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Kurzfassung

Menschen verbringen einen großen Teil ihres Lebens in Innenräumen, sei es zu Hause,
am Arbeitsplatz, oder in öffentlichen Räumlichkeiten wie Restaurants oder Museen,
weswegen das Entwerfen von solchen Innenräumen eine besonders wichtige Aufgabe ist.
Es gibt dabei viele verschiedene Anforderungen zu erfüllen, sowohl beim Designen von
einzelnen Möbelstücken, als auch bei deren Anordnung innerhalb eines gegebenen Raums.
Dies macht Expertenwissen zu einer absoluten Notwendigkeit um die erwünschten Ziele
hinsichtlich funktionaler, ästhetischer und ergonomischer Qualität zu erfüllen. Computer-
Aided Design Software kann zwar dem Benutzer bei dieser Aufgabe behilflich sein, aber
existierende Anwendungen dienen oft nur einem spezifischen Aspekt des Design-Prozesses.
Besonders die Frage, ob ein bestimmtes Design ergonomischen Richtlinien entspricht,
wird oft dem Designer überlassen, was dies besonders für Benutzer mit wenig Erfahrung
zu einer schwierigen Aufgabe macht.

In dieser Dissertation erforschen wir verschiedene Ansätze, wie ergonomische Aspekte
der Raumgestaltung in interaktive, automatisierte oder datengestützte Methoden für das
Designen von Sitzmöbeln und Innenräumen integriert werden können. Im ersten Teil der
Dissertation wird eine interaktive Methode zum Designen von Sitzmöbeln präsentiert. Mit
einem Dreiecksnetz eines menschlichen Körpers als Eingabe berechnen wir wir zunächst
eine approximative Druckverteilung am menschlichen Körper um zu lernen, wo er am
meisten gestützt werden muss. Ein gegebenes initiales Design für ein Sitzmöbelstück
wird dann so deformiert, dass es den Körper optimal unterstützt und gleichzeitig das
ästhetische Design so gut wie möglich beibehält. Das Design kann dann außerdem
interaktiv bearbeitet werden. Wir zeigen, dass dieser Ansatz es sogar unerfahrenen
Nutzern erlaubt, in kurzer Zeit Designs für komfortable Sitzmöbel zu kreieren.

Während ein solcher interaktiver Ansatz dem Benutzer mehr Kontrolle überlässt, erfordert
er gleichzeitig erheblichen manuellen Aufwand, wodurch er für Benutzer mit wenig
Erfahrung schwierig zu verwenden ist. Im zweiten Teil dieser Dissertation wird daher
eine Methode zur automatisierten Erzeugung von Sitzmöbel-Designs vorgestellt, deren
Resultat lediglich von der Ziel-Pose abhängt. Die Designs, die mittels dieser Methode
generiert werden, können darüber hinaus als initiales Design für die Methode aus dem
ersten Teil der Dissertation verwendet werden. Unser Ansatz für die Berechnung der
Druckverteilung wird außerdem erweitert, indem wir das Gewicht individueller Körperteile
in Betracht ziehen und die Reibungskräfte approximieren, die auf den Körper einwirken,
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um eine höhere Genauigkeit zu erzielen. Unsere Ergebnisse zeigen, dass das Nutzen
der präsentierten Methode in Zusammenspiel mit unserem interaktiven Design Tool die
Designs der Sitzmöbel noch weiter verbessern kann.

Da die ergonomische Qualität von Sitzmöbeln nicht nur von dem Design der Möbel selbst
abhängt, sondern auch deren Relation zu anderen Elementen der umgebenden Räumlich-
keit, stellen wir im dritten Teil der Dissertation einen datengestützten Ansatz für das
Designen von Innenräumen vor. Da die gebräuchlichen Richtlinien für Raumgestaltung
so zahlreich sind, ist es nicht machbar, beim Entwickeln einer Computational Design
Methode alle davon explizit zu definieren. Doch durch Verwendung eines datengestützten
Ansatzes ist es möglich, diese Regeln implizit zu lernen, solange eine große Anzahl an
geeigneten Beispielen verfügbar ist. Doch gute Beispieldaten sind oft nicht in ausreichen-
der Menge vorhanden. Bestehende Datensätze mögen einigen der erwünschten Regeln
enstprechen, jedoch in anderen Bereichen unzureichend sein. Deshalb präsentieren wir
eine Deep-Learning Methode, die sich die Vorteile von datengestütztem Lernen zu Nutzen
macht, und gleichzeitig Makel im Datensatz korrigiert, mithilfe einer kleinen Menge an
explizit definierten Regeln basierend auf Literatur über Ergonomie. Wir evaluieren die
Designs, die mit dieser Methode synthetisiert wurden, mithilfe einer perzeptuellen Studie
und zeigen, dass die Ergebnisse als gleich oder mehr realistisch betrachtet werden, als die
Beispiel-Designs die zum Trainieren des Deep Learning Modells verwendet wurden.



Abstract

Humans spend a large proportion of their lives indoors, be it at home, at their workplace,
or in public facilities like restaurants or museums, making the design of such indoor
spaces an important task. There are many different requirements for both the design
of individual pieces of furniture and their arrangement within a given space, making
extensive expert knowledge in this field a necessity to achieve the desired design goals
in terms of functional, aesthetic and ergonomic quality. While Computer-Aided Design
software can aid the user in this task, existing tools often focus on just one specific aspect
of the design process. In particular, making sure that a given design adheres to ergonomic
guidelines is often left entirely to the designer, making it a difficult task especially for
novice users.

In this thesis, we explore different approaches of how ergonomic aspects of interior design
can be integrated into interactive, automated or data-driven methods for the design of
seating furniture and indoor layouts. The first part of the thesis presents an interactive
method for the design of seating furniture. Given a triangular mesh of a human body in
a specific pose as input, we first compute an approximate pressure distribution on the
human body to learn where it needs the most support. A given inital design for a piece
of seating furniture is then deformed to provide optimal support to the body while still
conforming to the aesthetic design as much as possible. The design can furthermore be
modified interactively. We demonstrate that this approach allows even novice users to
create comfortable seating furniture designs in a short time span.

While an interactive approach provides more control to the user, it also requires substantial
manual design effort, making it difficult to use for novice designers. The second part of
this thesis proposes a method for the automated generation of seating furniture which
depends entirely on the target pose. The designs created with this approach can be used
as-is or as an initial design for the approach introduced in the first part of the thesis.
Our method for computing the pressure distribution is furthermore extended by taking
into account the weight of individual limbs and estimating the frictional forces acting on
the body for increased accuracy. Our results show that the proposed method can further
improve the designs of seating furniture when used in conjunction with our interactive
design tool.

Since the ergonomic qualities of seating furniture do not only depend on the design of
the furniture itself, but also its relation to the other elements of the surrounding indoor
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space, the third part of the thesis introduces a data-driven approach for the design of
indoor layouts. Since common guidelines for interior design are so numerous, it is an
infeasible task to define all of them explicitly when developing a computational design
method. Using a data-driven approach makes it possible to implicitly learn about these
rules given a large set of suitable examples. But good example data is not always readily
available in large quantities; existing datasets may fulfill some of the desired rules, but
lack in other areas. We therefore propose a deep-learning approach that makes use of
the advantages of data-driven learning, while at the same time correcting flaws in the
dataset using a small set of explicitly designed rules drawn from ergonomics literature.
We evaluate the designs synthesized by this approach using a perceptual study and show
that the results are seen as equally or even more realistic than the ground truth designs
that were used to train the deep learning model.
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CHAPTER 1
Introduction

Humans spend a large proportion of their lives indoors, be it at home, at their workplace,
or in public facilities like restaurants or museums. The design of such indoor spaces
is an important task; since they each serve a variety of purposes, there are different
requirements for both the design of individual pieces of furniture and the arrangement of
room elements in relation to each other and the floor plan of the room itself.

As a result, the task of designing indoor spaces is the subject of research in many
disciplines. Interior design and architecture focus on the functional and aesthetic aspects
of furniture and room layouts, the discipline of ergonomics is concerned with the well-
being of humans who spend their time in these spaces, and the development of tools such
as manufacturing devices and Computer-Aided Design (CAD) software requires expert
knowledge in different fields of engineering.

In this thesis, we explore different approaches of how ergonomic aspects of interior design
can be integrated into interactive, automated or data-driven methods for the design of
seating furniture and indoor layouts.

1.1 Motivation
As mentioned above, the design of furniture and indoor spaces requires expert knowledge
from a variety of disciplines, including architecture, ergonomics and engineering. Typically,
a design will go through many iterations, requiring the creation of several prototypes
and necessitating extensive communication between the designer and other experts to
make sure that the finished design adheres to all the requirements. Furthermore, the
software that is commonly used in the field is often only focused on one specific aspect of
the design process. The primary goal of this thesis is thus to investigate the viability
of design methods that incorporate several aspects, such as ergonomic, functional or
aesthetic requirements, into a single design framework.

1



1. Introduction

Figure 1.1: The design of furniture and indoor spaces is a difficult task that requires expert
knowledge from a variety of disciplines. In this thesis, we present different computational
design approaches that incorporate several aspects of the design task, including ergonomic,
functional or aesthetic requirements. Left: A fabricated multi-purpose seating surface
designed for various types of sitting and leaning using the interactive approach described
in Chapter 3. Middle: Design for a seating surface that was synthesized for the given
input pose using the automated method presented in Chapter 4. Right: A living room
furniture layout synthesized using the data-driven approach described in Chapter 5.

There are several challenges regarding this. First of all, rules of ergonomics and indoor
space design are often either presented in terms of rough guidelines on the one hand, or
very specific examples that are difficult to generalize on the other. In order to integrate
these rules into computational design methods, it is thus necessary to derive equations
or functions that make it possible to computationally evaluate how well a given design
fulfills the desired rules. Furthermore, the sheer quantity of rules often makes it difficult,
if not even impossible to create a design that perfectly adheres to all rules. Sometimes,
modifying a design according to a specific rule will result in another rule being violated.
Therefore it is often necessary to find tradeoffs between different rules or prioritize one
over the other.

The second challenge concerns the development of the algorithms that support the user
in the design process. It is important to keep in mind who will be using the tool. For
example, it can be expected that an expert user possesses sufficient knowledge regarding
the design goals that need to be achieved and will thus desire as much control as possible
over the design. Therefore, the design tool should support the user in regards to the
ergonomic qualities of the design without interfering too much with the design process.
On the other hand, for a novice user it is often desirable to keep the manual design effort
as small as possible and thus incorporate rules for the functional and aesthetic design
goals into the algorithm itself.

Finally, the third challenge concerns the fact that different design approaches each come
with their own specific requirements. For example, interactive approaches require the
underlying computations to be reasonably fast, often at the cost of accuracy, while

2



1.2. Research Goals

data-driven methods require the derived evaluation functions to be compatible with the
underlying data and learning algorithms. It is thus not sufficient to address the first and
second challenges individually.

1.2 Research Goals
The aim of the research presented in this thesis is to address the above mentioned
challenges. We therefore formulate the following goals:

1. Study literature related to ergonomics and interior design that are relevant for the
chosen applications and derive mathematical functions that can be used to evaluate
or improve a given design.

2. Develop algorithms for the design of furniture and indoor layouts that support the
user in achieving the desired design goals.

3. Perform empirical experiments using the developed methods and utilize the obtained
results to further improve and validate the ergonomic evaluation functions and
computational design algorithms.

It is important to note that established practices regarding the topics of seating and
interior design can vary greatly between different cultures and eras of history [Pil05, PH10].
Exploring these varying contexts is out of scope for this thesis, as acquisition of the
necessary data and expert knowledge, e.g. for the purpose of design evaluation, would be
infeasible without first laying the ground work in a more familiar setting. The scope of
this thesis is therefore restricted to seating and interior design in a modern and western
cultural context.

The rest of the thesis is structured as follows. In Chapter 2, we discuss the current
state-of-the-art related to the research presented in this thesis.

In Chapter 3, we introduce a novel method for the interactive design of body-supporting
surfaces like chairs, benches or beds. Given a triangular mesh of a human body in a
specific pose as input, we first compute an approximate pressure distribution on the
human body to learn where it needs the most support. A given inital design for a
body-supporting surface is then deformed to provide optimal support to the body while
still conforming to the aesthetic design as much as possible. The design can furthermore
be modified interactively by making changes to the target pose or directly editing the
control mesh of the surface. With this approach, we tackle the first and second challenges
by using the pressure distribution to steer the ergonomic requirements of the design,
while leaving the aesthetic requirements to the designer by allowing a high degree of
interactivity. In order to address the third challenge, we introduce some simplifications
for the computation of the pressure distribution, since computing it accurately would be
infeasible for an interactive approach.

3



1. Introduction

The work presented in Chapter 4 serves as an extension to the previous chapter. While
the interactive approach offers more control over the aesthetic design of the surface
to the designer, it also has some drawbacks. In particular, if the initial design is not
well suited for supporting the target pose, it is likely that the quality of the resulting
design will also decrease. We therefore propose a method for the automated generation
of body-supporting surfaces which depend entirely on the target pose. This method
can be used on its own to create suitable seating furniture for a given input pose, or in
conjunction with the approach described in Chapter 3 by means of generating an initial
design for a target pose that can then be interactively modified. We furthermore extend
our method for computing the pressure distribution on the target body by taking into
account the weight of individual limbs and estimating the frictional forces acting on the
body, increasing the accuracy of the resulting pressure distribution. While this extension
comes with a higher computational cost, we can afford this increase of computation time
since our proposed approach is non-interactive.

Since the ergonomic qualities of seating furniture do not only depend on the design
of the furniture itself, but also its relation to the other elements of the surrounding
indoor space, we introduce a data-driven approach for the design of indoor layouts in
Chapter 5. In contrast to the previous two chapters, which mostly feature one-to-one or
one-to-many relations (one piece of seating furniture to one or more target poses), the
design of indoor layouts requires handling of many-to-many relations since the relative
position and orientation of any arbitrary number of furniture elements can be dictated by
different rules. Since these rules are so numerous and sometimes even contradictory, it is
an infeasible task to define all of them explicitly. Using a data-driven approach makes it
possible to implicitly learn about these rules given a large set of suitable examples. But
good example data is not always readily available in large quantities; existing datasets
may fulfill some of the desired rules, but lack in other areas. We therefore propose a
deep-learning approach that makes use of the advantages of data-driven learning, while
at the same time correcting flaws in the dataset using a small set of explicitly designed
rules drawn from ergonomics literature.

1.3 Thesis Overview
The research presented in this thesis was conducted during the author’s doctoral pro-
gramme from 2016 − 2022. The first 3 years of the doctoral programme were spent as
part of the Doctoral College Computational Design (DCCD) created by the Center for
Geometry and Computational Design (GCD) at TU Wien. From April 2018 to September
2021, the thesis author conducted research as part of scientific projects funded by the
Austrian Science Fund (FWF P27972-N31, FWF P29981) and the Vienna Science and
Technology Fund (WWTF ICT15-082), also at TU Wien. From November 2021 to May
2022, the author furthermore participated in a research stay at New Jersey Institute of
Technology, USA.

Chapters 3, 4 and 5 of this thesis are based on the following publications:
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1.4. Authorship Statement

1. Paper 1: Kurt Leimer, Michael Birsak, Florian Rist, Przemyslaw Musialski. Sit
& Relax: Interactive Design of Body-Supporting Surfaces. In Computer Graphics
Forum, volume 37, pages 349-359. 2018. [LBRM18]

2. Paper 2: Kurt Leimer, Andreas Winkler, Stefan Ohrhallinger, Przemyslaw Musialski.
Pose to Seat: Automated Design of Body-Supporting Surfaces. In Computer Aided
Geometric Design, volume 79. 2020. [LWOM20]

3. Paper 3: Kurt Leimer, Paul Guerrero, Tomer Weiss, Przemyslaw Musialski. Lay-
outEnhancer: Generating Good Indoor Layouts from Imperfect Data. ACM
SIGGRAPH Asia 2022 Conference Papers (SA ’22 Conference Papers). 2022.
[LGWM22]

Paper 1 was also presented at the Pacific Graphics 2018 conference and the GCD
Symposium in 2018, and furthermore received a Best Paper Honorable Mention Award
at Pacific Graphics 2018. Furthermore, Paper 3 was presented at SIGGRAPH Asia 2022
in Daegu, South Korea.

During the duration of the doctoral programme, the author has also contributed to the
following publications which are not described as part of this thesis:

1. Kurt Leimer, Lukas Gersthofer, Michael Wimmer, Przemyslaw Musialski. Relation-
Based Parametrization and Exploration of Shape Collections. In: Computers &
Graphics, volume 67, pages 127-137. 2017. [LGWM17]

2. Stefan Pillwein, Kurt Leimer, Michael Birsak, Przemyslaw Musialski. On Elastic
Geodesic Grids and Their Planar to Spatial Deployment. In: ACM Transactions
on Graphics, 39(4). 2020. [PLBM20]

3. Kurt Leimer and Przemyslaw Musialski. Reduced-Order Simulation of Flexible
Meta-Materials. SCF ’20: Symposium on Computational Fabrication. 2020. [LM20]

4. Kurt Leimer and Przemyslaw Musialski. Analysis of a Reduced-Order Model for
the Simulation of Elastic Geometric Zigzag-Spring Meta-Materials. In: Computers
& Graphics, volume 102, pages 187-198. 2022. [LM22]

1.4 Authorship Statement
The research work presented in Chapters 3, 4 and 5 is the result of collaborative efforts
between the thesis author and several other researchers. In this section we describe the
contribution of each collaborator to the relevant research papers.

Paper 1: The concept and ideas behind this work were created during regular discussions
between the thesis author, Przemyslaw Musialski and Florian Rist. The majority of the
technical implementation was done by the thesis author. The thesis author, Przemyslaw
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1. Introduction

Musialski and Florian Rist all contributed to the evaluation of the method via creation
of the experimental results and conducting the design studies. Florian Rist was also in
charge of producing the physical prototype. Michael Birsak mainly contributed to the
technical implementation and writing of the Inverse Kinematics section 3.5. The writing,
editing and revision of the manuscript was a collaborative effort by all authors.

Paper 2: This work consists of two major technical contributions. The concept and
ideas behind the first contribution, the pressure map computation (Section 4.2), were
created in regular discussions between the thesis author and Przemyslaw Musialski, with
the technical implementation done by the thesis author. The second contribution, the
furniture synthesis algorithm (Section 4.3) was developed as part of a diploma thesis
project by Andreas Winkler [Win19]. The ideas and concepts for this part were created
during regular discussions between the thesis author, Przemyslaw Musialski and Andreas
Winkler, with the technical implementation of the algorithm mostly done by Andreas
Winkler. The writing, editing and revision of the manuscript was done collaboratively
by the thesis author and Przemyslaw Musialski — Andreas Winkler did not directly
contribute to the production of the paper, but his technical description of the developed
algorithms were used as reference for writing of Section 4.3 and Appendix A.4. Stefan
Ohrhallinger mainly provided additional funding for the project.

Paper 3: The early concept and ideas for this project, in particular the evaluation of
indoor layouts in terms of ergonomic qualities, were created in discussions between the
thesis author, Przemyslaw Musialski and Tomer Weiss, while ideas for the technical
realization of the project were conceptualized in discussions between the thesis author,
Przemyslaw Musialski and Paul Guererro. The technical implementation was mostly
done by the thesis author. All authors contributed to the writing of the paper, with
the thesis author, Przemyslaw Musialski and Paul Guererro contributing to editing and
revision of the manuscript.
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CHAPTER 2
Related Work

In this chapter we discuss the current state-of-the-art related to the research presented in
this thesis. We begin with a discussion of ergonomics literature (Section 2.1) from which
we derive the rules used to evaluate and improve the designs created with the methods
presented in this thesis. In Section 2.2, we cover the state-of-the-art research related
to the design of furniture, which is the main application of the methods described in
Chapters 3 and 4. Finally, we discuss recent work on the topic of indoor layout synthesis
in Section 2.3, which is the task of the approach we present in Chapter 5.

2.1 Ergonomics
The discipline of ergonomics concerns itself with the design of systems in which humans
play a significant role, with a primary goal of making these systems not just efficient but
also safe and comfortable [Kro17]. Related tasks include the design and arrangement of
furniture and workstations, planning of work schedules and the study of human physiology
and psychology. Since one of the main contributions of this thesis is the development of
methods and algorithms for the design of furniture and indoor layouts, we will discuss
aspects of ergonomics that are closely related to these tasks in this section.

2.1.1 Comfort
Comfort is an important measure to evaluate the functional requirements of furniture. In
particular, the question of the comfort while sitting is not novel and has been addressed in
the field of ergonomics already quite a while ago. For instance, Lueder [Lue83] provided
a survey of the assessment of comfort that is relevant to the design of office furniture.
Also, [ZHD96] analyzed the multidimensional factors of sitting comfort and discomfort.
Other surveys studied the comfort of sitting in vehicle seats [DKEV03], and especially in
wheelchairs [Sta95].
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Historically, the most elementary way to determine comfort or discomfort of a seat is
to keep note of the subjective feelings of its users ([Her58, Jon69]). Subjective measures
are the most direct and reliable indicators of comfort, however, in most furniture de-
sign applications, objective measures would be advantageous compared to subjective
ratings [DKEV03]. Therefore, researchers have aimed to find a relation from subjective
feelings to objective measures for comfort and discomfort. De Looze et al. [DKEV03]
identified a variety of objective measures for comfort or discomfort from literature in
medicine and ergonomics and concluded that pressure distribution showed the most
clear association with the subjective ratings. Similar findings have also been shown in
many other studies [KTOK82, YDF92, LTPSR08, ZFBV12, NNL+12]. Since our goal
for the design methods presented in Chapters 3 and 4 is to aid users in designing seating
furniture that provide a high degree of comfort during sitting, we therefore choose the
pressure distribution as an objective measure to evaluate and improve the designs.

2.1.2 Biomechanics

Related to the subject of comfort is the field of Biomechanics, which studies mechanical
effects on human bodies, such as forces and torques (often also called moments) acting on
the joints [Hal95, RCH+04]. For the approach presented in Chapter 4, we consider the
weight of individual limbs and and their effects on the joints of the body when computing
the pressure distribution. We base these calculations on a link-segment skeleton model of a
human body which is also often used for inverse dynamics [DAdG04, RCH+04, FAK+14].
Our method is based on a linear least-squares approach of inverse dynamics as often used
for such purposes [Kuo98, DAdG04, Vli14]. However, we extend the model by combining
the skeleton with a skin of the human using linear blend skinning [BP07], which is
commonly used in computer graphics. In order to make our model physically more
plausible, we assign each limb a weight and a center of mass that have been determined
empirically by Plagenhoef et al. [PEA83]. In contrast to physical simulations, in our
method we propose a linearized model of the transmission of forces from bones to the
skin in order to determine an optimal distribution of reaction forces on the body in such
a way that the moments acting in the given posture are minimized.

2.1.3 Interior Design

The field of interior design concerns itself with the planning, layouting and designing of
interior spaces within buildings [CB12]. One of the tasks that is of particular importance
is the selection and arrangement of furniture within a given indoor space such that
functional, aesthetic and ergonomic requirements are fulfilled. Naturally, there exists a
multitude of rules and guidelines that steer this design process. Here we will discuss a
subset of these rules that we selected for the purpose of evaluating and improving indoor
layouts generated by the deep learning approach presented in Chapter 5.

Visibility is an important aspect to keep in mind when arranging furniture, especially
when involving activities performed in a seated position [GK97]. Ideally, a target object
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should be placed within line of sight without the need for substantial rotation of the
neck or eyes. Different ranges of angles have been reported as ideal in various studies,
but for the sake of simplicity and ease of implementation, we regard the quality of an
arrangement in terms of visibility to decrease as the angle between the orientation of
seating furniture and the direction of the target object increases.

Illumination is another crucial design element of indoor layouts. While the human eye
can adapt to differences in brightness, doing so takes time and thus results in an overall
loss of visual performance [GK97]. Lighting conditions should therefore be designed to
avoid such discrepancies in contrast. For this purpose we identify two rules: Light sources
should be positioned in such a way that they provide sufficient illumination to a visible
target object [Kro17] and light sources should not be directly within the field of view in
order to avoid direct glare [GK97].

Finally, it is important that the elements of a layout that need to be interacted with
are accessible. First, when in a seated position, target objects should be comfortably
reachable without needing to leave the seat. For our approach, we base the evaluation
of this criteria on reported ideal ranges [GK97]. And second, moving between different
elements of a layout should be easy by avoiding obstructions on the path between objects.
One way to achieve this is by making sure that sufficient space is available in front of
each layout element [CB12].

2.2 Furniture Design

From a general perspective, the central goal of the methods presented in Chapters 3 and
4 is to provide a computational design system for usable seating furniture. Furniture
creation is a very broad task with a rich history in a variety of fields including wood
working, product design or medicine. An important question is whether a designed
seating surface is aimed for a general application or to be used in a specific situation
only. In any public place or transport that need to accomodate a large variety of people,
the use of a one-size-fits-all solution is inevitable. With modern design methods, for
instance using 3d scans of human body shapes [SBK+16], a large range of body sizes can
be covered.

On the other hand, there is also a need for more personalized design solutions. In a
human centered design process the attention is shifted to the needs and requirements of a
human person. In the context of seating furniture design, the goal is thus to find a seating
surface that optimally matches the requirements of a specific individual, ranging from
physical properties such as shape or size [RP08] to semantic constraints. The approaches
presented in Chapters 3 and 4 fall into this category. In this section, we first discuss
research related to physically-informed furniture design in general before focusing on
pose-driven design in particular.
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Figure 2.1: Examples of related work on the topics of physically-informed and pose-driven
design. Left: An interactive tool by Umetani et al. [UIM12] provides suggestions for the
design of stable furniture. Right: The approach proposed by Zheng et al. [ZLDM16]
allows reshaping of existing 3D models to fit the dimensions of an input pose. Images
sourced from the respective papers.

2.2.1 Physically-Informed Design

In Chapter 3 we present an interactive design method that is driven by physically derived
information, which is quite commen in the field of computer graphics. For example,
Saul et al. [SLMI11] introduced SketchChair, an application for easy design of chairs for
novice users using an easy-to-use 2d sketching interface. The stability of the sketched
designs can be validated with a simple physical simulation, but the application does
not feature algorithmical optimization of the design. The finished furniture sketch can
be than fabricated from planar sheet materials by cutting them out and putting them
together. Umetani et al. [UIM12] proposed a system for computational design of shelves
and similar furniture from planar pieces, using a physical model which supports the users
during the design such that only structurally stable models are created. In contrast to
to SketchChair, the framework also provides suggestions to the user that can improve
the stability of the design. Lee et al. [LCMS16] propose a system designed around VR
technology that allows users to design furniture via gestures and voice commands. In this
approach, the body of the user is captured with a camera and can be used as reference
to customize the dimensions of a furniture design.

Other research focuses on automated systems aimed to design suitable furniture in
an automated process. User interaction is mostly limited to customizing input data
and parameters. The method presented in Chapter 4 also falls into this category. For
instance, Zheng et al. [ZLDM16] proposed a method for ergonomics inspired reshaping
and exploration of collections of models in order to create novel shapes. While their
method takes some ergonomic aspects into account, such as the dimensions of individual
body parts, their designs are neither checked for physical validity nor are the physics
of the human body considered. Researchers in furniture design have also used hybrid
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approaches for their systems, where the furniture shapes are created by an automated
system, but users can steer or manipulate the design process in various stages [FCSF17].

2.2.2 Pose-Driven Design

The field of computer vision and machine learning has also utilized poses for the analysis
and classification of objects like sitting furniture. For instance, [GGV11] introduced
a system that uses an affordance detector in order to determine the functionality of
objects by the way humans could interact with them. A similar idea has been pursued
by [KCGF14] who use supervised learning on a set of poses in order to further generate
static poses of how a functional object could be potentially used. Furthermore, [KL14]
also proposed a method for the generation of poses to a given geometry.

Since much information can be derived from human poses, this information can be used
for the purpose of design. Early research related to pose-driven design aimed to find
seating surfaces which match a general class of poses or guidelines [BRTT08]. In 2017,
Fu et al. [FCSF17] introduced a shape synthesis approach with the goal of creating
hybrid shapes usable by humans. While this work is not limited to furniture shapes, it
serves as an example for pose-driven design. Lee et al. [LCMS16] proposed a novel user
centric furniture design process, making digital design interfaces accessible for casual
users by using poses and gestures, speech commands and augmented reality technology.
Zheng et al. [ZLDM16] introduced an interactive system that selects and adapts seating
furniture for user-specified human body and input poses. An entirely different approach
at personalized furniture design is presented by Wu et al. [WWT+18]: ActiveErgo is
a monitored workplace environment that dynamically adjusts its parameters like desk
height or chair position in accordance with ergonomic guidelines, adjusted to the user.

From a technical point of view, the method presented in Chapter 3 incorporates fitting
of Catmull-Clark subdivision surfaces [CC78] to a given human pose in order to support
it optimally, which we have chosen due to their C2-smoothness that result in very
elegant shapes. Therefore we utilize methods for optimization of the control mesh
for the fitting of subdivision surfaces [MK05, CWH+07]. However, in the literature
there have also been a number of methods which propose interactive design of free-
form surfaces, e.g., [IMT99, NISA07, JHR+15, LPL+17]. Finally, we also utilize inverse
kinematics [Bus04] for additional relaxation of the given posture in order to improve the
contacts surface [SZGP05, DSP06].

2.3 Layout Synthesis

Interior spaces and their layouts are part of everyday life. Hence it is not surprising
that such layouts are also an important part of multiple virtual domains, ranging from
entertainment, architecture, to retail. For example, organizations such as Ikea and
Wayfair are actively working toward understanding their customers needs [ACLW+19].
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Figure 2.2: Indoor scenes synthesized by existing transformer-based deep learning mod-
els which are closely related to our approach described in Chapter 5. Left: Scene-
former [WYN20]. Right: ATISS [PKS+21]. Images sourced from the respective papers.

Typically, each domain has different requirements and needs, which require manual
design [Way22].

In practice, designing layouts is a laborious task due to high dimensional design space,
ranging from selecting relevant furniture pieces, to arranging the target space to fit the
design goals. To alleviate such manual workflow, researchers have proposed multiple
computational methods to assist in layout design. Below we classify previous work based
on their approach.

2.3.1 Deep Learning Methods
With modern computer hardware enabling the use of increasingly complex deep neural
networks, recent work in this field increasingly relies on example data to learn how to
synthesize new layouts. Such 3d scene data and the data modality is an important
factor in deep learning [FCG+21]. Examples of how this kind of data can be represented
include images, graphs or sequences. Early deep learning work utilizes top-down images
of layouts to understand object-object layout relationships [WSCR18]. However, images
do not naturally contain sufficient detail for the network to synthesize complex human-
centered layouts. Graphs have also been proposed as a means to encode spatial layout
information [WLW+19, ZWK19, LZWT20]. Using this kind of representation, the scene
synthesis problem is transformed to predicting appropriate graph nodes and edges.

In addition to images and graphs, researchers explored how to use other 3d scene data
representations for synthesis. Zhang et al. [LPX+19] synthesize scenes by sampling from a
vector that represents the spatial structure of a scene. Such structure encodes a hierarchy
of geometrical and co-occurrence relations of layout objects. [ZYM+20] proposed a hybrid
approach that combines such vector representation with an image-based approach. Also
other utilize graph structures to describe scene layouts [DYZ+20]. Yang et al. [YZY+21]
combine such vector representation with Bayesian optimization to improve furniture
placement predictions of the generative network. Recently, variational autoencoders have
been proposed for indoor layout synthesis [CZW+22].
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Most recently, researchers have proposed to use neural networks based on transform-
ers [WYN20, PKS+21]. The authors mention that one advantage of transformers is a
faster synthesis compared to other other deep-learning approaches. For the approach
presented in Chapter 5 we also make use of neural networks based on the transformer
architecure. However, in contrast to existing work which does not account for ergonomic
qualities and thus sometimes results in misplaced furniture items if such errors are also
present in the training data, our approach aims to improve the learning process by
introducing additional rules based on ergonomics.

2.3.2 Other Approaches
Before the era of deep learning, early work considered layout synthesis as a mathematical
optimization problem, where a set of constraints describe the layout quality in terms
of energy and energy functionals [YYT+11, MSL+11, WLD+18]. The layout is then
optimized via stochastic or deterministic optimization process.

Other researchers proposed data-driven methods. In such methods, abstract layout
structure and object-object relations are extracted from scene datasets. Earlier work by
Fisher and colleagues [FRS+12] proposed a method for arranging small layout object
arrangements, using pairwise spatial heat-map distributions for learning object relation-
ships. Qi et al. [QZH+18] use interaction affordance maps for each layout object for
stochastic layout synthesis. However, they only take into account static poses and spatial
relationships between furniture pieces. Similarly, Fisher et al. [FSL+15] used annotated
3d scans of rooms to identify the kind of activities an environment supports. Based on
such activity maps they can synthesize small objects arrangements. Other researchers
also learn layout structure from 3d scans for scene synthesis [KLTZ16]. They extract
manually defined geometric relationships between objects from such scans, which are
then placed using a stochastic optimization.

Other research has made progress towards incorporating human-centered considerations
for 3d scene synthesis. Fu et al. [FCW+17] use a graph of objects to guide a layout
synthesis process. However, they only consider static human poses in relation to activities.
Zhang et al. [ZHPY21] and Liang et al. [LLL+19] focus on optimal work-space design.
While the authors demonstrate novel use of simulation and dynamic capture of agent in
action metrics, they only focus on mobility and accessibility based factors. In [PRB+18],
the authors demonstrate how to evaluate the functionality of layouts. However, this work
does not include 3d scene synthesis.

Early work [YYT+11, MSL+11] has also included ergonomic and interior design knowl-
edge into the layout design process. The appraoch we present in Chapter 5 differs from
these existing methods in two major aspects. First of all, their methods require the
manual definition of a number of additional layout design rules. Second, their methods
are designed to optimize the arrangement of an existing furniture layout, while our
approach can synthesize entirely new layouts with desired characteristics.
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CHAPTER 3
Interactive Design of Seating

Furniture

3.1 Introduction

Product design of human body-supporting objects—for instance sitting furniture—is
a difficult design problem. Usually designers try to combine two major aspects: the
actual function of the product as well as the aesthetics of its shape. One of the very well
known maxims of this process is the form follows function principle, which dictates that
the form of an object is at least in part determined by its function. However, a unique
aesthetic is often desired to make the product stand out from similar products. Therefore
the goal is to create an appealingly looking shape and at the same time to make this
shape fulfill the functional requirements.

Traditionally, this is achieved by employing an iterative process where a number of
prototypes needs to be produced in one-to-one scale in order to figure out what is
actually comfortable. The main reason for this is that it is extremely difficult to judge in
advance—especially if only a digital model is created—how comfortable and functional
the final product will eventually be.

Our goal is to provide designers a novel way to create free-form surfaces that automatically
adapt to human postures. Hence, we propose a new approach for the interactive design
of body-supporting surfaces which automatically nestle to the shape of the body in
order to make the human feel comfortable in the current pose. To achieve this goal, we
propose a measure that gives an indication of how a human in a given posture should be
supported in order to distribute the pressure uniformly on an as large an area as possible.
Pressure distribution has been identified as one of the objective indicators of comfort
[Lue83, Sta95, DKEV03].
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Figure 3.1: Multi-purpose sitting surface designed for various types of sitting and leaning
using our method. Left: three renderings. Right: fabricated result inspected by design
students.
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Pose RelaxaƟon

Figure 3.2: Overview of the interactive design system. Given initial design and a set of
poses captured by a motion capture device, our system estimates a pressure distribution
on the bodies in the given poses. The artist can then create a social scenario using the
given poses and provide a initial control mesh for a surface. Our system then computes
an optimized smooth subdivision surface and its control mesh using our surface fitting
algorithm. In further design steps, the computed control mesh can be edited interactively
and used as input again to generate a new design. Our pose relaxation algorithm also
makes it possible to adapt the input poses to the computed subdivision surface if necessary
to ensure that all poses can be supported well.

Technically, we accomplish it by computing an importance map on the human body
which is proportional to the physical pressure which the body is exposed to if resting
in a given pose. Further, this importance field on the surface of the body is used for
fitting of optimally supporting Catmull-Clark subdivision surfaces in an interactive design
application.

Our contributions are the following: (i) we cast the problem of interactive design of
body-supporting surfaces driven by the pressure distribution acting on the body, where
we propose an approximative, physically validated method for an efficient computation
of body pressure in Section 3.3. (ii) Further, we provide an interactive design system
for free-form surface fitting in Section 3.4 as well as for pose relaxation in Section 3.5.
(iii) Finally, we utilize our solution in collaboration with designers in order to design
a real-world example and we fabricate a functional product, which we document in
Section 5.4.
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3.2 Overview
Figure 3.2 shows the workflow of our interactive design system. The input is one or more
human body poses given by triangular meshes and an initial design of the actual surface.
In practice, since we are using Catmull-Clark subdivision, the initial design is given by
its control mesh, and can be in the most trivial case just a flat patch.

For the bodies of humans we use the Blender plugin provided by Manuel Bastioni [Bas18],
which allows the generation of body meshes with varying attributes, like gender, mass,
size, stature, etc. Since the meshes are skinned and rigged to a skeleton, the user can
adjust the poses manually, or alternatively, the poses can be created with a motion
capturing device, for instance using the Perception Neuron system [Neu18]. We have
utilized the latter for most of our designs.

In the next step the user can compose a scenario of sitting humans by selecting the
captured poses and placing them on the modeling canvas with respect to the control
mesh. Our system then computes the pressure distribution necessary to support each
human in the given pose using the method further described in Section 3.3 and uses this
information for fitting a subdivision surface as described in Section 3.4. Additionally, the
user can decide to adjust selected poses, either manually, or using inverse kinematics in
order to relax the pose with respect to the already computed surface, which is described
in Section 3.5. Finally, the new control mesh can also be edited by either moving or fixing
its vertices. This process can be repeated iteratively and the design can be explored until
a satisfactory result is achieved.

3.3 Pressure Field Computation
Our goal is now to find a physically plausible distribution of pressure to which the body
is exposed to if resting in a given pose. It is important to support the body where
the relative pressure is high. At the same time, we want to make the contact area as
large as possible to keep absolute pressure peaks low, so the pose can be considered as
comfortable [DKEV03], as shown in Figure 3.3, right. Usually, the pressure distribution
on the body would be found using a sophisticated physical simulation which is time
consuming. Since our goal is to achieve interactive rates, we propose a simplified model
where we assume the human is a rigid body.

3.3.1 Pressure Model

In order to compute an approximated distribution of the pressure acting on the human
body, we build on top of the static Coulomb friction model (cf. Figure 3.3). In that model,
the force f acting at each contact point can be split into its normal component fn and its
tangential components ft1 and ft2 . In order to keep the body in static equilibrium, we need
to counteract these forces by reaction forces r = rn + rt1 + rt2 , such that



Ω r dA = mb g,

where mb is the mass of the body and Ω is the supported contact area.
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p = ||rn||/A

rn

rn

Figure 3.3: Illustration of the forces acting on a rigid body. Left: reaction forces split
into the normal and tangential components. Right: definition of pressure as normal force
acting per unit area. If the same forces are acting on a larger area, the pressure is lower.

The actual pressure p = 1
A 
 rn 
 is the magnitude of the normal component of the reaction

force rn divided by the area A the force is acting on (cf. Fig 3.3, right). The tangential
components rt are the particular friction forces, whose magnitudes—according to the
linear friction model—must be smaller than the magnitudes of the respective tangential
components of the body force ft. Otherwise, the body would slip away from the support.
This is usually ensured by setting the reaction force components to

rn = −fn, and 
 rt 
 ≤ µ 
 rn 

where µ is the friction coefficient that depends on the roughness of the contacting surfaces.
This ensures that the friction forces stay within the so-called friction cone.

3.3.2 Pressure Approximation
In practice, the normal components of the reaction forces are much larger and thus more
important than the tangential components of the reaction forces. This is also evident
from the physical simulation we have performed with a default value of µ = 0.5 (cf.
Section 4.2.2 and Figure 3.4b). Moreover, considering the friction coefficients of common
materials, humans usually do not run the danger to slide down from the seat. Since we
aim for fast computation times over accuracy in our strongly simplified model, we ignore
the tangential components and utilize only the normal directions for these reasons.

We assume there exists one reaction force r for each vertex v of the body mesh whose
normal is pointing sidewards or downwards (cf. Figure 3.3, right box). Vertices with
normals pointing upwards are excluded from the computation, since they cannot be
supported. In order to find out how the normal forces rn and the pressure p are distributed
on the surface, we consider the projection of the gravity direction vector on the unit
surface normal n scaled by the Voronoi area of each vertex f = (0, −A, 0), such that

rn = −(n · f) n and p = 1
A


 rn 
 .

18



3.3. Pressure Field Computation

(a) Results of the forces computed by the physi-
cal simulation using Abaqus (cf. Section 4.2.2).
From let for right: magnitude of the normal
forces followed by both tangential forces.

(b) Comparisons of our results to Abaqus. Left:
reaction forces (magnitude of the vector sum
of normal and tangential forces). Middle: our
result (magnitude of normal forces). Right:
absolute difference of left and middle.

Figure 3.4: Results of physical simulation and comparison to ours. Top row: sitting
pose—please note that for visualization purpose we render the results on a T-pose.
Bottom row: lying T-pose. Please notice the different range for the error image.

In other words, we assume a good reaction force distribution can be approximated by
considering the body as fully surrounded (e.g., enveloped) by a perfectly fitting support,
where we ignore the friction forces and the body weight.

Note that the local vertex area A is factored out for the pressure computation and that
in fact, the sum over the reaction forces on the body does not equal the body weight.
Nonetheless, there is a linear relationship, and since we normalize the pressure in the
range [0..1] and give up the physical units—which is still sufficient for our application (cf.
Section 3.4)—, this issue can be ignored.

While this model might appear too oversimplified, in comparisons to professional FEM
simulations we show (cf. Section 4.2.2), that this approximation has an error (RMSE)
in the range of 0.07 on a [0...1] scale and it is still well-suitable for the purpose of an
importance map for surface fitting.

3.3.3 Comparison to Physical Simulation
In order to justify our simplified model, we perform a FEM simulation using the profes-
sional physical simulation software Abaqus [Smi09]. For this purpose we simulate two
selected poses—a lying pose and a sitting pose—in a setup as proposed in our model
in order to compute ground truth values. Note that here we also include the tangential
forces.

For the simulation we create a rigid shell in the shape of a negative mold of the body by
taking all body-mesh faces pointing downwards or sidewards. This shell serves as the
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contact surface which fully supports the body. For the human body, we create a single
volume domain as a rigid body. The shell is completely locked in place by boundary
constraints, while the body is moved downward by a force of 735N (roughly equivalent
to a body weight of 75kg) applied on the center of mass. This procedure is standard for
the simulation of a single rigid body in Abaqus.

To model the contact between body and shell we use a linear pressure-overclosure
relationship with contact stiffness of 8e+12. The tangential contact behavior is modeled
with an isotropic friction coefficient of µ = 0.5 and an elastic slip of 1e−10. Furthermore,
we select the set of vertices at which reaction forces are computed in our method by
choosing those vertices of the body mesh that are also included in the corresponding
contact surface shell to make sure that the contact surface is the same in both methods.
The computation time in Abaqus took a total of 10 seconds for the simulation plus
preprocessing, while our system takes 0.03 seconds on average.

In Figure 3.4a we show the magnitudes of the particular normal forces r̂n as well as the
tangential forces r̂t1 and r̂t2 computed in Abaqus. Please note that all force magnitudes
are taken absolute and normalized to the range of [0...1] to the maximum value of r̂n.

For the comparison to our results we measure the root-mean-squared error (RMSE)
between our estimated normal forces rn and the reaction forces r̂ computed in Abaqus.
Note that the reaction force is the magnitude of the sum of normal and tangential forces.
We have chosen this comparison (cf. Figure 3.4b) in order to emphasize why we can omit
tangential components without a large error. In fact, the RMSE is about 0.06 − 0.07 for
values scaled in a range of [0...1].

3.4 Surface Fitting
In this section we present how the approximated pressure distribution can be utilized for
fitting of optimal support surfaces in an interactive modeling application. Our goal is
to generate a surface that allows one or multiple persons in a specified posture to sit or
lean on it. To do this, we take the distribution of reaction forces of each given posture as
input, and then use a Catmull-Clark subdivision algorithm to fit a smooth surface to the
vertices on the body that need to be supported.

Using a quad-mesh M0 = {V0, F0} as a control mesh, we want to compute the optimal
control mesh M∗ = {V∗, F∗} such that the subdivided mesh M s = {Vs, Fs} (of some
chosen subdivision level s) has minimal distance to the target body mesh M b = {Vb, Fb}.
To do this, we first compute for each sample point vb

k ∈ Vb the closest vertex point
vs

k ∈ Vs of the subdivided mesh M s. Please note that two different points vb
j �= vb

k may
share the same closest vertex vs

j = vs
k. As a distance metric we use a linear blend of the

point-to-point distance and the tangential distance, which is the distance from to the
tangent plane of the closest point. The reasoning for this is that we would like regions of
the surface to still be able to move tangentially once they are close enough to the target
body.
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Our aim is to find the control mesh vertices v∗ ∈ V∗ that minimize

Esds =
�

k

(1 − τ)ρk
vb
k − vs

k
2 + τρk
(vb
k − vs

k)ns
k
2+�

j

σ
L(v∗
j )
2 + γj
v∗

j − v0
j 
2,

with the first two terms being the point-to-point and tangential distances, the third
being a smoothing term, and the last term being a penalty that prevents select control
vertices from moving too far. The value ρk is the importance of the vertex vb

k based on
the computed reaction forces and is given by

ρk = 
rk

maxi 
ri
 .

ns
k is the normal vector at vs

k. The parameter τ blends between the two distance
metrics and is initialized as 0 and is increased with each iteration step, up to a user
defined maximum τmax ≤ 1. The operator L(·) is the discrete cotangents Laplace-Beltrami
operator [BKP+10] and serves as a smoothing term, regulated using the weight parameter
σ. The effect of this smoothing term is demonstrated in Figure 3.7. Furthermore, to give
the user a control over the look of the resulting design, we can soft-constrain any control
mesh vertices v∗

j ∈ V∗ to their initial locations using the weight parameter γj .

To prevent the surface from intersecting with the target body, we use the following
intersection constraint: For every previously found point vs

k ∈ Vs on the surface we search
for the closest point v̂b

k ∈ Vb on the target body. Then the constraint (vs
k − v̂b

k)n̂b
k ≥ 0

ensures that the point vs stays of the positive side of the tangent plane of v̂b
k with normal

vector n̂b
k.

Minimizing the energy Esds leads to a non-linear system of equations since the point vs
k

on the surface closest to vb
k on the body changes as the surface deforms. We instead

linearize this problem and solve the resulting linear system of equations iteratively:

min
V∗ 
 AV∗ − b 
2

s. t. CV∗ ≤ 0
(3.1)

with A and b containing the terms of the energy Esds and C containing the non-
penetration constraints. For a more detailed description of these terms, please refer to
Appendix A.1.

To summarize, we perform algorithm 3.1 iteratively until the solution does not improve
any more.

3.5 Pose Relaxation
A further step we introduce for the convenience of the designer is pose relaxation. It allows
to register the given pose to a given surface and also to further relax it in order to better
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Algorithm 3.1: Surface Fitting
1 for i ≤ imax do
2 Subdivide M0

i to compute M s
i and its normals Ns

i .
3 Find the closest vertices vs

k ∈ Vs
i for each sample point vb

k ∈ Vb.
4 Solve the linear system in Eq. 3.1 to compute V0

i+1.
5 end

adapt to the surface. Since our input meshes come from a Blender plugin [Bas18] and
are rigged to a skeleton, we can also use this skeleton to perform inverse kinematics [Bus04]
on the pose and propagate the deformation of the skeleton to the surface mesh using
linear blend skinning [MTLT89, BP07].

Our goal is to minimize the distance between parts of the pose that need support and
the corresponding regions on the computed surface while at the same time avoiding
penetrations between the pose and the surface. Further, we do not want the pose to
change significantly and therefore also want to penalize large changes of joint angles.

Thus, we parametrize the rigged pose by the joint angles θ of the skeleton, and we cast
the problem as an optimization task

min
θ

λdp

   Edp

   2

2
+ λdt

   Edt

   2

2
+ λp 
 Ep 
2

2 + λs 
 Es 
2
2 ,

where Edp , Edt , Ep and Es are vectorial energy terms for the point-to-point and point-
to-tangent-plane distance between pose and surface, the penetration between the pose
and the surface, and the similarity between the input θ0 and the output θ joint angle
vector respectively.

The terms Edp , Edt and Ep are not evaluated on the whole body mesh but only on a
subset of vertices that belong to regions that need support. Therefore, we start the inverse
kinematics procedure with an evaluation of the reaction forces that are needed for an
optimal support of the pose (cf. Section 3.3) and denote the subset of m supportable body
vertices with Vb and the magnitude of the reaction force for each vb

i ∈ Vb with 
 ri 
 = ri.
The subset of corresponding surface vertices Vs is identified by a nearest neighbor search.
For the evaluation of the point-to-tangent-plane distance Edt , we additionally compute
the tangent planes at all vs

i ∈ Vs which are defined by the surface normals Ns and the
distance values Ds such that ns

i · vs
i − ds

i = 0.

In detail, we define the energy terms as

E
dp

i (θ) = ri

   vb
i(θ) − vs

i

   ,

Edt
i (θ) = ri

�
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i · vb
i(θ) − ds
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i (θ) = ri
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i(θ) − ds
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,
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(a) Input Surface (b) Input Pose (c) Relaxed Pose

Figure 3.5: Pose relaxation using inverse kinematics. The designer can further relax
the input poses in order to let them to adapt to the current surface (please refer to
Section 3.5)

and
Es(θ) = θ − θ0.

The arctan (·) function in Ep
i is used as a differentiable discrimination between penetration

(values close to 1) and no penetration (values close to 0) of body and surface. We usually
set the parameter a = 1000 to limit the transition area between penetration and no
penetration and b = 10 to shift the inflection point of the function slightly into the
penetrated area. We usually set the values λdp , λdt , λp, and λs to 0.2, 0.2, 0.5 and 0.1
respectively.

For an efficient optimization procedure we additionally compute the Jacobian matrices
Jdp , Jdt , Jp, and Js analytically, which we explain in Appendix A.2. Further we solve
the non-linear optimization problem as proposed by [Bus04].

Figure 3.5 shows a result of pose relaxation performed on a given pose and a seat model.
Please note that in this case the arms of the pose are relaxed to lean on the surface which
allows to further explore the design with a new pose.

Note that it is possible for physically implausible poses to occur when the input pose is
very different from the optimal pose. To prevent such poses, we use empirically chosen
box constraints for the joint angle vector θ.

3.6 Design Process and Results
In this section we describe the design process of examples we have created in collaboration
with design students.
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Figure 3.6: Design process. Left: recording of poses using a motion capture device.
Center: interactive design using Rhinoceros and Grasshopper. Right: Grasshopper
canvas.

3.6.1 Design Process
For the design process, we either allow the user to create own poses from a rigged mesh,
or to import captured poses from a motion capture system. For our experiments, we
created a database of 62 poses, which were captured by a Perception Neuron [Neu18]
device. In this process, Styrofoam pieces of varying geometries were used as supports to
make it easier to adopt different poses (cf. Fig. 3.6).

In the next step, we use the 3d-modeling software Rhinoceros in combination with
a custom Grasshopper-plugin to design the surface (cf. 3.6, right). A this point, the
designer can use the following operations to further control the process:

• Create a Catmull-Clark control mesh of an initial design or use a geometric primitive
as starting point (e.g., flat surface).

• Fix selected vertices of the control polygon.

• Import poses from the database or create own poses.

• Place poses at desired location and orientations with respect to the initial design.

• Choose which body parts should be supported for each particular pose (torso, legs,
arms, head, or their mutual combinations).

It is furthermore possible for the placed poses to overlap (like the design shown in
Figure 3.1), although it is necessary to manually align them such that all of them can be
supported well. Using these operations, the designer can create a scenario of the desired
sitting landscape and let our solver create a new control mesh.

Having the new control mesh, further interactive editing steps are possible:

• Edit the control mesh by moving or fixing vertices or splitting the faces.

• Edit the scenario by moving, adding, or removing the poses.
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• Relax the poses using inverse kinematics.

After each editing step (or a series of steps), our solver can generate a new control mesh
and the final subdivision surface. The running times depend on the resolution of the
control mesh, number of subdivision levels, and the number of poses, and are in practice
in the range of one to several seconds.

3.6.2 Designer Response

We have asked 5 design students to test our modeling paradigm. Each student spent
between 2-3 hours working with the tool and was asked to create a sitting scenario of her
choice. The results of these sessions are depicted in Figures 3.9 and 3.10.

After the session, we asked the participants the following questions, which could be
answered with four answers: poor (1) , neutral (2), good (3), and very good (4).

1. How do you judge the general suitability of the system?

2. How do you judge the possibilities to control the outcome?

3. How do you judge the workflow simplification given by the tool?

4. How intuitive is the process?

5. How do you judge the quality of the achieved results?

6. Would you like to use the tool for your own project?

Q P1 P2 P3 P4 P5 mean median
1. 3 4 4 3 4 3.6 4
2. 2 3 3 2 3 2.6 3
3. 2 4 3 4 4 3.4 4
4. 3 4 2 3 2 2.8 3
5. 1 4 2 2 3 2.4 2
6. 2 3 4 2 4 3.0 3

Table 3.1: Results of the questionnaire given to the design students after using our system.
Please refer to Section 3.6.2 for the particular questions.

The results shown in Table 3.1 allow to conclude that the method has been positively
received in general. Please note the probands had only 2-3 hours for experimentation,
which is truly a short period of time for creation of a design with a novel and unfamiliar
tool.
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(a) Control mesh
and

standard
CC-SDS

(b) Ours
(σ = 0.1)

(c) Ours
(σ = 0.5)

(d) Ours
(σ = 1.0)

(e) Ours
(σ = 2.0)

Figure 3.7: Variations using the control mesh shown in Fig. 3.7a created with varying
values of the smoothing parameter σ which weighs the Laplacian operator. Using this
parameter the designer can balance between the importance of the input body map and
smoothness of the surface. Top row: arms of the input body have not been considered to
be supported. Middle row: arms are supported. Bottom: contact area and pressure on
the seat. Refer to Section 3.4 for more details.

3.7 Implementation and Fabrication

3.7.1 Implementation
Our algorithms are implemented in Matlab using its optimization routines lsqlin
for surface fitting (interior-point) and lsqnonlin (trust region reflective) for inverse
kinematics. For the processing of the pose data obtained from the Perception Neuron
motion capturing software, we use the mocap library [Law18]. We also make use of the
geometry processing utilities provided by the gptoolbox library [JO16]. As a front-end
we use the 3d-modeling software Rhinoceros with the node-based algorithmic modeling
extension Grasshopper. We developed our own Grasshopper components that take
input data from Rhinoceros and feed it to a running Matlab instance for use with our
algorithms. The result then gets passed back to Rhinoceros, enabling an interactive
design process.
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(a) Optimized
chair

(b) Thin person
on chair

(c) Contact area
and pressure of

thin person

(d) Overweight
person

on chair

(e) Contact area
and pressure of

overweight
person

Figure 3.8: Chair optimized for 2 persons with different body types. Top: optimized for
thin person. Bottom: optimized for overweight person.

3.7.2 Fabrication
As a result we have designed a multipurpose surface for three sitting poses (overlapping)
and three standing poses (cf. Figure 3.1). The entire design process took about 6h, where
the pose-capture session took about 3h and the following digital design and tuning session
with Rhino took another 3h. The by far longest time was needed for the fabrication,
where the preprocessing, preparation, and final milling time took about 4 days. For the
milling from Styrofoam we have used the software SprutCAM 10 for the computation
of the milling tool paths and a Kuka KR60 HA industrial robot arm for milling.

3.8 Discussion and Conclusion

3.8.1 Discussion
Our method does have a number of limitations. The major limitation is that we assume
that the body surface is rigid, which is not the case in practice. However, without this
assumption the computation of the pressure map would result in complex non-linear
computation, which would be too complex for this kind of application. We think that
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(a) Design 1.1 (b) Design 1.2 (c) Design 1.3

(d) Design 2
(e) Design 3 (f) Design 4

Figure 3.9: Several results created by design students using our method. The top row
shows three design variations using the same input poses achieved by fixing different
control vertices oder changing design parameters. Please refer to Section 5.4 for more
details.

treating the input poses as articulated bodies consisting of rigid body segments connected
by joints can lead to a more accurate pressure distribution, while still maintaining the
interactivity of the design tool. This approach can be useful for applications that do have
less strict requirements for low computation times, as we will discuss in Chapter 4, but
for our application, the increased complexity outweighs the benefits as we are already
able to generate interesting designs that are well optimized for the given input poses.

For the surface fitting, the assumption of rigidity of the body also poses a limitation, as
the actual human body deforms when in contact with a surface. We account for this
softness of the body by allowing a certain margin (about 3cm) for the connection between
the body and the surface. While we use a type of collision detection (cf. Section 3.4), it
still can happen that the body penetrates the surface if the resolution of the subdivision is
lower than of the body (e.g., finger or toes). This, however, does not diminish the results.
For inverse kinematics, we resolve it by using an arctan(·) function as a differentiable
step-function in order to distinguish between penetration or not.

In the case of the multipurpose surface, the major technical limitation is that a small
control mesh patch does not provide enough degrees of freedom in order to account
for all poses. This can be approached with a higher resolution control patch, however,
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(a) Design 5

(b) Design 6

Figure 3.10: Two additional designs of sitting landscapes for multiple persons.

this solution also has limitations and makes the design process more difficult. In the
future, it would be interesting to provide a patch per pose and allow for stitching of
several patches under maintenance of certain continuity (e.g., C1), like proposed by
Peters [Pet00]. Further, the incorporation of sharp edges and creases would be interesting
as well. Finally, adaptive subdivision to improve fitting in areas where more freedom is
needed could also be approached.

Finally, there is also a question of the body size and stature. While we use an average
body for all of our designs, the designer is free to use different body types which can be
easily created using the plugin of Bastioni [Bas18]. To optimize for various body types,
it is possible to use multiple overlapping bodies as input to the surface fitting algorithm,
but in order to make the optimized surface as comfortable as possible for all used body
types, the body shapes need to be aligned manually. Another option would be to increase
the smoothing operator σ in order to make the surface smoother, but at the same time
less customized.

We examine how the results of the surface fitting can be influenced by the weight of the
smoothing parameter σ. Figure 3.7 shows a number of designs generated from a simple
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Figure 3.11: A series of designs using asymmetric input poses created with the control
mesh shown in Fig 3.7a.

chair input mesh optimized for the sitting pose shown in Figure 3.5b. A small value for
the smoothing parameter σ leads to a design that better supports the input pose, but
could possibly lead to overfitting to the input body, making the design less comfortable
for other body types.

Figure 3.8 shows how different body types influence the result of the optimized surface.
As input we use the same chair mesh and pose as in Figure 3.5b, but with 2 different
body types. The two optimized chairs shown on the left (Fig. 3.8a) may seem very similar
at a glance, but greatly differ in how comfortable they are for persons of various body
types. The top chair is optimized for a person with a thin build, while the bottom chair
is optimized for an overweight person. We use our pose relaxation algorithm to see how
a person of a certain body type fit into a chair optimized for the other body type. As
can be seen in Fig. 3.8b and 3.8c, the thin person has no problem sitting on either chair.
However, Fig. 3.8d shows that the overweight person needs to push the thighs together
to fit into the chair optimized for the other person, and even then a large area of the
buttocks does not have any contact with the seat, which can be seen in Fig. 3.8e.

3.8.2 Conclusions and Future Work
In this chapter we have proposed a method for interactive design of body-supporting
surfaces that is driven by the pose of the human body as well as the pressure distribution
on the body’s surface. Our method is intended to help designers create appropriate
surfaces digitally without additional empirical design passes on the one hand, and to
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ensure physical plausibility on the other hand. Further, it aims at interactive rates in
the range of a few seconds.

Our main contribution is an interactive modeling system that utilizes captured body
poses and computes an importance field that is proportional to the pressure distribution
on the body for a given pose. This distribution indicates where the body should be
supported in order to easily hold a particular pose, which is one of the measures of
comfortable sitting.

We tested our system with design students and presented a number of results from these
sessions. We also demonstrated a fabricated result. In the future, our method could serve
as a basis for interactive design of various interesting furniture, for instance inflatable
furniture, bean bags, as well as design furniture in general.
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CHAPTER 4
Automated Design of Seating

Furniture

4.1 Introduction
In the modern life an increasing amount of time is spent in a seated position. The
design of comfortable seating surfaces is an essential task in furniture design to ensure
a person’s well being. The optimal design of furniture in work environments has been
well researched, especially in the area of ergonomics, where the general procedure is the
application of design guidelines in the furniture design process. However, as most of
these guidelines are restricted to specific environments, such as an office workplace, these
insights cannot be applied to sitting in general. Therefore, specific situations require
specialized solutions.

As form follows function, the design of furniture is greatly influenced by its intended use.
For example, seating furniture designed for reading a book in a park requires a different
form than furniture intended for watching a screen in a movie theater. The central task
is therefore to find an optimal fit between a person in a specific situation and the seating
surface.

However, there exists a trade off between general usability and individualization. On the
two extremes of this spectrum one may find a simple flat board that anyone can sit on
and the seat of a race car cockpit that is custom made to perfectly fit the driver. While
the former is significantly lacking in comfort, it is easy to mass produce and a general
solution that works for any individual. The latter may provide optimal comfort to its
intended user, but the level of comfort is reduced significantly when used by someone
else, making it unsuitable for mass production. Because of this, commercial furniture
is usually designed with general usability and mass production in mind, offering less
comfort for the individual. Our design approach based on poses and body types aims
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Figure 4.1: Left: seating surface generated by our automated algorithm and suited to
support the input pose . Right: the surface fitting algorithm described in Chapter 3
applied to the generated surface.

for increased individualization compared to commercial furniture while still maintaining
general usability.

Providing seating surfaces for arbitrary seating poses is a difficult task and often requires
substantial manual design effort to guide the computational design process. Our primary
motivation for this chapter is to provide a furniture design solution capable of supporting
a person in a specified sitting pose, while eliminating most manual design effort.

Furthermore, for optimal seating solutions, knowledge about a person’s comfort is
required. As human bodies exist in a variety of shapes and sizes, comfort is a subjective
quantity. The most reliable way to determine the comfort of a seating surface is subjective
evaluation, after producing a physical prototype. As this method is infeasible for most
digital design frameworks, an objective definition of comfort is required.

The central goal of this chapter is to propose a solution for computational pose-inspired
furniture design. Therefore we develop a software framework with the goal of automated
generation of seating surface models for specific applications.

In order to create seating surfaces for specific situations, we aim to utilize human body
shapes and sitting poses as input for the furniture design process. With the development
of the design framework we aim to fulfill three major goals: (i) The created models must
provide a high level of comfort for a person in a specific pose. The primary objective is
to create a seating surface which optimally supports a given body shape for a specific
pose. (ii) The proposed framework must have the ability to support a large variety of
different sitting poses as well as body shapes. While a single created model is made for a
specific body shape and pose, the algorithm must be capable of processing a large variety
of sitting poses and human body shapes. (iii) We aim to achieve a high level of visual
quality and create furniture models that are aesthetically pleasing.

In order to design a framework that fulfills these goals, we propose a fully automatic pose
driven design approach. Our method is meant for computer-aided design of personalized
furniture that can be used by inexperienced users to quickly create unique designs or by
professionals for creating initial designs that can be modified and enhanced in further
steps of the design process.
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Our contributions are therefore the following:

• We propose a novel computational model for the approximation of the comfort of
sitting in a given pose, based on both pressure distribution of the body on the seat
and on the moments (torques) acting on the limbs of the body. Our model is driven
by physical assumptions and extends previously proposed models. Nonetheless, it
is simplified to a system of linear equations in order to account for interactive rates.
Details of this model are described in Sec. 4.2.

• Moreover, we propose a generic furniture model which delivers a control mesh which
can be used for further refinement, e.g., using subdivision surfaces. Our model is
capable of supporting a large variety of poses and body shapes, while fulfilling the
functional and visual requirements. Our template seating mesh can automatically
support individual parts of a person’s body.

In the following section we review related work, and in Section 5.4 we present and compare
our results. Finally, we discuss and conclude the work in Sections 4.5.1 and 4.5.2.

4.2 Computational Model of Sitting
In this section we propose our simplified physical model of sitting for the computation
of pressure distribution, the moments (torques) acting on the joints as well as friction
forces acting on the body. This pressure distribution is used as an importance map in the
furniture synthesis stage (see Section 4.3) to indicate where the human body needs to be
supported. In Chapter 3 we proposed a similar simplified computation model, however,
this extended method has three advantages:

1. Our extended model consists of individual body segments instead of a single rigid
body, allowing us to consider a more realistic distribution of body mass, as well as
the moments acting on the joints which are caused by the transfer of forces between
body segments.

2. Using this model, we can also compute friction forces which are not available in
the simple approach.

3. Finally, our extended algorithm yields physical pressure values instead of only a
relative distribution, which we show to be in realistic range by comparing to FEM
simulation.

4.2.1 Human Body Model
We propose a novel human body model that combines a skeleton with a surface that
allows us to compute the moments acting on the joints and the pressure distribution on
the surface of the body.
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Joint j
Segment b
Center of mass (COM)

g1 g2 g3

a1

m1 = a1 x g1

Figure 4.2: Left: a moment m1 as a cross product of the moment arm a1 and the force
g1. Body segments have anatomical values (e.g., g1) assigned from [PEA83]. Middle: a
link-segment-skeleton with 21 segments and a polygonal surface mesh. Right: The mesh
is rigged using linear blend skinning [MTLT89].

Skeleton Model

The skeleton is modeled using a link-segment-model with 21 segments as depicted in
Figure 4.2. Such a model consists of segments that represent parts of the human body
which are connected by joints that allow movement of the segments with varying rotational
degrees of freedom. Each segment has its own mass concentrated at the center of mass
(COM) and can be influenced by external forces such as gravity or contact with other
surfaces. The mass and the locations of the center of mass of each segment are based on
the data by Plagenhoef et al. [PEA83], which were determined empirically on experiments
with human cadavers.

The joints themselves are assumed to have no mass and also to not be affected by external
forces. They can, however, transfer forces and moments from one segment to another.
We model this as two opposing forces (or moments) acting on the joint, one for each
segment linked by the joint (cf. Fig. 4.4 for detailed depiction).

Segment-link-models are commonly used in biomechanics to examine the moments acting
at joints during certain actions or movements [Hal95, RCH+04]. Since we use the same
data set of poses utilized in Chapter 3, which was created using the Perception Neuron
motion capturing system [Neu18], our segment-link model contains 21 segments. Please
refer to Figures 4.2 and 4.4 for a depiction.
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f1t m1

m2

f2n
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Figure 4.3: Physics of sitting: if contact with a support surface is given on the buttocks,
back, and feet, the moments of the body are minimized and the forces are in equilibrium.
If the contact on the feet is lost, the contact to the back is lost automatically due to the
missing friction force on the feet.

Skinning

We register the skeleton with a human body model given by a triangle mesh. For the
generation of body meshes we have used the software provided by Bastioni [Bas18] which
allows the generation of human bodies with varying parameters, like gender, mass, size,
stature, etc. We rig the mesh with the skeleton using linear blend skinning [MTLT89], in
particular all vertices are defined by their weighted linear combinations:

v =
�

b

αb,vTbv0 ,

where v0 are the initial and v are the new vertex positions respective, αb,v are the weights
which associate the vertex v to the segment b, and Tb are the transformations of the
assigned segments b. We use the algorithm of [BP07] implemented in Blender.

We further use the weights of the skinning to propagate forces from the segments to the
surface vertices and vice versa (cf. Figure 4.2 and Figure 4.4).

Friction Model

In the mechanics of sitting, friction plays an important role. Consider the example shown
in Figure 4.3, left, where a body has three contact points: on the buttocks, the back,
and the feet. The tangential reaction force f1t that is supporting the back is dependent
on the normal force f1n at the same location. This normal force can only exist due to
an opposing force f2t existing at the feet since all forces must sum to zero to maintain
equilibrium. Therefore, if we lose the contact of the feet to the ground (e.g., by lifting the
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legs), the force f2t disappears and we also lose contact on the back and the reaction forces
acting there unless an additional force is introduced, for example by pressing the thighs
against the seat which requires significantly more muscle activity. In consequence, the
back is no longer supported and the overall contact area becomes much smaller, resulting
in a higher force (f3) on the remaining contact points. Additionally, higher moments (m1,
m2) act on the joints, requiring more muscle forces to maintain the pose (cf. Figure 4.3,
center).

We use the Coulomb model in which the frictional component of a reaction force depends
only linearly on the normal component of the reaction force (refer to Figure 4.4 and to
Eq. 4.1 later on). We choose this simplified model, since due to our assumptions, the by
far biggest force is the gravity which implies that forces in any other direction tend to be
much smaller.

4.2.2 Reaction Forces
Our goal is now to find a physically plausible distribution of reaction forces that supports
the human body with as little need to use additional muscle forces to maintain its current
pose as possible. Usually, such distribution would be found using a sophisticated finite
elements simulation which is very time consuming.

Since our goal is to achieve interactive rates, we propose a model where we assume the
human composed of rigid segments combined by joints, where the surface vertices are
related to the segments of the bodies surface by linear combinations. This allows us to
formulate it as a Pareto-optimization problem where we balance the minimization of the
moments acting in the body with the uniformity of the distribution of the reaction forces.

In this section we first describe how we estimate the friction and normal forces on each
vertex of the surface, and further we describe the details of the linear optimization
problem. Finally, we compare our results to a rigid-body FEM simulation in order to
validate our results.

Local Reaction Weights

In order to compute the optimal reaction forces for the entire system, we first introduce
the local reaction and friction force model, which we utilize for the derivation of local
reaction weights. In essence, we compute the maximum reaction forces that can occur if
a local force f = (0, −1, 0)T acts on an isolated vertex. We first split f into its normal
component fn along the surface normal and its tangential components ft1 and ft2 . Making
use of the well-known friction pyramid of the Coulomb model [Pop10], we have

rn = −fn, rt1 = − ft1


 ft1 
 min (||ft1 ||, µ||fn||) , (4.1)

and rt2 defined analogically, with the friction coefficient µ ≥ 0. The total reaction force
is then r = rn + rt1 + rt2 (cf. Figure 4.4, left box).
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In other words, the magnitude of the friction force must be smaller or equal to the
magnitude of the normal force multiplied with the friction coefficient µ, which depends
mainly on the roughness of the surface material, hence, in our experiment we use µ = 0.5
which is a common default value if the material is not known.

Since the distribution of the reaction forces on the body depends on the overall forces
acting on the system, which are not known in advance, looking only at each vertex
individually is not sufficient. But we can use this information to introduce a weight
vector w = (wn, wt1 , wt2)T per vertex with

wn = 1

 r 
 , wt1 = 1


 rn + rt1 
 , wt2 = 1

 rn + rt2 
 , (4.2)

which serves us later to indicate the actual contribution of each individual reaction force
to their global distribution during the optimization (cf. Eq. 4.8).

Computation of Reaction Forces

Please refer to Figure 4.4 for a depiction of the components.

First, we compose the vector x of unknowns of the following physical entities:

• fb,j . . . the forces acting on the joints j in each body segment b. There are 2
such forces per body segment, except for the hands, feet, and head since they are
connected to only 1 joint,

• mb,j . . . the moments acting on the joints j in each body segment b. Again there
are 2 such moments per body segment, except for the hands, feet, and head since
they are connected to only 1 joint,

• rv . . . the reaction forces acting at each body vertex v, caused by contact with an
external surface.

The vector of unknowns x is the 3(nF + nM + nR) column vector

x =

 fb,j

mb,j

rv

 ,

where nF , nM, nR denote the cardinality of the sets for joint forces F , moments M, and
reaction forces R respective.

Our main constraint is that the human body must be in static equilibrium, meaning that
it must be physically able to maintain its current pose through contact forces, friction,
and acting moments (i.e., muscle strength), so that there is no translational or rotational
movement of any segment. According to the equations of motion [GPS02], a body is
in equilibrium if the sum of all acting forces and moments sum to 0. Applied to our
link-segment-model, this includes the following forces:
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Figure 4.4: Computational human body model. Left: simplified friction model, right:
free-body diagram of the skeleton model. Please refer to Section 4.2.2 for the details.

• gb . . . the gravity acting on the center of mass (COM) of the body segment b,

• rv . . . the reaction forces at each vertex of the body segment caused by contact
with an external surface,

• fb,j . . . the forces caused by other body segments transmitted through the joints j,

and the following moments:

• ab,j × fb,j . . . the moments acting on the COM of body segment b caused by the
forces from other body segments transmitted through joint j, with the moment
arm ab,j being the vector pointing from the COM to joint j.

• ab,r × rv . . . the moment acting on the COM of body segment b caused by the
reaction force through contact with an external surface, with the moment arm ab,r

being the vector pointing from the COM to the contact point.

• mb,j . . . the moments caused by other body segments transmitted through the joints
j.

Please note that reaction forces rv at the vertices v are connected to the body segments
b by the linear blend skinning weights αb,v. This leads to the following constraints for
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Figure 4.5: Comparison to the FEM (cf. Section 4.2.2). Left: results of a lying T-pose.
Right: a sitting pose. Please note that we plot the pressure and shear distributions of
the sitting pose on a T-pose mesh for better visualization purpose.

each body part b: �
j∈Jb

fb,j +
�

v∈Vb

(αb,vrv) − gb = 0, (4.3)

�
j∈Jb

ab,j × fb,j +
�

v∈Vb

ab,r × (αb,vrv) + mb,j = 0, (4.4)

with Jb being the set of joints connected to body segment b and Vb being the set of
vertices of body segment b. Naturally, the sum of forces, as well as the sum of moments,
acting on a joint must also equal 0, i.e.:�

b∈Bj

fb,j = 0 and
�
b∈Bj

mb,j = 0, (4.5)

with Bj being the set of body segments connected to joint j.

These constraints can be formulated as a system of linear equations Cx = z. The matrix
C is a (6nB + 6nJ ) × 3(nF + nM + nR) matrix—6 rows for each body segment and each
joint (3 for the forces and 3 for the moments), as well as 3 columns for each unknown
force, moment, and reaction force in a body segment.

To ensure that the resulting reaction forces do not point out of the body (which would
be physically equivalent to gluing the body to a surface), we also require inequality
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constraints
− ry ≤ 0 , (4.6)

with y being the up-direction of the global coordinate system.

Finally, since the weights computed in Eq. 4.2 are used in the objective function and are
therefore soft-constraints, we additionally restrict the magnitudes of the friction forces
based on the normal force with hard constraints.

To do so, we consider the reaction force vector r̄ in the tangent space of vertex v, with
the first coordinate being the normal force and the second and third components being
the friction forces, and limit the magnitude of the latter in relation to the normal force
using

r̄y ≤ µ r̄x and r̄z ≤ µ r̄x . (4.7)

We denote the matrix containing these inequality constraints as D.

We can now formulate the objective function as

Epres =
nM�
i=1


 mi 
2 + λ
nV�
i=1

1
Ai


 wi ◦ r̄i 
2 , (4.8)

where ◦ denotes the Schur-product, wi are the reaction weights (cf. Eq. 4.2) and r̄ is
the reaction force at the vertex vi in its tangent space. Note, that we need to divide the
reaction force by the (Voronoi) area Ai of each vertex since we want the forces to be
distributed equally over the surface regardless of mesh resolution.

Minimization of the function in Eq. 4.8 with constraints in Eq. 4.3, 4.4, 4.5, 4.6, and 4.7
leads to a system of linear equations with equality and inequality constraints, which we
formulate in matrix form as

min
x


 Ax 
2

s. t. Cx = z
Dx ≤ 0

,

and solve it using Matlab’s lsqlin function. The details of how the matrices A, C,
and D are constructed can be found in Appendix A.3.

The free parameter we introduce in Eq. 4.8 is the value of λ. Intuitively, it is a weight
which allows to balance between the terms which minimize the moments in the body and
which distribute the reaction forces on the surface.

Physically, we can interpret this parameter as the ’stiffness’ of the joints. If it is 0, no
muscle force can be expended to maintain the pose. If it is infinite, the entire human
body can be treated as completely rigid. Realistically, we cannot set the parameter
to 0 because we only have a finite number of reaction forces acting at predetermined
locations, making it either impossible to fulfill the equilibrium constraints or resulting in
a physically implausible solution for most poses. In empirical experiments, we determined
a default value of λ = 0.013, which we have further used in our applications.
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In order to actually compute the pressure distribution of a pose which is used as an
importance map in the next step of our approach, we need to know which vertices of
the body surface are in contact with the support surface. For this we proceed like in the
approach described in Chapter 3 and assume that the given body is supported everywhere,
meaning that we consider every vertex of the body surface to be in contact.

Comparison to Finite Elements Simulation

In order to evaluate our computational model, we compare it to a FEM simulation using
the professional physical simulation software Abaqus [Smi09]. We select 2 poses for this
purpose—a lying pose and a sitting pose. For each pose, we create 2 parts in Abaqus,
one being the body with the geometry of the original mesh, the other being a shell
generated from the original geometry which serves as the contact surface. To create this
shell, we first include all mesh faces whose normal is not perpendicular or opposite of the
gravity direction, and then manually reduce this set by deleting isolated faces or faces
where we do not want to support the body (e.g. under the armpits).

We create a volume mesh of the body using the Abaqus meshing algorithm such that
the body consists of roughly equally sized tetrahedrons. We use the same element size to
subdivide the shell such that the surfaces of body and shell are still perfectly aligned.
We assign both body and shell a Young’s Modulus of 2.1e + 18 and Poisson’s Ratio
of 0.3, thus making both parts close to rigid. The shell is completely locked in place
by boundary constraints, while the body is moved downward by forces totaling 735N
(roughly equivalent to a body weight of 75kg). The forces are applied per vertex (both
on the surface and the inside of the body), their distribution computed from the weight
of each body segment and the skinning weights that determine which vertex belongs to
which body part (for each inner vertex we simply copy the weights of the closest surface
vertex).

To model the contact between body and shell we use a linear pressure-overclosure
relationship with contact stiffness of 8e + 12. The tangential contact behavior is modeled
with an isotropic friction coefficient of µ = 0.5 and an elastic slip of 1e−10. We determined
these parameter values empirically, as other values would often result in unstable contact
conditions and a physically implausible pressure distribution with immense pressure
peaks at some isolated vertices and no contact at all at other vertices.

In our model, we select the set of vertices at which reaction forces are computed by
choosing those vertices of the body mesh that are also included in the corresponding
contact surface shell to make sure that the contact surface is the same in both methods.
We furthermore do not optimize for the joint moments (λ = ∞), which is equivalent to
making the body completely rigid, as is also the case in the Abaqus simulation.

For the lying pose, the Abaqus simulation took a total of 32 minutes and 5 seconds
(18 minutes and 12 seconds for preprocessing and 13 minutes and 53 seconds for actual
simulation), while our system takes 1.6 seconds on average. For the sitting pose, the
Abaqus simulation took a total of 141 minutes and 50 seconds (78 minutes and 8 seconds
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Figure 4.6: Body part mapping in the advanced template model. The rows of the model
are mapped to individual body parts. Within a row, the segment in each column is
mapped to a subset of the corresponding body vertices. The leg segments are mapped
independently to the corresponding body parts.

for preprocessing and 63 minutes and 42 seconds for actual simulation), while our system
takes 1.5 seconds on average. The results of both methods can be compared in Figure 4.5.
Note that we use the same color scale for the visualization of the results of both methods,
but different scales for the pressure and shear values.

4.3 Furniture Synthesis
The general goal of this stage is to automatically create a control mesh for the seating
surface that closely fits a human body in a specific pose. The template model utilizes a
hierarchy of non-planar quads for this purpose, chosen for simplicity as well as suitability
for the task. As a secondary optimization goal, we aim to produce a visually pleasing
piece of furniture. Therefore, we impose rough guidelines on the geometric shape of the
seating surface regarding planarity and regularity ([LXW+11, ZSW10]).

4.3.1 Template Model

The general design concept for the template model is to find a suitable structure of
quadrilateral faces which can be fit to the human body in a specific pose according to
the comfort measures (represented by a supplied importance map) under the defined
constraints. For the proposed framework we decided on using a 3x7 grid of faces for the
main body shape, excluding the person’s arms and head, which are treated separately.
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Going forward, we refer to the faces along the height direction of the body as rows and
the faces along the width as columns.

Figure 4.6 shows the assignment of the template faces to each body part. The legs are
each mapped to an individual column of 3 faces (foot, shank and thigh), while each part
of the upper body (hips, lumbar, lower back, upper back) is mapped to a row of 3 faces.
A person’s arms are supported by additional faces which are added in a later stage in
the algorithm.

Since each pose is determined by a 66 parameter vector, the space of possible poses is vast.
This makes it impossible to support all possible poses using a template model with a
predefined topology. Problems arise when the projections of the supported body segments
onto the ground plane intersect. For a pose to be supported without special treatment,
we therefore require that the shortest line between any supported vertex and the ground
plane does not intersect the body geometry. Since this requirement significantly limits
the space of valid poses, we detect and handle a number of special cases: crossed legs,
upper body leaning forward and arms positioned above the body (see Section 4.3.1).

Surface Fitting and Mesh Generation

The process of fitting the model is as follows: For each face in the grid, a plane is fitted
to the shape of the respective body parts. The fitting algorithm utilizes the geometry
of a human body mesh transformed into specific sitting pose as well as its computed
importance map, indicating which vertices are most important to support to reach
optimal comfort. As our model consists of 21 free floating planes, hierarchical constraints
are introduced to the fitting process to prevent error cases and maintain the general
structure of the model.

The mesh generation stage consists of four steps. In the first step, we create the two 1x3
strips of faces that support each individual leg. These individual leg supports are then
connected by another 1x3 strip in the second step. In the third step, the middle 1x4 strip
of the upper body support is generated. Finally, we complete the mesh generation stage
by creating the two outer 1x4 strips supporting the upper body.

In the first and third step, we use the RANSAC [FB81] algorithm to find the plane that
best supports a given body segment while also satisfying the structural constraints of the
model hierarchy. A candidate plane is defined by randomly choosing 3 vertices of the body
segment with probabilities based on their importance. If the candidate plane intersects
with the vertices of an adjacent body segment, it is discarded outright. Otherwise we
define a local coordinate system on the candidate plane using the unit vectors nP , dup

and dside (Fig. 4.7, left). nP is simply the normal vector of the candidate plane. dup

is constructed by taking the direction dbody of the skeleton bone corresponding to the
given body segment and projecting it onto the plane. Finally, we have dside = dup × nP .
Additionally, we consider the direction dir of the line of intersection lir between the
candidate plane and the fitted plane of the previous row of the mesh template.
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Figure 4.7: Plane fitting and mesh generation process. Left: A plane is fitted to the
body segment marked in red. The vectors show the local coordinate system on the plane
consisting of plane normal vector nP , the projection of skeleton bone direction dbody onto
the plane dup and the vector dside which is orthogonal to both. Right: Template mesh
during the third step of the mesh generation process. Row and column intersection lines
lir and lic are shown in yellow and magenta respectively.

To evaluate the quality of the candidate plane, we introduce two penalties. The penalty

pr = 1 − min
� 4

π
·
!!!atan2

�   nP × nref
   ,

�
nP , nref

��!!! , 1
�

(4.9)

penalizes planes with a normal vector nP deviating from the reference vector nref which
is computed by applying PCA on the vertices of the given body segment. Furthermore,
for the upper body, the penalty

pd = 1 − 1
mα

min

!!!!!!arccos


�
dside, dir

�

dside

dir


!!!!!! , mα

 (4.10)

ensures that the direction of the line of intersection between adjacent rows of the template
dir conforms to the body geometry. Planes with an intersection direction that deviates
from dside by more than a chosen value mα are penalized (cf. Fig. 4.7, right).

The total quality of a plane is then given by

wP =
�

v∈VP

w(v)(1 − λr + prλr)(1 − λd + pdλd) (4.11)

with VP being the set of body segment vertices within a set distance of the plane, w(v)
being the importance of vertex v based on the pressure value, and the weights λr and λd

to set the influence of each penalty term.
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To create the actual mesh geometry, we first estimate the width of the faces for the
already fitted planes by taking a line with direction dup and offsetting it in the positive
and negative direction of dside by half (or in the case of the upper body less then half) the
width of the body segment to obtain the column intersection lines lic (cf. Fig. 4.7, right).
By intersecting the row and column intersection lines lir and lic, we obtain estimates for
the corner vertices of the current face. The final coordinates of the corner vertices are
obtained by averaging the positions of the estimated vertices of adjacent faces.

In the final step of the mesh generation process, the outer column faces of the template
are determined again via surface fitting while utilizing the inner column segments as hard
constraints, ie., the two vertices incident to both the inner face and outer face of the row
are fixed, so only one additional vertex is necessary to construct a plane. We iterate over
all relevant vertices of the body segment to find the plane with the best support, using
Eq. 4.10 as a quality measure. However, if the angle between the new row intersection
line and the previous row intersection line is too large, the face in the previous row
could degenerate into a triangle. In such cases we reject the plane. Once a suitable
plane has been found, the two inner vertices are then shifted along the corresponding
intersection lines by a set distance to create the remaining two vertices of the outer face.
The resulting geometry is a connected 3x7 grid of non-planar quadrilateral faces fitted to
the given body shape.

Special Case Handling

The proposed algorithm is capable of providing suitable solutions for basic sitting
poses, formally defined as poses where the shortest line between any supported vertex
on the body and the ground plane does not intersect the rest of the body geometry.
However, there exist some common sitting poses that do not fulfill this criteria, where
the orientations of body parts can cause errors and require additional measures. In this
stage, we empirically identify two primary cases that require special attention: Poses
where the person is leaning forward as well as poses where the person’s legs are in a
crossed position.

In the first case, the back cannot be actively supported by a chair’s backrest. This is
easily detected by evaluating the vertex weights on the corresponding body parts. If the
back does not need any support, no backrest is created.

To detect crossed legs, we evaluate the distance between the computed planes for the
outer columns of the respective rows. When the distance is under a defined minimal
value, we assume that it is not possible to support both legs individually and instead fit
a single plane for the combined vertices of both legs. Figure 4.8 shows an example of
a pose where one foot rests on top of the other, so the initial surface mesh needs to be
corrected.
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Figure 4.8: Error handling on a pose where one foot rests on top of the other. Left:
surface model generated without error handling showing intersections. Right: corrected
surface mesh.

Refinement Stage

In the final stage, we add armrests to the model if they are required and connect the
borders of the model to the ground. We start by constructing the armrests:

First, the algorithm starts by finding optimal planes supporting the person’s upper arms
and forearms. For this task, regular surface fitting is performed on the respective body
parts, using PCA and an unconstrained RANSAC variant. We then find the minimal
spanning rectangle on the computed plane that contains all relevant vertices that lie
within supporting distance of the plane.

The next step is the integration of the armrest into the mesh grid structure. This is only
possible if the armrest does not intersect the body and if it is sufficiently far away from
the mesh grid. If the requirements are met, two additional columns are added to the
mesh, one containing the armrest itself and another to connect the first column to the
geometry.

Finally, the mesh grid is expanded in each direction by two additional rows or columns
of quadrilateral faces. The outermost vertices of the resulting geometry are moved to
ground height and arranged to form a rectangle. In case the surface geometry contains
overhanging faces, invalid quadrilateral faces in the outermost columns of the model are
possible. To correct these issues, linear optimization is performed on the outer vertices
on each side of the model. This process rearranges the corresponding vertices so that
each outer column face is convex.

The left side of Figure 4.9 shows visual examples for intermediate results generated from
the advanced model after the refinement stage. The added border sections are lacking in
visual quality in regards to planarity and regularity. Therefore, we apply an additional
optimization step in which we aim to smooth the geometry and improve the planarity
and regularity of the faces, while keeping the functional aspects of the surface intact.
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Figure 4.9: Finalized seating surface results after the optimization process. Left: seating
surface before optimization. Center/Right: results after optimization .

4.3.2 Optimization
While the functional requirements of our furniture model are now satisfied to an adequate
degree, the visual quality can still be improved. For this task we apply a non-linear local
optimization process.

We formulate this as an energy minimization problem containing two terms. The first is
the data term, which is used to preserve the initial configuration as much as possible,
since it is the one that best satisfies the functional requirements. The second term is the
visual term, which describes the visual quality regarding the smoothness of the surface
as well as the regularity and planarity of its faces. The energy function is defined as

E = λS (SL + SA) + λD (DV + DP ) , (4.12)

where (SL + SA) is the visual term, (DV + DP ) is the data term and λS and λD are
global weights balancing the two terms.

The Laplacian error metric SL is computed as the sum of squared distances between the
vertex positions and the average position of their neighboring vertices:

SL =
nV�
i=1

       vi −

�
j∈N1(i)

vjwj�
j∈N1(i)

wj

       
2

λl
S (4.13)
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(a) Pose 1 (b) Pose 2

(c) Pose 3 (d) Pose 4

(e) Pose 5 (f) Pose 6

Figure 4.10: Results of our method. Left: control mesh generated with our method.
Center: the fitting algorithm described in Chapter 3 applied to our control mesh. Right:
the same fitting algorithm applied to a flat patch serving as the control mesh.

with N1(i) being the 1-ring neighborhood of vi, wj being the importance weight for vj

and λl
S being a global weight for the Laplacian error metric term.

The angle based smoothing term SA is defined as

SA =
nF�
j=1

�
 �

i∈Fj

αi − 2π
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j λA1
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 w2
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S

� (4.14)

with nF being the total number of faces, αi being the ith interior angle of the face Fj ,
w1

j and w2
j being term-specific importance weights for each face, and λA1

S and λA2
S being

global weights. The first part of the term penalizes non-regular faces, while the second
part aims to maximize each interior angle.

The vertex distance term DV is computed from the sum of squared distances between the
vertex positions of the current configuration and their corresponding original positions:

DV = λV
D

nv�
i=1


vi − ṽi
2 wi (4.15)

50



4.4. Results

with ṽi being the original position of vertex vi, wi being the importance weight of vi,
and λV

D being a global weight for the term.

Finally, the plane distance term DP utilizes the supporting planes that were computed
in the surface fitting stage of the algorithm. Each face in the current configuration is
compared to its supporting plane by computing the distance to the plane for each corner
vertex:

DP = λP
D

nF�
j=1

 �
i∈Fj

wi

�
vi − cP

j , nP
j

�2
 , (4.16)

where cP
j and nP

j are the center position and surface normal of the supporting plane for
face Fj , wi is the importance weight of vertex vi, and λP

D is a global weight for the term.

The vertex weights are chosen such that the data term is given more importance for
vertices belonging to faces that support a large area of the body, while other vertices
can be moved more freely to improve the visual term. We furthermore add 2 kinds of
hard constraints: first, we need to constrain the position of the border vertices to stay on
the edges of the rectangular base, and second, we define a minimal edge length between
vertices to prevent degeneration of the geometry.

To improve the performance of solving the optimization problem, we furthermore compute
the analytical gradient of the objective function. A detailed description of the gradient
can be found in Appendix A.4. To solve the problem, we use Matlab’s fmincon
function. A comparison of results from before and after the optimization can be seen in
Figure 4.9.

4.4 Results
We apply our surface generation algorithm to a number of different poses to create a
variety of body-supporting surfaces. We furthermore apply the surface fitting algorithm
described in Chapter 3 using our generated surfaces as the input for the control mesh
and compare the results to surfaces created using a flat patch as the control mesh, which
was sometimes used for the results shown in the previous chapter. The poses are also
selected from the same pose data set, which was recorded by having a design student
wearing a motion capturing suit find poses that were considered comfortable. Figure 4.13
shows the control meshes created with our method on the left, with the fitting algorithm
applied to it in the center, and finally the fitting algorithm applied to a flat patch on the
right.

One advantage of our method is that we can infer from the construction of our control
mesh which body parts should be supported or not. For example, if the creation of an
armrest is impossible, it is also unlikely that we can properly support the arm by applying
the fitting algorithm. We therefore do not try to fit the surface to the arm of the person.
On the other hand, when simply using a flat patch as the input, the algorithm will always
attempt to do so, unless additional user input specifically designates some body segments
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to not be supported. This often leads to very thin regions or even self-intersections of
the surface. But for our comparison, we choose to support the same body parts in both
methods and also use the same algorithm parameters.

As can be seen, using a control mesh that already serves as a suitable support for the
given pose improves the fit to the body when using the fitting algorithm, especially in
areas of the back and arms. The reason for this is because the fitting algorithm uses a
closest-point search as the basis for the assignment between surface and body. Therefore,
a flat patch will have less available area for regions on the body that are further away or
perpendicular to the ground plane like the back. This results in greater distortions of the
surface and a worse fit. Our surface control mesh generation alleviates this problem by
ensuring that each region on the body has a larger area of the surface in close proximity
to enable a better fit.

To quantify the advantages of our method, we apply our pressure computation method
on the poses shown in Figure 4.13 and 5.1, using only the subset of body vertices that
lie within a certain distance to the corresponding generated surface. The results can be
seen in Table 4.1. All of our generated surfaces result in lower values for the average
distance from the body vertices to the closest surface vertex, maximum joint moments,
average pressure and maximum pressure. The average joint moments are also lower in
all but 2 examples, which are the result of our algorithm optimizing for both moments
and pressure.

Although not all possible poses are supported by our surface generation algorithm (see
Section 4.5.1), we do support a wide variety of sitting poses, including special cases like
crossed legs and forward-leaning poses that do not require a backrest (left side of Figure
4.11). Also, while not treated in a special way, we can also support poses leaning back
while standing (right side of Figure 4.11).

The total computation time generally ranges from 20 to 30 seconds, with control mesh
generation taking between 7 and 12 seconds, visual optimization taking 12 to 14 seconds,
and application of the fitting algorithm taking 1 to 5 seconds.

4.5 Discussion and Conclusions
4.5.1 Limitations and Future Work
While the developed framework fulfills our goals to a satisfying degree, we acknowledge
a number of limitations and weaknesses. While the algorithm covers various difficult
special cases, there is a number of common sitting poses that are currently not supported.
Poses like sitting in a sideways orientation or having the feet tucked underneath the
body (see Figure 4.12), would require changing the fundamental structure of the surface
template to avoid intersections of the surface with the body or with itself and are thus not
supported by our algorithm. Improvements to the special case detection and processing
steps in the framework could increase the overall robustness of the algorithm and expand
the potential input set of poses.
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Figure 4.11: Forward-leaning poses and leaning back while standing are also supported
by our method.

Figure 4.12: Our method fails to generate a valid surface from unsupported poses like
lying on the side or placing the feet underneath the body.

Our algorithm can only be used to create a seating surface for a single person, based
on a static pose. If a surface that allows seating for multiple persons is desired, the
surfaces generated by our algorithm have to be manually edited. In the future, it would
be interesting to extend our approach to support the generation of surfaces for multiple
input poses simultaneously. This could also be used to define a range of possible input
poses to allow for optimization of the seating surface for non-static poses that include
possible movement while in a seated position.

Finally, the generic template only accounts for geometric consistency and functional
quality. However, since our computational model of sitting delivers physical quantities
which are close to reality, a fabrication-aware structural optimization of the furniture
could be considered. We leave this extension for future work.
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pose avg. dist. avg. moment max. moment avg. press. max. press.
P1 - S&R 6.42 cm 4.02 Nm 11.57 Nm 449.81 N/m2 3995.31 N/m2

P1 - ours 4.00 cm 4.23 Nm 11.47 Nm 433.85 N/m2 3598.34 N/m2

P2 - S&R 7.92 cm 4.08 Nm 10.79 Nm 454.52 N/m2 4356.73 N/m2

P2 - ours 4.09 cm 4.08 Nm 10.63 Nm 438.51 N/m2 3889.42 N/m2

P3 - S&R 9.96 cm 4.62 Nm 12.05 Nm 478.29 N/m2 4186.42 N/m2

P3 - ours 6.08 cm 3.06 Nm 9.17 Nm 458.53 N/m2 3390.74 N/m2

P4 - S&R 7.36 cm 3.87 Nm 10.84 Nm 454.52 N/m2 4208.46 N/m2

P4 - ours 4.15 cm 3.84 Nm 10.74 Nm 441.37 N/m2 3953.73 N/m2

P5 - S&R 9.19 cm 4.44 Nm 11.74 Nm 478.88 N/m2 4275.08 N/m2

P5 - ours 5.15 cm 2.73 Nm 8.76 Nm 451.05 N/m2 3739.16 N/m2

P6 - S&R 7.58 cm 4.23 Nm 12.88 Nm 455.13 N/m2 3833.27 N/m2

P6 - ours 4.10 cm 4.27 Nm 12.72 Nm 432.71 N/m2 3507.86 N/m2

P7 - S&R 6.60 cm 2.22 Nm 5.66 Nm 453.61 N/m2 3351.65 N/m2

P7 - ours 3.17 cm 2.07 Nm 4.89 Nm 422.26 N/m2 2654.30 N/m2

Table 4.1: Quantitative comparison between the results when using a flat patch as input
and our method for the poses shown in Figure 4.13 (P1-P6) and the pose shown in Figure
5.1 (P7). We measure the average distance from the body vertices to the closest surface
vertex, average and maximum joints moments, as well as average and maximum contact
pressure.

4.5.2 Conclusions
We presented an automated computational framework for the generation of functional
body supporting furniture that optimizes for comfortable seating in a given pose. As
a measure of comfort we combine two categories considered as objective: pressure
distribution and moments acting on the body. Additionally, we incorporated a friction
component and proposed a computational method that handles it in interactive time in
adequate accuracy as compared to sophisticated FEM methods.

Additionally, we proposed an algorithm for an automatic generation of generic template
meshes that utilizes the given comfort measure to optimally support the body. Our
method is meant for computer-aided design of personalized furniture, where it can be
used by professionals in order to create an initial design as well as by inexperienced
users. Such designs can be than used for fabrication with modern digital manufacturing
methods.
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4.5. Discussion and Conclusions

(a) Contact pressure mapped onto surfaces created by applying the fitting algorithm of Chapter 3
to our control mesh (top) or to a flat patch serving as the control mesh (bottom).

(b) Comparison of contact pressures using our control mesh (top) or using a flat patch as the
control mesh (bottom).

(c) Input contact pressure computed by assuming that the input body is perfectly supported.

Figure 4.13: Mapping of the contact pressure of Poses 1-6 onto their corresponding
generated surfaces. Each column corresponds to one pose. Red color indicates high
pressure values.
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4. Automated Design of Seating Furniture

Figure 4.14: Additional results generated using our algorithm. The surface in the bottom
row is created by manually editing and combining multiple control meshes.
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CHAPTER 5
Data-Driven Design of Indoor

Layouts

5.1 Introduction
Indoor spaces play a central role in our everyday lives. The synthesis and design of
indoor layouts (apartment layout, workplace layout) is a long-standing problem in several
disciplines, including graphics [MSL+11, FRS+12].
In this chapter, we address the problem of data-driven layout synthesis, which has recently
gained renewed interest in computer graphics due to the advent of a new generation
in generative machine learning [PKS+21, PGK+21]. However, despite recent progress,
interior layout synthesis is still challenging for machine learning methods. The problem
is twofold:
First, reliable training data is difficult to obtain. Designs need to be crafted manually by
professionals, making the process labor- and time-intensive and hence expensive.
Second, readily available datasets may have been created by non-experts and may contain
several issues like incorrect intersections, unrealistic placement, misplaced objects, etc.
(cf. Figure 5.2). However, high-quality indoor design requires expert knowledge because
good furniture arrangements are connected to several considerations like functionality,
usability, aesthetics, cost-effectiveness, and ergonomics. These may not all be reflected in
a dataset, which contains layouts that were most likely not created by interior design
experts.
We address these problems by using a Transformer-based generative model with additional
expert knowledge “injected” into the data-driven training process. Transformers are
generative models originally proposed for natural language processing that have proven
very successful in a wide range of domains [VSP+17]. Recently, several methods have
successfully used transformers for layout generation [PGK+21, WYN20, PKS+21].
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vl vguv

LAYOUT
ENHANCERExpert Knowledge

Synthesized LayoutsTraining Data: Imperfect Layouts

Figure 5.1: Our proposed LayoutEnhancer combines data-driven learning from potentially
imperfect data with expert knowledge. Generated layouts are biased to follow rules laid
out in the expert knowledge, effectively reducing the impact of data imperfections. See
Figure 5.2 for examples of imperfections that are avoided due to the inclusion of expert
knowledge.

In our approach, a layout S is defined as a sequence of discrete elements S := {F0, . . . , FN },
each represented with a fixed-length parameter vector. A traditional generative model
learns to generate new layouts according to a probability distribution p(S) that approxi-
mates the probability distribution of the dataset p(S) ≈ pdata(S).

We propose to inject additional information based on expert knowledge into the learning
process to obtain a learned distribution p�(S) that reflects both the dataset distribution
and the additional information. The expert knowledge biases the learned probability
distributions to emphasize or de-emphasize specific properties of the layouts. In Section 5.2
we derive a set ergonomic rules from expert literature [Kro17].

Figure 5.2: LayoutEnhancer can learn to improve issues found in imperfect data like
ergonomic issues (left room): (i) a window directly behind the TV causes glare on sunny
days, making it difficult to watch due to a big contrast in brightness. (ii) Insufficient
illumination for reading a book without a light source behind or beside the bed; and
geometric issues (right room): (i) desk is intersecting with the bed and the closet; (ii)
closet is covering the door.
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5.2. Ergonomic Costs

a) reach b) visibility c) lighting d) glare

uv vl vg

e) access

I

Figure 5.3: Ergonomic rules implemented in our system. We chose these guidelines as
they are essential in most indoor scenarios, like reading a book, watching TV, or working
at the desk or the computer. We convert the rules to scalar cost functions and evaluate
them using activities (cf. Section 5.2).

We integrate this information into the loss function of our transformer-based generative
model in two ways: (i) as weights of training samples and (ii) as additional loss that
assesses the quality of samples proposed during the training process. In the second case,
expert knowledge needs to be differentiable w.r.t. the predicted probabilities. We discuss
the details in Section 5.3.

In Section 5.4, we evaluate the proposed method and compare it to a recent data-driven
method that does not utilize expert knowledge [PKS+21]. We demonstrate that with
our approach we can improve the ergonomic quality of generated layouts, effectively
increasing the perceived realism compared to others.

In summary, the contributions presented in this chapter are three-fold:

• We introduce a differentiable ergonomic loss that can be used to assess the ergonomic
quality of interior layouts. We derive this loss from the expert knowledge in
ergonomics (Section 5.2).

• We integrate this differentiable loss into the training of a Transformer network
(Section 5.3).

• We empirically show that we can train a generative model with this loss that creates
samples with increased ergonomic quality and realism compared to the state of the
art (Section 5.4).

5.2 Ergonomic Costs
To derive a set of rules used to quantify an ergonomic quality of a design, we studied
the literature of ergonomic guidelines [Kro17]. As a result, we order the information in a
hierarchical manner, using the building blocks of activities, actions and ergonomic costs.

59



5. Data-Driven Design of Indoor Layouts

sequences

ci oi di xi yi

i=1

i=2

i=0 0 1 3 4 5

wi

2

6 7 9 10 118

12 13 15 16 1714
(x , y )2 2

d2

w2c0

c2

c1

o2

c2

c0 o0 w0 d0 x0 y0 c1 o1 w1 d1 y2S = [ ... ]
0 1 2 3 4 5 6 7 8 9 17P = [ ... ]
0 1 2 3 4 5 0 1 2 3 5I = [ ... ]

x1

10
4

y1

11
5

c2

12
0

...

...

...

c2

c1

y

x

c0

c3

c4
c5

c6

P=(0, 1, 2, 3, 4, 5,  , , , )6, 7, 8, 9, 10, 11, 12, ... 24, ...18, ... 30, ...
I=(0, 1, 2, 3, 4, 5, , , ,  )0, 1, 2, 3, 4, 5, 0, ... 0, ... 0, ... 0, ...

(x , y )3 3

d3

w3

o3

S=(c , o , w , d , x , y , , , , , )0 0 0 0 0 0 c , o , w , d , x , y1 1 1 1 1 1 c , ... c , ...2 4c , ...3 c , ...5

c3

c1

y

x

c3

c0

c2

c4 c5

room door bed closet

old mateial

colors

ergo_rules

P=(0, 1, 2, 3, 4, 5, , , , , , , , , , , , )6  7  8  9  10  11 12  ...  17  18  ...  23
I=(0, 1, 2, 3, 4, 5, , , , , , , , , , , , )0  1  2  3  4  5  0  ...  5  0  ...  5

(x , y )3 3

d3

w3

o3

S=(c , o , w , d , x , y , , , , , , , , , , , , )0 0 0 0 0 0 c  o  w  d  x  y1 1 1 1 1 1 c  ...  y2 2 c  ... y3 3

c3

c1

y

x

c3
c0 c2

room door bedwindow

interpolation

c , o , w , d , ? , y , c , o , ...0 0 0 0 0 1 1

p0 pj pr

g(j,σ)
(0)g(j,σ)

(j)g(j,σ)
(r)g(j,σ)

sitting_locations

u1

a) reach b) visibility c) lighting d) glare

u

ToDo: check vector naming

v uv u
v

u1
u2 u3

v1

v2
v3

u1 u2
u3

v1

v2 v3

c , o , w , d , x , y , c , ? , w , d , x , y , c , o , ...0 0 0 0 0 0 1 1 1 1 1 2 2

p0 pj pr

g(j,σ)
(0)g(j,σ)

(j)g(j,σ)
(r)g(j,σ)

p1

p2
p3

q

Figure 5.4: Human activity in the room based on the example of Watch TV. For all
possible sitting locations pj an avatar is sampled and the ergonomic rules for visibility
and glare are evaluated. The final contribution is the weighted sum of costs over every
combination of a sitting possibility pj and all TVs qk. Please refer to Section 5.2 for more
details.

An activity is a set or sequence of actions that need to be performed to accomplish a
specific goal [PRB+18]. An activity could be, for instance, reading a book or watching
TV. A single action puts specific elements of a layout into a common context, for example
looking at the TV while sitting on the sofa. Ergonomic costs are evaluated for each action
to quantify how suitable the arrangement of the layout elements is in an ergonomic sense.

The ergonomic losss obtained for each evaluated ergonomic rule are then aggregated up
the hierarchy to obtain the losss for each action, activity and finally for the whole layout.
This formulation makes it easy to define new evaluation functions for different activities
by combining the various building blocks. In our approach, we consider the following
ergonomic costs (cf. Figure 5.3):

• Reach measures how easy it is to interact with a target object from a given position.

• Visibility measures how visible a target object is for a given position and viewing
direction.

• Lighting measures how well an object is illuminated by light sources in the room.

• Glare measures the decrease in visual performance from strong brightness contrast
caused by having bright light sources in the field of view.

• Accessibility measures how much free space is in front of a target object to allow
easy interaction and walking by.

Naturally, this list of rules is far from exhaustive and one may choose to include additional
rules depending on the type of space that needs to be designed. However, we choose the
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5.2. Ergonomic Costs

above five rules as examples for two reasons. First, they are all relevant for the kinds
of activities that are often performed in the prevalent room types that are included in
publicly available indoor layout datasets. The second reason is a practical one, since
these rules can be defined as (piecewise) differentiable scalar functions in a range of [0, 1],
which perfectly suits our needs. In this section, we first describe the individual ergonomic
cost functions for each rule, followed by the activities we use to evaluate the layouts.

5.2.1 Ergonomic rules
Reach

While being seated, a person only has limited mobility and thus objects that need to be
interacted with should be within a distance that is easy to reach without the need to
stand up. We can broadly categorize the area around a seated person into 3 zones. In
the inner zone, objects can be reached without much effort, while objects in the outer
zone are beyond reach. Objects in the middle zone can still be reached, but require more
effort the further away they are. We model this reach cost ER as a sigmoid function that
measures how difficult it is to reach an object at position q from position p:

ER = 1.0
1.0 + exp (−βR (
 q − p 
 − dR)) . (5.1)

The function is centered at dR with scaling parameter βR. We use dR = 0.8 and βR = 15
to model the zones of easy and extended reach. These parameters roughly correspond to
an easy reach up to 0.5m up to which the cost is close to 0 and an extended reach up to
1.0m, towards which the cost increases to 1.0.

Visibility

Visibility cost measures how visible a target object is from the viewpoint of the avatar
given by position p and viewing direction u. This measure is important for activities
like watching TV or using the computer (cf. Table 5.1), since seating furniture with
sub-optimal positions or orientations may require the user to take on unhealthy postures.
To introduce this cost as smooth scalar function Ev which can be minimized, we define
the cost to increase with the angle between the two vectors u and v = q−p

� q−p � :

EV = 1 −
�1 + 	u, v


2

�
. (5.2)

Lighting

Lighting cost measures how well an object is illuminated by light sources in the room.
Ideally, when looking at an object, the viewer and the light source should be positioned
in the same half-space of the viewed object, as otherwise the object itself would partially
obstruct the direct illumination and cause self-shadowing. A light source bi is thus well
suited for illuminating the object at position q when viewed from position p as long as
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5. Data-Driven Design of Indoor Layouts

the position-to-object vector v = q−p
� q−p � and the vector li = q−bi

� q−bi � pointing from a light
source at position bi to q do not point in opposite directions:

eL
i =

�
1 − 1 + 	v, li


2

�
.

Since multiple light sources can contribute to this cost, we compute their contribution by
applying the softmin function to the vector el = [el

i]i∈B and using them as weights for
computing the weighted sum:

EL = 	el, softmin(β · el)
, (5.3)

with β being a temperature parameter that determines the hardness of the softmin
function. We use β = 10. Since the computation of indirect illumination is prohibitively
expensive, we only consider direct lighting.

Glare

Glare cost Eg measures the decrease in visual performance from strong brightness contrast
caused by having bright light sources in the field of view. Given position-to-object vector
v = q−p

� q−p � and glare vector gi = bi−p
� bi−p � pointing from p to the light source at bi, the cost

increases as the angle between the vectors decreases:

eG
i =

�1 + 	v, gi

2

�
.

Similar to the lighting cost we compute the weighted sum of multiple light sources using
the softmax function for computing the weights:

EG = 	eg, softmax(β · eg)
 . (5.4)

For simplicity, we do not consider indirect glare, such as light sources that are reflected
by a computer screen. Ceiling lights such as chandeliers are also excluded from this rule
since light sources positioned above the field of view have a smaller impact on visual
performance [Kro17].

Accessibility

The accessibility cost EA measures how much space is available in front of a target object
to allow easy interaction and walking through the room. For example, it is necessary
to provide sufficient space between a bed and a wardrobe so that the wardrobe can be
easily opened. We quantify this cost by defining an interaction region Ij for each object
Fj that should not intersect with the bounding box Ak of any another object Fk in the
layout. For most object categories, this region is located in front of the object itself,
with a width equal to that of the object and an empirically chosen depth of 0.5m. An
exception is made for beds, since they are usually interacted with from the sides, so we
define 2 such regions on either side with a width equal to half the depth of the bed and
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a depth of 0.5m. Given a furniture object Fj with interaction region Ij , we define the
accessibility cost Ea as

EA =
N�

k=0

|Ij ∩ Ak|
|Ij | . (5.5)

5.2.2 Activity Evaluation
We evaluate the ergonomic loss of a layout in the context of activities that are typically
performed in rooms of a given category. Based on research on this topic [PRB+18], we
select 4 such activities which we label as Read book, Watch TV, Use computer and Work
at desk. To evaluate an activity, it is necessary to compute the ergonomic costs relevant
to that activity (cf. Table 5.1). We furthermore use a logarithmic function to re-scale
the ergonomic cost functions to more strongly punish scenes with high costs, for example

ĒR = − ln(1.0 + � − ER), (5.6)

with the scaling functions for the other rules defined analogously. We use � = exp(5),
so that when ER = 1, then ĒR = 5. We found this scaling function to be beneficial for
minimizing the ergonomic loss during network training.

Since the accessibility cost EA is relevant for every activity, we decide to compute this
term once for the entire layout instead of computing it separately for every activity for
performance reasons. We thus define the accessibility cost for the entire layout as

Eaccess = 	eaccess, softmax(β · eaccess)
, (5.7)

with eaccess = [ĒA (Ij)]j=1,...,N being the vector containing the accessibility cost of every
object and using β = 10. The softmax function is used to normalize the total cost of
the layout such that a single badly-placed object increases the cost by roughly the same
amount regardless of the number of objects in the layout.

For the activity Read book, proper illumination conditions are the most important factor,
so we need to apply the rules for lighting and glare. Given the position pj of seating
furniture (like beds, chairs, or sofas), an associated object position qj (a book close to pj)
and light sources B we define

ebook
j = ĒL (pj , B, qj) + ĒG (pj , B, qj)

2 .

Table 5.1: Associations of rules to activities that can be performed in an environment.
Not all activities require all rules to be fulfilled.

Reach Visibility Lighting Glare Accessibility
Read book yes yes yes
Watch TV yes yes yes
Use computer yes yes yes yes
Work at desk yes yes yes yes
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Since we do not require all possible positions to have a good score for every activity, we
once again use the softmin function to compute a weighted sum of costs for the layout.
That way, if there is only one position that is suitable for an activity, it will be the only
one with a large contribution to the layout cost, while having multiple suitable positions
will have them contribute equally. For a set of positions pj ∈ P we therefore have

Ebook = 	ebook, softmin(β · ebook)
, (5.8)

with ebook = [ebook
j ]j∈P and using β = 10.

The other activities are defined similarly. For Watch TV, we require the TV to be visible
from a piece of seating furniture and there should not be a light source in the field of
view. We therefore compute the visibility and glare costs for positions pj with orientation
uj (for chairs, beds, sofas) and TVs with position qk:

etv
j,k = ĒV (pj , uj , qk) + ĒG (pj , B, qk)

2 .

Since there can be multiple TVs in a room in addition to multiple pieces of seating
furniture, we need to compute the weighted sum of costs over every combination of pj

and qk, using etv = [etv
j,k]j∈P,k∈Q:

Etv = 	etv, softmin(β · etv)
 . (5.9)

The same rules are required for the activity Use computer, in addition to the reach rule
since the seating furniture and computer should be in close proximity. We do not evaluate
the lighting rule because the direction from which the light illuminates the computer is
not as important, since the computer screen is already illuminated. Using qk to denote
the positions of computers we define

ecomp
j,k = ĒV (pj , uj , qk) + ĒG (pj , B, qk) + ĒR (pj , qk)

3 .

Finally, for the activity Work at desk we apply the rules visibility, lighting and reach.
Since the viewing angle is mostly directed downward toward the desk during this activity,
it is not necessary to consider direct glare caused by light sources in the room. Given
chair positions pj , table positions qk and light sources B we compute

ework
j,k = ĒV (pj , uj , qk) + ĒL (pj , B, qk) + ĒR (pj , qk)

3 .

To obtain the overall ergonomic loss E for a layout we take the average of all activity
costs that are possible in the layout (e.g. if there is no computer in the scene, we do not
evaluate the cost for Use computer):

E =
�

a δaEa�
a δa

,

with a ∈ {access, book, tv, comp, work} and δa = 1 if the corresponding activity can
be performed in the layout and δa = 0 otherwise.
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Figure 5.5: A layout is represented as a sequence S = (s1, . . . , sn). Each individual token
si in the sequence represents an attribute of a furniture object, such as its category,
orientation, position or dimensions.

5.3 Layout Generation with Expert Knowledge
We build on top of Transformers [VSP+17] as generative model for layouts [PGK+21,
WYN20, PKS+21]. In this section, we first present our model and then describe how we
integrate our ergonomic loss into the training.

5.3.1 Generative Model
Transformers are sequence generators that originate from natural language processing. A
layout is generated step-wise as a sequence of discrete tokens S = (s1, . . . , sn), one token
si at a time. Thus, we first need to define a sequence representation of our layouts.

Sequence representation Each furniture object is represented as a 6-tuple Fi =
(ci, oi, xi, yi, wi, di), with ci indicating the object category, such as chair or table, oi

the orientation, xi and yi being the x- and y-coordinates of the bottom left corner
of the furniture object, wi being the width, and di the depth of the furniture object
(cf. Figure 5.5) . Since previous work [PKS+21] has shown that randomizing the order
of objects that do not admit a consistent ordering can be beneficial, we follow a similar
approach. The bounding box of the room itself is represented as the furniture object
F0 and is thus always the first of the ordered furniture objects, followed by the doors
and windows of the layout. The order of all other furniture objects is not consistent and
instead randomized during training. We concatenate the 6-tuples of the ordered furniture
objects and add a special stop token to the end of the sequence to obtain the sequence S.
An example can be seen in Figure 5.5.

Similar to previous work [WYN20], we use two additional parallel sequences to provide
context for each token in S: a position sequence SP = (1, 2, . . . , n) that provides the
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Figure 5.6: To propagate the ergonomic loss back to the token probabilities, we choose
the maximum of the discrete values of the predicted token and convolve the neighborhood
with a Gaussian kernel, centered at the discrete maximum. The resulting token value is
a weighted sum of the discrete values in this neighborhood, weighted by the probability
and distance to the kernel center of each discrete value. Please refer to Section 5.3.2 for
more details.

global position in the sequence, and an index sequence SI = (1, 2, . . . , 6, 1, 2 . . . , 6) that
describes the index of a token inside the 6-tuple of a furniture object.

Our approach also supports an alternate method of providing the room shape as a binary
map of the floor plan, similar to ATISS [PKS+21]. While specifying the room as part of
the sequence allows the network to learn how to synthesize arbitrary rectangular rooms,
using a binary map instead lets the network learn how to generate furniture layouts for
more complex non-rectangular room shapes.

Quantization Transformers typically operate with discrete token values. By learning
to predict a probability for each possible value of a token, a transformer can model
arbitrary distributions over token values. To obtain discrete values, we quantize all object
parameters except orientations oi and categories ci uniformly between the minimum and
maximum values that occur in the dataset. Orientations oi are uniformly quantized in
[0, 2π), adjusting the resolution to preserve axis-aligned orientations as integer values.
We use a resolution of r = 256. Categories ci do not require quantization as they are
already integers. We use categorical distributions for all tokens.

Sequence generation Our Transformer-based sequence generator fθ factors the prob-
ability distribution over sequences S into a product of conditional probabilities over
individual tokens:

p(S|θ) =
�

i

p(si|s<i, θ),

where s<i := s1, . . . , si−1 is the partial sequence up to (excluding) i. Given a partial
sequence s<i, our model predicts the probability distribution over all possible discrete
values for the next token: p(si|s<i, θ) = fθ(s<i, sP

<i, sI
<i) that can be sampled to obtain the
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next token si. Here sP
<i and sI

<i are the corresponding partial position and index sequences
that are fully defined by the index i. We implement fθ as a GPT-2 model [RWC+19]
using the implementation included in the Huggingface library [WDS+20].

5.3.2 Ergonomic Loss
A loss designed by an expert, such as an ergonomic rule, defines desirable properties
of layouts that may not be fully realized in a dataset. However, while minimizing the
expert loss may be necessary to obtain a desirable layout, it is usually not sufficient,
since a manually defined loss can usually not describe all desirable properties of a layout
exhaustively. Our goal is thus to combine the expert loss with a data-driven generative
model for layouts. However, integrating the ergonomic loss in a transformer-based
generative model poses two main challenges:
C1: Transformers generate layouts in multiple steps, each step generating a small part
of the layout such as a single object or a single object attribute. Each step, where only a
partial layout has been generated, requires supervision, but the ergonomic loss cannot
reliably be computed on a partial layout.
C2: The ergonomic loss is defined over continuous parameters, such as object positions
or orientations. However, transformers typically output a probability distribution over
a discrete set of values in each step, such as quantized object positions or orientations.
This makes gradient propagation from the ergonomic loss to the transformer difficult.
To tackle the first challenge (C1), we observe that transformers are typically trained with
a strategy called teacher forcing, where the partial sequence s<i preceding the current
token si is taken from a ground truth layout. Thus, when generating a token si, we
can evaluate the ergonomic loss on the layout defined by s<i, si, s>i, where only si is
generated and both the preceding tokens s<i and the following tokens s>i are taken from
the ground truth, effectively evaluating si in the context of the ground truth layout.
To solve the second challenge (C2) we need an ergonomic loss that is differentiable
w.r.t. the probabilities p(si|s<i, θ) predicted by our generative model. A straight-forward
solution computes the expected value of the ergonomic loss E over all possible values
vj of a token �

j E(s<i, vj , s>i)P (si = vj |s<i, θ). This solution is differentiable w.r.t.
the probabilities, but requires an evaluation of the ergonomic loss for each possible value
of a token, which is prohibitively expensive. Instead, we opt for a less exact but much
more efficient approach, where only a single evaluation of the ergonomic loss per token is
needed. We compute the ergonomic loss LE as the ergonomic loss for the expected value
of a token in a small window around the most likely value of the token:

LE = E(s<i, v̄, s>i), with (5.10)

v̄ =
�

j (N (vj |v̂, σ) P (si = vj |s<i, θ) vj)�
j (N (vj |v̂, σ) P (si = vj |s<i, θ)) ,

where N (x|v̂, σ) is the normal distribution centered at v̂ with standard deviation σ. v̂ is
the token value with highest probability, and σ is set to 1/r in our experiments. Figure
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5.6 illustrates the approach. This loss provides gradients to all values in smooth window.
Note that increasing the size of the window by increasing σ would propagate the gradient
to a larger range of token values, but could also result in expected token values v̄ that
are in low-probability regions of the distribution p(si|s<i, θ), since the distribution may
be multi-modal. The total loss function L is then given by

L
�
Sk

�
= βT LT

�
Sk

�
+ βELE

�
Sk

�
, (5.11)

with LT being the cross-entropy loss, LE being our proposed ergonomic loss and βT , βE

being weights that determine the influence of the two loss terms to the overall loss. We
use βT = 1 − E

�
Sk

�
and βE = E

�
Sk

�
, such that the cross-entropy loss term has higher

influence for training samples with better ergonomic quality, while the ergonomic loss
term is more important for samples with lower ergonomic quality. Essentially, we want
the network to learn about the general target distribution from examples that are already
considered good, while learning how to improve the ergonomic loss from bad examples.
In Section 5.4.1, we discuss the influence of the weights βT and βE in more detail.

5.3.3 Implementation Details

Dataset

We train our models using the 3DFRONT dataset [FJG+21, FCG+21] as training data.
In a pre-processing step, we parse the data to extract rooms belonging to the categories
Bedroom, Dining Room, Living Room and Library. For this purpose we use the filter
criteria provided by ATISS [PKS+21], consisting of a list of rooms for each category, as
well as a split into training, testing and validation data. We use the rooms marked as
train for our training sets and combine those marked as test and val for our validation
sets. Depending on the use case, we apply also some additional filtering. If we want
to provide the attributes of the room shape as part of the input sequence, we can only
use rectangular rooms and thus filter out rooms with more complex shapes. For the
Bedrooms dataset, this results in 4041 rooms for the training set and 324 rooms for the
validation set. For the direct comparison with ATISS, we provide the room shape using a
binary map of the floor plan, allowing us to also use non-rectangular rooms, but we need
to exclude rooms that have also been filtered by the pre-processing algorithm of ATISS.
This leaves in 3526 rooms for the training set and 289 rooms for the validation set.

For most furniture objects, their attributes such as the category and the transformation
of the corresponding 3d model data can be directly extracted from the room data. Since
separate 3d models for doors and windows are not provided with the dataset, we extract
their positions and bounding box dimensions from the mesh data with corresponding
labels. Since doors are only provided with each house and not attached to individual
rooms, we include a door with the furniture objects of a room if its distance to the closest
wall of the room is lower than a chosen threshold and its orientation is aligned with that
of the wall.
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Figure 5.7: Overview of our model. A room layout consisting of individual furniture
objects is mapped to a sequence of tokens which serves as the input to the transformer
model. Given this sequence, the network predicts a categorical distribution for the next
token from which we randomly sample the actual token value. During training, the
order of objects other than the room, doors and windows is shuffled in the sequence.
Furthermore, the attributes of the room can be either mapped to tokens directly (for
rectangular rooms only), or by using an additional encoder network given a binary image
of the floor plan as input.

Additionally, we group some of the object categories in the dataset that are very similar
to each other, while filtering out some others that occur only in very few rooms, for a
total of 31 categories that we use across all room types.

Since the dataset is typically lacking object categories that are necessary to properly
evaluate the ergonomic loss of a layout, we augment the dataset with additional objects
in the following way. For each layout, there is a 50% chance to place a furniture object of
the indoor lamp category in the center of every stand and side-table object. In the same
manner, a computer object is placed at the center of each desk object in a layout with a
probability of 50%. Finally, every TV stand object is augmented with a TV object.

Training.

As hyperparameters for our networks we use 12 hidden layers, 8 attention heads, em-
bedding dimensionality of 256, dropout probability of 0.1 and a batch size of 64. Each
network is trained for 150 epochs, with the number of steps per epoch being equal to
the number of training samples, such that each sample is used once per epoch. During
training, each training sample is randomly augmented by horizontal mirroring and/or
rotation in 90◦ steps, in addition to applying a random permutation on the order of
furniture objects other than the room, windows and doors. We use a learning rate of
0.0001 with a linear rate of decay and a warm-up period of 10 epochs. These parameters
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were determined empirically in preliminary experiments. For layout synthesis, we always
choose the learned network parameters of the epoch with the smallest validation loss
during training.

When the shape of the room is provided as a binary map of the floor plan, we use
an additional convolutional neural network to convert the binary map into a feature
embedding. For this network we directly use the implementation of the AlexNet architec-
ture [KSH12] provided in the code framework of ATISS [PKS+21]. We also experimented
with a ResNet-18 architecture [HZRS15], but found that AlexNet is more successful at
discriminating between mirrored floor plans. The computed feature embedding then
replaces the embedding that is otherwise computed from the orientation, position and
dimension tokens of the room furniture object(cf. Figure 5.7).

Our networks are trained on Google Colab, using a machine with a NVIDIA Tesla P100
GPU. When only using the cross-entropy loss, training for one epoch takes 13 seconds on
average. Adding our ergonomic loss increases training times to 123 seconds per epoch
on average, since we cannot make use of parallelization for layout evaluation as easily.
There is room for further optimizations in this aspect.

Inference.

During inference, we follow a similar approach to the strategy proposed by Sceneformer
[WYN20], using top-p nucleus sampling with p = 0.9 for the object categories, as well
as the attributes of the room, doors and windows. For the attributes of other object
categories, we always pick the token with the highest probability.

The layouts synthesized by the transformer network sometimes include intersecting objects
which greatly disturb the perceived realism of a layout. We therefore follow the approach
of similar methods like Sceneformer and check for object intersections during inference.
After the attributes of a furniture object have been generated, we check if the object can
be inserted into the scene without causing large intersections. If this is not the case, we
re-sample the category and other attributes of the current object. If this re-sampling
approach fails too often (we choose a limit of 20 attempts experimentally), we discard
the entire layout and start anew. Certain pairs of object categories are excluded from
this check, e.g. chairs can be put underneath a table and thus do not cause collisions.

In terms of computation time, the intersection-detection process is the bottleneck of
the inference process. If we do check for intersection during inference, it takes 1653
seconds for our models to synthesize 1000 layoutsequences, for 1.653 seconds per layout on
average. If we do not perform intersection-checks between objects, we can make use
of parallelization to greatly reduce inference time. In such a setup, our networks can
synthesize 1000 layout sequences in 27 seconds for 0.027 seconds per scene on average.
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Figure 5.8: Cross-entropy loss and ergonomic loss for our model and its ablations,
evaluated on the Bedrooms dataset. As training loss and validation loss we refer to
the cross-entropy loss evaluated on the training and validation sets respectively. By
including our proposed ergonomic loss term during training we can significantly decrease
the ergonomic loss of synthesized layouts. The first 10 epochs are omitted for readability.

Scene reconstruction.

Since our networks only generate the 2d bounding boxes of furniture objects, we use an
additional post-processing step to reconstruct a 3d scene from the generated layout. For
each furniture object, we select the 3d model of the same category with the smallest
difference in bounding box dimensions from the models in the 3DFRONT dataset [FJG+21,
FCG+21]. For categories not included in the dataset, such as doors and windows, we
handpick a few suitable models from online sources [Tur22].

As a final step, the vertical position of each object is adjusted based on its category.
The position of some categories like windows and chandeliers are set to a fixed height.
We label some categories as supporting objects (like tables and stands) and others as
supported objects (like indoor lamps and TVs). If there is an intersection between a
supporting and supported object, the vertical position of the supported object is adjusted
to be placed on top of the supporting object.

5.4 Results and Evaluation

5.4.1 Ablation

To evaluate the influence of our proposed ergonomic loss, we define 3 ablations of our
network that are trained with different loss functions. Recall that the total loss function
of our approach given in Eq. 5.11 is defined as the weighted sum of the cross-entropy
loss LT and the ergonomic loss LE with weights βT , βE . Using these weight parameters,
we define the following 3 ablations of our network:

• Baseline, with βT = 1 and βE = 0,

• Weight-only, with βT = 1 − E
�
Sk

�
and βE = 0,

• Loss-only, with βT = 1 and βE = 1.
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In other words, the baseline model only uses the cross-entropy loss with each input sample
having equal weight and is thus without any of our enhancements. The weight-only
model uses the cross-entropy loss with each sample being weighted by its ergonomic loss,
while the loss-only model uses the sum of cross-entropy loss and ergonomic loss with
each input sample having equal weight.

Figure 5.8 depicts the cross-entropy loss and ergonomic loss evaluated on both the training
and validation sets for each version, using the Bedroom dataset for training. The results
show a decrease in ergonomic loss for both the loss-only model and our full model which
make use of our ergonomic loss term during training. While the decrease may seem small
relative to the overall loss, please keep in mind that the loss is computed for the entire
scene with only one token predicted by the network. The weight-only model only yields a
small decrease of ergonomic loss during training, since weighting the training samples by
their ergonomic loss only reduces the influence of bad training samples without teaching
the network how to improve the sample. However, this still has a noticeable effect on the
synthesized scenes as we will discuss in Section 5.4.2. Please note that our loss-only model
and our full model exhibit a higher cross-entropy loss for both training and validation
set. This result is expected, since we aim to improve the ergonomic qualities of the
synthesized layouts instead of perfectly recreating the distribution of the dataset. A
qualitative comparison of scenes synthesized by our models can be seen in Figure 5.9.

5.4.2 Room-conditioned Layout Synthesis
We use our proposed model and its ablations introduced in the previous section for layout
synthesis and evaluate the results in terms of both realism and ergonomic loss. In order
to evaluate the realism of our generated results, we perform a perceptual study using
Amazon Mechanical Turk in which we ask participants to compare pairs of Bedroom
layouts with the question of which layout is more realistic on a 7-point scale. We compare
layouts from 6 sources in this study: the ground truth layouts from the 3DFRONT
dataset [FJG+21, FCG+21], layouts generated with our proposed model and its ablations,
and another state-of-the-art method ATISS [PKS+21], which we train using the code
provided on their website, modified to include windows and doors in the same manner
as our model. In each layout pair, a synthesized layout is compared to a ground truth
layout. A total of 330 users participated in the study. Each pair of layouts was shown 3
times to 10 different users each for a total of 30 comparisons per layout pair.

To allow for a direct comparison, we use the binary map of the floor plan and the
attributes of the doors and windows from the ground truth data for each layout and
only generate the rest of the furniture objects using the selected methods. For each of
the 289 layouts in the validation set we generate 20 variations using both ATISS and
our trained networks and create a total of 5780 sets of size 6 that contain one layout
of each method generated from the same floor plan. Since ATISS does not handle any
intersections between furniture objects and even some of the ground truth layouts may
contain such intersections, we discard the entire set if one of its layouts contains an
intersection between furniture objects larger than a threshold, which we set as 20% of

72



5.4. Results and Evaluation

Results Ours (Full Model): Bedrooms
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Results Ours (Weight-Only): Bedrooms
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Figure 5.9: Room-conditioned synthesis results for our model and its ablations.
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Figure 5.10: The interface of the user study. Participants were asked which of the 2
displayed scenes is more realistic.

the smaller bounding box area. For our networks, we perform intersection-checks during
inference, only discarding a set if an intersection-free layout cannot be generated after 20
attempts. For comparison, ∼ 75% of ATISS layouts contain bounding box intersections,
compared to ∼ 48% of layouts generated by our model with intersection check turned off.
Additionally, ∼ 56% of the ground truth layouts also contain bounding box intersections.
These numbers likely include some false positives where the bounding boxes intersect
but the 3d meshes do not. We decided to be more conservative since intersections can
significantly influence the perceived realism. Furthermore, since both ATISS and our
model may try to generate additional windows or doors, we simple resample the category
in such a case.

For the user study, we randomly select 50 sets from all sets of synthesized layouts and
ask users to compare the layouts in terms of realism. In each comparison, the user is
shown a pair of layouts from the same set, each represented by an animated 3d rendering
with the camera rotating around the scene. Users are asked which layout is more realistic
on a 7-point scale (ranging from Scene A much more realistic to Scene B much more
realistic, including a neutral Equally realistic option). Figure 5.10 shows the screenshot
of the UI. Each user sees the same scenes three times, and we use this redundancy to
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Figure 5.11: Room-conditioned layout synthesis. We synthesize 20 layout variations for
each floor plan in the Bedrooms validation set and evaluate the ergonomic loss. The left
chart shows the mean ergonomic loss of the synthesized layouts, with the 80% confidence
interval of the mean shown in black. The realism of the synthesized layouts is evaluated
in a user study. The right chart shows how the layouts synthesized using each method
are perceived compared to the ground truth, with a negative value meaning that the
ground truth is seen as more realistic. Our proposed approach improves the ergonomic
loss of the scenes, while also being perceived as more realistic than the ground truth.

keep track of each user’s consistency. We discard users that chose options more than two
points apart for the same scene in more than 10% of their comparisons. Additionally, we
discard users that spent less than 10 second on average per comparison. To evaluate the
results, we compute a realism score for each method, that we obtain by assigning scores
from −1 to 1 to the 7 possible user choices and averaging over all comparisons.

The left side of the Figure 5.11 shows the mean ergonomic loss of all layouts created for
the user study. As can be seen, our approach performs the best at generating layouts
with lower ergonomic loss, reducing the mean ergonomic loss by 30.8% compared to the
ground truth data. The ablations of our model also improve the ergonomic loss to a lesser
extend, including the baseline model which we attribute to our sampling strategy making
it less likely to generate arrangements that are learned from outliers in the training data.
On the other hand, layouts created with ATISS show the highest ergonomic loss because
the layouts are perceived as less realistic than even our baseline model.

This can be seen on the right side of Figure 5.11 which shows how the users perceive the
realism of synthesized layouts compared to those of the ground truth in a range of [−1, 1],
with a negative value meaning that the ground truth is seen as more realistic. The
responses show that ATISS is considered significantly less realistic than the ground truth.
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Figure 5.12: By pre-training the network on a general dataset containing samples from
all room types and then fine-tuning the network for a specific room type, the validation
loss can be decreased significantly, especially for small datasets.

On the other hand, the layouts generated by all our models are seen as at least equally
realistic as the ground truth layouts, with users even preferring layouts created with our
full model over the ground truth. This shows that our approach can not only improve the
ergonomic quality in a purely quantitative sense, but also improve the perceived realism
of the layouts.

A qualitative comparison is shown in Figure 5.13. While all of the methods produce
plausible layouts, our approach generates, on average, layouts with fewer ergonomic issues
like missing light sources or poor accessibility.

5.4.3 Additional Room Types

Since some room types in the 3DFRONT dataset only contain few samples (588 living
rooms, 554 dining rooms and 424 libraries for training set after our pre-processing), we
make use of a transfer learning strategy. We first train a base model containing training
samples of all room types for 100 epochs using a learning rate of 1e − 4. This base model
is then fine-tuned for each room type using a learning rate of 2e − 5 to prevent overfitting
to the smaller datasets.

To evaluate the effectiveness of this approach, we train networks from scratch using only
the training data from each individual room category and compare the cross-entropy loss
to that of our networks which are first trained on a general set of training data before
being fine-tuned for a room category. Figure 5.12 shows that the transfer learning strategy
already yields a lower training and validation loss after the first epoch of fine-tuning.
While the training loss for networks that are trained from scratch eventually approaches
that of the pre-trained network, the validation loss remains higher throughout. As can
be seen, for small training datasets, transfer learning proves to be a good strategy for
improving the training process.

Figure 5.14 shows some synthesized results of the room types mentioned above in addition
to bedrooms. All of the shown results are created using unconditional synthesis, meaning
that we do not provide any information about the shape of the room or any furniture
objects contained in the scene, so the attributes of the room, windows and doors are also
sampled by the trained model.
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5.5 Discussion

5.5.1 Limitations
Our proposed approach has a number of limitations. Designing layouts is a complex high
dimensional problem that includes modalities including selecting 3D furniture model
that fit well together stylistically [WYA+20, LKS15]; architectural elements such as
room shapes walls and floor plans [WFT+19]; and various other aspects of lighting and
illumination conditions [VPGV20]. While important, such methods are orthogonal to
our layout synthesis focused scope.

Furthermore, while our ergonomic loss functions are derived from ergonomics literature,
they are only theoretical models and and have not been evaluated in a real-life setting.
We think that the problem of translating the vast number of ergonomic rules and interior
design guidelines into differentiable functions to quantify the ergonomic quality of indoor
layouts can be a promising topic of further research.

While we have demonstrated that our approach of incorporating expert knowledge into
the Transformer training process produces promising results, we think that this is only
the first step in combining data-driven and rule-based learning using state-of-the-art
deep-learning models such as Transformers. We believe that future research in this
direction can assist with making data-driven learning approaches more applicable to
domains where large amounts of high-quality data with desired properties are not readily
available.

5.5.2 Conclusions
In this chapter we presented a novel method for the synthesis of indoor layouts, which
combines data-driven learning and manually designed expert knowledge. To our knowl-
edge, we are the first to propose such a solution to the problem. The main benefit of our
approach is that it allows emphasizing features that might be underrepresented in the
data or might not be contained at all. At the same time, we maintain the benefits of a
data-driven approach which is important for layout generation which is high-dimensional
and ill-defined. Manually crafting all design rules needed to synthesize comparable results
would be very difficult and time consuming. Hence, combining both expert knowledge
and a distribution learned from data gives us the benefits from both worlds.

As a technical contribution, we proposed a modern Transformer network that can be
trained using a loss function composed of cross-entropy and additional knowledge. We
have shown that weighting the two loss terms on a per-sample basis leads to results that
fulfill the additional objective well and still maintain a high degree of realism. Further,
we introduced expert knowledge in the form of cost functions derived from ergonomics,
whose goal is to improve layouts to be more usable and comfortable for humans.

We described the details of our implementation (our code is available on GitHub), and
we evaluated the method thoroughly. We showed numerical quantitative results and
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performed a perceptual study (with 330 participants on Amazon Mechanical Turk) where
our model out-performs recent related work. We also used our system to synthesize a
large set of realistically looking results. Our method is meant to help professionals and
amateurs in the future to address the problem of interior layout design.
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Results Ours (Full Model): Bedrooms

Results Ours (Baseline): Bedrooms
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Figure 5.13: Conditional synthesis results as described in Section 5.4. All methods in a
column receive the same room boundary, windows, and doors as input condition. Our
approach (top row) produces on average layouts with less ergonomic issues like missing
light sources (e.g. missing chandeliers in Baseline columns 1, 3 and 6) or poor accessibility
(e.g. chair and wardrobe blocking the path in ATISS column 5 and 6).
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Results Ours: Bedrooms

Results Ours: Living Rooms

Results Ours: Dining Rooms

Results Ours: Libraries

Figure 5.14: Layouts created by our models for different room types. Since the attributes
of the rooms were represented as part of the input sequences during training, all layout
elements including rooms, doors, and windows can be generated by the network. Our
method can generate furniture arrangements typical for each room type even with small
training sets.
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CHAPTER 6
Conclusion

6.1 Summary
In Chapter 3 we presented a method for the interactive design of body-supporting surfaces
driven by a given pose of the human body as well as the pressure distribution on the
body’s surface that is computed on-the-fly using our proposed algorithm. Our method
is intended to help designers create appropriate surfaces digitally without requiring
additional empirical design passes and fabrication of physical prototypes on the one hand,
and to ensure physical plausibility on the other hand. Further, due to simplifcations
made during the pressure computation, we achieve interactive rates in the range of a few
seconds, which is a necessity for interactive design applications.
The main contribution of this work is an interactive modeling system that utilizes
captured body poses and computes an importance field that is proportional to the
pressure distribution on the body for a given pose. This distribution indicates where
the body should be supported in order to easily hold a particular pose, which is one of
the measures of comfortable sitting. We evaluated our proposed approach through tests
conducted with the help of design students and presented a number of results from these
sessions. We furthermore demonstrated the physical viabilty of the surfaces designed
with our apporach by fabricating a prototype of one such design.
To address one of the drawbacks of the above approach, namely the requirement of a
manually designed initial surface, we presented an automated computational framework
for the generation of functional body supporting furniture in Chapter 4. Similar to the
approach described in Chapter 3, we utilize the pressure distribution on the body as
measure of comfort while sitting, but furthermore consider the joint moments acting
on the body as an additional factor. The computation of the pressure distribution is
also extended by incorporating frictional forces for increased accuracy. Our proposed
computational method achieves much faster computation times compared to sophisticated
FEM methods while still providing adequate accuracy, as demonstrated in our evaluation.
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Additionally, we proposed an algorithm for automated generation of generic template
meshes that utilizes the given comfort measure to optimally support the body. Since
the resulting surface is dependent only on the input pose, it serves as an easy-to-use
tool even for novice users or can be used by experts to generate an inital design for
further editing in a manner of seconds. Our method is intended for computer-aided
design of personalized furniture that can be than used for fabrication with modern digital
manufacturing methods.

Shifting focus from individual pieces of furniture to entire arrangements, we presented a
novel method for the synthesis of indoor layouts in Chapter 5, combining data-driven
learning with manually designed rules based on expert knowledge such as ergonomics.
Since the problem of layout synthesis is high-dimensional and ill-defined, we utilize a
data-driven approach that allows us to learn the most common design rules by example,
eliminating the effort of manually handcrafting each individual rule. At the same time,
we can emphasize features that might be underrepresented or even completely absent in
the data by defining just a small set of design rules, in our case based on ergonomics,
with the goal of improving the learned representation of the data. Hence, combining
both expert knowledge and a distribution learned from data gives us the benefits from
both worlds.

As a technical contribution, we proposed a deep learning approach based on the modern
Transformer network architecture that extends the commonly used cross-entropy loss
function with additional differentiable cost functions based on expert knowledge. In our
case, we derived these cost functions based on ergonomics literature with the goal of
improving the ergonomic qualities of the synthesized layouts. We have demonstrated
that weighting the two loss terms on a per-sample basis leads to results that fulfill the
additional objective well while at the same time still maintaining a high degree of realism.

6.2 Outlook and Future Work
While we have made great strides towards ergonomics-driven computational design of
furniture and indoor layouts with the research presented in this thesis, there is still
much opportunity for future work in this direction. In Chapters 3 and 4 we presented
approaches for the interactive and automated design of seating furniture based on human
poses. One of the primary requirements of these methods was to achieve low computation
times that allow for interactive design. As such, we have made several simplifications
to the computation of the pressure distribution on the body that is used to guide the
surface optimization process, such as the assumption that both the human body and the
seating surface behave like rigid objects. While this assumption yields adequate accuracy
for general purpose design of seating furniture, as we have shown in our evaluations,
an even higher degree of accuracy might be required in other fields, such as medical
applications. However, due to the complexity of the human body, accurate simulation
would be infeasible for interactive design purposes, as computations times range in the
span of several hours even with modern FEM methods. One possible direction for solving
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this problem could be to allow for various degrees of accuracy during different stages
of the design process, starting with fast but inaccurate simulation for the early design
phase where many modifications are made, up to slow but accurate simulation in the
final stages where fine-tuning of the surface becomes the priority.

Additionally, our methods only consider seating furniture made from stiff material and
thus ignore the possibility of surface deformation during use. For the design of surfaces
made from soft materials, such as sofas, bean chairs or inflatable furniture, the deformation
behavior of the material needs to be considered not just for functional purposes (comfort
while sitting) but also aesthetic reasons. However, considering soft materials in the surface
optimization process adds a high degree of complexity, as the deformation behavior needs
to be considered under different load distributions. The deformation of the surface also
influences how pressure is distributed on the body, further increasing the computational
cost of the optimization process. Furthermore, the structural properties of the furniture
also become an important issue, as soft materials are less resistant to wear and tear and
may become damaged more easily over longer periods of use. These additional layers of
difficulty make the task of designing furniture made of soft materials an interesting topic
for future research.

In Chapter 4, we presented a method for the automated generation of seating furniture
that depends only on the input pose. This eliminates much of the manual effort needed
to create an initial design that is suitable for the given pose, but there is still much
room for further improvement. While the fixed template we use for the generation of
the surface is well suited for most common sitting poses, it offers limited flexibility and
cannot support less usual poses like lying sideways. Making the template generation
more flexible and adaptable to the input pose, possibly including the ability to create
multiple design suggestions per pose, is a challenging problem that could greatly expand
the versatility of our design tool. There is also the possibility of developing a hybrid
method in which the template model can be interactively modified by the user, which
would require a suitable parametrization of the template. While this approach adds some
manual effort back into the design process, it has the advantage of offering more control
over the initial design.

Furthermore, there is the limitation that our template model can only be used to
synthesize seating furniture for one single person. While it is possible to create a surface
that is usable by multiple people through manual effort, by first creating individual
objects and then combining them through interactive editing, this solution is far from
ideal. There are different ways to approach this problem, each with their own unique
challenges. A straightforward approach would be an algorithm that can automatically
combine multiple surfaces into a single object, but it may be difficult to achieve this in a
robust manner that allows handling of arbitrary furniture configurations as input, since
each surface needs to be modified depending on the number and relative positions of the
other input surfaces. Another possible method would be to extend the template model to
be able to support multiple input poses, either in an automated manner or by interactive
editing, as mentioned above. This approach might be more robust, but also makes the
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problem of finding a suitable parametrization of the template even more challenging.
The data-driven layout synthesis approach described in Chapter 4 proposes the idea
of incorporating additional manually defined rules based on expert knowledge into the
training process of a deep-learning model. While we have demonstrated the viability of
this approach, there is much room for further improvement, especially from a technical
perspective. We have focused on models based on the Transformer architecture since
recent research has demonstrated that it is well suited for layout synthesis tasks in
particular. Within the constraints of this choice, there exist the options of exploring
alternative ways of representing indoor layouts or using different distributions to model
the furniture parameters, possibly offering even better opportunities to integrate expert
knowledge into the learning process. Outside of these constraints, one may look at
the possibility of utilizing other types of deep-learning models, such as autoencoders,
convolutional neural networks or more general graph neural networks.
While we have shown that the integration of expert knowledge into the learning process
works well for the task of indoor layout synthesis, we believe that this approach can offer
benefits for other applications as well. Deep learning has been successfully applied to a
vast variety of tasks, including synthesis of images and audio, detection and recognition
of people, objects or text in visual data, navigation of vehicles and robots, prediction
of physical phenomena, and much more. The necessity of large amounts of high-quality
training data is a common problem in machine learning — for some applications, this can
be alleviated through generation of synthetic training data or augmentation of existing
examples, but this may not be feasible for all types of data. While we cannot guarantee
that our approach can be universally adapted to every possible task, we believe it can
serve as a useful alternative for some applications where synthesis or augmentation of
training data is not possible.
Finally, while the work presented in this thesis focuses on computational design of
furniture and its arrangements, the algorithms and tools described in Chapters 3 and 4
do not directly interact with those of Chapter 5. Yet, there are applications that could
greatly benefit from a combined approach. As an example, when designing for a library,
seating furniture should provide both privacy and optimal lighting conditions to allow
visitors to focus on the reading experience. On the other hand, seating designed for a
sports bar should enable conversation while at the same time offering a good view of the
displays installed in the establishment. These constraints need to be taken into account
when designing both the layout and individual pieces of furniture.
A simple way to achieve this would be to bring information from one domain into
the other, for example by first synthesizing a general layout and then designing each
individual piece of furniture, taking into account how the ergonomic cost of the layout
can be improved by selecting and positioning the input poses used to synthesize and
optimize the surface. One may also consider the opposite approach of taking particular
properties of designed seating furniture into account during the evaluation of a layout.
Ideally though, the flow of information should be bidirectional, so that both the furniture
and layout design tasks can benefit from each other. While it is difficult to consolidate
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an interactive design process with the training stage of a deep learning model, there
exists the possibility of utilizing the inference stage of the model for a more interactive
approach. Since our deep learning model is capable of rearranging or making additions
to partial layouts, it is possible to pass information between the model and the designer
in an iterative process. While our current model is limited in this regard by the small
number of attributes used to represent each individual piece of furniture, building upon
this approach could offer new opportunities for the design of furniture and indoor layouts
in the future.
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APPENDIX A
Appendix

A.1 Surface Fitting Details
For simplicity we will explain how to solve the optimization problem starting with point-
to-point distances only. Given a mesh M s of subdivision level s, the vertices of the next
subdivision level s + 1 can be computed using the subdivision matrix Ss:

Vs+1 = Ss Vs,

or, starting from the initial control mesh M0 using

Vs+1 = Ss Ss−1 . . . S1 S0 V0 = S̄s V0 .

Using the matrix S̄s, it is possible to compute the optimal control mesh vertices V∗ by
solving a system of linear equations

Ŝs V∗ = Vb,

where Ŝs is the matrix whose kth row is the row of S̄s corresponding to the vertex vs
k,

and Vb is the matrix containing the sample point coordinates vb
k of the body mesh in

each row.

To modify this approach to work with the tangent distance, we need to separate the x-,
y- and z-coordinates. Let

x∗ =

V∗
1

V∗
2

V∗
3


denote the column vector of concatenated x-, y- and z-coordinates of V∗ and let N̂ denote
the matrix whose kth row contains coordinates of normal vector nk. Let N̂1 denote the
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matrix containing the x-coordinates of the normals nk in its diagonal, with N̂2 and N̂3
defined analogically. Then we can solve the following system of linear equations to find
x∗: �

N̂1Ŝs N̂2Ŝs N̂3Ŝs
�

x∗ = N̂T Vb .

The full system of equations, including the parameter τ to blend between point-to-point
and tangential distance, the Laplacian L as a smoothing term controlled by weighting
parameter σ, and the weights γ that allow constraining vertices to their original location
is given by

(1 − τ)WŜs 0 0
0 (1 − τ)WŜs 0
0 0 (1 − τ)WŜs

τWN̂1Ŝs τWN̂2Ŝs τWN̂3Ŝs

σL 0 0
0 σL 0
0 0 σL
γI 0 0
0 γI 0
0 0 γI



x∗ =



(1 − τ)WVb
1

(1 − τ)WVb
2

(1 − τ)WVb
3

τWN̂T Vb

0
0
0

γV0
1

γV0
2

γV0
3



,

with W containing the vertex weights ρk in its diagonal.

A.2 Jacobians for Inverse Kinematics
In our kinematic model, each physical joint j has three rotational degrees of freedom
(Euler angles) for rotations about the local frame axes and therefore three corresponding
entries in the joint angle vector θ. Only the hip joint, representing the root of all other
joints, has three additional translational degrees of freedom for translations of the whole
body in global x, y and z direction.

In order to explain how to compute each entry J
dp

i,k expressing the change of the value
E

dp

i w.r.t. the parameter θk, we have to introduce the function δ(j, k) that returns 1
if the joint j is influenced by the parameter θk and 0 otherwise. Note that a joint j is
influenced by a parameter θk not only when θk directly corresponds to j, but also when
j is a direct or indirect child of the joint the parameter θk corresponds to. Finally, the
function w(i, j) returns the skinning weight from the joint j on the vertex vb

i and u(i, j)
returns the contribution point for the vertex vb

i from the joint j in the skinning process.

Let ak be the axis and pj be the position of a rotational joint j corresponding to
parameter θk. The computation of the derivative of the position of the vertex vb

i w.r.t.
the parameter θk then comes down to

∂vb
i

∂θk
= ak ×

 nθ�
j=1

δ(j, k)w(i, j)(u(i, j) − pj)

.
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If θk corresponds to a translational joint with translation axis ak (in our case only the
hip joint), the derivatives can be computed significantly easier with

∂vb
i

∂θk
= ak.

Finally, we compute the entries for all Jacobians according to

J
dp

i,k = ∂e
dp

i

∂θk
= ri  vb

i − vs
i

  
��

vb
i − vs

i

�T ∂vb
i

∂θk

�
,

Jdt
i,k = ∂edt

i

∂θk
= ri

�
ns

i · ∂vb
i

∂θk

�
,

Jp
i,k = ∂ep

i

∂θk
= −

a · ri

�
ns

i · ∂vb
i

∂θk

�
π

��
a · �

ns
i · vb

i − ds
i

�
+ b

�2 + 1
� .

A.3 Reaction Force Computation
The equilibrium constraints of our reaction force computation model can be formulated
as the matrix

C =


IF

b 0 υR αR
b TR

[a]Fb IM
b υR αR

b [a]Rb TR

IF
j 0 0
0 IM

j 0

 ,

with IF
b (respective IM

b ) being the 3 × 3 identity matrix if the force f (respective moment
m) corresponding to the column is active inside the body segment b corresponding to
the row, and 0 otherwise. Similarly, IF

j (respective IM
j ) is the 3 × 3 identity matrix if

the force f (respective moment m) corresponding to the column is active on the joint j
corresponding to the row, and 0 otherwise. TR denotes the transformation matrix from
tangent space to world space. Finally, [a]Fb (respective [a]Rb ) denotes the skew-symmetric
matrix

[a]b =

 0 a3 −a2
−a3 0 a1
a2 −a1 0

 ,

if the force f (respective reaction force r) corresponding to the column is active inside
the body segment b, or 0 otherwise. The scalars αR

b are the actual linear blend skinning
weights of each vertex-body segment connection, and the scalar values υR are additional
user provided weights, which allow to further control the importance or unimportance of
particular surface regions. In particular, we use them to exclude body parts like face,
chin, or parts of the abdomen.
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The vector a denotes the moment arm vector—the vector pointing from the COM of b
to the point affected by the force f (or reaction force r) corresponding to the column.
Finally, the right side of the system, z, is a (6nB + 6nJ) column vector:

z =


−gb

0
0
0

 .

The terms of the energy function can be formulated as matrix

A =
�
0 IM 0
0 0 λ υR WR TR

	
,

where IM is the identity matrix with 3nM rows and λ ≥ 0 is a weight that assigns more
or less importance to the minimization of the moments, which can be interpreted as
the stiffness of the joints. WR contains the weights that determine how the reaction
forces are distributed on the surface and also acts as a regularizer, as without it the best
solution is likely to have a very small number of extreme reaction forces.

A.4 Surface Optimization Gradient

In order to improve the efficiency of the solving the surface optimization problem, we
evaluate the gradient of the corresponding energy function.

Laplacian smoothing distance: To compute the gradient value for the Laplacian smoothing
distance metric, we first rewrite the corresponding term as:

SL =
nv�
i

x,y,z�
k

�vik −

�
j∈N1(i)

vjkwj�
j∈N1(i)

wj

�
2

λl
S

For each vertex, each dimension can be computed separately as the squared difference
from the average position of its neighbors. To evaluate the gradient, we need to compute
the partial derivatives for each variable of the objective function (i.e. the x, y and z
coordinates of each vertex position). For the x coordinate of an arbitrary vertex (with
its 1-ring neighborhood N1(i)), its respective part of the gradient value is computed as.

∂SL

∂x
= 2λl

S

�x −

�
j∈N1(i)

xjwj�
j∈N1(i)

wj

�
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For each variable, we also have to consider its occurrence as neighbor of another variable.
Therefore, for each variable’s gradient value, we also accumulate the following term:

∂SL

∂xn1
=

−2λl
Swn1

x −
�

j∈N1(i)
xjwj�

j∈N1(i)
wj


�

j∈N1(i)
wj

Angle based differences: To compute the gradient value of a variable corresponding to the
angle based differences, we consider its occurrences in the respective computations. For
each face, its four interior angles are considered. To compute an angle, the corresponding
vertex and the edges to its two adjacent vertices are required. Each vertex is adjacent to
multiple faces in the surface mesh. This means, to compute the (angle based) gradient
value for a variable, we need to consider the angles of all adjacent faces of the vertex.
For each face, a vertex position is relevant for three interior angles. The respective parts
of the gradient values are computed as follows (for a single variable):

∂αabc

∂ax
= −

ebc,x

mbcmab
− eab,xSabc

mbcmab
3�

1 − 	tab, tbc


∂αdab

∂ax
= −

eda+eab
mabmbc

− eda,xSdab

mab
3mda

+ eab,xSdab

mabmda
3�

1 − 	tda, tab

∂αcda

∂ax
= −

−ecd,x

mcdmda
− eda,xScda

mcdmda
3�

1 − 	tcd, tda


Sabc = �x,y,z
i (bi − ai)(bi − ci)

• a, b, c and d are the corner vertices of the face.

• eab = (b − a) refers to the edge between vertices a and b.

• mab = 
eab
2 is the magnitude, i.e. the euclidean norm of the edge vector.

• tab = eab
mab

is the normalized edge direction vector.

The gradient values for the face interior angles are accumulated for each variable and
utilized separately for the regular faces and maximum angles error metrics.

Vertex distance: The vertex distance error metric from the objective function’s data term
can be written as

DV = λV
D

nV�
i=1

�
(vix − ṽix)2 + (viy − ṽiy)2 + (viz − ṽiz)2

�
wi
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The corresponding part of the gradient value for each variable is simply computed from
its partial derivative:

∂DV

∂vix
= 2λV

Dwi(vix − ṽix)

Plane distance: The data term’s plane distance metric is computed for the four corner
vertices for each face that corresponds to a supporting plane in the original model.
Vertices that are adjacent to more than one of these planes, have multiple plane distance
values. Therefore, the gradient values for each variable has to be accumulated for each
face. A variable’s value corresponding to a single face Fj (with vi ∈ Fj) is computed as:

∂DP

∂vix
= 2λP

DwjnPj
x

�
vi − cPj , nPj

�

The gradient values for all error metrics are further scaled by the corresponding global
factors for the data and smoothing terms. The objective function’s gradient evaluation
results in vector of length 3nV , where each value corresponds to the sum of the error
metric gradient values for an individual variable.
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List of Figures

1.1 The design of furniture and indoor spaces is a difficult task that requires
expert knowledge from a variety of disciplines. In this thesis, we present
different computational design approaches that incorporate several aspects
of the design task, including ergonomic, functional or aesthetic requirements.
Left: A fabricated multi-purpose seating surface designed for various types
of sitting and leaning using the interactive approach described in Chapter 3.
Middle: Design for a seating surface that was synthesized for the given input
pose using the automated method presented in Chapter 4. Right: A living
room furniture layout synthesized using the data-driven approach described
in Chapter 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Examples of related work on the topics of physically-informed and pose-
driven design. Left: An interactive tool by Umetani et al. [UIM12] provides
suggestions for the design of stable furniture. Right: The approach proposed
by Zheng et al. [ZLDM16] allows reshaping of existing 3D models to fit the
dimensions of an input pose. Images sourced from the respective papers. . 10

2.2 Indoor scenes synthesized by existing transformer-based deep learning models
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Sceneformer [WYN20]. Right: ATISS [PKS+21]. Images sourced from the
respective papers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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3.2 Overview of the interactive design system. Given initial design and a set of
poses captured by a motion capture device, our system estimates a pressure
distribution on the bodies in the given poses. The artist can then create a
social scenario using the given poses and provide a initial control mesh for a
surface. Our system then computes an optimized smooth subdivision surface
and its control mesh using our surface fitting algorithm. In further design
steps, the computed control mesh can be edited interactively and used as
input again to generate a new design. Our pose relaxation algorithm also
makes it possible to adapt the input poses to the computed subdivision surface
if necessary to ensure that all poses can be supported well. . . . . . . . . 16
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into the normal and tangential components. Right: definition of pressure as
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area, the pressure is lower. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Results of physical simulation and comparison to ours. Top row: sitting
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to Section 3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Design process. Left: recording of poses using a motion capture device.
Center: interactive design using Rhinoceros and Grasshopper. Right:
Grasshopper canvas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Variations using the control mesh shown in Fig. 3.7a created with varying
values of the smoothing parameter σ which weighs the Laplacian operator.
Using this parameter the designer can balance between the importance of
the input body map and smoothness of the surface. Top row: arms of the
input body have not been considered to be supported. Middle row: arms
are supported. Bottom: contact area and pressure on the seat. Refer to
Section 3.4 for more details. . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 Chair optimized for 2 persons with different body types. Top: optimized for
thin person. Bottom: optimized for overweight person. . . . . . . . . . . . 27

3.9 Several results created by design students using our method. The top row
shows three design variations using the same input poses achieved by fixing
different control vertices oder changing design parameters. Please refer to
Section 5.4 for more details. . . . . . . . . . . . . . . . . . . . . . . . . . 28
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4.1 Left: seating surface generated by our automated algorithm and suited to
support the input pose . Right: the surface fitting algorithm described in
Chapter 3 applied to the generated surface. . . . . . . . . . . . . . . . . . 34

4.2 Left: a moment m1 as a cross product of the moment arm a1 and the force
g1. Body segments have anatomical values (e.g., g1) assigned from [PEA83].
Middle: a link-segment-skeleton with 21 segments and a polygonal surface
mesh. Right: The mesh is rigged using linear blend skinning [MTLT89]. 36

4.3 Physics of sitting: if contact with a support surface is given on the buttocks,
back, and feet, the moments of the body are minimized and the forces are in
equilibrium. If the contact on the feet is lost, the contact to the back is lost
automatically due to the missing friction force on the feet. . . . . . . . . 37
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4.4 Computational human body model. Left: simplified friction model, right:
free-body diagram of the skeleton model. Please refer to Section 4.2.2 for the
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Comparison to the FEM (cf. Section 4.2.2). Left: results of a lying T-
pose. Right: a sitting pose. Please note that we plot the pressure and shear
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purpose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Body part mapping in the advanced template model. The rows of the model
are mapped to individual body parts. Within a row, the segment in each
column is mapped to a subset of the corresponding body vertices. The leg
segments are mapped independently to the corresponding body parts. . . 44

4.7 Plane fitting and mesh generation process. Left: A plane is fitted to the body
segment marked in red. The vectors show the local coordinate system on the
plane consisting of plane normal vector nP , the projection of skeleton bone
direction dbody onto the plane dup and the vector dside which is orthogonal
to both. Right: Template mesh during the third step of the mesh generation
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and magenta respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Error handling on a pose where one foot rests on top of the other. Left:
surface model generated without error handling showing intersections. Right:
corrected surface mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Finalized seating surface results after the optimization process. Left: seating
surface before optimization. Center/Right: results after optimization . . . 49

4.10 Results of our method. Left: control mesh generated with our method. Center:
the fitting algorithm described in Chapter 3 applied to our control mesh. Right:
the same fitting algorithm applied to a flat patch serving as the control mesh. 50

4.11 Forward-leaning poses and leaning back while standing are also supported by
our method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.12 Our method fails to generate a valid surface from unsupported poses like lying
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4.13 Mapping of the contact pressure of Poses 1-6 onto their corresponding gener-
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pressure values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.14 Additional results generated using our algorithm. The surface in the bottom
row is created by manually editing and combining multiple control meshes. 56

5.1 Our proposed LayoutEnhancer combines data-driven learning from potentially
imperfect data with expert knowledge. Generated layouts are biased to follow
rules laid out in the expert knowledge, effectively reducing the impact of data
imperfections. See Figure 5.2 for examples of imperfections that are avoided
due to the inclusion of expert knowledge. . . . . . . . . . . . . . . . . . . 58

95



5.2 LayoutEnhancer can learn to improve issues found in imperfect data like
ergonomic issues (left room): (i) a window directly behind the TV causes
glare on sunny days, making it difficult to watch due to a big contrast in
brightness. (ii) Insufficient illumination for reading a book without a light
source behind or beside the bed; and geometric issues (right room): (i) desk
is intersecting with the bed and the closet; (ii) closet is covering the door. 58

5.3 Ergonomic rules implemented in our system. We chose these guidelines as
they are essential in most indoor scenarios, like reading a book, watching TV,
or working at the desk or the computer. We convert the rules to scalar cost
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5.6 To propagate the ergonomic loss back to the token probabilities, we choose
the maximum of the discrete values of the predicted token and convolve the
neighborhood with a Gaussian kernel, centered at the discrete maximum.
The resulting token value is a weighted sum of the discrete values in this
neighborhood, weighted by the probability and distance to the kernel center
of each discrete value. Please refer to Section 5.3.2 for more details. . . . 66

5.7 Overview of our model. A room layout consisting of individual furniture
objects is mapped to a sequence of tokens which serves as the input to the
transformer model. Given this sequence, the network predicts a categorical
distribution for the next token from which we randomly sample the actual
token value. During training, the order of objects other than the room, doors
and windows is shuffled in the sequence. Furthermore, the attributes of the
room can be either mapped to tokens directly (for rectangular rooms only),
or by using an additional encoder network given a binary image of the floor
plan as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8 Cross-entropy loss and ergonomic loss for our model and its ablations, eval-
uated on the Bedrooms dataset. As training loss and validation loss we
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respectively. By including our proposed ergonomic loss term during training
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5.11 Room-conditioned layout synthesis. We synthesize 20 layout variations for
each floor plan in the Bedrooms validation set and evaluate the ergonomic
loss. The left chart shows the mean ergonomic loss of the synthesized layouts,
with the 80% confidence interval of the mean shown in black. The realism of
the synthesized layouts is evaluated in a user study. The right chart shows
how the layouts synthesized using each method are perceived compared to the
ground truth, with a negative value meaning that the ground truth is seen
as more realistic. Our proposed approach improves the ergonomic loss of the
scenes, while also being perceived as more realistic than the ground truth. 75

5.12 By pre-training the network on a general dataset containing samples from all
room types and then fine-tuning the network for a specific room type, the
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