecule encapsulated by a circular shape that
depicts the compartment boundary. (b) displays a process node enclosed by an elliptic
shape. (c) visualizes a simple chemical encapsulated by a circular shape representing a
compartment.

nodes’ hull points does not always contain all the edges of the compartment, and its
shape might be indistinguishable from other compartments. To prevent this, we include
edges, whose both nodes are contained in the compartment, in the boundary calculation.

Edges need to be enclosed in the compartment boundary because they are part of chemical
reactions, which take place inside the compartment. For this reason, we create shapes for
the edges and include these shapes in the calculation of the compartment’s concave hull.
Although the vectorized stress majorization aims for a layout with a uniform target edge
length, this might not always be feasible due to the applied constraints. This could lead
to shorter as well as longer edges. Since an edge depicts the relation between two nodes,
its length conveys the strength of this relation. Nodes connected with a longer edge might
be perceived as less related to each other than nodes connected with a shorter edge. To
compensate for a perceived weak relation between two distant nodes, we introduce an
edge shape that follows the visual metaphor of an elastic band. If the distance between
two nodes, the real edge length, is less than or equal to the desired target edge length, the
elastic band is under no tension. If the real edge length exceeds the target edge length,
the tension of the elastic band successively increases, as illustrated in Figure 3.36. We
define this tension as follows:

tension = 1 − clamp( targetEdgeLength

realEdgeLength
, 0, 1). (3.19)

The tension becomes zero if the real edge length is shorter or equal to the target edge
length. It approximates one if the real edge length is longer than the target edge length.
We map this tension to the shape of the edge to visually emphasizes the actual relation
between its two nodes. This is accomplished by first introducing a mapping function:

λ(t) = t2 · tension + 1 − tension, (3.20)
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with t ∈ [−1, 1] moving along the edge, i.e., t = −1 at the start of the edge and t = 1
at the end. So far, λ(t) only models the tension of the edge, but does not consider the
shapes of its two nodes. By scaling λ(t) with the linearly interpolated radii of the edge’s
source and target nodes, we compute the thickness of the edge’s shape:

thickness(s) = λ(2s − 1)((1 − s) · rsource + s · rtarget), (3.21)

with s ∈ [0, 1] moving along the edge, rsource being the radius of the source node, and
rtarget being the radius of the target node. The thickness describes how the shape of
the edge behaves under tension and, therefore, mimics the behavior of an elastic band.
Figure 3.36 illustrates the influence of the tension on the shape of an edge with different
lengths.

Under high tension, the edge’s thickness (blue lines in Figure 3.36) can be smaller than
its source or target nodes’ shapes (gray circles in Figure 3.36). This is demonstrated
in Figure 3.36b and Figure 3.36c. To prevent discontinuities when combining the edge’s
thickness with the nodes’ shapes (see zoom-in of Figure 3.36b), we smoothly blend them
along the edge using the smooth maximum function (of degree two) for modeling implicit
geometric shapes [78]. Therefore, we model the source and target nodes’ shapes in terms
of distances along the edge, bsource(s) and btarget(s), respectively. Now we can blend the
shapes of the two nodes with the edge. This is achieved by, firstly, blending the shapes
of the two nodes, blend1(s, δ), and, subsequently, blending the result with the edge’s
thickness, blend2(s, δ), as follows:

blend1(s, δ) = 1
2 · (bsource(s) + btarget(s) + |bsource(s) − btarget(s)|2,δ), (3.22)

blend2(s, δ) = 1
2 · (thickness(s) + blend1(s, δ) + |thickness(t) − blend1(s, δ)|2,δ), (3.23)

where δ = 10 defines the blending range and | · |2,δ represents the smooth absolute
function [78]. We calculate blend2(s, δ) on both sides of the edge to create the final edge
shape, depicted by the magenta lines in Figure 3.36. The hull points of the edge and its
two nodes are computed by sampling the shape of the edge and the shapes of its source
and target nodes (dark gray lines in Figure 3.36). To finally obtain the compartment’s
shape, we calculate the concave hull [85] of these points. The compartment’s shape
now contains the edge as well. Figure 3.37 shows three processes with production arcs
of different lengths and, therefore, different tension. The processes are contained in
compartments that are displayed with our so-called elastic band visualization (C2).

If a compartment contains another compartment, the parent compartment’s hull is
computed as follows. Instead of using the concave hull of the child compartment to
calculate the parent’s hull, we calculate the child’s convex hull. To create a margin
between the child compartment and the parent compartment, we dilate the convex hull
of the child by a user-defined number of pixels (10 px in our experiments). This margin
emphasizes the inclusion of the child in the parent compartment. The child’s dilated hull
is then used together with the hull points of the parent’s nodes and edges to calculate
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A Btarget edge length
real edge length

targetEdgeLength = 4.0
realEdgeLength = 4.0
tension = 0

C Dreal edge length

targetEdgeLength = 4.0
realEdgeLength = 6.0
tension = 0.33

E Freal edge length

targetEdgeLength = 4.0
realEdgeLength = 10.0
tension = 0.6

(a)

(b)

(c)
Figure 3.36: Illustration of our elastic band visualization approach. Figures (a), (b),
and (c) demonstrate the elastic band visualization under different tension. This tension
is introduced if the real edge length exceeds the layout’s target edge length. The gray
circles depict the shapes of the nodes A to F. The blue lines depict the thickness of the
edge’s shape. The magenta lines show the result when smoothly blending the nodes’s
shapes with the edge’s thickness, see zoom-in in (b). The magenta lines and the dark gray
lines (node shape boundaries) are then sampled to obtain the concave hull points. These
points are used to calculate the concave hull, which is the final shape of the compartment
boundary and is referred to as elastic band visualization.
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(a)

(b)

(c)

Figure 3.37: Processes contained in three compartments (gray filled shapes) visualized
with our elastic band technique. The production arcs of the processes have different
lengths, resulting in their shapes exhibiting different tension. Tension is caused by a
deviation between the length of the production arc and the target edge length, which is
enforced by the stress majorization during the layout process. (a) shows a production arc
with a length smaller than the target edge length, resulting in tension = 0. In (b) the
length of the production arc equals the target edge length, which still leads to tension = 0.
If the length of the production arc starts to exceed the target edge length, the tension of
the edge increases. (c) shows a production arc with tension = 0.65.

Figure 3.38: Visualization of a child compartment in a parent compartment. The
child compartment consists of nodes A, B, C, D, and one process node. The parent
compartment includes all nodes of the child compartment and, additionally, nodes E
and F. The child compartment’s shape (dark gray) is calculated from its concave hull.
The parent’s shape (light gray) consists of the child’s dilated convex hull together with
the concave hulls of the nodes E and F as well as their edges.
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the hull of the parent compartment, as shown in Figure 3.38. This is a design choice
made to reduce visual clutter, since visual clutter hinders data reading [67].

A compartment can contain several independent reactions, whose only relationship is that
they occur in the same part of the cell. This leads to disjoint subgraphs or disconnected
components inside a compartment. Since the concave hull algorithm [85] is not designed
to create a joint hull of disconnected objects, applying it to the hull points of disjoint
subgraphs or disconnected components would lead to artifacts. Such artifacts are, e.g.,
thin connecting lines between components, or large connected areas (depending on node
placement). To solve this problem, we connect the disconnected components with new
edges between their nodes. To model the strong relationship between disconnected
components that belong to the same compartment, the shortest edges are chosen. Since
these edges do not exist in the graph, we refer to them as dummy edges. This results in a
complete graph of components connected with dummy edges. To simplify this graph, we
compute the minimum spanning tree using Kruskal’s algorithm with the lengths of the
dummy edges as weights [74]. The remaining dummy edges of the minimum spanning
tree define the connections between the disconnected components. This procedure is
shown in Figure 3.39. Whenever the layout changes, the dummy edges and the minimum
spanning tree are recalculated. This ensures that the components are always connected
to their nearest neighbor. The dummy edges are then included in the calculation of the
compartments boundary.

Figure 3.39: Visualization of a compartment (gray) consisting of three disconnected
components (blue rectangles). Each pair of components is connected with the shortest
dummy edge (magenta). The dotted dummy edge (bent only for illustration purposes) is
removed by a subsequent minimum spanning tree operation. As a result, nodes C and D
as well as nodes D and F are connected by dummy edges. These dummy edges are then
used in our elastic band visualization to visually connect the disconnected components in
a compartment.
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In summary, compartments can now be visualized in the following way. The elastic band
visualization includes edges in the compartment’s shape while encoding node proximity.
Nested compartments are emphasized by using a different boundary shape of their children.
Disconnected components and disjoint subgraphs in the same compartment are visually
connected by dummy edges. The combination of these facets leads to distinguishable
shapes of compartments composed of concavities and convexities.

Since colors support cluster distinction [67], we decided to give each subcellular location a
distinct color (C2). The selected colors need to be of sufficient distance to each other to
avoid misinterpretation of clusters [67]. We decided to generate the colors following the
tree colors approach [99], which creates color schemes for tree structured data. The color
scheme is calculated in the Hue-Chroma-Luminance (HCL) color space. This has the
advantage of generating colors of different hues in perceptually uniform colorfulness and
brightness [99]. This means that colors would convert to the same grayscale value, if they
only differ in hue but not in chroma and luminance [108]. In the tree color approach, a
color’s hue depends on the number of clusters at a tree level, while chroma and luminance
depend on the tree’s depth. As a result, the colors of clusters on the same tree level are
perceptually uniform in chroma and luminance, while being readily distinguishable from
colors on other levels [99].

(a) (b) (c)

Figure 3.40: Example SBGN map with three disconnected compartments, each of which
contains child compartments with a maximum tree level of 2. The SBGN map is colored
with three different tree color schemes, specified through the following settings. The
chroma and luminance values are calculated in all color schemes with the user-defined
values of (C1, β) = (60, 5) for chroma, and (L1, γ) = (70, −10) for luminance. The hue
range is user-defined, with the range [0, 360] in (a), with the range [0, 120] in (b), and
with the range [120, 360] in (c). A fraction of 0.75 is chosen in all color schemes.
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The color assignment is done as follows. We start at the tree’s root with a user-defined
hue range, e.g., [0, 360], and traverse the tree in breadth-first order. The hue range is
divided by the number of nodes on the current tree level, creating hue sub-ranges for each
node. The center of a sub-range is then assigned as hue to the associated node. The hue
range of nodes in the subsequent tree level is calculated from a node’s parent range. To
ensure that the nodes on the subsequent tree levels are assigned hues of sufficient distance
to each other, the hue sub-ranges are trimmed at the start and end by a user-defined
fraction factor in the range of [0, 1]. This procedure is continued until every node of the
tree has a hue value assigned. The chroma C and luminance L value for every tree level
i are calculated as follows:

Ci = (i − 1)βC + C1, (3.24)
Li = (i − 1)γL + L1, (3.25)

where C1 and L1 are user-defined values for the first tree level. The user-defined slope
parameters β and γ influence the change in chroma and luminance per tree level i,
respectively. The resulting color in HCL space is then transformed to RGB space for
further usage. We apply the tree color approach on the cluster tree of our data structure,
but exclude dummy compartments since they are not visualized. In doing so, we assign
a color to each compartment, which is derived from its parent’s color, while being
distinguishable in color from its sibling compartments. The hue range as well as the
fraction factor can be specified by the user. Figure 3.40 shows tree color schemes defined

Figure 3.41: Colored visualization of a compartment in a compartment. It is colored
with a tree color scheme defined as follows: The hue range is [0, 120] with fraction
0.75. The chroma and luminance values are calculated from (C1, β) = (60, 5) and
(L1, γ) = (70, −10), respectively. Since the parent compartment has only one child, both
have the same hue value. Since the child compartment is on a tree level below the parent
compartment, its chroma and luminance values differ from those of the parent.
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Figure 3.42: Colored visualization of two disjoint compartments A (light blue) and
B (ocher). Both contain multiple nested child compartments. The color scheme has a hue
range of [0, 360] with fraction 0.75. The chroma value is calculated from (C1, β) = (60, 5)
and the luminance from (L1, γ) = (60, 10). The compartment’s hues vary based on the
underlying cluster tree structure. The chroma and luminance values of the compartments
vary based on the compartment’s associated tree level.

by different hue ranges. Figure 3.41 demonstrates the variation in chroma and luminance
values and Figure 3.42 shows the hue variations of an example data set with multiple
nested and disjoint compartments. Additionally, we provide a color legend that shows a
compartment’s color besides its name.

3.7 Reduce Complexity
Graphs with hundreds or thousands of nodes are often too large to be displayed and
too complex to comprehend. Exploring and interacting with such large graphs is also
ineffective [13]. We address this problem by combining expand and collapse operations
with motif simplification to reduce the complexity of large metabolic pathways (C2) [106].

The cluster tree structure (recall Section 3.3) is the base of the expand and collapse
operations. This tree provides the cluster information and the graph’s hierarchy, which
are used to combine subgraphs of different cluster levels into one drawing [13]. Going up in
the cluster tree successively abstracts, i.e., reduces compartments to motifs. Going down
progressively displays more details, i.e., the motifs are enlarged to their compartments in
order to reveal the compartments’ content.

If a compartment is selected by a user, a collapse operation can be performed on the
corresponding node in the cluster tree. To convey the visual metaphor of a collapse, we
first hide all vertices and edges contained in the node’s subgraph and then reduce the
size of the remaining compartment’s shape. If a collapsed compartment is contained in a
parent compartment, the collapse operation does not influence the shape of the parent.
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(a) (b)

(c) (d)

Figure 3.43: Complexity reduction using expand and collapse. A compartment is collapsed
by downsizing it and displaying only its shape as glyph. This is analogous to motif
simplification, where recurring parts of a graph are replaced by a glyph. (a) shows the
fully expanded example. In (b) the innermost compartment is collapsed. Note, how its
shape is scaled down while its parent compartment’s shape remains unchanged. In (c)
we continue collapsing until the drawing is fully collapsed in (d).
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By substituting the subgraph with its downsized compartment shape, it is abstracted
into a glyph of its structure [47]. Replacing parts of a graph with glyphs is analogous to
motif simplification [47]. Motivated by the work of Gardner et al. [63], who used such
motifs as illustrative representations of molecules and cell membranes, we use our elastic
band representation of compartments as motifs. This collapse operation reduces the
complexity of the graph and increases readability [47]. Figure 3.43 demonstrates multiple
collapse operations.

Dogrusoz et al. [45] implemented the collapse operation by replacing the subgraph of
the collapsed compartment with a new node. Edges connected to nodes in the collapsed
subgraph are replaced by so-called meta edges that are connected to the newly introduced
node. This changes the topology of the graph. However, the newly introduced node
could have a high-degree, which would move the node to the center of the layout in a
subsequent layout step. This could lead to a hairball and the resulting change in layout
affects the mental map. To avoid this problem, we do not change the graph’s topology.
Instead, we internally only downsize the collapsed subgraph, i.e., reducing its edges’
lengths and nodes’ sizes.

The expand operation is inverse to the collapse operation. The compartment shape is
scaled to its original size and contained nodes and edges are displayed again. This allows
users to view details of a metabolic pathway on demand.

To summarize, our expand and collapse interaction preserves the mental map (R21),
while reducing the complexity of metabolic networks. The motif simplification supports
the user to recognize biological structures through the distinguishable shapes created by
our elastic band visualization.

3.8 Implementation
We implemented a prototype application to demonstrate our layout pipeline with the
programming language C++, the parallel computing platform CUDA (v11.6), and the
build tool CMake. The prototype was developed and tested on a system consisting of
an Intel Core i7-9750H CPU @ 2.6 GHz with 32 GB RAM, an Nvidia RTX 2070 Max-Q
GPU with 8 GB VRAM, and Windows 11 as operating system.

We built the prototype on a set of freely available software libraries, frameworks, and
algorithms. They are described in the following:

• Qt (v5.15): is a modular cross-platform framework for application development.
We use the Core, GUI, and OpenGL module. While Qt is proprietary, it is free for
academic usage.

• LibSBGN (v2): provides us with the means to load and save data in the SBGN-ML
format [3, 39].
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• boost graph library (v17.3): provides a collection of C++ libraries, with the
purpose of creating standardized tools for recurring operations, such as graph
traversal, minimum spanning tree, and shortest path.

• Open Graph Drawing Framework (OGDF) (v2020.02): contains data struc-
tures and open graph algorithms. We adapted OGDF’s pivot MDS implementation.

• Eigen (v3.3): is a linear algebra library for matrices, vectors, and solvers.

• Computational Geometry Algorithms Library (CGAL) (v5.2): offers effi-
cient and reliable geometric algorithms. We use its convex hull algorithm.

• Concaveman provides a concave hull implementation based on the algorithm of
Park et al. [2, 85].

• Vectorized stress majorization: Wang et al. provide a prototype implemen-
tation [11] of the vectorized stress majorization [103] in C++ and CUDA (v11.6).
The prototype did not support all features mentioned in their work. While the
authors stated that their layout algorithm is fully interactive, the precomputation
time of matrices was excluded.

In the following we detail our prototype implementation in general and per pipeline
step (recall Chapter 3). We elaborate on the integration and required adaptations of
the above-mentioned frameworks, libraries, and algorithms. Qt provides the windowing
system, basic user interaction, and file loading operations. It also offers a 2D rendering
framework, the Graphics View, which allows us to draw and interact with custom 2D
graphic items. For the most common glyphs of the SBGN, including those needed to
draw our results, we implemented rendering and interaction in our own SBGN viewer.
The subgraph implementation of the boost graph library is used as the backbone data
structure for the SBGN map.

Acquire & Prepare

As described in Section 3.1, we created a small interaction tool to supplement missing
compartment references in SBGN-ML files. For this purpose, we used LibSBGN to
load the data into boost’s subgraph, and then Qt to draw the SBGN map. The needed
interactions are implemented in Qt, and the changes to the data set are then saved into
a new SBGN-ML file, again using LibSBGN.

Load & Preprocess

LibSBGN is used to load the SBGN maps. To discern between different SBGN arc types,
e.g., production, consumption, or modulatory arcs, we had to extend the LibSBGN
library. The reason for this was that the data was parsed from the SBGN-ML format,
but not interpreted accordingly.
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Data Structure

We transform the loaded data into the clustered graph structure that we proposed
in Section 3.3 (Algorithm 1), and store it in boost’s subgraph structure for further
processing.

Layout

We implemented all discussed initial embeddings (see Subsection 3.4.2). The used pivot
MDS implementation from OGDF was adapted to enable a custom selection of pivot nodes.
We also extended the pivot MDS implementation to handle disconnected components by
calculating the initial embedding for every component separately.

For the initial and constraint layout we used the prototype implementation of the
vectorized stress majorization of Wang et al. [103] as a base. We extended and adapted
it to support most of the features Wang et al. [103] proposed, e.g., custom target edge
lengths, and the transfer of some of Wang et al.’s [103] constraints to CUDA to recalculate
dij in every layout iteration. Dijkstra’s shortest path algorithm [41] from boost is used
to calculate the graph theoretical distances. Inspired by Wang et al.’s [103] direction,
metric, and shape constraints, we implemented our own domain-specific constraints. We
also used boost for graph operations such as traversing, determining node degrees, or
calculating disconnected components. For the required vector and matrix calculations,
we used Eigen. The convex hull algorithm from CGAL is used to calculate non-overlap
constraints.

For our multilevel layout implementation we used boost and Qt. We also created a
multilevel layout wizard to inspect and analyze the application of the layout approach at
every tree node while traversing through the cluster tree.

Postprocess

In the postprocessing step we used Eigen, boost, and Qt. They are used to calculate the
flow direction of the graph and to flip the graph horizontally and/or vertically.

Visualize

Our elastic band visualization is implemented in Qt’s Graphics View. For the concave
hull we used Concaveman [2]. To determine the minimum spanning tree we used boost’s
implementation of Kruskal’s algorithm [74]. The tree color scheme implementation
follows the approach of Tennekes et al. [99]. We implemented an option to switch between
bounding box, convex hull, and our elastic band visualizations.

Reduce Complexity

The interaction for the complexity reduction is implemented with Qt. The underlying
graph structure uses the boost graph library.
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The use of multiple independent frameworks required the implementation of several
interfaces and conversions, since every framework uses its own graph implementation. In
summary, our implementation encompasses the entire procedure, i.e., from loading the
data to the final drawing of metabolic pathways in SBGN, in a single framework.
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CHAPTER 4
Results and Discussion

In this chapter we present and discuss results of our work. Firstly, we propose a set of
metrics to evaluate the quality of our layout approach. Then, we present four results of a
selected variation of metabolic pathways acquired from Reactome [5]. We compare each
result with its manually-arranged layout that was created by domain experts and present
the corresponding quality metrics during the layout process.

4.1 Quality Metrics
The quality metrics assess the quality of node link diagrams. As reviewed in Subsec-
tion 2.5.6, there are common metrics to evaluate syntactic graph drawing requirements,
e.g., edge crossings or edge bends. While we evaluate basic metrics of syntactic require-
ments, we also focus on the domain-specific aspect of our graph drawings and propose
metrics to evaluate the SBGN-ness of our resulting drawings (C3).

Although we use a graph drawing algorithm based on the stress function, we do not
evaluate the stress value in this work. Wang et al. [103] already demonstrated that the
stress value is smallest in an unconstrained layout and increases by adding constraints.
The authors also mention that a small stress value does not necessarily indicate a layout
of high quality for every use-case [65, 103].

Node Overlap Metric

The node overlap metric MNO evaluates the syntactic requirement of non-node over-
lap (R02). This metric depicts the number of node overlaps, i.e., two overlapping nodes
are counted as one overlap. A smaller value indicates a better layout:

MNO = #node overlaps. (4.1)
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Edge Crossing Metric

The edge crossing metric MEC assesses the syntactic requirement of minimal edge
crossings (R05). It counts the number of edge intersections between all edges, including
real and dummy edges. A smaller value indicates a better result:

MEC = #edge intersections. (4.2)

Node Misplacement Metric

The node misplacement metric MNM evaluates the semantic requirement of clustering
and containment (R14). A node is considered misplaced if it is positioned inside a
compartment it is not associated with. The three dummy vertices of a process glyph
count in this metric as a single node. We compute two values, the absolute number of
misplaced nodes, and the percentage of misplaced nodes:

MNM = #misplaced nodes
#nodes · 100. (4.3)

A misplace percentage of 0% means that all nodes are properly placed within their
associated compartments. In contrast, 100% misplacement means that all nodes of the
SBGN map are wrongly placed. Our node misplacement metric differs from the metric
of Meidiana et al. [81], which assesses the quality of the clustering. In our work, the
clustering is already defined by compartment references in the input data sets. For that
reason, we do not need to evaluate the clustering.

Flow Deviation Metric

The flow deviation metric MF evaluates the semantic requirement of flow direction (R15).
It describes the deviation to a preferrable reading direction. Firstly, we compute the flow
direction f as the average direction of all production arcs:

f = 1
|A| ·

�
a∈A

d(a), (4.4)

with A being the set of all production arcs and d(a) being their directions. We then
define the following preferred reading directions:

rlr = (1, 0)T , rtb = (0, −1)T , rd = (1, −1)T , rc = (0, 0)T , (4.5)

with rlr being from left to right, rtb being from top to bottom, rd being the diagonal from
top-left to bottom-right, and rc being a circular reading direction. The flow deviation
metric is now computed as the minimum length of the reading directions substracted by
the normalized flow direction:

MF = min
�

∥rlr − f̂∥, ∥rtb − f̂∥, ∥r̂d − f̂∥, ∥rc − f̂∥
�

, (4.6)

where a smaller number indicates a better match with one preferred reading direction.
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Process Orthogonal Deviation Metric

The process orthogonal deviation metric MPO assesses the syntactic requirement of link
orthogonality (R08) for the handles of all process glyphs. For each handle i we compute
the angular deviation ωi to the closest grid axis in degrees:

ωi = rad2deg(∠max(|h · e0|, |h · e1|)), (4.7)

with h being the handle’s direction, e0 = (1, 0)T , and e1 = (0, 1)T . We then compute the
orthogonal deviation of one process glyph σ⊥ as follows:

σ⊥ = (ω0 + ω1)/90, (4.8)

where ω0 and ω1 are the angular deviations of both handles of a process glyph, respectively.
By dividing their angular deviations with 90◦, we normalize the orthogonal deviation to
the interval [0, 1]. The process orthogonal deviation metric is then computed as follows:

MPO = 1
|P | ·

�
p∈P

σ⊥(p), (4.9)

where P is the set of all process glyphs of the entire SBGN map. The MPO describes
how far all process handles deviate from orthogonality, where a value of zero means they
are all orthogonal, and a value of one means they are diagonal.

Process Angle Deviation Metric

The process angle deviation metric MPA evaluates the syntactic requirement to maximize
the minimum angle (R16) as well as the semantic requirement of node-link connection
points (R17) for process glyphs and their incoming as well as outgoing edges. For each
process glyph we calculate the process handle direction and generate a process angle
reference shape according to Section 3.4.3, but aligned to the handle’s direction. Then,
we compare each incoming and outgoing real edge of the process glyph with its closest
ideal edge of the reference shape:

ρ(e) = (d̂i(e) · d̂r(e) + 1)/2, (4.10)

where d̂i(e) is the normalized direction of the ideal edge, and d̂r(e) is the normalized
direction of the real edge. To obtain an angular deviation ρ(e) in the interval [0, 1], we
shift the result of the dot product. The deviation of the incoming min

PA(p) and outgoing
mout

PA (p), as well as all edges mPA(p) for a single process glyph are calculated as follows:

min
PA(p) = 1

|I| ·
�
e∈I

ρ(e), (4.11)

mout
PA (p) = 1

|O| ·
�
e∈O

ρ(e), (4.12)

mPA(p) = (min
PA(p) + mout

PA (p))/2, (4.13)

95



4. Results and Discussion

with I being the set of incoming edges and O being the set of outgoing edges of process
glyph p. The combined metrics over all process glyphs are then computed as follows:

M in
PA = 100

|P | ·
�
p∈P

min
PA(p), (4.14)

Mout
PA = 100

|P | ·
�
p∈P

mout
PA (p), (4.15)

MPA = 100
|P | ·

�
p∈P

mPA(p). (4.16)

These angle deviations are given as percentages, where 0% means that the real edges
completely coincide with the ideal edges of the reference shape, and 100% means that
they point in the opposite direction.

Modulatory Arc Deviation Metric

The modulatory arc deviation metric MMA assesses the quality of the connection between
modulatory arcs and process glyphs. It evaluates the semantic requirement of node-link
connection points (R17). For each modulatory arc r we define its valid connecting region
to its process glyph according to the SBGN. This region is defined as the circle sector
±45◦ around the normalized vector n̂(r) that is perpendicular the process glyph’s handle
direction. This region exists in both half spaces generated by the process glyph’s handles.
The region membership ϕ(r) of a modulatory arc is calculated as follows:

ϕ(r) =
�

1 if ∠|d̂(r) · n̂(r)| ≤ π/4,

0 otherwise,
(4.17)

with d̂(r) being the normalized direction vector of the modulatory arc. The modulatory
arc deviation metric is then computed over all modulatory arcs R of the SBGN map:

MMA = 100
|R| ·

�
r∈R

(1 − ϕ(r)). (4.18)

This metric describes the percentage of modulatory arcs that deviate from their valid
connecting region, where 0% means all are inside and 100% means all are outside.

Total Deviation Metric

To provide a single factor that indicates the overall SBGN deviation, we compute the
total deviation metric as follows:

Mtotal = (MNM + MPO + MPA + MMA)/4, (4.19)

where 0% means the layout is nearly SBGN-compliant, and 100% means the layout is far
from adhering to the SBGN.
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4.2 Eukaryotic Translation Elongation
The biological process of eukaryotic translation, transforms messenger Ribonucleic acid
(mRNA) into proteins within an eukaryotic cell [70]. An eukaryotic cell, is a cell consisting
of cytosol (the liquid inside a cell membrane) and a nucleus (the cell kernel). It consists
of four phases: initiation, elongation, termination, and recapping. Our first result data
set describes the second phase, the eukaryotic translation elongation (stable identifier:
R-HSA-156842) [6]. The eukaryotic translation elongation is part of the Homo sapiens’
metabolism of proteins.

The data sets consists of 51 vertices and 56 edges. Out of this 51 vertices, 27 vertices
belong to 9 process glyphs. Recall from Section 3.3 that every process glyph consists of
three vertices. The SBGN map has one compartment, representing the cytosol, which
encapsulates all vertices. The data set also consists of one connected component. We
selected this data set to first demonstrate our approach on a network with a moderate
number of nodes and only one compartment.

The original manually-arranged layout of the eukaryotic translation elongation’s SBGN
map is shown in Figure 4.1a. To avoid edge crossings, two edges are bent, as depicted
with the magenta circles. The layout has no overlaps, no edge crossings, and no misplaced
nodes. The data flow direction is circular clockwise. Figure 4.1b shows the loaded data
set, which deviates from the original layout since we do not model edge bends. Its quality
metrics are shown in Table 4.1. By removing the edge bends, 13 edge crossings where
introduced. Our metrics report one node overlap, which is caused by the overly large
bounding box of the process glyph depicted by the magenta arrow in Figure 4.1b. The
modulatory arcs deviate the most with 25%. Since there are only 4 modulatory arcs in
the data set, a single deviation has a large impact. The total deviation from the SBGN
is 8.9%.

We then apply our layout process. Since the data set has only one component in one
compartment we do not need to apply our multilevel approach. We use pivot MDS
to calculate the initial embedding (Figure 4.2a), followed by an unconstrained stress
majorization (Figure 4.2b). Then we constrain this initial layout in four refinement
steps. We apply the constraints as proposed in Section 3.4.3. Starting with the iterative
non-node overlap constraint (Figure 4.2c), we skip the compartment constraint as there
is only one. Then we apply the process orthogonal constraint (Figure 4.2d), followed
by the angle constraint (Figure 4.2e) and the modulatory arc constraint (Figure 4.2f).
The constraints of previous refinement steps stay active in the next one. Parameters,
weights, and the quality metrics are reported after every layout and refinement step, as
shown in Table 4.1. The initial layout has with 16.5% a larger deviation from SBGN
than the manual layout. Process handles are not orthogonal, reflected in a MPO value of
54.6%, this is much larger than the value of the manual layout with 2.5%. The single
node overlap and 13 edge crossings of the manual layout are balanced in the initial layout
to seven overlaps and seven crossings. Each refinement step is specialized to improve
one quality metric, as reflected in our results, e.g., the orthogonality of process handles
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improved from 60.3% to 0.1% through the process orthogonal constraint. After applying
all constraints we could reduce the total deviation from SBGN from 16.5% to 5.7% in
the final layout result. In contrast to the manual layout, the deviations are more evenly
distributed. The postprocessing step did not change the layout.

The convex hull visualization of the data set is shown in Figure 4.3a and our colored elastic
band visualization (hue range [0, 360] and fraction of 0.75) is presented in Figure 4.3b.
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4.2. Eukaryotic Translation Elongation

(a) manually-arranged layout (Image taken from [6])

(b) loaded layout

Figure 4.1: Eukaryotic translation elongation (R-HSA-156842). (a) shows the manually-
arranged layout and (b) shows the same data set when loaded in our SBGN viewer. Since
we do not support edge bends (magenta circles), our layout differs from the manually-
arranged one. The process node depicted with the magenta arrow leads to a node-overlap
caused by its elongated handles.
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(a) initial embedding (b) initial layout

(c) iterative non-node overlap constraint (d) process orthogonal constraint

(e) process angle constraint (f) modulatory arc constraint

Figure 4.2: The layout procedure of eukaryotic translation elongation (R-HSA-156842).
The initial embedding is shown in (a) and the initial layout is presented in (b). The
result of the iterative non-node overlap constraint is shown in (c). The effects of the
process orthogonal and process angle constraints are shown in (d) and (e), respectively.
After applying the modulatory arc constraint, the final layout is presented in (f). The
parameters and quality metrics for each step are shown in Table 4.1.
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(a) convex hull

(b) elastic band

Figure 4.3: Visual mapping of the final layout of the eukaryotic translation elongation (R-
HSA-156842). This layout was flipped during postprocessing step, compare to Figure 4.2f.
(a) shows the automatic layout with a convex hull. (b) shows the same layout with our
elastic band visualization colored with the tree color approach with a starting hue range
of [0, 360] and fraction 0.75. 101



4. Results and Discussion

Table 4.1: Parameters and quality metrics of eukaryotic translation elongation (R-HSA-
156842). The corresponding layouts of the steps described in the columns can be found
in Figure 4.1 and Figure 4.2. For each steps we report our quality metrics (Section 4.1)
and the layout’s parameters for reproducibility.
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# node overlaps 1 33 7 3 4 4 6
# edge crossings 13 5 7 9 11 8 6
# node misplacement 0 0 0 0 0 0 0
MNM [%] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MF 0.40 0.25 0.18 0.05 0.18 0.08 0.23
MPO [%] 2.5 30.5 54.6 60.3 0.1 1.7 1.0
MPA [%] 8.1 16.2 11.4 18.5 40.8 23.5 21.7
M in

PA [%] 13.6 9.6 8.6 13.1 27.5 20.0 22.0
Mout

PA [%] 2.7 23.6 14.2 24.0 54.1 26.3 21.3
MMA [%] 25.0 0.0 0.0 25.0 50.0 25.0 0.0

Mtotal [%] 8.9 11.7 16.5 26.0 22.7 12.6 5.7

Parameter

edge elongation – – off off off off off
edge length [px] – – 80 80 80 80 80
handle edge length [px] – – 20 20 20 20 20
iterations – – 50 50 50 50 50
constraint weight – – – 2 3 4 5

# nodes = 51
# edges = 56
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4.3 Protein Repair
Proteins are constantly adversely impacted by internal and external influences. For
example, Reactive Oxygen Species (ROS), like H2O2, cause damage by reacting with
molecules inside a cell and, thus, affecting its functions. Impaired cell functions can lead
to different diseases and disorders or influence the aging process. The protein repair
system (stable identifier: R-HSA-5676934) within a cell facilitates the reversal of this
damage to some amino acid side chains [7]. Our second result data set shows how the
protein repair system reverses the oxidation of the protein Methionine (L-Met) caused
by H2O2 [7, 34]. This specific process takes place inside the human cells and belongs to
the metabolism of proteins.

This data set consists of 41 vertices (including 7 process glyphs with 21 vertices) and
41 edges. Three separate biological processes represented by three disconnected graph
components are contained within one compartment, the cytosol. The compartment
holds all vertices. This data set was selected to demonstrate how our approach handles
disconnected components.

In Figure 4.4a we show the manually-arranged layout of the data set [7]. Loading the
data set in our tool reveals that two process glyphs have inverted handle directions,
depicted with the magenta circles and shown in Figure 4.4b. This divergence between
the loaded and the original layout is caused by a divergence in the data set. Thus, the
loaded data set contains 14 edge crossings, which are mainly located in the magenta
circles in Figure 4.4b, compared to the two edge crossings of the original layout. The
loaded layout has no node overlaps, and no nodes are misplaced. The quality metrics are
reported in Table 4.2. The metric most deviating from being optimal is the process angle
deviation for the outgoing edges with 24.1%, but this may be caused by the inverted
process node handles. The total deviation sums up to 3.1%.

Since the data set consists of three disconnected components, we apply our multilevel
approach to generate their arrangement. The quality measures are reported after every
multilevel layout step is transferred to the network. Firstly, we create a global reference
layout by applying pivot MDS for initial placement (Figure 4.5a) and then the initial
layout through unconstraint stress majorization. As described in Subsection 3.4.4,
this leads to untangled disconnected components placed on top of each other, shown
in Figure 4.5b. In the initial embedding, the modulatory arc deviation is highest with
66.7%. In the initial layout, the highest deviation is the process orthogonal deviation
with 43.6%. The total deviation of the initial layout is 12.6%. The global untangled
initial layout is saved to be used as initial embedding in the subsequent leaf level layouts.
We then start to layout the network top-down by traversing through its cluster tree.
The rectangle in Figure 4.5c visualizes the single compartment that is placed at the
cluster tree’s root level. After applying this top level layout, all nodes of the data set
collapse to one point. This is reflected in the high number of 351 node overlaps in this
step. Level one of the cluster tree holds the three disconnected components, represented
as circles in Figure 4.5d. They are placed by applying a vertical alignment (depicted
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as V in Table 4.2). This alignment decreasing the number of node overlaps from 351
to 151. Afterwards we arrange and constrain the first leaf node of the cluster tree. The
initial embedding for this subgraph is taken from the global initial layout. Then, we
perform an initial layout with unconstraint stress majorization. Next, we apply the
constraints in the following order: iterative non-node overlap, process orthogonal, process
angle, and finally modulatory arc constraint. The result of the first leaf node’s layout is
presented in Figure 4.5e. Again, the number of node overlaps decreased, this time to 31,
and additionally the other quality metrics improved. The same procedure is applied to
the two subsequent leaf nodes of the cluster tree, shown in Figure 4.5f and Figure 4.5g,
resulting in the final layout given in Figure 4.5h. The continuous improvement of the
layout can be traced through the change in total deviation throughout our multilevel
approach. The total deviation starts at 59.2% and improves to 1.4%. This is a better
score than the initial layout and the loaded layout received. The postprocessing step was
not applied.

In Figure 4.6a we show the convex hull representation of the final layout and in Figure 4.6b
we present the colored elastic band visualization. The hue range is [0, 120] with a fraction
of 0.75.
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4.3. Protein Repair

(a) manually-arranged layout (Image taken from [7])

(b) loaded layout

Figure 4.4: Protein repair of Methionine (L-Met) (R-HSA-5676934). (a) shows the
manually-arranged layout and (b) shows the same data set loaded with our SBGN viewer.
The handles of two process glyphs (magenta circles) have inverted edge directions, caused
by a discrepancy between the stored data set and the image displayed in (a).
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(a) initial embedding (b) initial layout

(c) (d) (e)

(f) (g) (h) final layout

Figure 4.5: The layout procedure of the protein repair of Methionine (L-Met) (R-HSA-
5676934). The global initial embedding and initial layout are shown in (a) and (b),
respectively. (c) shows the compartments’ placement at the cluster trees root level,
followed by the vertical arrangement of the three disconnected components of level one
shown in (d). The separate arrangements of the cluster tree’s leaf nodes are presented
in (e), (f), and (g). The combined final layout is shown in (h).
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(a) convex hull

(b) elastic band

Figure 4.6: Visual mapping of the final layout of the protein repair system for Methio-
nine (L-Met) (R-HSA-5676934). (a) shows the automatic layout with a convex hull.
(b) shows the same layout with our elastic band visualization colored with the tree color
approach using a starting hue range of [0, 120] and a fraction of 0.75.
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Table 4.2: Parameters and quality metrics of protein repair of Methionine (L-Met)
(R-HSA-5676934). The corresponding layouts of the steps described in the columns
can be found in Figure 4.4b and Figure 4.5. Each column reports our quality metrics
from Section 4.1 for its associated layout step. The magenta box depicts the multilevel
layout steps. A vertical alignment (V) was applied to place disconnected components
at tree level 1. We documented the parameters of the layout steps for reproducibility,
constraints are reported as weight;iterations.
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# node overlaps 0 30 8 351 151 31 3 0
# edge crossings 14 12 12 0 0 3 3 3
# node misplacement 0 0 0 0 0 0 0 0
MNM [%] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MF 0.33 0.05 0.07 0.41 0.42 0.40 0.27 0.27
MPO [%] 0.0 39.6 43.6 100.0 100.0 86.7 29.7 1.1
MPA [%] 12.4 9.2 6.7 36.6 23.9 10.7 4.5 4.5
M in

PA [%] 0.8 2.9 1.5 35.2 21.4 10.5 4.8 4.8
Mout

PA [%] 24.1 16.2 11.8 38.0 26.4 10.8 4.2 4.2
MMA [%] 0.0 66.7 0.0 100.0 100.0 33.3 0.0 0.0

Mtotal [%] 3.1 28.9 12.6 59.2 56.0 32.7 8.6 1.4

Parameter/Constraint

edge elongation – off – – off off off
edge length [px] – 80 80 80 80 80 80
handle edge length [px] – 20 20 20 20 20 20
iterations – 50 – – – – –

disconnected components – V – – –
iterative non-node overlap constraint – – 2;50 2;50 2;50
compartment constraint – – – – –
process orthogonal constraint – – 3;50 3;50 3;50
process angle constraint – – 4;100 4;100 4;100
modulatory arc constraint – – 10;200 10;200 10;200

# nodes = 41
# edges = 41

108



4.4. Protein Methylation

4.4 Protein Methylation

After protein biosynthesis, enzymatic modification of these proteins can take place. This
process is called Post-Translational Modification (PTM). One of these PTMs is the
methylation of proteins, where methyl groups are added to proteins. The communication
between different PTMs controls cellular functions like protein synthesis, signal transduc-
tion, and DNA repair. The third result data set shows the protein methylation of the
amino acids arginine and lysine on non-histone proteins. This process is an important
regulator of cellular signal transduction pathways [8, 29]. It takes place inside the human
cells and belongs to the metabolism of proteins.

The data set consists of 65 vertices (27 vertices are part of 9 process nodes) and 63 edges.
There are no differences between the original, manually-arranged layout and the loaded
layout. Five separate processes take place inside the cytosol, two of them in subcellular
locations, i.e., the nucleoplasm and the mitochondrial matrix. Hence, the data set consists
of one parent compartment (cytosol) that contains three disconnected components and
two child compartments (nucleoplasm, mitochondrial matrix). Each of these child
compartments contains one disconnected component. The data set was selected to
demonstrate nested compartment structures and the handling of disconnected components.

Figure 4.7a shows the manually-arranged data set [8]. Comparing it to the data loaded in
our tool (shown in Figure 4.7b), we see no differences. The orthogonal process deviation
is the most prominent one with 5.6%. The loaded data is nearly SBGN-conform with a
total deviation of 1.8%. The quality metrics of the loaded layout and the layout process
are reported in Table 4.3.

Since the data set consists of disconnected components, as well as nested compartments,
we apply our multilevel approach, and again report the quality metrics after every
multilevel layout step. The global reference layout is created by an initial pivot MDS
embedding (Figure 4.8a), followed by the unconstrained stress majorization (Figure 4.8b).
As a result, the disconnected components are placed on top of each other. We now apply
our multilevel approach. The process can be observed in Figure 4.8, highlighted with
magenta outlines. Compared to our second data set (Section 4.3), we are traversing
two levels, since there are compartments contained inside a compartment. On the first
level, we apply a horizontal layout strategy (depicted as H in Table 4.3) for the five
disconnected components (Figure 4.8d). In every leaf node we apply our layout approach.
As initial embedding we take a subpart of the global reference layout, apply the initial
layout and subsequently the constraints. Compartment constraints were not necessary
and therefore omitted. The final layout is shown in Figure 4.8l. We can observe that
the number of misplaced nodes already resolved to zero after the second multilevel
layout step (Figure 4.8d). Two of the subgraphs did not untangle optimally (Figure 4.8g
and Figure 4.8i). Their layout could be improved by changing the weights of the
constraints or the number of iterations. The total deviation was reduced from 30.2% for
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the initial layout to 1.0% for the final layout. The SBGN-ness of the final layout is better
than the loaded layout. A reason for this could be the alignment of the process glyphs’
handles. The postprocessing step was not applied.

In Figure 4.9a we show the convex hull representation of the final layout and in Figure 4.9b
we present the colored elastic band visualization. The hue range is [0, 120] with a fraction
of 0.75.
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(a) manually-arranged layout (Image taken from [8])

(b) loaded layout

Figure 4.7: Protein methylation (R-HSA-8876725). (a) shows the manually-arranged
layout and (b) shows the same data set loaded with our SBGN viewer. 111
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(a) initial embedding (b) initial layout

(c) (d) (e) (f)

(g) (h) (i) (j) (k)

(l) final layout

Figure 4.8: The layout procedure of the protein methylation (R-HSA-8876725). The
global initial embedding and initial layout are shown in (a) and (b), respectively. (c) shows
the compartments placement at the cluster tree’s root level, followed by the horizontal
arrangement of the five disconnected components of level one shown in (d). The separate
arrangements of the cluster tree’s leaf nodes are presented in (e), (f), (g), (i), and (k).
(h) and (j) represent the child compartments of the two rectangles shown in (d). The
combined final layout is shown in (l).
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4.4. Protein Methylation

(a) convex hull

(b) elastic band

Figure 4.9: Visual mapping of the final layout of protein methylation (R-HSA-8876725).
(a) shows the automatic layout with a convex hull. (b) shows the same layout with our
elastic band visualization, colored with the tree color approach using a starting hue range
of [0, 120] and fraction 0.75.

113



4. Results and Discussion

Table 4.3: Parameters and quality metrics of protein methylation (R-HSA-8876725). The
corresponding layouts of the steps described in the columns can be found in Figure 4.7b
and Figure 4.8. The magenta box depicts the multilevel layout steps. A horizontal
alignment (H) was applied to place disconnected components at tree level 1. Each
column reports the quality metrics of Section 4.1 for the associated layout step. We
documented the parameters of the layout steps for reproducibility, constraints are reported
as weight;iterations.
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# node overlaps 0 74 39 1081 306 179 144 73 68 17 17 2
# edge crossings 0 71 54 0 0 2 2 2 2 2 2 2
# node mispl. 0 37 36 47 0 0 0 0 0 0 0 0
MNM [%] 0.0 78.7 76.6 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MF 0.11 0.14 0.17 0.06 0.44 0.25 0.18 0.33 0.33 0.18 0.18 0.24
MPO [%] 5.6 26.2 42.5 100.0 100.0 67.0 55.9 34.2 34.2 12.2 12.2 1.1
MPA [%] 1.7 10.7 1.7 26.2 34.6 19.3 16.5 11.5 11.5 4.3 4.3 2.7
M in

PA [%] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mout

PA [%] 3.4 21.5 3.5 52.4 69.2 38.6 33.1 23.0 23.0 8.6 8.6 5.5
MMA [%] 0.0 0.0 0.0 100.0 100.0 66.7 55.6 33.3 33.3 11.1 11.1 0.0

Mtotal [%] 1.8 28.9 30.2 81.6 58.7 38.3 32.0 19.8 19.8 6.9 6.9 1.0

Parameter/Constraint

edge elongation – off – – off off off – off – off
edge length [px] – 80 80 80 80 80 80 80 80 80 80
handle edge length [px] – 20 20 20 20 20 20 20 20 20 20
iterations – 50 – – – – – – – – –

disconnected components – H – – – – – – –
iterative non-node overlap constraint – – 2;50 2;50 2;50 – 2;50 – 2;50
compartment constraint – – – – – – – – –
process orthogonal constraint – – 3;50 3;50 3;50 – 3;50 – 3;50
process angle constraint – – 4;150 4;100 4;100 – 4;200 – 4;200
modulatory arc constraint – – 5;200 5;100 5;100 – 5;200 – 5;200

# nodes = 65
# edges = 63
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4.5 Nucleotide Excision Repair
Nucleotide Excision Repair (NER) (stable identifier: R-HSA-5696398) is a process that
facilitates cell survival and the recovery of DNA synthesis by removing bulky base damage
from DNA enzymatically. The NER pathway is involved in removing mutations of DNA
caused by ultraviolet light and genotoxic agents. This process takes place not only in
human cells but also in other organisms like E. coli [9, 35].

The data set consists of 214 vertices (37 process nodes consisting of 111 vertices) and
253 edges. It has one compartment, representing the nucleoplasm that contains all
vertices of the SBGN map in one connected component. We selected this data set because
it contains large node labels and high-degree nodes. It also demonstrates the scalability
of our approach.

Figure 4.10a shows the original manually-arranged layout of the nucleotide excision
repair process. It contains edge bends that are removed in the loaded layout shown
in Figure 4.10b. The manual layout as well as the loaded layout already contain edge
crossings (# 84). The most pronounced deviation from the SBGN-ness is the process
angle deviation MPA with 27.7%. The total deviation of the loaded layout is 25.9%. All
quality metrics, including those of all steps of the layout process, are reported in Table 4.4.

To counteract the large node sizes (i.e., the bounding boxes and labels), even before the
layout procedure starts, we chose a longer target edge length (120 px) for this particular
data set. We then perform our layout procedure. Since the data set consists of only
one compartment, we can omit the multilevel layout approach. The initial embedding
is calculated with pivot MDS, as presented in Figure 4.11a. Subsequently, we run the
unconstrained stress majorization with enabled edge elongation for high-degree nodes
(Figure 4.11b). The constraints are applied in the usual order: iterative non-node overlap
constraint (Figure 4.12a), process orthogonal constraint (Figure 4.12b), process angle
constraint (Figure 4.13a), and finally the modulatory arc constraint (Figure 4.13b). The
layout procedure could not substantially remove edge crossings, from 84 for the loaded
layout, 50 for the initial layout, and 67 for the final layout. Nevertheless, the overall
SBGN-ness of the final layout is better than the loaded and initial one, with 17.3%
versus 25.9% and 31.5%, respectively.

The convex hull visualization of the data set is shown in Figure 4.14a and the elastic
band visualization is displayed in Figure 4.14b. Its colored version (hue range [180, 360]
and fraction 0.75) is presented in Figure 4.15a. The entire metabolic pathway is collapsed
in Figure 4.15b.
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(a) manually-arranged layout (Image taken from [9])

(b) loaded layout

Figure 4.10: Nucleotide excision repair (R-HSA-5696398). (a) shows the manually-
arranged layout and (b) shows the same data set loaded with our SBGN viewer.
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4.5. Nucleotide Excision Repair

(a) initial embedding

(b) initial layout

Figure 4.11: The initial layout procedure of nucleotide excision repair (R-HSA-5696398).
(a) shows the initial embedding calculated with pivot MDS. (b) shows the initial layout
created with unconstrained vectorized stress majorization and elongated edges for high-
degree nodes. 117



4. Results and Discussion

(a) iterative non-node overlap constraint

(b) process orthogonal constraint

Figure 4.12: Constraint layout procedure of nucleotide excision repair (R-HSA-5696398).
The iterative non-node overlap constraint is applied in (a), followed by the process
orthogonal constraint in (b).
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4.5. Nucleotide Excision Repair

(a) process angle constraint

(b) modulatory arc constraint

Figure 4.13: Constraint layout procedure of nucleotide excision repair (R-HSA-5696398).
The process angle constraint is applied in (a), followed by the modulatory arc constraint
in (b).
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(a) convex hull

(b) elastic band

Figure 4.14: Visual mapping of nucleotide excision repair (R-HSA-5696398). (a) shows
the automatic layout with the convex hull. (b) shows the same layout with our elastic
band visualization.
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(a) elastic band

(b) collapsed

Figure 4.15: Visual mapping of nucleotide excision repair (R-HSA-5696398). (a) shows
the elastic band visualization colored with the tree color approach using a starting hue
range of [180, 360] and fraction 0.75. (b) presents the entire metabolic pathway collapsed.
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Table 4.4: Parameters and quality metrics of nucleotide excision repair (R-HSA-5696398).
The corresponding layouts of the steps described in the columns can be found in Fig-
ure 4.10, Figure 4.11, Figure 4.12, and Figure 4.13. For each steps we report the quality
metrics (Section 4.1) and the layout’s parameters for reproducibility.
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# node overlaps 3 774 26 18 14 22 18
# edge crossings 84 111 50 82 86 59 67
# node misplacement 0 0 0 0 0 0 0
MNM [%] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MF 0.16 0.13 0.14 0.17 0.18 0.16 0.14
MPO [%] 15.8 46.5 51.6 48.3 0.5 2.6 2.7
MPA [%] 27.7 33.8 19.2 19.0 28.3 23.7 26.5
M in

PA [%] 25.2 40.2 29.3 23.7 32.8 30.1 33.8
Mout

PA [%] 30.3 27.4 9.1 14.2 23.8 17.4 19.2
MMA [%] 60.0 95.0 55.0 40.0 45.0 35.0 40.0

Mtotal [%] 25.9 43.8 31.5 26.8 18.5 15.3 17.3

Parameter

edge elongation – – on on on on on
edge length [px] – – 120 120 120 120 120
handle edge length [px] – – 20 20 20 20 20
iterations – – 50 50 50 200 200
constraint weight – – – 2 3 10 10

# nodes = 214
# edges = 253
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4.6 Discussion and Limitations
The results demonstrate that our approach generally improves the SBGN-ness of metabo-
lite networks. Although the complex interplay of multiple constraints is said to be
problematic [65, 86], the results confirm that combining constraints, including their order
and weights, works well. The multilevel approach is effective in separating compartments
and disconnected components. Therefore, the additional compartment constraint was not
necessary for our results. The elastic band visualizations applied to real data resemble
2D embeddings of 3D molecular structures that fit the application domain nicely. The
current setup requires several parameters to be specified by user input. However, there
is a stable default configuration with minor adjustments that was applicable to all the
results. This indicates that our approach is capable of being fully automated in the
future. Moreover, our holistic approach seems to be viable.

The current approach has several limitations. We do not support the graph drawing
requirements of equal node distribution (R03) and fixed node position (R13). The reason
for this is that the vectorized stress majorization framework mostly supports relative
constraints formulated through vector directions. The two requirements (R03) and (R13)
would need to be formulated as absolute constraints.

Our current shape constraints are limited to simple symmetric shapes because the ICP
algorithm is not sufficient to correctly match points of more complex shapes. Since the
ICP algorithm is not aware of the point connectivity, an incorrectly matched sequence of
points leads to malformed result shapes.

The multilevel layout does not consider disjoint subgraphs and connected subgraphs
within the same level. To support this case, we need to extend our layout strategy.

In Subsection 3.4.2 we proposed a technique for edge elongation to resolve hair balls in
the layout. This technique gets counteracted by the application of constraints in the
subsequent layout steps. To solve this problem, the elongation needs to be incorporated
into the constraints.

The flow direction metric is quite difficult to interpret. Changing the flow direction
metric to report the deviation for each reading direction and reporting the flow direction
for each disconnected component could be more informative.
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CHAPTER 5
Conclusion and Future Work

In this chapter we conclude the thesis and provide an outline of future work directions.

5.1 Conclusion
In this work we presented a holistic approach for visualizing metabolic pathways in
the SBGN. We collected and analyzed the domain-specific requirements and devised a
pipeline to complete the endeavor of creating an automatic layout approach.

We demonstrated that the vectorized stress majorization can be customized to generate
constraint layouts of SBGN maps, by formulating domain-specific constraints, such as
the process orthogonal constraint and the process angle constraint. We addressed the
handling of disconnected components and disjoint subgraphs during the layout process
by using a multilevel approach. We proposed a visualization approach that is based on
elastic bands to form distinctive shapes of subcellular locations. Coupled with an expand
and collapse interaction, complex metabolic networks can be simplified to facilitate
exploration.

To evaluate the results we proposed several quality metrics that measure the SBGN-ness
of a layout. The results and evaluation demonstrated that our approach can faithfully
represent SBGN maps.

As concluding remark, we believe that it is more fruitful to consider the automatic
creation of SBGN maps as a holistic problem, rather than creating isolated solutions to
subproblems that are incompatible with each other.

5.2 Future Work
There are several possible future avenues that we can pursue. The consistency of the
input data can be improved. Advanced tools to evaluate and correct missing information,
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e.g., compartment references, are needed and can be build upon the LibSBGN’s validation
tool [101]. The communities’ drawing convention of placing nodes on double compartment
boundaries is not mapped to the SBGN-ML format. To make this convention usable, an
automatic data transformation that preserves the meaning of the SBGN map is needed.

Every step of the pipeline can be improved and extended. As discussed in Subsection 3.4.3,
there is potential to formulate further domain-specific layout constraints or improve
the ones already devised. To improve the recognition of similar subcomponents and
substructures of metabolic pathways, they should be drawn in the same way. There
is a need for a global shape catalogue that can be used to recreate layouts for similar
structures. These structures could be seamlessly integrated into the vectorized stress
majorization as shape constraints. Additionally, global color maps could be defined for
recurring subcellular locations to prevent ambiguities and enable fast understanding. The
vectorized stress majorization’s shape constraint can be improved by replacing the ICP
matching through a path-aware matching procedure.

The quality metrics were a first attempt to evaluate metabolic networks in SBGN. In
order to assess their usability, a more thorough evaluation must be conducted.
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