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Abstract

Disentanglement is hard to achieve in unsupervised representation learning. It can be nega-
tively affected by trying to improve the reconstruction quality of the generated output. To try to
alleviate these problems, this project combines two approaches that improve disentanglement and
reconstruction quality, specifically β-TCVAE[1] and Soft-Intro-VAE[2]. The hypothesis was that
a model that uses a combined loss function of both approaches can retain the positive aspects of
both. The results did not confirm the hypothesis and showed no improvement in disentanglement
metrics and worse reconstruction results compared to Soft-Intro-VAE[2]. The code for this project
is available on GitHub1.

1 Introduction

Unsupervised representation learning of unstructured data - specifically images - is still an open prob-
lem. The goal is to find interpretable dimensions by training a model on a collection of data. Many
methods have been proposed to solve this task with varying levels of complexity. It ranges from simple
and well-known methods like PCA to complex neural network architectures like GANs.

The focus of this project are Autoencoders (AE), which are neural networks that consist of an
encoder and a decoder. The encoder reduces the input to a small vector representation, which is then
used to reconstruct the input by the decoder. One application of AEs is image de-noising but they
inherently are dimensionality reduction models. Only image data was considered for this project.

An extension of the basic Autoencoders are Variational Autoencoders (VAEs) where the interme-
diate representation from the encoder is forced to be a multivariate normal distribution by introducing
a Kulback-Leibler (KL) divergence loss term. The KL divergence penalizes the model for clustering
points far away in the latent space and therefore provides structure to the latent space that benefits
disentanglement. Different factors are encouraged to be encoded in a single dimension of the latent
space since using more dimensions will lead to a higher KL divergence. Several methods have been
developed to improve upon this architecture.

In summary, disentanglement is an important feature of representation learning and helps inter-
pretability and discoverability of the latent variables.

2 State of the Art

The Autoencoder model architechture itself has been extended in various ways. However, a useful
property of the basic architecture is that they can be trained end-to-end with a single pass through the

1https://github.com/meffmadd/intro-tc-vae

1



network. Therefore, I focused on models where only the loss function is modified and the underlying
architecture is unchanged.

The loss function of a basic β-VAE is defined as

Lβ =

N∑
n=1

(Eq[log p(xn|z)]− βKL(q(z|xn)∥p(z))) (1)

and is referred to as evidence lower bound (ELBO) [1]. Here Eq[log p(xn|z)] is the expected log like-
lihood of an observation xn based on the learned latent distribution q(z|xn) (reconstruction loss).
The term KL(q(z|xn)∥p(z)) refers to the Kulback-Leibler divergence of the learned distribution of the
encoder and the the target distribution p(z) ∼ N (0, 1) (regularization/KL loss). The hyperparam-
eter β acts as a weighting parameter to put more emphasis on the regularization (higher value) or
reconstruction quality (lower value).

Chen et al. [1] have modified the loss function of the basic VAE loss function by decomposing the
KL term into three separate terms. They show that the KL divergence between the learned distribution
q(z|n) and the target distribution p(z) can be expressed as:

Ep(x)[KL(q(z|x)∥p(z))] = KL(q(z, n)∥q(z)p(x))︸ ︷︷ ︸
Index-Code MI

+KL(q(z)∥
∏
j

q(zj))︸ ︷︷ ︸
Total Correlation (TC)

+
∑
j

KL(q(zj)∥p(zj))︸ ︷︷ ︸
Dimension-wise KL

, (2)

where q(z, n) = q(z|xn)p(xn) and q(z) =
∑N

n=1 q(z|xn)p(xn). After this decomposition, only the total
correlation term (TC) is scaled with a hyperparameter β instead of the whole KL divergence term to
find statistically independent factors. This way, they could improve the disentanglement of the latent
space representation compared to traditional VAEs and other methods like InfoGAN [3]. The resulting
model is called β-TC-VAE.

Recently, Daniel & Tamar [2] introduced Soft-Intro VAE to improve the reconstruction results of
VAEs. Their contribution is to introduce a min-max game between the encoder and decoder, which is
very similar to a GAN with its generator and discriminator architecture.

The adversarial game between the encoder and decoder is set up by introducing different loss
functions for each:

LEϕ
= ELBO(x)− 1

α
exp(αELBO(Dθ(z))) (3)

LDθ
= ELBO(x) + γELBO(Dθ(z)) (4)

In this game, the encoder and decoder have different objectives. Both are incentivized to improve
the overall ELBO of the input. However, in addition, the decoder’s objective is to also minimize its own
output of a generated sample from a random latent vector (ELBO(Dθ(z))). Conversely, the encoder
should maximize the ELBO of the decoder output for the random sample (again ELBO(Dθ(z))), or
in other words, it tries to fool the decoder. With this setup, better reconstruction results can be
accomplished. For the evaluation, like the original implementation, the values for the hyperparameters
are set to α = 2 and γ = 1. The β hyperparameter was equal for the different ELBO terms.

3 Soft-Intro-TCVAE

The goal of this project was to combine the loss functions of TC-VAE and Soft Intro-VAE to determine
if the benefits of each are retained. The hypothesis is that by using the decomposed KL loss of TC-VAE
in the ELBO terms of the adversarial loss functions of Soft Intro-VAE this could be accomplished in a
straightforward manner by simply changing the ELBO loss functions of Soft-Intro-VAE to the modified
ELBO′ of β-TCVAE. We, therefore, end up with the following formulation of the loss functions:

LEϕ
= ELBO′(x)− 1

α
exp(αELBO′(Dθ(z))) (5)

LDθ
= ELBO′(x) + γELBO′(Dθ(z)) (6)

2



4 Evaluation

To evaluate the performance of the models, all variations of VAEs (β-VAE, β-TCVAE, Soft-Intro-VAE
and Soft-Intro-TCVAE) are trained on the ARC Ukiyo-E faces [4] and dSprites [5] datasets. The first
was chosen to test a model’s ability to learn complex images with intricate details. It contains images
of faces extracted from Japanese woodblock prints. The latter is popular for evaluating representation
learning approaches and contains images of small white shapes over a black background. The images
are generated from known factors that correspond to an identifiable attribute in the generated image
(e.g. position or size of the shapes etc.) which should be learned by the model. There are 5 ground
truth factors that are used to create the images. These factors are shape, size, rotation, X-position
and Y-position.

For the size of the latent space was 48 dimensions for the ARC Ukiyo-E faces [4] and 10 dimension
for the emphdSprites [5] dataset. For the ARC Ukiyo-E faces [4] dataset mean squared error (MSE)
was used as the reconstruction loss function. With dSprites [5] binary cross-entropy loss was used
since the values of the output are 0, 1, so the reconstruction is reduced to a classification problem.

For this project, the size of the dSprites [5] dataset was reduced by limiting the number of possible
values for some factors. The angle of rotation was fixed to 4 values (0°, 90°, 180° and 270° respectively).
The horizontal and vertical positions were also reduced from 32 to 10 possible values.

4.1 Evaluation Metrics

To empirically evaluate the model performance, several established metrics were used.

4.1.1 β-VAE Metric

Higgins et al. [6] introduced a novel evaluation metric in their β-VAE paper. It tests the accuracy of a
simple classification model (logistic regression) to identify the known factors based on the latent space
representation. Various pairs of batches are sampled so that one ground-truth factor is equal between
them (i.e. the two batches show the same object shape in case of dSprites[5]). If some dimensions in the
representations correspond to the random factor index then they will be equal in the representations as
well which will be easy to predict by the logistic regression model. The range of the metric is between
0 and 1 where 1 is best.

4.1.2 Mutual Information Gap (MIG)

Chen et al. [1] also present an evaluation metric for disentangled representation learning. It is based
on the mutual information between the factors and the latent representation. The difference between
the two highest mutual information values is calculated for each factor. These values are then averaged
to give the final metric. This means that the metric expects the model to express a single factor only in
a single latent dimension. If two dimensions are used to express a given factor the mutual information
for both dimensions will be high and the difference is going to be close to zero. The range of the metric
is between 0 and 1 where 1 is best. However, since there were twice as many dimensions in the latent
space than ground truth factors the best possible value in this scenario is 0.5.

4.1.3 Modularity and Explicitness

Another popular metric is the Modularity and Explicitness score which was devised by Ridgeway
Mozer [7].

Modularity: Similar to the MIG metric the mutual information between the latent dimensions
and factors is calculated. Ideally, a single latent dimension will have a single corresponding factor. For
each latent dimension m we take the maximum mutual information with a factor and set the rest to
0. This would be the ideal state since one latent dimension only contributes to one factor. The metric
is then calculated by averaging the deviations of the actual vector to the ideal vector. The range of
the metric is between 0 and 1 where 1 is best.

Explicitness: This metric is similar to the β-VAE metric. This metric also tests the ability of a
classifier (again logistic regression) to recover the factor value from the latent dimensions. However,
this is done directly without any modifications to the latent representations. The range of the metric
is between 0 and 1 where 1 is best.
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5 Results

The results are presented in this section. For the dSprites dataset, we can calculate the disentanglement
metrics since we have the original ground-truth factors available to us. For the ARC Ukiyo-E faces
dataset we will focus on visual inspection of the reconstruction results.

The models were trained for 200 epochs for both datasets and with equal weights for reconstruction
and KL loss terms. This leads to a balanced weighting of the loss terms during later stages of training.
Specifically, the loss weights were set to 8.0 for both the reconstruction and regularization loss and the
following results are from a single training run.

5.1 dSprites

5.1.1 Metrics

(a) β-VAE Metric shows good results for Soft-
Intro-VAE and Soft-Intro-TCVAE.

(b) The MIG Metric shows mixed results with
low scores for every model architecture.

(c) The Modularity metric favors the models
with introspective loss functions with Soft-Intro-
TCVAE showing the best overall results.

(d) The Explicitness metric scores Soft-Intro-
TCVAE lowest with large variability during train-
ing.

Figure 1: Evaluation metrics for the different models. Soft-Intro-TCVAE does not outperform the
other models and performs very similarly to Soft-Intro-VAE.
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5.1.2 Losses

(a) Reconstruction loss (b) KL loss

Figure 2: Loss functions of the models during training. Unscaled losses are used to compare the
TC models to the non-TC models. As we can see, high KL loss does not directly translate to worse
disentanglement metric scores. This makes it hard to compare the quality of the latent space when no
ground-truth factors are available as is the case with the ARC Ukiye-E faces [4] dataset. The models
with TC loss have higher losses since they only optimize for the decomposed loss term.

5.1.3 Reconstruction results

(a) Comparison between sample
images (first row) and their recon-
structions (second row). The re-
sults of the different models are
nearly indistinguishable from each
other.

(b) Latent traversals of two latent
vectors that were sampled from two
images. The specific dimension
that is interpolated was selected
based on visual inspection and the
specific results cannot be directly
compared between the models.

(c) Out-of-sample reconstruction of
a random vector with small and
large standard deviations (first and
second row) shows a large differ-
ence between the models. β-VAE
and β-TCVAE show significantly
better results than their adversar-
ial counterparts with Soft-Intro-
TCVAE showing no output in the
sampling range.

Figure 3: Reconstruction results for sample images, latent traversals and out-of-sample latent vectors.
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5.2 ARC Ukiyo-E faces

5.2.1 Losses

(a) Reconstruction loss (b) KL loss

Figure 4: Loss functions of the models during training. Unscaled losses are used to compare the
TC models to the non-TC models. The adversarial models have higher reconstruction loss which is
contrary to their original goal. KL loss is very unstable for Soft-Intro-TCVAE.

5.2.2 Reconstruction results

(a) Comparison between sample
images (first row) with their re-
constructions (second row). Vi-
sually, Soft-Intro-VAE has signifi-
cantly better results than the other
models. This is contrary to the
higher reconstruction loss values
during training. Soft-Intro-TCVAE
has blurry reconstructions similar
to β-VAE and β-TCVAE and failed
to retain the reconstruction quality
of Soft-Intro-VAE.

(b) Latent traversals of two latent
vectors that were sampled from two
images. The specific dimension
that is interpolated was selected
based on visual inspection and the
specific results cannot be directly
compared between the models.

(c) Out-of-sample reconstruction of
a random vector with small and
large standard deviation (first and
second row). Interestingly, Soft-
Intro-TCVAE has comparable re-
sults with Soft-Intro-VAE for ran-
dom vectors.

Figure 5: Soft-Intro-VAE has the best reconstruction results and Soft-Intro-TCVAE failed to retain
the advantages of an adversarial loss function.
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6 Conclusion

The goal originally set out for the project could not be accomplished. The disentanglement scores
of Soft-Intro-TCVAE are very similar to Soft-Intro-VAE without any noticeable improvement. The
reconstructions show no high-frequency details and are more similar to β-VAE and β-TCVAE in this
respect. During training, Soft-Intro-TCVAE was more unstable compared to the other methods which
might explain the results.

The results for dSprites [5] are very similar for all models. Surprisingly, the adversarial models
had worse reconstruction results for the latent traversals and random vectors. Further hyperparameter
tuning might alleviate this problem. Overall, β-TCVAE showed the best results for dSprites [5].

Soft-Intro-VAE outperforms the other models for the ARC Ukiyo-E faces [4] dataset. The recon-
struction loss is higher than β-VAE and β-TCVAE models, however, this is very likely because of the
higher frequency details in the reconstructions of Soft-Intro-VAE. Soft-Intro-TCVAE shows similar
results to β-VAE and β-TCVAE which means that for complex datasets the combined loss loses any
advantage of the adversarial loss function of Soft-Intro-VAE.
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