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Kurzfassung

In den letzten Jahren wurde viel auf dem Gebiet der Bildungsunterhaltung geforscht,
das effektive Lernprozesse erleichtert, indem es das Engagement der Lernenden erhoht.
Gefiihrte Visualisierungen, wie etwa audiogefithrte Museumsfithrungen oder AR-gefiihrte
Stadtfithrungen, sind eine der moglichen Anwendungen. Gefiithrte Visualisierungen sind
eine Form der mentalen Ubung, die traditionell eine verbale Anleitung beinhaltet, die
den Benutzer durch eine Reihe von Visualisierungen fithrt. Mittels neuer Technik wie
Augmented Reality kénnen zusétzliche Informationen integriert werden, wie beispielsweise
eine virtuelle Figur, welche die BenutzerInnen fithrt, was eine fesselnde Benutzererfah-
rung ermoglicht. In dieser Arbeit wollen wir einen ersten Schritt in Richtung gefiihrter
Visualisierung machen, indem wir eine handgezeichnete Figur zu Anleitungszwecken
einfithren. Wir konzentrieren uns besonders auf die Animation, da Charakteranimationen
in verschiedenen Anwendungen, wie z.B. der Computergrafik, verwendet werden, aber
ohne gewisse Vorkenntnisse fiir BenutzerInnen schwer selbst zu generieren sind. Hier
stellen wir eine neuartige Prozesskette zur automatischen Generierung passender Anima-
tionen fiir handgezeichnete Charaktere vor. Der Ansatz besteht aus fiinf Schritten. (1)
Die handgezeichnete Figur wird aus einem Eingabebild erkannt, und (2) die Teile der
gezeichneten Figur, wie z. B. die Beine und der Kopf, werden jeweils identifiziert. (3) Ein
Knochenskelett fiir die Animation wird extrahiert und mit den semantischen Informatio-
nen aus dem vorherigen Schritt ergénzt. (4) Auf der Grundlage des erweiterten Skeletts
ordnen wir eine Superklasse zu, zu der das Skelett gehort, z.B. Vierbeiner, Fliegende, oder
Humanoide, und iiberlagern die Endeffektoren, wie beispielsweise die Beine, des Skeletts
mit den Endeffektoren des Referenzskeletts der Superklasse. (5) Schliefllich erzeugen
wir ein Dreiecksnetz aus dem Eingabebild. Sobald das passende Referenzskelett und
die handgezeichnete Figur iiberlagert sind, ist die Figur animiert und kann Benutzer in
verschiedenen Anwendungen ansprechen. Um die Machbarkeit unseres Ansatzes zu zeigen,
evaluieren wir die vorgeschlagene Prozesskette mit einer Reihe von handgezeichneten
Figuren.
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Abstract

In recent years there has been a lot of research in the area of edutainment, which
facilitates effective learning processes by increasing the engagement of the learners.
Guided visualisations, such as audio-guided museum tours or Augmented Reality-guided
city tours, are one of the potential applications. Guided visualisations are a form of
mental practice which traditionally involves verbal guidance that guides a user through
a series of visualisations. With the technique of Augmented Reality, one can integrate
additional information to guide users or embody verbal guidance with a virtual character,
which enables an engaging experience. In this thesis, we aim to make a first step towards
guided visualisation by introducing a hand-drawn character for instruction purposes. We
especially focus on animation, since character animations are used in different applications,
such as computer graphics, but can be hardly generated without certain pre-knowledge.
Here, we present a novel pipeline for automatically generating believable movements for
hand-drawn characters. The approach consists of five steps. (1) the hand-drawn character
is detected from an input image, and (2) the sub-parts of the drawn character, such as
the legs and the head, are identified, respectively. (3) A bone skeleton for animation
is extracted and augmented with the semantic information from the previous step. (4)
Based on the augmented skeleton, we assign a super-class that the skeleton belongs
to, i.e., quadruped, flying or humanoid, and match the end-effectors of the skeleton to
the end-effectors of the reference skeleton of the super-class. (5) Finally, we generate
a triangular mesh from the input illustration. Once the matching reference skeleton
and the hand-drawn character are overlayed, the character is animated and can attract
users in different applications. To show the feasibility of our approach, we evaluate the
proposed pipeline with a set of hand-drawn characters showing several well-articulate
drawings.

xiii



“jayiolqig usipn N1 1e wiud ul ajgerene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmou’t InoA
JeqgbBnyian yaylolgig usiph NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBlO aponipab ausiqoldde aiqg v—ﬂ-._u.o__ﬂ—_m



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Contents

Kurzfassung

Abstract

Contents

1

Introduction

1.1 Background . . . . . . . . ... e
1.2 Motivation . . . . . . .. . ...
1.3 Problem Statement and Challenges . . . . . . . ... ... ... ....
1.4 Goals and Contributions . . . . . . . .. . ... ... ... ... ....
1.5 Thesis Structure . . . . . . . . .. .. ...

Related Work

Technical Background and Definitions

3.1 Machine Learning, Neural Networks, and Deep Learning . . . . . . . .
3.2 Graph Theory . . . . . .. . . L
3.3 Character Animation . . . . . . . . .. ...
3.4 Creating Skeletons . . . . . . . . ...

Methodology of Animating Hand-Drawn Characters

4.1 Overview of the Animation Pipeline . . . . . ... ... ... .....
4.2 Character Detection . . . . . . . . ... ... ... ... ... ...,
4.3 Semantic Segmentation . . . . .. ... oo o o
4.4 Character Skeletonisation . . . . . . . . ... ... ... .. .. ...,
4.5 Character Identification . . . . .. .. .. ... ... ... ...,
4.6 Rigging and Animation . . . . ... ... L L oL,

Prototype Implementation

Results and Discussion
6.1 Experimental Results. . . . . .. ... o o o
6.2 Evaluation and Discussion . . . . . . . . . . ... o

xi

xiii

W WM N~ =

13
13
19
21
28

31
31
31
37
39
44
49

59
63

63
68

XV



68

6.3 Limitations of the Pipeline

75

7 Conclusion and Future Work

75

7.1 Summary and Conclusion

7.2 Future Work

76

77

List of Figures

81

List of Tables

83

List of Algorithms

85

Bibliography

Yaylolqig usiph NL 1e wiud ul ajgejrene si siIsayl Siyl Jo uoisian reuibuo panoidde ay g
Jregbnuian yayiolqrg usip\ NL Jap ue 1si uagiewoldiq 1asalp uolsiaAeulbiiO aonlpab ausiqoidde aig

qny a8pajmoud| JNoA

Sraylolqie



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

CHAPTER

Introduction

In the following chapters, first, the background and the motivation for this thesis are
described. Further, the goals and challenges as well as the contribution of this thesis are
explained. The structure of the remainder of this thesis is described last.

1.1 Background

Hand-drawn characters, especially children’s drawings, have been of interest to researchers
for a very long time and have received greater attention in recent years. There have been
many works focusing on analysing child’s drawings such as Rémi et al. [RFCO02], Pysal et
al. [PASA21], Thomas et al. [TPP*22], and Beltzung et al. [BPRS23] in different fields
of research from computer science to psychology or medical science.

Another interesting field of research that relates to animated characters is guided visu-
alisations, such as the CHARIOT program [Sta]. While this program contains many
different approaches, such as games or interactive stories, one interesting approach is
combining edutainment with animated characters. Animated characters explain the
medical procedures to calm child patients in advance. This can be described as a form of
edutainment.

The term edutainment is a combination of the words education and entertainment. The
general idea is that any form of media, content, or activities are designed to educate and
entertain at the same time. The main goal of edutainment is to give an opportunity for
acquiring knowledge in an interesting and engaging way. Anikina and Oksana [AY15]
describe it as a feature of modern technology implementation in traditional lectures
and classes. Edutainment can be presented in many different forms such as, but not
limited to, television shows, video games, mobile apps, interactive websites, and toys. In
recent years edutainment received a lot of attention in research. One research area in
edutainment is physicalisation such as presented by Schindler et al. [SKRW22] and Raidou

1
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1.

INTRODUCTION

et al. [RGW20] for anatomical and biological edutainment. The goal is to facilitate the
process of learning by increasing users’ understanding and engagement with the topics at
hand [KM15].

Another area that gained a lot of research interest in recent years is using Augmented
and Virtual Reality (AR, VR) in edutainment. Philipp et al. [SWO"14] present an
Augmented Reality system for learning bone anatomy. Similar to previous work the
hypothesis is that due to a higher level of engagement of users the learning effect can be
improved.

1.2 Motivation

The main idea before this thesis was to evaluate the impact of using guided AR visualisa-
tion in the area of edutainment.

Instead of using a predefined character to embody the guide we use the user’s own
hand-drawn character for guidance through the visualisation. The hypothesis is that the
effect of constructivism described by Huang et al. [HRL10], can increase the engagement
of the user and facilitate the learning process.

To achieve a high level of engagement and immersion, the animation of hand-drawn
characters should be believable. This means that the different parts of the drawing
should be considered when generating the motion, such that i.e., the limbs of a drawn
animal are used for walking, rather than merely moving any extremities or transferring
any reference motion to the hand-drawn character. We refer to this information as the
semantics of the drawing.

Since no pipeline exists, to the best of our knowledge, that is able to animate hand-drawn
characters semantic-aware, which creates believable motion, this thesis focuses on the
creation of such a pipeline. The impact of guided AR visualisation is evaluated in future
work and therefore this work can be seen as the first step towards a system for immersive
guided visualisation.

1.3 Problem Statement and Challenges

The objective of this thesis is to provide a fully automated pipeline for the semantic-aware
animation, in 2.5D, of arbitrary hand-drawn (2D) characters.

The following challenges need to be overcome in order to solve the stated problem:

e Detection: In the first step given an RGB image as an input, the hand-drawn
character needs to be detected for further processing.

e Segmentation: In the second step, the sketch is segmented based on the semantics
of the sketch, i.e., identifying which parts of the sketch are representing limbs, and
which parts are representing the body or the head.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

1.4. Goals and Contributions

« Skeletonisation: Afterwards the sketch is skeletonised to create the basis for the
animation, which is skeleton-based.

e Identification: Then the skeleton needs to be matched to the closest reference
skeleton that exists, making it possible to get the best matching animation for the
given input.

¢ Rigging and Animation: As a last step, the hand-drawn character is triangulated
and the resulting mesh is rigged and assigned an animation.

1.4 Goals and Contributions

The goal of this thesis is to provide a fully automated pipeline that animates a hand-drawn
character based on the semantic information of the drawing. The input of the pipeline is
defined as an image containing a hand-drawn character. Based on the given input the
pipeline then follows the steps described in Chapter 1.3 to compute a semantic aware
animation of the character. Results show that on the tested set of hand-drawn characters
the pipeline leads to promising outcomes. This allows future work to investigate the
impact of edutainment when using guided visualisations with hand-drawn characters on
the user experience, with a special focus on child education.

The contributions of the thesis can be summarised as follows:

Pipeline architecture for fully automated semantic-aware animation of hand-drawn

(]

characters

Proposal for identifying a believable motion type by matching semantic skeletons

Evaluation of the proposed algorithms using a set of hand-drawn characters

Proposal for adding label information to the Geometric Graph Distance proposed
by Cheong et al. [CGK™09]

1.5 Thesis Structure

The remainder of the thesis is structured as follows. Chapter 2 provides an overview of
previous work done related to hand-drawn characters and character animation. Chapter 3
explains key concepts and contains definitions and technical background for algorithms and
concepts, such as graph theory, machine learning, character animation, and skeletonisation,
used in the following chapters of the thesis. Chapter 4 gives an overview of the proposed
pipeline and describes each necessary step in detail towards generating an animated
hand-drawn character. Chapter 5 elaborates implementation details of the methods
described in the previous chapter. Chapter 6 shows the results of the implementation and
discusses its limitations. Finally Chapter 7 summarises the contributions and provides
an outlook on future work.
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CHAPTER

Related Work

This chapter briefly discusses related work focusing specifically on research related to
hand-drawn characters and their animation. Further, it describes differences between
previous research and the proposed approach.

Lately, there has been increasing interest in the animation of hand-drawn characters that
are available to the broad public rather than specialists. Yamada et al. [Jun] present
in their works an augmented reality system that can detect hand-drawn characters on
a sheet of paper. First, a character is detected as seen in Figure 2.1(a). The detected
hand-drawn character is then transformed into a 3D model and is animated by randomly
moving extremities of the 3D model as shown in Figure 2.1. Multiple characters can
be detected and transformed into 3D models at the same time, which creates a lively
environment. Further, Figure 2.1(c) shows users can interact with the characters, i.e.,
dropping objects that the characters start interacting with.

Contrary to the work of Yamada et al. [Jun] we propose to avoid animating the characters
in a random way. Depending on the characteristics of the hand-drawn character, we
determine a fitting type of movement. The giraffe and the panda in Figure 2.1 should
move differently since the panda will walk on two legs, while the giraffe with four legs
should have quadruped movement to be more immersive.

Smith et al. [SZL*23] present a system that is capable of automatically animating a
child’s drawing simulating a human figure. Their proposed approach is robust to the
variety of different depictions of humans when it comes to children’s drawings.

The pipeline they propose for animating human drawings consists of four steps and is
given in Figure 2.2. As the first step, they propose to use a convolutional neural network,
i.e.; a Mask R-CNN, to detect the human character in an RGB input image (Figure 2.2(a)).
In the second step, based on a bounding box detection (Figure 2.2(b)) they apply classical
computer vision algorithms to segment the character from the background. The approach
for this step can be summarised as follows, based on the bounding box the input is

5
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2.

RELATED WORK

Figure 2.1: (a) A hand-drawn character is detected. (b) The detected character is brought
to life as a textured 3D model in Augmented Reality. (c) A simple lively AR environment
with multiple randomly animated characters [Jun].

cropped and converted into a grayscale image. On the resulting image, they apply
adaptive thresholding followed by morphological closing and dilating that removes the
noise of the mask. In the last step, they use a flood fill algorithm to ensure closed groups
of foreground pixels. After that, they extract polygons based on the foreground pixels and
proceed to process the one with the largest area. In the third step, a novel convolutional
neural network is used to estimate the pose of the character. They found previously
researched motion models to not perform well on drawn human figures due to the wide
variety of appearances. The output of the network is an individual heatmap for each joint
location of the pre-defined human skeleton used for animation. Using a simple search
for the maximum value of each heatmap they assign the joint to that position shown in
Figure 2.2(c). Based on the matched joints the motion, i.e., based on motion capture,
the animation is transferred to the drawn human character as shown in Figure 2.2(d).

The proposed pipeline focuses solely on retargeting human motion to hand-drawn charac-
ters representing humans. We propose a fully automated pipeline computing an animation
of a hand-drawn character based on semantic information of the hand-drawn character.
Specifically, a humanoid character should be retargeted to a humanoid motion, while i.e.,
quadruped characters are retargeted to a quadruped motion.
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Figure 2.2: (a) RGB Image as the input of the pipeline. (b) The detected hand-drawn
character. (¢) The segmentation mask separates the character from the background and
the estimated joint key points (annotated in red). (d) Different animations applied to
the hand-drawn character [SZL123].
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2.

RELATED WORK

gty

Figure 2.3: Example of a sketch (top left) transformed in a 3D model and animated by
dragging control points (red) with the mouse. [DSC*20].

Dvorozniék et al. [DSCT20] propose a novel framework, Monster Mash, that allows users
to create 3D models by hand-drawing characters in 2D. Users draw characters digitally
specifying information for each stroke. Three types of information can be specified:

e The stroke lies behind another stroke, marked grey in Figure 2.3.
e The stroke lies in front of another stroke, marked black in Figure 2.3.

e The stroke should be interpreted as a symmetric part, meaning the given part, i.e.,
a leg, will be replicated twice by the pipeline, marked in red in Figure 2.3

Using a novel rigidity-preserving, layered deformation model, which in combination with
a 3D inflation algorithm produces smooth 3D models. Further, once the model is created,
users can animate the 3D character by simply dragging control points, marked in red in
Figure 2.3, into different positions to move parts of the character associated with the
control point.

The approach by Dvoroziidk et al. [DSCT20] relies on the user input to be done on
hardware, such as a tablet or computer, to classify each stroke into one of three categories.
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Figure 2.4: (a) The hand-drawn character consisting of seven body parts. (b) Computed
major and minor axes of each part. (c¢) Oriented bounding boxes of each part. (d)
Computed joint locations between the parts marked in blue. (e) Final computed skeleton
with end-effectors inserted. [TBVDP04]

We propose that the input is created but not limited to a physical drawing, which lowers
the barrier for users. Another differentiation is that they allow the user to animate the
generated character whereas, we propose to automatically define the animation for the
given input. This alleviates the user of the tedious task of creating the animation. As for
users new to animation, it is an especially hard task to get the expected result.

Thorne et al. [TBVDPO04] present a system allowing users to create an animation for a
hand-drawn character. A character is expected to be drawn sideways and consists of
exactly seven parts, the head, torso, upper arm, lower arm, upper leg, lower leg and foot,
which are shown in Figure 2.4(a).

Based on the given input the system computes the major and minor axes of each
of the seven body parts, shown in green in Figure 2.4(b). In the second step, the
oriented bounding boxes are computed for each body part, illustrated with blue boxes
in Figure 2.4(c). Based on the bounding boxes, joint locations are computed, shown as
blue dots in Figure 2.4(d). In the last step, the computed joints are used to define the
skeleton, by adding a bone between the joints. Additional end-effectors are added for the
top of the head and similarly at the end of the foot as well as the tip of the arms. These
end-effectors are connected with the rest of the skeleton as shown in Figure 2.4(e). In
the last step, the legs and arms are duplicated on the other side of the character.

Once the character has been created by the system, users can sketch motion to animate the
character. The sketched motion shown in Figure 2.5(a) is tokenized, meaning the sketched
motion is split into multiple parts, and then classified depending on the properties of the
token, i.e., the steepness of the segment. Based on the tokens, motion is synthesized by
employing a parametrized key-frame-based motion synthesis algorithm. Figure 2.5(b)
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Figure 2.5: (a) Motion sketched for walking around two trees and leaping onto a platform.
(b) Snapshots of the created animation for the character [TBVDPO04].

shows snapshots of the character animation based on the sketched motion.

The system focuses on a defined character of exactly seven parts while we focus on the
identification of different motion types for an unknown number of different parts. Due to
the pre-known number of joints their skeleton generation is straightforward, while in this
thesis the skeleton of the characters might differ a lot from the reference skeletons.

Jain et al. [JSMH12] take a different approach to the previously discussed related work.
The basic idea is to generate a virtual 3D proxy, which is an approximate representation
in 3D using cyllinders that match the area of the 2D character. This allows users to
enhance 2D animated characters by utilizing physical simulation, e.g., to create clothes
for the hand-animated character. Further, their system allows traditionally trained
animators working in 2D to influence the performance of a 3D character by hand-drawing
2D animations.

In the first step, the user is asked to annotate additional information of the hand-drawn
character. The user annotates the joint positions by marking them with coloured dots
as shown in Figure 2.6(a) on a frontal view of the skeleton to avoid any occlusions.
Further, the user segments the inner body parts by colouring the inside of the hand-
drawn character, which can be seen in Figure 2.6(b) matching the segmented parts with
the associated joints. Lastly, the user annotates the bounding boxes of the different body
parts as shown in Figure 2.6(c), where the bounding boxes of the right leg have been
omitted for clarity, by drawing the approximate bounding boxes.

In the second step, the user is asked to select a motion capture sequence, from a large
motion capture database, that has a similar motion sequence as the hand-drawn character.
This is necessary to augment the data with depth information that resolves the depth
ambiguity of the 2D animated sequence. Another necessary user input is an estimated
camera to resolve the ambiguity of whether the camera is moving around the character
or the character is moving on its own. Based on the user-estimated camera, the system
can resolve the camera-character-motion-ambiguity.
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(a) (b) (c)

Figure 2.6: (a) Coloured dots annotate the position of the joints of the hand-drawn
character by the user. (b) Segmentation of the body parts by the user. (c) Hand-drawn
approximation of the bounding boxes by the user [JSMH12].

11
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Figure 2.7: Different frames of the hand-drawn character augmented with cloth using
the information of the virtual 3D proxy [JSMH12].

The character is then approximated by 3D cylinders that track the lines of drawings
inside each of the bounding boxes annotated by the user, where the radius of the cylinder
matches the size of the character parts. In the last step, the viewpoint needs to be
approximated by the system to maintain the naturalness of the sketched motion. It is
also necessary to preserve ground contacts of the feet while transferring the style of the
hand-drawn character animation onto the 3D proxy, which can be seen in the first frame
shown in Figure 2.7 where the cloth needs to touch interact with the ground where the
feet touch it.

Figure 2.7 shows the end result of their system, which allows augmenting the hand-drawn
2D animated character using the computed proxy. Another application of the pipeline can
be transferring the stylised motion, drawn by the user in 2D, to 3D characters allowing
users to create 3D animation using 2D drawings.

We focus on less user interaction especially regarding the animation of the character
compared to the approach presented by Jain et al. [JSMH12|, which approach requires a
minimum expertise of the user to be able to create the animation. Further, they require
a large database of motion capture data, that is hard to obtain for casual users, which
we do not rely on.

We summarise the contributions of this thesis beyond the state-of-the-art in the following.
While some previous work regarding retargeting motion to hand-drawn characters focuses
on mapping to a single type of motion, i.e., humanoid, we focus on using semantic
information of the drawings to retarget different types of motion based on the given
character. Other previous work focuses on professional users with background knowledge
about animation, whereas our approach is targeted also at novice users by providing a
pipeline that is fully automatic without the need for manual input to alleviate the user
of tedious animation work.
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CHAPTER

Technical Background and
Definitions

This chapter discusses the technical background of the thesis. Key concepts and definitions
are defined that help to understand the following chapters.

3.1 Machine Learning, Neural Networks, and Deep
Learning

Following the definition of Mittchel et al. [Mit07] learning with regards to computer
programs is defined as learning from an experience E with respect to a task 17" and a
performance measure P, if the performance of the program at tasks in 7', as measured
by P, improves with experience F.

As a simple and popular example of machine learning, we can define T" as playing Go, a
popular board game, define the performance measure P as the percentage of games won
and lastly the experience F as playing games against the program itself. In certain tasks,
such as games like Go and Chess, a machine learning program can excel the performance
of a human. AlphaGo, a program presented by Silver et al. [SHM'16], shows that it
is possible to defeat the human Go champion and even excel with a later generation of
AlphaGo being able to defeat the previous one with 100 wins to zero losses [SSST17).

According to Bishop and Nasrabadi [BNOG] machine learning can be split in the following
general categories:

e Supervised learning describes a learning strategy that uses a dataset of example
input as well as the target value for each input example. The dataset consists of
individual data points that are described by their features € X and the target

13
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values y € Y. The goal of supervised learning is that after learning it is possible to
predict the correct target value y based on the given features x. An example of
the goal of supervised learning can be a classification task, such as classifying a
handwritten digit based on the MNIST dataset [Denl2].

e Unsupervised learning uses a dataset of example input similar to supervised learn-
ing. While supervised learning relies on known target values y € Y, unsupervised
learning does not rely on the target values for each input example. The goal in
such problems is to find groups inside the data, called clustering. Another example
is to determine the distribution of the data, which is called density estimation.

« Reinforcement learning differs vastly from to the two previous learning methods.
The machine learning model learns by repeating a task inside a dynamic environment
on the basis of trial and error. The machine learning model performs an action and
is then rewarded, which reinforces correct actions, and observes the changes in the
environment. The aforementioned machine learning model AlphaGo [SHM ' 16] is
an example of reinforcement learning. No example input is provided to the machine
learning model. Instead a sequence of states and actions, i.e., placing a stone, in
which the model can interact with its environment, i.e., the Go board with the
stones of the players.

In recent years significant advances have been made in the field of machine learning
with the introduction of Artificial Neural Networks (ANN). Figure 3.1 shows a typical
structure of a feedforward neural network (FNN), which is an ANN.

The FNN consists of three separate components shown by red boxes in Figure 3.1. The
components of an ANN are usually referred to as layers, where data is passed from
one layer to the next until the final output is calculated. Each layer consists of one or
multiple sub-components called neurons. A neuron is an atomic unit of a neural network.
It performs one operation based on the input and forwards the result of the operation to
the next layer. The operation of a neuron is described with Equation 3.1 where it receives
the input vector X consisting of n elements denoted as X = {z1,x9, ...,z }. Each of
the input values is multiplied with the respective weight w; and all of the products are
summed. The weights for each neuron represent the parameters of the network that
are learned during the training of the network. Additionally Equation 3.1 shows that
an additional value b, representing the bias, is added to the sum of products. Tom
Mitchel [Lea97] describes the bias as a means to control the behaviour of a layer without
changing the input values.

y=F(Q_ (xi-w)+0) (3.1)
i=1

John Kelleher [Kell9] notes that many relationships in the world that we want to model
are nonlinear and attempting to model these relationships using a linear model, that
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Figure 3.1: Basic structure of an Artificial Neural Network adapted from Keiron O’Shea
and Ryan Nash [ON15].

consists of linear operations, makes the model very inaccurate. Therefore, the function
F, in Equation 3.1, is performed by each neuron which is referred to as an activation
function. These functions allow to introduce non-linearity to the neural network. One

popular example of such an activation function is the rectified linear unit (ReLU).

Its mathematical definition can be seen in Equation 3.2 first introduced by Kunihiko
Fukushima [Fuk75]. Other activation functions include the sigmoid function defined in
Equation 3.3, hyperbolic tangent as shown in Equation 3.4 and softmax as defined in
Equation 3.5. The softmax activation is of special interest, as it can be found in many
different networks in the last layer when calculating the output.

Fla) = {2 i i 8 (3.2)
Fla) = eji - (3.3)
=" (3.4)
Fla) Z?iie% (3.5)
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Figure 3.2: (a) The two-dimensional input and the filter used in the convolution operation.
(b) The filter is then moved step-by-step over the input, for example, the filter is overlayed
with the input marked in blue for the first step and the calculated results are written to
the output marked in red, to compute the results of the convolution operation. Adapted
from Introduction to Convolutional Neural Networks [Ser23].

+1 0 -1 +1 +2 +1
Se=|+2 0 =2|5=[0 0 0 (3.6)
+1 0 -1 -1 -2 -1

Deep Neural Network refers to an ANN with multiple hidden layers. A more
specific neural network with particular relevance to the field of computer vision is the
Convolutional Neural Network (CNN), which uses multiple hidden layers belongs to
the area of deep learning [AMAZ17]. CNNs offer the advantage of reducing the number
of parameters that are needed when working with difficult tasks, such as image data
where applying convolutions reduces the size of the data between two layers as shown in
Figure 3.2(b). The layers of a CNN can be summarised as the following four basic layers:

e Convolutional Layer implements the convolution operation, which is the ap-
plication of an Nz sized filter using a sliding window on the input data. An
example of a convolution can be seen in Figure 3.2(a) where a two-dimensional
input and a two-dimensional filter are defined. By sliding the filter over the input
image the output of the convolution is computed, the first step is shown in blue
in Figure 3.2(b), the output can be computed shown in red in Figure 3.2(b), by
element-wise multiplication of the values of the filters and the values in the input at
the current position of the filter. Those values are then summed up and defined as
the output of one convolution operation. The convolution reduces the resolution of
the input matrix. To avoid loss of information outer values of the input padding can
be employed, which is a technique that adds additional values at the border of the
input. There are different approaches to how the values are assigned, one example
can be to duplicate the border values themselves. Another important parameter
is the stride. The stride defines how much the filter moves between consecutive



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.1. Machine Learning, Neural Networks, and Deep Learning

applications when sliding the filter over the input. In the given example a step
size of two would reduce the output resolution without padding to three-by-three.
There are many different ways to define the values of a filter as well as the size
of the filter and as such filters have been of high interest in previous research. A
widely known filter that is used for example is the Sobel operator, which are two
three-by-three filters as defined in Equation 3.6. The Sobel operator is used to
detect edges in an input image. The output of the convolutional layer is often
referred to as a feature map. For example, using the Sobel operator as filters the
output of the layer contains the edge features of the input.

¢ Pooling Layer whose main purpose is to reduce the computational complexity
by decreasing the dimension of the input. There are different operations available,
such as max pooling which takes the maximum value of the window overlayed with
the input, as shown in Figure 3.3, and sets it as the output. The window is defined
by its size and stride when applying it to the input. There are many different
operations possible besides max pooling, such as average pooling, which calculates
the average value, minimum pooling, calculating the minimum value, and others.

e Fully Connected Layer is a layer, where each neuron is connected to each neuron
in the next layer. This means that every value of the inputs influences every value of
the output. The main purpose of the fully connected layer is to combine all outputs
of the previous layers, represent local information, to identify larger patterns. For
classification tasks, the last fully connected layer combines the features to classify
the images, therefore the number of outputs of the fully connected layer is the
number of classes to identify.

e Dropout Layer sets input elements to zero with a given probability. During the
training of the network, the layer randomly sets inputs to zero to avoid overfitting
the CNN as well as reducing the number of parameters, which decreases the inference
time of the network.

In recent times specialised architectures for neural networks have been developed for
specific tasks. For our proposed pipeline, specifically for the tasks of detection and
instance segmentation, a popular architecture is Mask Region-based Convolutional
Networks (Mask R-CNN) introduced by He et al. [HGDG17]. It is based on Fast Region-
based Convolutional Network method (Fast R-CNN) proposed by Ross Girshick [Girl5],
which excels at object detection.

The Fast R-CNN consists of two stages which can be referred to as convolutional backbone
architecture and the network head. First, the whole image is processed by a convolutional
neural network, consisting of multiple convolutional layers as well as a max pooling layer,
to compute the feature map as seen in Figure 3.4. Further, a region proposal network
proposes object candidates as regions of interest (Rol). An example of an Rol is shown
as a bounding box in red in Figure 3.4. The Rols are then projected onto the feature
map and passed to the second stage.

17
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Figure 3.3: Max pooling operation on the given input produces the output on the right
side, for a window with a stride of two and a size of two-by-two. The colours correspond
to the window overlayed with the input and the output.

Outputs: bbox
softmax regressor
Rol FC EI:I RE
pooling
layer FCs
Rol feature
vector

For each Rol

Figure 3.4: Basic architecture of the Fast R-CNN architecture as proposed by Ross
Girshick [Girl5].

18
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For each object proposal, the Rol pooling layer computes a fixed-length feature vector
based on the feature map. These fixed-length vectors are then passed into multiple fully
connected layers which compute the Rol feature vector. This vector is then passed to
the output layers.

The first output is defined as the classification of the object. A fully connected layer is
used to reduce the dimension of the Rol feature vector to the number of classes that
the network can differentiate. The resulting vector is passed to a softmax layer that
computes the probability of the object belonging to each of the N defined classes. The
second output is defined as the exact bounding box positions encoded as four numbers.
This means the network output gives the type of object and its position in a given image.

3.2 Graph Theory

Our proposed pipeline depends on the skeleton of the character to be represented as a
graph, therefore we describe essential definitions and algorithms that are used throughout
the following chapters. Graph theory has been a popular and highly researched area for
many years. Graphs have various applications in other fields outside of pure mathematics.
A Graph is typically defined by a set of vertices or also called nodes and a set of edges.
Fach edge defines the relationship between two vertices. Therefore, let the Graph
G = (V, E) be defined by a finite set of vertices V' and a finite set of edges E. While
it is, in general, possible for the sets of V and E to be infinite, not all algorithms can
be applied to graphs with an infinite number of vertices or edges, so for simplicity and
relevance to this thesis, every following graph is assumed to be finite.

Let an edge e € F be defined as an unordered tuple of two vertices, such that ¢ = (v, u)
with v,u € V. Graphs defined this way are called simple undirected graphs, as the edge
does not imply any directedness. Figure 3.5 shows a undirected graph G = (V, E) with
V ={a,b,c} and E = {e1,e2,e3}. A loop is defined as an edge that connects the same
vertices, such that e = (v,v) with v € V.

Contrary to undirected graphs there is the possibility to also encode directedness in
edges such that the graph Gp = (V, E) is defined as a set of vertices V and a set of
edges E defined as e € E with e = (u,v). (u,v) represents an ordered tuple such that
(u,v) # (v,u). A graph defined in this way is called a directed graph.

There are many more possible ways to define graphs, e.g. graphs allowing or a vertex
pair to be connected by multiple edges are usually referred to as multigraph.

The vertices of a graph have different attributes, such as their degree deg(u) = n with u
being a vertex of a graph and n being the number of vertices v that are connected to u
with an edge e = (u,v). If an edge exists between u and v the vertices are referred to as
neighbours. An edge e = (u,v) is called an incident edge for the vertices u and v. The
degree of vertex a in Figure 3.5 is two, as it has two neighbouring vertices b and c.

An alternative way of describing a graph is to define it using an Adjacency Matriz. As
seen in Figure 3.6, each row and column defines a vertex v € V and every edge e € E is
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Figure 3.5: A simple undirected graph G represented by a node-link diagram. Each
vertex is represented as a circle (node) and each edge is represented by a line (link)
linking the two respective vertices.
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Figure 3.6: The adjacency matrix representation of the graph G from Figure 3.5.

represented as a 1 in the matrix. The entries correspond to the graph G as shown in
Figure 3.5. The adjacency matrix is a different representation of graphs, compared to a
graph being represented as a node-link diagram as seen in Figure 3.5, and can be used
for many different algorithms in optimisation problems.

Graphs are an important topic in a very diverse research field ranging from applications in
computer science to electrical engineering. There are many different graph algorithms such
as traversal algorithms, shortest path algorithms and minimum spanning tree algorithms
to name but a few algorithms.

For example, graphs can be used to model and analyse social networks. Clustering
algorithms can help understand connections, influence and patterns in social communities.
Another application of graph algorithms is in circuit design and analysis, where vertices
represent components and edges represent connections between the components. An
important algorithm was introduced by Kerninghan and Lin [KL70] which partitions
the graph and minimises the number of interconnections between electric components to
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reduce the cost of electrical components.

An important role of graphs and their algorithms is in modelling transportation systems
such as road networks. A typical application of traversal algorithms is navigation in
road networks. In bioinformatics graphs can be used to represent protein interactions,
genetic networks, and metabolic pathways such as Metabopolis presented by Wu et
al. [WNSV19].

Another important category of graph algorithms with special relevance to this thesis are
graph matching algorithms. Graph matching algorithms aim to find correspondences
between two or more vertices or edges of different graphs. An example of a graph-
matching algorithm is the graph edit distance presented by Horst Bunke [Bun97]. The
graph edit distance measures the dissimilarity between two graphs G4 and Gg. The
difference can be expressed by the minimum number of edit operations to transform the
graph G4 = (V4, E4) into the graph G = (Vp, Ep). The edit operations f are defined
as follows:

e Vertex deletion means deleting a vertex v € V4, which also requires removing all
edges e where v is part of

o Vertex insertion means inserting a new vertex v ¢ V4 into V
e Vertex substiution means replacing a vertex u € V4 with a vertex f(u) € Vp

o Edge deletion means removing an edge e = (u,v) € E4 without removing the
vertices v and v

o Edge insertion means inserting a new edge e = (u,v) with u,v € Vy

o Edge substitution means substituting an edge e = (u,v) € E4 with an edge

¢ = (f(u), f(v)) € Bg

Each of the edit operations can be assigned with a cost. In case each operation is
assigned the same cost, the graph edit distance is defined as the minimum number of edit
operations. If operations are assigned different costs, the graph edit distance is defined
as the set of operations that has the minimum cost. Optimisation algorithms are used
to find graph edit distance. Kaspar Riesen [Riel5] shows that the graph edit distance
can be used in structural pattern recognition tasks, where the images that should be
matched are represented as graphs based on extracted features.

3.3 Character Animation

Character Animation is an integral part of this thesis. It is the process of bringing
fictional characters to life by creating movement, expression and emotions. Character
animation is part of the larger topic of Computer Animation which describes the process
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Figure 3.7: Simple skeleton representing a human character. Circles describe joints, while
the directed links between circles represent the bones connecting the joints.

of using digital technology and computer software to bring scenes in movies and games to
life. Especially focusing on games and movies [DKT98]|, character animation is relevant
to create an immersive experience for users, among other factors such as sounds and
visuals. Besides computer graphics computer animation is also relevant in other fields,
such as robotics.

Character animation is a very diverse topic itself, with very complex sub-topics that are
highly researched themselves, e.g. face animation specifically focusing on the animation
of faces. The focus of this chapter is on the most relevant concepts and definitions with
regard to character animation.

There are many different ways that a character animation can be modelled. One of the
most prevalent methods is skeleton-based animation, often referred to as Rigging. It is a
widely used technique in computer graphics for creating natural and realistic movements
for characters and objects. For skeleton-based animation the basic idea is to represent it
as a continuous deformation of a skeleton which is a hierarchical structure of joints that
are connected by directed links [MHLC22], as shown in Figure 3.7. Specifically, when
used in character animation, the links connecting the joints are referred to as bones.

The base of each bone is the point where rotation is applied, changing the position of
the joint attached to the tip of the bone. An example can be the rotation applied to the
bone connecting the left elbow with the left hand in Figure 3.7 changing the position of
the left hand. Joints that are only attached to one bone, at the tip, are referred to as
end-effectors. Another special point is the root of the skeleton, which in Figure 3.7 is the
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(a) (b)

Figure 3.8: (a) A hand and two bones of the associated skeleton. Red marks a mesh-vertex
of the mesh representing the hand and its corresponding position relative to the bone.
(b) Applying a rotation 6 to the bone connecting the hand end-effector shows the change
of the mesh and associated mesh-vertices. Adapted from what-when-how [Pub].

pelvis joint, as it defines the position of the skeleton in the world space. The rotation of
each bone, which determines the position of each joint, as well as the position of the root
defines a unique pose of the skeleton.

Skeleton-based animation is most of the time used in combination with models that
represent characters or other objects, which consist of one or multiple meshes. A mesh
consists of mesh-vertices that are connected with mesh-edges where each closed loop of
connected mesh-vertices represents a mesh-face.

The pose of the skeleton can be used to apply the pose to a mesh as shown in Figure 3.8
showing how the hand mesh changes when applying rotations to a bone associated
with the hand. To achieve the correct deformation of mesh, a simple way is to assign
a weight for each mesh-vertex that defines how much influence a certain bone has on
that mesh-vertex. Figure 3.9 shows the influence of the bones on each mesh-vertex by
colouring the mesh-vertices based on the colour of the bones.

The influence of the bones on each mesh-vertex ranges between zero and one. Mesh-
vertices influenced by both bones have their colour mixed for example the vertices marked
with p are influenced equally by both bones and therefore coloured in yellow. When
rotating the green bone, it shows how the mesh deforms, meaning the positions of the
mesh-vertices change, depending on how much influence the bone has on the individual
mesh-vertex. Different techniques exist that solve the problem of assigning influence
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Figure 3.9: Skeleton-based deformation of a mesh based on two bones (red and green).
The influence of the bones on each mesh-vertex is shown in the respective colour of the
vertex [TP23].

of each bone to each vertex. One proposed approach is the multi-weight envelopment
method described by Wang and Philips [WP02].

Algorithms dealing with the deformation of meshes using skeletons are referred to as
Vertex Skinning. It is an actively researched topic according to Le Binh Huy and
Deng Zhigang [LD12] with the focus of it being mostly on 3D models. Vertex skinning
techniques are not limited to 3D characters and meshes but can also be applied to 2D
characters as described by Pan and Zhang [PZ11], which are the focus of our proposed
pipeline.

Inverse-Kinematics (IK) and Forward-Kinematics (FK) are research areas closely



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.3. Character Animation

target

Figure 3.10: A problem with two possible solutions for Inverse Kinematics [ALCS18].
The red circle marks the end-effector while blue dots mark the joint and the root. Joints,
base and end-effectors are connected by bones.

connected to vertex skinning and skeletal-based animation. For forward kinematics one
must calculate the angles ©; and ©9 representing the respective rotation of the bones [
and ls such that the end-effector, marked red in Figure 3.10, ends up on the coordinate
(x,y). This can be a very difficult task especially if a complex skeleton with many joints
and bones is being used.

Using FK an animator needs to manipulate the rotation of different bones to place the
end-effector to the desired position, which is a difficult task. IK allows an artist to
manipulate the end-effector directly, i.g. placing the end-effector representing the toe
of a character to a certain position. By solving a system of (kinematic) equations the
necessary bone rotations are calculated in a way that the position is reached within
the constraints (avoiding stretching of bones). Figure 3.10 illustrates the constraints of
a simple skeleton in which the desired position of the end-effector leaves two possible
solutions.

There are many different algorithms and many advances that can solve the problem
shown in Figure 3.10 which can be found in the survey of Aristidou et al [ALCS18].

With IK and skeleton-based animation, an artist can create what is called a keyframe-based
animation. This means for specified frames, the keyframes, the animator specifies the pose
of the skeleton. All frames in between the keyframes are calculated by interpolating the
pose of the previous and the next keyframe using IK. While keyframe-based animation is
not limited in combination with skeleton-based animation it is a widely used combination
of approaches.

The high degree of freedom when specifying a pose for a skeleton and the complex
interaction of the mesh with its environment makes generating even short animations a
complex and tedious task, especially if done by hand. Therefore the manual definition
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Figure 3.11: Markerless motion capture of a human jumping [SGXT20]

of the skeleton pose for each keyframe is not always feasible as it is very time intensive
and requires a large knowledge of how, e.g. human motion works, to recreate a realistic
movement.

The current state-of-the-art approach for creating life-like animations is by using the
Motion Capture (MoCap) technique. The basic idea of MoCap is to automatically
estimate the skeleton pose for each frame video sequence as shown in Figure 3.11. MoCap
techniques can be split into the following categories:

e Sensor-based MoCap, uses sensors attached to an actor to track the position of the
joints. E.g. electromagnetic sensors are attached and their positions are tracked
through their interaction with an electromagnetic field generated by a base station.

e Optical MoCap, uses a camera to track the pose of the actor either by using
reflective markers or using a markerless approach, such as presented by Shimada et
al.[SGXT20].

e Hybrid MoCap, uses a combination of techniques to track the pose.

Figure 3.11 illustrates the idea of markerless monocular MoCap, a form of optical MoCap.
From a sequence of images, the pose can be extracted using computer vision approaches,
to define the keyframes of the animation. In recent years it has been especially driven
by human-like animation according to Kitagawa and Windsor [KW20]. It alleviates the
manual work of defining the skeleton for each keyframe, as those are usually retrieved in
an automated way.
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3.3. Character Animation

Figure 3.12: Retargeting of a pose captured by markerless motion capture [SGXT20]

Due to the high cost of creating high-quality motion captures recently a lot of research

focused on combining CNN-based approaches with training data generated using MoCap.

Holden et al. [HKS17] present an approach that allows to create life-like animations
for unseen skeletons and environments. Characters in a game or movie should react
naturally to the input of a user or artist and also react believably to other objects present
in the scene, e.g. a human character walking up stairs. Starke et al. [SZKS19] show in
their research that they are able to create specific animations for different characters
and environments. The learned approach is necessary as not every situation can be
cost-efficiently created using motion capture.

Zhang et al. [ZSKS18] shows that the previously mentioned learned approaches by
Holden et al. [HKS17] and Starke et al. [SZKS19] are not limited to human or humanoid

animation but can also be extended to the animation of animals. Quadruped motion, e.g.

animation of a cat, can be learned in a similar way.

Another key concept, related to our pipeline for creating animation for hand-drawn
characters, is the retargeting of motion. Cheung et al. [CBHKO04] describe the main
idea as a motion that is executed by one character and can be retargeted to a second
character, such that the second character executes the motion. Figure 3.12 shows a

motion generated by MoCap of a human that is retargeted to animate a virtual character.

Motion retargeting allows to use one animation on any different character, making it
possible to animate a large set of characters.
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(b)

Figure 3.13: (a) Example of a Voronoi diagram on a set of points marked in blue. (b)
Voronoi diagram of selected points on the contour (blue) of a shape [LGK19].

3.4 Creating Skeletons

Since our pipeline uses skeletons of unseen hand-drawn characters, an important related
topic is the creation of skeletons. One popular approach for creating skeletons is using
Voronoi Skeletons. For this, we first have to define what a Voronoi Diagram is. Ac-
cording to De Berg [DBVKOS97| the Voronoi diagram is given using Definition 3.4.1.
Figure 3.13(a) illustrates a set of points P, marked in blue, separated into cells according
to Definition 3.4.1.

Definition 3.4.1 (Voronoi Diagram). Let P = {p1,pa, ..., pn} be a set of distinct points
on a plane which are called sites. The Voronoi diagram of P is defined as the subdivision
of the plane into n cells, one for each site in P, with the property that a point ¢ lies in
the cell corresponding to a site p; if and only if dist(q, p;) < dist(q, p;) for each p; € P
with ¢ # j.

There are different algorithms for efficiently computing a Voronoi diagram such as the
approach presented by Steven Fortune [For86]. As input, we define selected points of the
contour of a shape, marked in blue in Figure 3.13(b). These points are used to calculate
the Voronoi diagram. Max Langer [LGK19] refers to points, that are closest to two cells,
as the Voronoi edges. Voronoi vertices refer to points connecting Voronoi edges and
have more than three closest cells. Bold red lines in Figure 3.13(b) are all edges where
generating sites do not lie next to each other on the contour. Using this property an
initial skeleton can be defined.
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Figure 3.14: Grey boxes show the contour of the shape and black lines show Voronoi
edges. Each pixel of the contour is used as a site. For each point m the length of the
chord length is calculated, meaning the distance of the contour connecting the closest
two sites pa and pp [LGK19].

The initial skeleton contains many spurious branches that we want to avoid. Robert
Ogniewicz and Markus Ilg [O192] introduce multiple measures of pruning the skeleton to
avoid spurious branches that are introduced due to noise.

They propose to calculate a residual value for all of the Voronoi edge points. One way to
compute the residual value is using the Chord residual as shown in Figure 3.14. The idea
is, that for each Voronoi edge point m we calculate the length of the contour connecting
the two sites closest to m, e.g. pa and pp. Once this value is calculated for each Voronoi
edge point pruning the skeleton is simply applying a threshold and discarding all points
that are below the threshold. After applying the threshold the Voronoi skeleton has been
computed.
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CHAPTER

Methodology of Animating
Hand-Drawn Characters

This chapter describes each of the five proposed pipeline steps. First, an overview is
given of the pipeline and further sections explain the methodology of each step in more
detail.

4.1 Overview of the Animation Pipeline

As shown in Figure 4.1(a), the input to the pipeline is a single image, which contains
the hand-drawn character that should be animated. In the first step, the drawing is
separated from the background of the image (Figure 4.1(b)).

In the second step, the drawing is semantically segmented, defining which parts of the
hand-drawn character are limbs, body, etc. (Figure 4.1(c)). In the third step, a skeleton
is generated where the joints and end-effectors are assigned a type based on the semantic
information of the previous step, e.g. limb, body, (Figure 4.1(d)). This information is
then used to identify the closest reference skeleton for the given skeleton (Figure 4.1(e)).

The final output (Figure 4.1(f)) is an animated mesh. In the following sections, each step
will be described in detail.

4.2 Character Detection

The first step of the pipeline is to detect the hand-drawn character in the input image
(Figure 4.1(b)). In this step of the pipeline, we assume the input is a single image that
contains at least one hand-drawn characters that should be animated with the goal of
separating them from the background for further processing.
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©) W

Figure 4.1: (a) Image containing hand-drawn character. (b) Detection step, where the
character is separated from the background. (¢) Semantic segmentation, where all parts
of the sketch are identified. (d) Calculation of the skeleton. (e) Mapping of the skeleton
to the best matching reference. (f) Triangulation of the sketch and rigging that results in
the final animation.
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4.2. Character Detection

Figure 4.2: Example input for the pipeline containing multiple hand-drawn characters.

Without loss of generality, we restrict the input image to a top-down view of the
drawings to avoid distortions. Further, the drawing must be black foreground with white
background to simplify the process. Alternatively, digital drawings can be used with
the same aforementioned restrictions. Figure 4.2 shows an example of an input image
captured from a top-down view into the pipeline with multiple hand-drawn characters.

Based on the input and the task of identifying the characters, it enables us to choose
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from multiple different approaches. One option is to use computer vision approaches such
as a contour-based approach presented by Suzuki and Abe [SA85]. Based on a binarised
input image, which means that pixels of the image are either white or black, the contours
of objects are computed. Contour refers to the outline or boundary of an object or shape
in an image.

Another option is an edge-based approach as presented by John Canny [Can86]. The
main idea is by applying a filter to an image we can compute the edges in the image.
Using our assumptions on the input, we can find the edges between the black foreground
drawing and the white background.

Both approaches come with some potential issues. For the contour-based approaches,
we need to make certain assumptions, e.g. such that each contour describes exactly one
hand-drawn character and inner contours are to be ignored. Another issue is if the lines
of the drawings are not fully connected, but has gaps between the lines, we will find
multiple contours. From these multiple contours, it is hard to determine whether they
are different hand-drawn characters or whether all contours belong to the same character.
While this problem can be solved by dilating the input, after thresholding, it only allows
to close small holes. If we dilate the input too much it is possible that multiple characters
will be detected as a single contour if their foreground merges.

Similar problems occur for the edge-based approaches for detecting characters. This
means that it is difficult to differentiate a single from multiple hand-drawn characters if
they are drawn close together. Further, if the drawings contain inner structures, as seen
in Figure 4.2, it is hard to define a heuristic to compute the shape (black in Figure 4.1(b))
of the character robustly.

To avoid restricting the input further to make the above-mentioned approaches possible,
we decide to use a machine learning-based approach. Smith et al. [SZL'23] show promising
results for using CNNs to detect childrens drawings in an input image. Specifically, we
choose the Mask R-CNN as proposed by He et al. [HGDG17] as it excels at object
detection tasks.

The basic idea of the Mask R-CNN follows the architecture of the Fast R-CNN as
presented in Chapter 3.1. Additionally to the bounding box and classification output of
R-CNN, He et al. [HGDG17] propose to use an additional output for generating the exact
mask of the detected object. Figure 4.3 shows the three outputs of the Mask R-CNN,
which are a bounding box, the classification and the mask for each object.

For this thesis, the backbone of the network is the Residual Network (ResNet), a deep
neural network introduced by He et al. [HZRS16]. The basic idea of ResNet is to avoid
the problem of vanishing gradients for very deep neural networks. Residual building
blocks are introduced to allow the network to learn fine-grained details as well as more
abstract higher-level features at the same time.

Figure 4.4 shows a residual building block, where x denotes the input. While the input is
passed through multiple layers a short-cut connection is made where the initial values of
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traffic

B .

Figure 4.3: Output of the Mask R-CNN [HGDG17] showing bounding boxes, classification

and mask for each detected object.

Figure 4.4: Residual learning building block adapted from He et al. [HZRS16].
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(a) (b) ()

Figure 4.5: (a) Sketch example of the SketchParse dataset. (b) Annotation of the sketch
where each colour corresponds to a body part. [SDBM17]. Blue denotes the head, red
the torso and green the limbs. (¢) Annotation transformed to a single label for training
the detection step.

x are passed to the end. There the results of the layers are added element-wise with the
original values of x. This allows the network to differentiate between the desired output
and the current intermediate representation, meaning that the gradients can be updated
more effectively during learning.

We want to detect hand-drawn characters in the input. This means that we need to define
two classes, one for a hand-drawn character and one for the background, where nothing is
present. For the backbone, first stage, of the Mask R-CNN we use the 50-layer version of
ResNet, which consists of 48 convolutional layers (combined in residual building blocks),
one max pool layer and one average pool layer. As an output of the network we define the
standard classification and bounding box regression layers defined by pytorch [PGM*19].

For the bounding box predictor and the classification, we use the standard classification
and bounding box regression layers defined by pytorch [PGM™19] for Fast R-CNN with
two classes and 1024 features. For the mask output, we use the standard definition of
Mask R-CNN by pytorch [PGM*19], with two classes, which are the foreground and
background, 256 hidden layers and 256 features.

We use the SketchParse dataset provided by Sarvabevabhatla et al. [SDBM17] for training
our detection network. The dataset provides sketches with annotations for each part of
the sketch, such as legs, body and head. Figure 4.5(a) shows an example for a sketch of
the dataset with the annotation of the parts shown in Figure 4.5(b). Since we do not
need to differentiate the sketch parts at the detection step, we can transform the different
labels into a single one (Figure 4.5(c)).

To create training data containing multiple drawings we distribute multiple sketches of
the dataset onto a single input image. Each of the sketches is randomly rotated to increase
the diversity of the training data, as shown in Figure 4.6. The same transformation is
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4.3. Semantic Segmentation

Figure 4.6: Input for the training step using multiple randomly rotated and placed
sketches of the SketchParse dataset [SDBM17].

applied to the annotation, which allows the fast creation of a large amount of training
data.

Based on the input (Figure 4.7(a)) for each detected character a bounding box is calculated
(Figure 4.7(b)). Additionally, for each bounding box, an exact mask (Figure 4.7(c)) is
created which can later be re-used during skeletonisation. For the following pipeline steps
each of the detected hand-drawn characters is processed individually.

4.3 Semantic Segmentation

In the second step of the pipeline, as shown in Figure 4.1(c), we extract the semantic
information of the hand-drawn character. The input of this step is the region of interest
of the image of the previously detected hand-drawn character. The goal of this step is to
get information about each part of the sketch and therefore which function the body part
takes over, e.g. limbs are used for walking. The output of this step is an image, where
each pixel contains a label for a semantic area, is one of the following:

Body (i.c., torso)

e Head

Limbs (i.e., legs and arms)

Wing

Tail
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Figure 4.7: (a) Input containing a hand-drawn character. (b) The predicted bounding
box (in red) of a detected character. (b) Predicted mask of a detected character inside
the bounding box. (¢) Semantic segmentation of a character with limbs (green), head
(blue) and torso (red).
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Figure 4.8: SketchParse architecture proposed by Sarvabevabhatla et al. [SDBM17].

For this task, we can partially apply the SketchParse algorithm proposed by Sarvabev-
abhatla et al. [SDBM17] using the novel architecture for a two-level fully convolutional
network. Figure 4.8 shows the basic architecture of the multi-level network.

As an input we can use the image extracted from the detected bounding box, as shown in
Figure 4.7(b). The common first layer, described as Lo in Figure 4.8, extracts category-
agnostic low-level information. The second layer consists of multiple specialised networks,
each of them trained for a specific object category (L1, Lo, ..., Ls in Figure 4.8). To
define which sketch should be passed to which specialised network, they introduce a
router layer which is implemented as a K-way classifier, shown in red in Figure 4.8.
The K-way classifier is a CNN trained on actual sketches, that labels the input image
to be forwarded to the specialised networks that themselves label the sub-parts of the
hand-drawn characters.

Additionally to the pixel-wise labels, the 2D pose of the sketch is estimated. The pose
describes in which direction the sketch is facing. The network differentiates between
eight different directions, as shown in Figure 4.8.

For this thesis, due to the limited categories of characters, we only employ two spe-
cialised networks for characters that can semantically differentiate between the previously
mentioned parts, namely body, head, limbs, wing, and tail. Figure 4.7(c) shows the
segmentation of the detected character.

4.4 Character Skeletonisation

The next step in the pipeline, as shown in Figure 4.1(d), is to create the skeleton based on
the mask computed in the detection step (Figure 4.7(c)). We use the computed skeleton
to animate the hand-drawn character. The output of this step is the skeleton, of the
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(a) (b)

Figure 4.9: (a) Binarized input, black defines 1 and white defines 0. (b) Contour (green)
of the character computed using the approach by Suzuki and Abe [SA85].

character, where we assign each joint and end-effector the label of the underlying pixel
computed in the previous step.

First, we compute an initial skeleton using the Voronoi-based approach, as described in
Chapter 3.4. The input requires the contour of the object.

To compute the contour we follow Suzuki and Abe [SA85] who propose a widely known
algorithm for contour detection. First, we transform the mask of the object computed in
the detection step (4.7(b)) into a boolean matrix, where one, shown black in Figure 4.9(a)
corresponds with the foreground that should be skeletonised and zero (white) representing
the background and provide it as an input to the contour detection algorithm.

As an output, we retrieve the contour, marked green in Figure 4.9(b), for the given
character. This contour is exactly one pixel wide, at each point, and we use it as an
input to the Voronoi-based skeletonisation algorithm. As an output of the Voronoi-based
skeletonisation we get an image, where 1 indicates the pixel belongs to the skeleton and
0 indicates the pixel is not part of the skeleton.

It is possible that the algorithm returns non-thin parts, meaning parts of the skeleton are
more than one pixel wide. For later steps of the pipeline, specifically the identification
step, we need to ensure a one-pixel-wide skeleton. To ensure this property, we can follow
the approach described by Zhang et al. [ZS84] which is described in Algorithm 4.1.

The basic idea of the algorithm is to iterate over the whole image and analyze the
one-by-one neighbourhood of each point P (4, j), indexed by row i and column j in the
image, as shown in Figure 4.10.

The thinning algorithm is split into two sub-iterations with the first one deleting a pixel
Py = (i, ) if all of the following conditions apply
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Algorithm 4.1: Thinning algorithm by Zhang et al. [ZS84]
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Data: I: Skeleton represented as a matrix, where 1 indicates the pixel belonging
to the skeleton and 0 otherwise

Set all elements of M to 0; /* Matrix of the same size as I */
do
Set C=0; /x Counts if any pixels fulfill the conditions
*/
foreach Pizel Pi(i,7) in I do
M (i, j) = 1 if all conditions (Cy), (Cy), (C.), (Cy) apply
if M(i,j) ==1 then
| C+=1
end
end
I=1-M
if ¢’ ==0 then
| stop
end
Set C' = 0 foreach Pizel Py (i,j) in I do
M (i, j) = 1 if all conditions Cy, Cy, Cw, Cg apply
if M(i,j) ==1 then
| C+=1
end
end
I=1—-M
while C /= 0;

P9 Pg Ps3
1G-1, §-1) | 1G-1,1) |1G-1, j+1)

Ps P1 P4
I, j=1) I3, j) I(i, j+1)

Py Pe Ps
I(i+1, 1) | 1(i+1,]) [I(i+1, j+1)

Figure 4.10: Neighbourhood of the pixel P; [ZS84].
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(Ca) 2 < B(Py) < 6, ensuring the endpoints of a skeleton are preserved

(Cy) A(P1) = 1, preserving points that lie between the endpoints of a skeleton line
(defined as the pixels of the skeleton connecting two points)

(Ce) Py Pyx Ps =0, for preserving eastern endpoints

(Cq) Pix Ps* Py =0, for preserving southern endpoints

with A(P;) being the number of 01 patterns in the ordered set of neighbouring points,
e.g. given the ordered neighbours P, =0, P3 =1, ..., Py = 0, e.g. the pattern 01000001
results in A(Py) = 2. B(P)) = Y7_, P;. If all of the above conditions apply, the pixel
is marked as 1 in the matrix M and the counter C is increased by one. In the second
sub-iteration the conditions (C.) and (Cy) are substituted by the following conditions

(Cwr) Py % Pyx Pg =0, for preserving nothern endpoints

(Cg) Pox* P+ Py =0, for preserving western endpoints

with (Cy) and (Cp) staying the same. After each iteration, the matrix M is subtracted
from I removing pixels that do not belong to the optimal one-pixel wide skeleton. If the
counter C is zero after an iteration the optimal skeleton has been found and the algorithm
stops, returning I. Figure 4.11(a) shows the skeleton, marked with white pixels, obtained
after applying the thinning algorithm overlayed onto the shape, represented in black.

The output I contains the skeleton of the character. While the thresholding during the
Voronoi-based skeletonisation, as described in Chapter 3.4 removing spurious skeleton
lines, Figure 4.11 shows that there are still many undesired end-effectors and joints in the
skeleton, e.g. end-effectors inside the body of the semantic type body(red in Figure 4.11(a),
can lead to errors in further pipeline steps. Therefore, our aim is to remove as many
artefacts before moving to the next pipeline step.

For further processing we represented the skeleton as a graph Ggie. At each endpoint
of a skeleton line, we can insert a vertex, which represents an end-effector. At pixels
where multiple skeleton lines meet, we can also insert a vertex representing a joint.
Figure 4.11(a) shows the inserted joints and end-effectors coloured depending on the
semantic labels extracted in the previous step (Chapter 4.3). Vertices that lie next to
each other on a skeleton line are connected with an edge in Ggge;-

We propose two heuristics, H; and Has, to remove those undesired artefacts. For H; our
idea is to remove all end-effectors of the semantic type body and head that we do not
want to consider in future pipeline steps, e.g. the head of a character is one component
and does not contain multiple parts. H; contains the following condition for removing a
vertex u:

(C1) Vertex u has exactly 1 incident edge
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4.4. Character Skeletonisation

Figure 4.11: (a) Skeletonised character with bones (white) and joints and end-effectors
(red = type body, blue = type head, green = type limb) (b) Heuristically simplified
skeleton by removing end-effectors of type head and body if they are incident to another
node of the same type.

(C3) Vertex v, the neighbour of u, has the same type type(n) = type(m)

(C3) type(v) = head or type(v) = body

The function typev returns the semantic type, e.g. body or head, for the given vertex
v. This means the conditions (C7), (C2) and (C3) we remove all end-effectors (vertices
with exactly one neighbour), that are of the type body or head and the only neighbouring
vertex is of the same type. Figure 4.11(b) shows the skeleton after applying Hy removing
all of the undesired end-effectors. Specifically condition (C3) ensures that we do not
remove the only vertex of the given type, i.e., head.

Another issue arises due to the nature of Voronoi skeletonization generating branches very
close together, as the multiple vertices of type body shown in Figure 4.12(b). Vertices so
close together increase the complexity of the skeleton while providing little to no benefit
for further computations.

To avoid this problem, we propose Hs to merge any vertices of the same type, e.g. two
vertices of type body, if they are below a given threshold e, which we define as 5 pixels.
The distance between two vertices P (i, j) and Py(k,l), with ¢ and k being the row of
the pixel in the image and j and [ being the column, is calculated using the Euclidean
distance, shown in Equation 4.1.

d(Pi(i, ), Pa(k,1)) = \/(i = k)2 + (j — 1)? (4.1)

If two vertices P; and P» have a distance d(P;(i,7), P2(k, 1)) lower than the threshold
€ we merge the two vertices to one vertex P, with the position given by Equation 4.2.
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(a) (b) (c)

Figure 4.12: (a) Skeletonised character with bones (white) and joints and end-effectors
(red = body, blue = head, green = limb) (b) Skeleton after applying H;. (c) Skeleton
after applying Hs.

We connect all vertices that were previously connected with an edge to P; or P> with an
edge to P,.

itk i+l (42)

P =
n = (55

Our experiments showed different weighting of the new position did not lead to any
significant differences but added another parameter and complexity, therefore a simple
average position is preferred.

Figure 4.12(a) shows another example of a character skeleton retrieved by Voronoi
skeletonisation with the vertex types assigned by semantic segmentation. In the first
step, we apply H; which results in Figure 4.12(b) and in the second step we apply Hj to
merge the two nodes of the type body that are close together in the centre of the sketch.

The output of this pipeline step is the graph Ggge that is generated from the Voronoi
skeletonisation and simplified by applying the heuristics H; and Hs. Additionally, for
each edge e we save the skeleton line, defined as the pixels connecting the two vertices in
I, that is generated as it will be used in the next pipeline step.

4.5 Character Identification

In the next step of the pipeline, as shown in Figure 4.1(e), we identify the reference
skeleton that maps best to the given skeleton. The input of this pipeline step is the
graph Ggpe; computed in the previous step. The output of this step is the best-matching
reference skeleton that represents a base movement type.

For this thesis, we limit ourselves to three different reference skeletons, each with a unique
movement style:
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4.5. Character Identification

¢ Humanoid, characters moving similar to a human, i.e., walking on two legs and
upright

e Quadruped, characters moving typically on four legs

e Flying, characters moving typically using wings and legs

The number of reference skeletons is not limited in general but can be expanded by
defining more reference skeletons. If the new reference skeletons contain new types of
parts, e.g. claws, it is also necessary to expand the training data for semantic segmentation
in section 4.3 to make it possible to extract information about the new parts.

For each of the reference skeletons we can define animations which can later be applied
to the hand-drawn character. To match the skeleton generated in the previous step with
the reference skeletons we can follow the approach proposed by Cheong et al.[CGK™109].

Let us assume that we define our prototype skeletons as graphs Grum, Gguad and Gy for
humanoid, quadruped and flying reference skeletons. Figure 4.13(a) shows our definition
of a humanoid skeleton, marking end-effectors in green for representing limbs, joints in
red representing the body and end-effector in blue representing the head. Respectively
Figure 4.13(b) and Figure 4.13(c) show the reference skeleton for quadruped and flying
reference skeletons. Further, for each of the characters we define a simple shape which is
used in later pipeline steps.

Therefore, the task for this step is defined as finding the closest match between Ggpe; and
the three reference skeletons Ghum, Gquad and G y. We propose to use a graph-based
approach for this matching problem.

For computing which of the prototype skeletons matches closest to the unknown skeleton,
we base our approach on the findings of Cheong et al.[CGK*09] who provide a novel
algorithm for measuring the similarity of geometric graphs, called geometric graph
distance (ggd).

Their algorithm is based on the graph edit distance that has been discussed in section 3.2.

The graphs we retrieved from the skeletons have an inherent geometric meaning, due to
the position of the vertices in the image plane. This makes the geometric graph distance
a fitting approach to match the given graphs.

While the operations in the graph edit distance are allowed to be in an arbitrary order,
for the geometric graph distance the following operations are available and need to be
done in the following order:

1. Edge deletions

2. Vertex deletions

3. Vertex translations
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Figure 4.13: Red denotes body vertices, green for limb vertices, yellow for wing vertices,
orange for tail vertices and blue for head vertices. (a) Reference skeleton for a humanoid
character. (b) Reference skeleton for a quadruped character. (c) Reference skeleton for
a flying character. (d) Skeleton obtained from the previous step. (e-h) Show diverse
example shapes that are used to generate the skeletons.

?
L
(a) (b

(h)

4. Vertex insertions

5. Edge insertions

The ordering of the operations is necessary as they ensure that the geometric graph
distance is symmetric. This means that vertex translations have to appear in the middle.
Only isolated vertices can be deleted, meaning that edges have to be deleted before
vertices. Further, Cheong et al. [CGKT09] argue that deletions after insertions are never
useful.

The geometric graph distance is defined as follows: let us assume two graphs G4 =
(Va,Ea) and G = (Vp, Eg). We aim to find a subset of vertices V* C Vy, as vertices
can be deleted or inserted, and a set of operations o : V* — Vi, e.g. deleting a vertex
v € Vy, to transform the graph G4 to Gp. We define two constants for costs, namely
K. and K, which are associated with operations on edges and vertices respectively. The
costs for operations in o are defined as follows,

(a) the cost for any edge (u,v) € E4 such that not both u,v € V* or o(u)o(v) ¢ Ep
is K|uv|, where K, is a constant cost and |uv| is the length of the edge
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4.5. Character Identification

(b) the cost for any edge (u,v) € Ep such that not both u,v € oV* or o~ (u)o~1(v) ¢
E, is Ke|uv|

(c) the cost for each edge (u,v) € E4 with both u,v € V* and o(u)o(v) € Ep is
Kelluv] = [o(u)o(v)]]

(d) the cost for each u € V* is Ky|uo(u)|, where K, is a constant cost and |uo(u)]| is
the Euclidean distance between the node position v and o(u).

The geometric graph distance is defined as the minimum of this cost over all choices of
V* and o. Cheong et al. [CGK109] proved that the computation of the geometric graph
distance is NP-hard and can only be solved by formulating the problem as an integer
linear programming (ILP) problem and using a mixed integer linear programming (MIP)
solver.

The following shows how the ILP problem is defined. First, we define a binary variable,
referred to as Vj, representing pairs of vertices u € V4 and v € Vp. V,, is set to
one if w € V* and o(u) € Vg, otherwise zero. All pairs of edges e € E4 and e € Ep
are represented by the binary Variable E..s, that is set to one if both u,v € V* and

¢ = (o(u),o(v)).
The objective function is defined as in Equation 4.3 using constants K, and K,. |uv]

describes the Euclidean distance between two nodes. |e| describes the length of the edge
e = (u,v) which is determined by the Euclidean distance of the two vertices v and v.

g9d = K, - Z (Juv] - Viw)
u,v

+ Ko Y (lel)

ecEF 7

+Ker Y, (€])

e’cEp

—Ke -y (lel + [e'| = llel = [€]]) - Bee
e,e’

(4.3)

This means that the first term of the objective function Ky - >, , (|uv| - Vi) calculates
the sum of distances between two matched nodes u and v. The second and third terms
calculate the cost of deleting all edges in G4 and inserting all edges of Gg. Deleting and
inserting all edges can be avoided by moving an edge e € G4 to Gp which is represented
in the fourth term.

To avoid matching a vertex u € V4 to multiple vertices in Vp and vice versa, we need to
introduce the following constraints shown in Equation 4.4 and Equation 4.5.

Vp
YueVa, Y Vi <1 (4.4)

v
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Va
Vue Vg, Y Vi <1 (4.5)
v

Additionally, we need another constraint to avoid an edge e € E4 being mapped to
multiple edges ¢/ € Ep. Equation 4.6 shows the constraint on the edges.

Ve(u,v) € Ex
ve'(u',v') € Ep (4.6)
Eee’ < 0.5 - (Vuu’ + Vvv’ + Vuv’ + Vvu’

We extend the original definitions presented by Cheong et al.[CGK™09] to include the
labels of the nodes in the geometric graph distance. This allows us to utilise the semantic
information extracted in section 4.3 to match the skeletons more robustly.

For this, we modify the objective function of Equation 4.3 by adding another cost K;
assuming (bl__dist(u,v) returns the distance between the labels of the nodes u € Vy
and v € V. This distance function is configurable and if the distance between any
combination of labels is one, it is analogue simply counting the label differences of
matched nodes. This results in Equation 4.7. Our experiments show that the label
information allows for more robust matching results.

g9d = K, - Z (Juv] - Viw)

w,v

+ Ke : Z (|6D

e€El 5
+Ke- Y (€]
e’cEp

. Z (lel + €'l = lle| = |€]]) - Beer +K - Z (Ibl_dist(u,v) - Vi)

e,e’ u,v

(4.7)

|
=

The described algorithm allows us to compute the ggd’s for all pairs of skeletons, specif-
ically, g9d(Gskel, Gquad)s 994(Gskels Ghum) and ggd(Gper, G p1y). As an output for this
step we use the reference skeleton with the lowest ggd. In our pipeline, the graphs that
need to be matched are relatively simple and contain below ten nodes. This means that
the ILP problem can be solved very fast. Cheong et al. [CGK™09] found for large graphs
the algorithm is not applicable anymore and suggest using a heuristic matching algorithm,
such as the Landmark Distance [CGK™109).

While our experiments show that the matching to the closest reference skeleton works
very robustly, the mapping of the end-effectors is not reliable using the given method,
but absolutely necessary for computing the animation. This issue is resolved in the last
pipeline step.
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4.6. Rigging and Animation

Figure 4.14: Examples for two skeleton paths marked in green and orange on the skeleton
denoted in white. Pink indicates a sample point on the skeleton path with its associated
maximal disc centred on the sample point while still contained inside the shape.

4.6 Rigging and Animation

The last step of the pipeline, as shown in Figure 4.1(f), consists of multiple operations.

The input of this step requires the original image as an input, the skeleton of the character
and the reference skeleton to create the animation for the character.

In the previous step, we identified the closest matching reference skeleton to the skeleton
of the character Ggpe;. While for very small graphs brute-forcing a good mapping is
possible, we provide a more robust way. Especially for complex skeletons, meaning a
larger number of end-effectors makes brute-forcing no longer feasible. For robust mapping
of the end-effector nodes, which is necessary for animating the character, we follow the
algorithm Bai and Latecki [BLO8] for matching skeleton paths. The approach is very
robust, as it does not rely on inner vertices, e.g. the joints of our skeleton, but only on the
end-effectors. A skeleton path is defined as a sequence of pixels of the skeleton connecting
two vertices of the graph, as shown in Figure 4.14. We denote the two skeletons that we
want to map as G4 and Gp for this section.

The basic idea of the algorithm is, that a mapping of two skeletons is robustly computed
by comparing the skeleton paths. Further, they take into account the thickness of the
shape (black in Figure 4.14).

The thickness of the shape at each point of the skeleton is given by a maximal disc which
is still contained by the shape. To approximate the maximum disc for each sample point
on the skeleton as marked in pink in Figure 4.14. The maximum disc is approximated
using the distance transform, such as proposed by Rosenfeld and Pfaltz [RP66]. As a first
step, we calculate the distance transform for G4 = (V4, E4) and Gg = (Vp, Ep) based
on their respective shapes, e.g. Figure 4.14 shows the shape of Ggpe. Figure 4.15(a)
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&
(a) (b)

Figure 4.15: (a) Distance transform computed for each pixel on the shape of the character.
Lower intensity indicates a higher distance to the boundary of the shape. (b) Uniformly
distributed points (black) on the shortest skeleton path connecting two end-effectors.
Turquoise lines represent the skeleton obtained by the previous step.

shows the distance transform of each pixel of the shape of G 4, where lower intensity
indicates a higher distance to the shape boundary.

For each pair of end-effectors, e.g. w,v € V4, we compute the shortest path using
the shortest path algorithm proposed by Edsger Dijkstra [Dij22]. Along each skeleton
path, we create M uniformly distributed sample points along the skeleton paths that
connect the two end-effectors as shown in Figure 4.15(b). While some edges are processed
multiple times, the distance transform calculations done are computationally cheap and
are therefore negligible. Further, multiple processes of the same edge are necessary to
ensure a uniform distribution of M sample points. For each of the sample points, we
sample the value of the distance transformation which we denote as the function DT(p)
on the pixel position p of the sample point. To make the approach invariant to scale the
sampled value is normalized using Equation 4.8, where N represents the number of all
pixels and p; the pixel position.

DT (p)

T NSN DT (p) (4.8)

To find the best matching skeleton paths, denoted as p(u,v) with u,v € V4 and p(u’,v")
and u’,v" € Vg, which is necessary to compute the mapping of the end-effectors we calcu-
late the path distance. The path distance pd(p(u,v),p(u/,v")) is given by Equation 4.9.
M denotes the number of sample points, 7; the radius of the maximal disc at the i-th
sample point of p(u,v) whereas r; denotes the i-th sample point of p(u’,v’). [ and I
define the length of the skeleton path p(u,v) and p(u’,v’) respectively. The length of
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4.6. Rigging and Animation

the skeleton path is exactly computed by summing the distances between two sequential
pixels of the skeleton path. Our experiments showed that the approximation by counting
the pixels did not lead to different mapping results. Lastly, the configurable constant « is
used to control the influence of the length of the skeleton paths, which after experiments
we set to 0.1.

M N2 "2
g =1

p ;o (Tz T‘l) (

D (p(uvv)7p(u’v)) ; T'i+7'§ @ L+

(4.9)

To find the optimal mapping of the end-effectors of both graphs, we compute the path
distance for each combination of vertices u € V4 and v’ € Vg. First, we obtain an ordered
list of end-effectors for both graphs, resulting in a sequence ug, u1, ..., u, and ug, u}, ..., uj.
We order the end-effectors by their angle with respect to the centroid of all end-effectors.
Algorithm 4.2 shows that the centre can be calculated by summing up all vertices and
dividing the result by the number of end-effectors. Then a common sorting algorithm can
be used, such as Quicksort proposed by Charles Hoare [Hoa62], to order the end-effectors
based on Algorithm 4.3.

Algorithm 4.2: Ordering nodes clockwise based on their angle.

Data:

EF: end-effectors of the skeleton

S': ordered set of end-effectors

set Pcentre to (07 0)

foreach vertex uw in EF do
| DPeentret = U

end

Pcentre = pcentre/Size(EF)

S = sort(peentre, E'F, compareVertices) ; /% Sorting algorithm that
orders elements based on the output of function shown in
Algorithm 4.3 */

7 return S ; /* Ordered end-effectors ug, Uy, ...,Un */

[ R N VS

The angle of an end-effector, relative to the given centre, be calculated using Equation 4.10
with u representing the position. peenier represents the centroid, as calculated earlier.
If two end-effectors have the same angle, we order them using their respective distance
from the centre using the Euclidean distance shown in Equation 4.1. As a result, we
retrieve the ordered list of end-effectors.

angle(u, peentre) = arctan2(u(l) — peentre(1), u(0) — peentre(0)) (4.10)

The ordered lists allow us to compare all combinations of path distances for all end-
effectors, defined as d(ug, u()) for two end-effectors ug and ug. The combinations of path
distances can be written as the matrix in Equation 4.11.
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4. METHODOLOGY OF ANIMATING HAND-DRAWN CHARACTERS
Algorithm 4.3: Compares two end-effectors based on their angle towards a
given centre.
Input:
Deentre: Centre relative to all vertices
u: Vertex
v: Vertex
Output: true if u should be sorted before v, false otherwise
1 Function comparevVertices (Peentre, U, V) :
2 angleu = angle(uapcentre)
3 anglev = angle(vapcentre)
4 if angle, < angle, then
5 return true
6 end
7 dist,, = euclidean(u, peentre)
8 dist, = euclidean(v, peentre)
9 if angle, == angle, and dist, < dist, then
10 | return true
11 end
12 return false
13 End Function
pd(p(uo, ur), pug, up)) pd(p(uo, ur), p(ug, uy,))
pd(p(uO,UQ),p(u',u')) pd(p(u07u2)/p(u/7u/)
d(uo, up) = S pEeT (4.11)
pd(p(uo, un), p(up, u})) pd(p(uo, un), p(ugy, uy,))
Bai and Latecki [BLOS] suggest that the cost of matching two end-effectors ug and wy is
computed using the optimal subsequence bijection presented by Latecki et al. [LWKTMO07].
We define the cost as ¢(u, ') = OSB(d(u,u’)), where OSB is a function that returns
the optimal subsequence bijection distance given the matrix of path distances d(u,u’).
According to Bai and Latecki [BLO8] the optimal subsequence distance can be computed
by using a shortest path algorithm on a directed graph. The vertices of the directed
graph are all index pairs (4,j) € {1,2,...,n} x {1,2,...,k}. The weight w of an edge in
the graph is defined by Equation 4.12.
pd(ui, uj) i+l=kand j+1<I
w((i,7), (k1) = (k—i—1)-k i+1<kandj+1<I (4.12)
00 otherwise
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4.6. Rigging and Animation

Figure 4.16: Mapping (pink) of the end-effectors of the reference skeleton (left) and the
detected hand-drawn character (right). Lines in blue show the actual skeleton lines, while
black shows the bones (simplified) connecting the joints and end-effectors.

The constant k defines a constant cost of skipping the matching of a given vertex, i.e., if
the two graphs have a different number of vertices. Equation 4.13 shows how the cost is
determined. This means that for every vertex u; the closest vertex 'u,;- of which we take
the mean plus one standard deviation, std, of the distances of the closest vertices.

k = mean;(min;(pd(u;, u})) + std;(ming(pd(u;, u})) (4.13)

Based on the results of the OSB for each combination of vertices, we get the resulting
matrix ¢(G 4, Gp). The optimal mapping can be found by using the Hungarian algorithm,
which is a common formulation for globally optimal matching. The Hungarian algorithm
requires a square matrix, therefore we add the last row in Equation 4.14.

ug up o ouh o ug

wo (0.5 0.7 0.9 1.2

C w03 04 35 40
AGaGe) = 1o1 40 21 17.0

oo xS X

(4.14)

Figure 4.16 shows the mapping of end-effectors between a detected hand-drawn character

(right) and its, in the previous step matched, reference skeleton of a quadruped character.

It shows the capability of matching even if the skeletons have a different number of
end-effectors.

Before we can animate the hand-drawn character, we need to create a mesh based on the
image to use for the skeleton-based animation. For creating a mesh there are multiple
options we can choose from. One option is to use re-use the Voronoi diagram that we
calculated in section 4.4. Using the Voronoi regions inside the contour we can create a
mesh. Figure 4.18(b) shows the drawback of this approach. The mesh faces created this
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Case 4 Case 4 Case 4
Ambigous Solution A Solution B

Figure 4.17: Four cases of the marching squares algorithm. + and — indicate whether
the corner of the voxel is inside or outside the shape, while the squares represent the
voxels. Red-marked are new edges and vertices added in each case.

way are long and thin, which results in the mesh tearing when animated if the vertices of
the face have very different weights compared to their neighbours, due to their distance
from each other.

We can achieve a better result by following a voxel-based approach to produce a uniform
mesh. The basic idea is that we divide the 2D space into a grid of square voxels. We
can then use the marching squares as presented by Carsten Maple algorithm [Map03] to
create the mesh. The basic idea is to iterate over each voxel and identify the value of
the four corners, which are either inside (black) or outside (white) defined by the shape
of the character shown in Figure 4.14. Figure 4.17 shows the four possible cases after
taking symmetries into account. The edge marked in red is additionally inserted to the
mesh. In the first case, all corners are inside and the vertices, represented by the corners
of the voxel, are added to the mesh, but no additional edge is inserted. For cases two and
three one edge is inserted based on the configuration shown in Figure 4.17. Case four
is not trivial as the solution is ambiguous if only the four corner points are considered.
Therefore, we check whether the value inside the voxel is inside or outside and add two
edges and vertices accordingly. The position of the additional vertices is approximated
by linear interpolation. Figure 4.18(c) shows the generated mesh using the voxel-based
approach.

As the next step, we assign a weight for each mesh vertex, which we generated, that
indicates the influence of the bones of the animated reference skeleton. This is necessary
so that the mesh deforms according to the skeleton-based animation. For this step, we
can rely on the semantic segmentation computed in section 4.3 and shown in Figure 4.7(c).
The end-effector of the skeleton extracted from the character is mapped to an end-effector
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Figure 4.18: (a) Contour of the shape determining the area that should be triangulated.
(b) Triangulation using Voronoi regions shows undesired thing triangles. (¢) Quad mesh
using a voxel-based approach.
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4. METHODOLOGY OF ANIMATING HAND-DRAWN CHARACTERS
of the reference skeleton, which corresponds to the bones of the animated reference
skeleton.
The weight assignment can be done by using a flood-fill approach, such as presented by
James Foley [Fol96]. Let us assume that the mesh of the detected character represents
a Graph G = (V, F), where mesh vertices represent vertices v € V' and mesh edges
represent edges e € F.
Algorithm 4.4: Weight assignment to vertices of the generated mesh.
Data:
o: weight to be assigned
G = (V, E): graph representing the mesh
I: matrix containing the semantic label for each pixel
EF': end-effectors of the detected characters skeleton
1 set S to empty set ; /* Set containing nodes to visit x/
2 foreach end-effector ef € FF do
3 set vis to empty set ; /* Set containing visited nodes =/
4 pick closest vertex u € V to ef
5 put w in S
6 set [ to label at position of u in I
7 foreach vertexr v € S do
8 assign o to v
9 add v to vis
10 foreach neighbouring vertices w € V' to v do
11 if weV; /* (Cy) */
12 then
13 | continue
14 end
15 if label(w, I) I=1; /x (C3) =/
16 then
17 | continue
18 end
19 if dist(w,ef) < dist(w,ef' \Vef' € EF; /* (C3) */
20 then
21 | add w to S
22 end
23 else
24 | add w to vis
25 end
26 end
27 end
28 end
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4.6. Rigging and Animation

(a) (b)

Figure 4.19: (a) Final 2.5D model generated from a detected hand-drawn character. (b)
The animated character using retargeted animation of the reference skeleton.

Following the Algorithm 4.4 for each end-effector we pick the closest node u € V and
assign the weight o for the corresponding bone to the mesh vertex. We determine the
weight between [0.0, 1.0] depending on the ratio of lengths of the detected characters’
bone (connecting the end-effector) and the length of the reference skeletons bone.

We continue in a breadth-first search manner visiting all neighbouring nodes. We need
to introduce conditions to avoid assigning weights to vertices that should not be affected
by the movement of a bone, i.e., vertices inside the torso should not be deformed when
moving the leg. Therefore, we continue assigning weights for the vertices to this end-
effector as long as we can find a neighbouring vertex w € V that matches the following
conditions:

(C1) Neighbouring vertex w has not been visited yet
(C2) Neighbouring vertex w has the same label as the closest end-effector

(C3) Neighbouring vertex w is closest to the current end-effector of the same label

Condition (C) ensures that we only assign weights to vertices that have not been visited
yet. Condition (C2) ensures that we only assign weights of end-effectors with the same
semantic label as the vertex. E.g. we avoid assigning weights of a limb to vertices of
the torso. The last condition (C3) makes sure that vertices are only assigned to one
bone of the same type, e.g. we should avoid assigning vertices weights for multiple legs.
Figure 4.7(d) shows that the semantic segmentation will sometimes result in, i.e., labels
for the legs being connected through small parts of the torso.
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4.

METHODOLOGY OF ANIMATING HAND-DRAWN CHARACTERS
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As the last step, the texture coordinates of the vertices can be simply calculated by
normalizing the vertex position using the size of the input image. The texture is given
by the input image so that the final model contains all hand-drawn details. After this
step, the hand-drawn character uses the animations defined for the reference skeleton.
Figure 4.19 shows the final output of the pipeline, with the mesh of the character on the
right and the deformed mesh on the left, where the deformation is given by the pose of
the animated reference skeleton.
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CHAPTER

Prototype Implementation

The prototype for evaluating the pipeline is implemented in Python version 3.10 on a
Laptop with an Apple M2 Chip (8 Cores @ 3.5GHz, 16MB L3 Cache) and 8GB RAM.
Machine learning codes are realised with Pytorch 1.0.2 [PGM™19], whereas graph-related
data structures and standard algorithms such as searching for shortest paths are using
NetworkX 2.6.3 [HSSCO08]. The average runtime for each step of the pipeline for the
tested hand-drawn characters of the dataset is shown in Table 5.1. The size of the input
images is 640 x 480. The bounding box, which determines the image size for segmentation,
of the detected characters, is on average 284 x 260. After skeletonisation, the number of
vertices is between seven and 15 with an average of eleven vertices and an average of
twelve edges. The heuristics remove an average of three vertices. We tested on a set of
50 hand-drawn characters that will be discussed in Chapter 6.

For the detection of the hand-drawn characters, described in Section 4.2, we use the
network as defined in the section, relying on the definition of the Mask R-CNN and Fast
R-CNN by pytorch [PGM™19]. For training the character detection, we use stochastic
gradient descent and the following parameters, as suggested by pytorch [PGM™19],

Learning Rate: 0.005

Momentum: 0.9

Weight Decay: 0.0005

(]

Gamma (multiplicative factor of learning rate decay): 0.1

Table 5.1: Shows the runtime of each pipeline step in milliseconds (ms).

Detection Segmentation Skeletonisation Identification Rigging
1532ms 1020ms 420ms 911ms 1510ms
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5.

PROTOTYPE IMPLEMENTATION
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e Step size for learning rate decay: every third epoch

We use 2000 epochs for training the network and use the SketchParse dataset provided
by Sarvadevabhatla [SDBM17] as described in section 4.2 to generate training data.

For the semantic segmentation as described in section 4.3, for this thesis, we reuse the
public code provided by Sarvadevabhatla et al. [SDBM17]. Since the codes were using
an old version of Python we adjusted the code, i.e., formatting and functions no longer
available, to be compatible with Python version 3.10. We provide the changed source files
in our GitHub repository [Kor23]. We made no changes to the general network architecture
or how the network is trained. The network is trained on images with the size 321 x 321,
which is the size of images provided in the SketchParse dataset [SDBM17]. We found
during experiments using that when applying grey erosion, provided by scipy [VGO™20]
improved the segmentation when the input is based on a photograph of a real drawing.
The basic idea is that this makes the input more similar to the data that was used for
training, containing sharp edges. Further, we rely again on the definition of ResNet-50
by pytorch [PGM™19] for computing the feature map as suggested by Sarvadevabhatla
et al. [SDBM17] and use stochastic gradient descent for training and use the default
parameters of the public code,

o Learning Rate: 0.005
e Momentum: 0.9

o Gamma (learning rate [r factor depending, on the epoch e and maximum number

of epochs €maz): g = Ir * (1.0 — —<-)09

€max

e Maximum number of epochs: 20000

which allowed us to replicate the results presented by Sarvadevabhatla et al. [SDBM17].

For the skeletonisation we use the algorithm described in section 4.4, we use a threshold
of 30, for pruning the Voronoi-based Skeleton using the chord residual, for images of
the size 321 x 321 pixels and adjust it linearly for smaller images. We do this to avoid
pruning the skeleton too aggressively for smaller inputs.

When matching the skeleton of the hand-drawn character to the reference skeletons, as
described in section 4.5 we determine the optimal parameters for computing the ggd
by testing the success rate on 50 hand-drawn characters. The best results are achieved
when defining K, = 1.0, K, = 1.0 and K; = 5.0 when matching with Gpym and G .
When comparing to Ggyqq define K, = 0.38 while keeping the other parameters the same.
While the original ggd proposed by Cheong et al. [CGK™T09] uses absolute parameters
for the matching, we found during experiments that different-sized input images can
influence the success rate negatively. We found by normalizing the coordinates of the
vertices to an interval [0, 1] leads to the best results. For the label distance Ibl dist we
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found the best result by sweeping the parameter. We define it as the absolute differences
of the values assigned to the labels as follows,

Head is assigned 1

¢ Body is assigned 2

Tail is assigned 4

Limb is assigned 7

o Wing is assigned 10

This means that i.e., the cost of changing the label from head to tail is associated with
a cost of 3. Finally for solving the ILP, as defined in section 4.5 we use the python

implementation by cvxopt [ADV20] that uses the GNU Linear Programming Kit [Okil2].

As €, we define 0.00005 for stopping the optimisation and a maximum number of 10000
iterations.

After identifying the best matching reference skeleton based on the results of ggd and
mapping the end-effectors as described in section 4.5, we compute the mesh and assign
the influence of bones on each mesh vertex as described in Chapter 4. The vertex position
and texture coordinates, as well as the influence information of each bone on each vertex
is saved in the obj file format and an auxiliary txt file.

Finally, for generating the animated hand-drawn character, we use Blender [Com18] to

demonstrate the results. In Blender, we define the reference skeletons and animate them.

Through the scripting interface of Blender, we load the computed obj file that contains
the computed vertices and texture coordinates as well as the txt file that contains the
weight information for each of the vertices for each bone. After assigning the influence
of bones on each vertex, we demonstrate the capabilities of the pipeline in Blenders
embedded rendering engine.
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CHAPTER

Results and Discussion

In this chapter, the results of the pipeline are presented and the details are discussed.
Afterwards, the limitations of the current pipeline are discussed. We publish the code on
Github [Kor23] which includes examples of animated hand-drawn characters.

6.1 Experimental Results

The prototype implementing the methodology is done in Python, as described in Chapter 5.
For each reference skeleton, humanoid, quadruped and flying, an animation is created
using Blender [Com18]. The following figures show selected frames of the animated
hand-drawn character output by the pipeline. The following figures show selected frames
from left to right and top to bottom of the animated character. The characters are
illuminated with a light source in the rendering engine of Blender.

For quadruped characters, the reference skeleton is animated to move the legs left and
right while moving the tail in the third dimension (parallel to the character) forward
and backward. The head is animated to move upwards and downwards. For humanoid
characters, the reference skeleton is animated to move the limbs (arms and legs) forward
and backward while the head moves left and right.

The Figures 6.1, 6.2, 6.3 and 6.4 show correctly identified quadruped characters. One
issue encountered with the giraffe character is that the legs, due to self-occlusion in the
drawing, are not detected separately during the skeletonisation leading to only two limbs
being assigned, but the result is still reasonable with respect to the input.

Figure 6.5 and 6.6 show two correctly identified humanoid characters. The motion applied
is walking forward. Figure 6.7 shows a fish character that has been assigned, quadruped
motion since there is no reference type for fishes. The lower fins are mapped to the legs
of the quadruped reference skeleton, while the upper part of the head is mapped to the
head of the reference skeleton. The fin in the back is mapped to the tail.
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6. RESULTS AND DISCUSSION

Figure 6.1: Six selected consecutive (from left to right and top to bottom) frames of the
example movement applied to the hand-drawn monkey character.

Figure 6.2: Six selected consecutive (from left to right and top to bottom) frames of the
example movement applied to the hand-drawn cow character.
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6.1. Experimental Results

Figure 6.3: Six selected consecutive (from left to right and top to bottom) frames of the
example movement applied to the hand-drawn giraffe character.

Figure 6.4: Six selected consecutive (from left to right and top to bottom) frames of the
example movement applied to the hand-drawn donkey character.
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6. RESULTS AND DISCUSSION

Figure 6.5: Six selected consecutive (from left to right and top to bottom) frames of the
example movement applied to the hand-drawn bunny character.

Figure 6.6: Six selected consecutive (from left to right and top to bottom) frames of the
example movement applied to the hand-drawn panda character.
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6.1. Experimental Results

Figure 6.7: 6 selected frames of the example movement applied to the hand-drawn fish
character.

(a) (b)

Figure 6.8: (a) Shows a simple stickfigure character. (b) After detection and identification
as a humanoid character, the end-effectors are mapped correctly to the prototype skeleton.

Compared to previous examples, also less articulate hand-drawn characters, such as the
simple stickfigure as seen in Figure 6.8(a) is correctly identified as a humanoid character
and correctly mapped end-effectors (right) to the reference skeleton (left) as seen in
Figure 6.8(b).
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6. RESULTS AND DISCUSSION
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6.2 Evaluation and Discussion

We evaluate the proposed approach with a set of 50 hand-drawn characters, where
the input is mixed between digital hand-drawn characters and analogue input. The
hand-drawn characters vary in quality between clear articulate drawings and drawings
that have fewer details. Tables 6.1, 6.2, and 6.3 gives a selection of the set, where the first
column names the ground truth type, humanoid, quadruped and flying, of the character
and the second column shows the input image. Further columns indicate the success or
failure of each pipeline step.

On the dataset of 50 hand-drawn characters, all characters can be detected. For the
segmentation using the algorithm proposed by Sarvadevabhatla [SDBM17] as described
in Chapter 4 we can get the same performance as described in their paper.

The identification of the best matching reference skeleton for the given hand-drawn
character after skeletonisation we reach an accuracy of 85.00%. Compared to state-of-the-
art classification approaches such as Sketchnet proposed by Zhang et al. [ZLZ"16] that
classifies sketches into multiple categories, which reaches an accuracy of around 80% on
20 classes. Another comparison can be made to the evaluation of the original ggd imple-
mentation that reached an accuracy of 94.5% for matching Chinese characters [CGK™09]
of 6 different fonts, where each character is represented by a graph. To the best of our
knowledge the task of matching skeletons, represented by labelled graphs, has not yet
been explored in other research.

Another observation we made is that flying characters are always correctly identified in
our sample data. Humanoid and quadruped characters seem to be less robust, which
is due to the similarity of the two reference graphs, especially for cases where no tail is
present or not correctly identified by the semantic segmentation network. One failing
example is shown in row three of Table 6.1 where an actually well-articulate drawn dog
is identified as a humanoid moving character with a probability of 88.57% compared to a
probability of being quadruped with 88.31%. Such failures can often be traced back to
slightly incorrect semantic segmentation. As in the case of the dog, the tail is detected
as a limb, which if manually corrected would be correctly identified as a dog. Although
we observe that the difference in probabilities of assigning a character as humanoid or
quadruped are small throughout the dataset with around 4%, which we explain due to
the similarity of the reference skeletons.

6.3 Limitations of the Pipeline

One limitations of our presented pipeline is the discrepancy between the generated mesh
and the skeleton. For example given Figure 6.9 the skeleton is created with all four limbs
and correctly mapped to the quadruped reference skeleton. But the mesh is created on
the shape of the drawing and is not influenced by the skeleton. In this case, it leads to
the vertices of the two limbs, e.g. in the front, to be connected, which leads to stretching
effects as highlighted in Figure 6.9. There is also the other way around where 2 limbs
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6. RESULTS AND DISCUSSION

Table 6.2: Table shows selected results of the proposed approach. A v indicates the success of the given pipeline step, while a
X indicates that this pipeline step failed. Inputs marked with t indicate that they are taken from the SketchParse dataset of

Sarvadevabhatla et al [SDBM17].
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6. RESULTS AND DISCUSSION
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Figure 6.9: Shows the limitation if separate limbs are detected but the meshing does not
consider them to be separate.

while drawn separately are not accurately split during skeletonisation but only one limb
is identified, as can be seen in Figure 4.16.

Another limitation lies within the mapping of the end-effectors to the reference skeleton.
We observed in some experiments that even though the characters are simple and similar
in structure, the approach proposed by Bai and Latecki [BLO8] is not very robust against
symmetry as shown in Figure 6.10(a). While on symmetric motions this is no problem,
it can lead to unexpected behaviour of the animated character when the movement is
not symmetric.

For this thesis, we also restricted the input of possible hand-drawn characters to be
on white (light) background with black (dark) foreground, as seen in Figure 4.2. This
limitation can be removed when training the CNN used for detection on a wider range of
sample input images.
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6.3. Limitations of the Pipeline

Rg
T
AN

(b)

Figure 6.10: (a) Shows a character’s skeleton end-effectors (right) wrongly assigned to the
reference skeleton (left). (b) Shows the panda character’s skeleton end-effectors (right)
correctly assigned to the reference skeleton (left).
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CHAPTER

Conclusion and Future Work

In this chapter, a short summary and conclusion of the thesis are provided. Last, we
present ideas for future work.

7.1 Summary and Conclusion

We present a novel approach to animate 2D hand-drawn characters based on semantic
properties extracted from the input. The pipeline consists of five steps, from detecting the
hand-drawn character in an input image, to extracting the semantic information about
the parts of the hand-drawn character, i.e., limbs, head, and body. After that, a skeleton
is extracted and augmented with the semantic information extracted in the previous
step. The skeleton is matched to a predefined reference skeleton that represents a certain
type of skeleton, i.e., quadruped, humanoid or flying. In the last step the skeleton’s
end-effectors are matched to the prototype skeleton and the hand-drawn character is
transformed into a model and rigged.

Our pipeline shows promising results for well-articulated hand-drawn characters. There
is still room for improvement, especially with regard to mapping the end-effectors of
the hand-drawn characters’ skeleton and the reference skeleton. Another point for
improvement is to find a more robust measure to differentiate between reference skeletons
that are similar to each other, e.g. humanoid and quadruped skeleton, to avoid mismatches
in case semantic segmentation does not give the correct labels for each character part.
While the computed skeletons already show proof of the concept for generating semantic-
aware animations for hand-drawn characters, the pipeline should be evaluated for higher
complexity of skeletons and animations. The pipeline is also configurable making it easy
to replace any of the steps with a better-performing algorithm to improve the performance
of the overall pipeline.
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7.2 Future Work

In future work, a user study should be conducted that evaluates whether the movement
that is retargeted to the hand-drawn character is believable for the user. Further, it can be
evaluated whether the hand-drawn character increases the engagement and retainment of
information when using it during guided visualisations compared to pre-defined characters
and no visual guide.

A point of improvement is to enable the possibility for more complex animations by
improving the rigging in the last step. A potential idea is to super-sample the skeleton of
the detected hand-drawn character and map joints based on the mapping information of
the end-effectors.

Another consideration is to implement a pose estimation for the hand-drawn character.
This could help to define more complex animations. Another consideration in future
work can be that not only one reference skeleton is assigned to a detected hand-drawn
character. In the case of fantastic animals, e.g. a gryphon is a combination of a lion
and a hawk it can be interesting to interpolate the movement of a flying and quadruped
character instead of specifying a specific reference skeleton.

For the first step, detecting the character, one improvement can be to be less restrictive
on the input and allow more complex input, i.e., photographs of different angles of graffiti
or drawings on cluttered backgrounds where it can be hard to differentiate between the
foreground containing the character and background that should be ignored.
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