
Project Report: Fancy Alpine Maps

Gerald Kimmersdorfer 01326608

November 29, 2023

Abstract

In this report, I detail the significant enhancements and optimizations done to
the Alpine Maps renderer. Advanced techniques in shading and shadow mapping
were integrated to boost visual effects and performance. Benchmarks on two GPUs,
an NVIDIA GeForce RTX 3060 Ti and AMD Radeon HD 7700M, demonstrated the
effectiveness of these updates. In addition to the current updates, the report also
outlines future work aimed at further enhancing the efficiency of the Alpine Maps
renderer.

1 Introduction
The Fancy Alpine Maps project aims to increase visibility on an existing OpenGL ren-
derer by adding additional geometry-based effects. Specifically Shading and screen space
ambient occlusion (SSAO) are intended to highlight geometry that was not visible when
just using the orthographic images.

2 Implementation
During the implementation and testing of the proposed effects, further tasks and features
arose to be necessary. This report will highlight all of the changes made to the Alpine
Maps renderer during this project. The order of the following sections resembles the order
of implementation, not necessarily the order of importance of the respective changes.

2.1 Uniform Buffer Objects

To send small blocks of data to the GPU a base class for Uniform Buffer Objects was
implemented. An alternative would have been to bind separate uniform objects, but
since UBOs can easily be bound to multiple shaders we opted for this method. Fur-
thermore by allowing the UBO-struct to be a Q_GADGET it is possible to send the whole
configuration block to the GUI thread, edit it via QML, and send it back to the ren-
dering thread. The use of signals and slots guarantees thread safety for those transfers.
The gl_engine::UniformBuffer is a templated class that takes an arbitrary struct as a
type. This type is the data container for the specified UBO. The possible options for the
template are defined in the gl_engine/UniformBufferObjects.h-file.

1



As of the time of writing the following UBOs are in use:

1. uboSharedConfig (GL-Name: shared_config, size: 152 bytes)
Contains all editable configuration parameters for the users. Can be serialized and
used in QML.

2. uboCameraConfig (GL-Name: camera_config, size: 416 bytes)
Contains various camera matrices and their inverse as well as view-port properties.

3. uboShadowConfig (GL-Name: shadow_config, size: 336 bytes)
Contains lightspace-matrices and cascade information for CSM. The default imple-
mentation uses 4 cascades.

2.2 GUI Rework

To be able to adjust parameters for the various effects it was necessary to implement
QML Components that can easily be used and extended in a modular fashion. Exist-
ing components were changed to fit the material design optics and to make them more
responsive when used on targets with different screen sizes.

2.3 Frame Profiler

The newly created TimerManager class allows to capture time differences both on the
CPU and on the GPU side. GPU timing is limited to targets that use an OpenGL
context, as WebGL and OpenGL ES 3.0 do not have support for GPU timing queries.
At the end of the frame, the TimerManager sends captured data via a signal to the
TimerFrontendManager who is in charge of storing the data inside TimerFrontendObjects.
The amount of frames stored can be individually configured for each timer. The appropri-
ate frontend elements inside the Statistics-Window are spawned using QML. Timings
can be compared using either a pie- or a line chart and by their exact or averaged values.

2.4 Shading

For proper shading effects surface normals are necessary. You can either calculate them
in the fragment shader1 by utilizing the OpenGL functions dFdx, dFdy or you calculate
them per vertex and let the GPU interpolate it for each fragment. The second solution
allows for smooth normal transitions between faces. It is computationally more expensive
as we need to sample the height texture 5 times for each vertex. For shading itself we use
the computationally cheap Blinn-Phong model. Shading properties may be adjusted via
the shared_config-ubo.

2.5 Deferred Shading

Calculating ambient occlusion in screen space needs position and normal data. To keep
the computational loss of overdraw as small as possible a Deferred Shading pipeline is

1https://www.enkisoftware.com/devlogpost-20150131-1-Normal-generation-in-the-pixel-shader

2

https://www.enkisoftware.com/devlogpost-20150131-1-Normal-generation-in-the-pixel-shader


advised. For this matter, the tile stage of the rendering pipeline has been refactored as the
geometry stage where material properties are written inside the g-buffer. The backbuffer
stage was refactored and is now in use as the lighting stage where the illumination is
calculated.

2.6 GBuffer Layout

The final gbuffer contain 4 textures as described in table 1 resulting in a size of 27 byte
per pixel.

ID Format Size Usage
1 RGB8 3 byte albedo
2 RGBA32F 16 byte position and distance
3 RG16UI 4 byte octahedron encoded normals
4 R32UI 4 byte encoded distance for readback

Table 1: G-buffer Texture Layout

Various attempts were made to reduce the size of the gbuffer even further, especially
by compressing the positions. All of those attempts had drawbacks, summarized in the
following paragraph:

1. Reconstruction of position using the z-buffer: Even the reconstruction using a
floating point depth buffer is not accurate enough given the huge camera spectrum.
Reverse-Z was also attempted and betters the situation significantly, but is not
supported on WebGL and OpenGL ES 3.0 as they store the depth within the bounds
of [−1.0,+1.0] as opposed to [0.0,+1.0].

2. Use RGB32F for position: The distance can theoretically be derived by the
position, but RGB floating buffers are not supported on WebGL and OpenGL ES
3.0.

3. Use RGBA16F for position: This is indeed possible, but the reduced resolution
will result in visible artifacts for points far away from the camera.

4. Reconstruction of position using the readback-buffer: The readback buffer
is saved with a custom encoding function that doesn’t work for positions further
away than 442413 length units in world space. It’s optimized in a way that the
reconstruction of closer points has more accuracy. This is good enough for picking,
but reconstruction for shading is not possible using this approach.

2.7 Screen Space Ambient Occlusion (SSAO)

The implementation is based on the tutorial 2 by Joey de Vries. It is supposed to be a
crude check to see if SSAO can yield better visual results. It’s a very straightforward
implementation with one SSAO screen pass to calculate the SSAO buffer, and a blur
pass to hide the high-frequency artifacts that we get through the random rotation of the

2https://learnopengl.com/Advanced-Lighting/SSAO

3

https://learnopengl.com/Advanced-Lighting/SSAO


vectors. The algorithm itself could be made faster by several times. Please see section 4
for more information.

2.8 Cascaded Shadow Mapping

The cascaded shadow mapping is based on the tutorial 3 by Márton Árbócz. In the default
configuration, we render 4 shadow maps within the following bounds (distances in world
space to camera):

• Map 1: 1.0 (near-plane) - 2.000

• Map 2: 2.000 - 4.000

• Map 3: 4.000 - 10.000

• Map 4: 10.000 - 100.000

The shadow maps itself are rendered in a resolution of 4096x4096 pixel. As opposed to
the original solution proposed by Márton Árbócz we don’t store the individual shadow
maps in a GL_TEXTURE_2D_ARRAY but in individual textures. Even though OpenGL ES
3.0 would support this method QOpenGLTexture does not.

2.9 Further implementations

The following subsections contain information about, what we consider smaller changes
for the Alpine Maps Renderer.

2.9.1 Overlays

Preview Name Description
Normals Shows the calculated normals per fragment

where the neutral normal is encoded as
RGB (0.5, 0.5, 1.0)

Tiles Shows the different tiles and tile borders
rendered in the current view.

Zoomlevel Shows the zoom level of the tiles in the cur-
rent view.

Vertex-ID Shows the vertex id and can be used to
visualize the granularity of the underlying
mesh.

3https://learnopengl.com/Guest-Articles/2021/CSM

4

https://learnopengl.com/Guest-Articles/2021/CSM


Vertex Height-Sample This overlay represents the sampled height
value out of the heightmap tiles.

Decoded Normals Normals are octahedron encoded in the g-
buffer. This overlay shows the decoded nor-
mals in the same fashion as the other ”Nor-
mals” overlay.

Steepness This is supposed to be an example over-
lay for future overlays to come. It has a
distance-based falloff and depicts the steep-
ness of the underlying fragment. The steep-
ness gets evaluated based on the surface
normal and gets binned in 9 differently col-
ored bins.

SSAO Buffer Shows the content of the SSAO buffer.

Shadow Cascades Highlights which shadow map is used for
each fragment.

2.9.2 Shader precompilation

In the original renderer shaders could be attached in the C++ code. To end up with a
more standardized approach a shader precompilation step was implemented which sup-
ports the already well-established #include-directive. Furthermore, a helper function was
introduced that catches the Qt OpenGL errors and additionally outputs the exact code
line where the error appeared. Otherwise debugging is a hazzle as line numbers don’t
match anymore due to the included statements.

2.9.3 Shader download service

As the shaders get packed into a resource file when targeting the Web and Android, a
hot reload of shader files wasn’t possible for those devices. Due to the long compilation
time of the web version, it was necessary to find an alternative to the old method. The
shader download service is exactly this workaround and can be activated with the cmake
option ALP_ENABLE_SHADER_NETWORK_HOTRELOAD. If this option is true shaders will be
downloaded from the respective URL set by ALP_SHADER_NETWORK_URL.

The shader files are not automatically hosted on a local address. This needs to be
done manually. There are millions of options on how to do so, but to name a few: local
Apache server, python HTTP server, or the live server addon for Visual Code. Make
sure the hosted files exactly point to the shader directory at gl_engine/shaders

Hosting shader files

5



2.9.4 Height lines

A simple version of height lines is implemented as part of the compose step. The thickness
of the line is derived from the fragment normal. Otherwise, lines on flat surfaces will
appear much thicker than ones on steep surfaces. For proper height lines, an additional
rendering step might be necessary. More on optimization ideas can be found in chapter
4.

2.9.5 Camera Presets

To benchmark the application the switching between camera positions was necessary. The
set of predefined camera definitions can be found and edited in
nucleus::camera::PositionStorage.

2.9.6 Sun Angle Calculation

The angle of the sunlight can be calculated based on the geographical position and the
time of the day. This calculation was implemented into the nucleus, based on the JS
library suncalc. 4

2.9.7 URL Parameters

Targeting web platforms, EMSCRIPTEN allows for easy access to the URL of the web
page. Currently, 5 different settings are saved and retrieved (on load) via url-parameters.

• GL-Configuration config: This parameter represents the whole shared_config
ubo block serialized, compressed and converted to base-64.

• Camera-Position campos: This attribute holds the camera position in the format
of %latitude%_%longitude%_%altitude%.

• Camera-Lookat lookat: This attribute contains a point that the camera is facing in
the format %latitude%_%longitude%_%altitude%. This point will automatically
be calculated based on the camera orientation and a fixed distance.

• Simulation Date date: Contains the datetime in urlsafe ISO format which can be
set in the frontend.

• Quality quality: Contains the quality that represents the permissible screen space
error when fetching tiles. It’s the same value that can be adapted and set in the
frontend.

3 Performance
The benchmarks were done with the following setup:

• GPU 1: NVIDIA GeForce RTX 3060 Ti (Launch-Date: 19.06.2022)
4https://github.com/mourner/suncalc

6

https://github.com/mourner/suncalc


• GPU 2: AMD Radeon HD 7700M (Launch-Date: 15.02.2012)

• OS: Windows 10 Pro

• Exclusive Fullscreen with Full-HD resolution (1920x1080)

• Settings-Preset 1 (”Großglockner”, camera-preset: ”großglocker”):

• Settings-Preset 2 (”Karwendel”, camera-preset: ”karwendel”)

• DateTime (for shadowing): 20.11.2023 09:00

The deployed Windows applications used for testing can be downloaded, up until the
07. May 2024, at the following URL: https://tuwienacat-my.sharepoint.com/:f:/g/
personal/e1326608_student_tuwien_ac_at/EvivvJ3ucd9Io2Yx6E76CQ4BJFEkznK9pW3u9eqKNWf5Bw?
e=Kcrfxl.

Only desktop builds were used as there is no support for GPU timing on WebGL
and OpenGL ES. The rendering speed of the different rendering targets may vary
significantly though as the underlying hardware can be quite different. (eg. Mobile
targets often use tile base GPU architecture)

About the benchmark target

3.1 Tile-Sorting

One of the first improvements in performance was the implementation of a tile-sorting
step to reduce overdraw. Meaning on the host side we sort the tiles, such that we send
the tiles closest to the camera to the GPU first. This yields an increase in rendering speed
depending on the current view. (see figure 1)

Figure 1: The speed increase by the introduced tile sorting depends solemnly on the current
view. In our benchmark the speed increase lies in between 1%-10%

Even though in our benchmark the speed increase was quite low (in between 1%-10%),
views with a lot of tiles being obscured can yield way higher performance gains.

7

https://tuwienacat-my.sharepoint.com/:f:/g/personal/e1326608_student_tuwien_ac_at/EvivvJ3ucd9Io2Yx6E76CQ4BJFEkznK9pW3u9eqKNWf5Bw?e=Kcrfxl
https://tuwienacat-my.sharepoint.com/:f:/g/personal/e1326608_student_tuwien_ac_at/EvivvJ3ucd9Io2Yx6E76CQ4BJFEkznK9pW3u9eqKNWf5Bw?e=Kcrfxl
https://tuwienacat-my.sharepoint.com/:f:/g/personal/e1326608_student_tuwien_ac_at/EvivvJ3ucd9Io2Yx6E76CQ4BJFEkznK9pW3u9eqKNWf5Bw?e=Kcrfxl


3.2 Deferred vs. Forward-Rendering

The forward rendering version that was used for the comparison is based on the commit:
”change of camera presets in gui” (0ac7a13c7aefee74dd1d522c8b765ffd5552c9c1). For the
benchmark all shading and post-processing effects were disabled. The results can be seen
in figure 2.

Figure 2: The deferred pipeline performs slightly better in all test scenarios.

The deferred renderer performs faster even without shading! One reasonable explanation
is that the atmospheric calculations are heavy enough, such that the lack of overdraw in
the deferred setup is resulting in a higher speed increase than the cost of the overhead of
the deferred pipeline.

3.3 Rendering Stages in comparison

Figure 3 compares the impact of different post processing shading effects. It highlights
the importance of better optimised algorithms especially for the ambient occlusion and
shadow calculations, since those effects by themselves reduce the performance by about
80%. Substantial speedups are possible for both effects as discussed in section 4.

Figure 4 compares the individual stages on different machines. Interesting to notice is
that the benchmark on the old AMD graphics card shows that the compose/shading step
is coming at a much higher cost than on the RTX card. That could be explained by either
the shading or the atmosphere calculation getting differently optimized by both graphic
cards. It also explains the huge difference in figure 2 for the AMD card.

4 Future work

4.1 Shader-Meta-Compiler

Currently a lot of if clauses based on the current shared_config are evaluated in the
shaders during runtime. An alternative would be to extend the current approach of the

8



Figure 3: Activating Shadow-Maps and Ambient Occlusion leads to a significant drop in the
frame rate.

pre-compiler to also support injecting pre-compiler constants into the shader code before
compiling the program. That way we could use #if-statements and would also be able to
forward global pre-processor variables, such that for example we can disable code based
on the build target. It would result in the necessity of recompiling the shader files in some
cases (for example on overlay change), but may yield slightly better performance.

4.2 Optimise SSAO

The SSAO step might be the easiest to optimize. Proper adaptions could result in a
significant speed increase. The already implemented algorithm could be extended by the
following steps:

• Reduced Resolution: Currently we Gaussian blur the resulting SSAO buffer. An
alternative might be to reduce the depth buffer to half the size, apply SSAO, and
afterwards execute a depth-aware upscale step. Even though this approach might
lead to small geometry getting lost during the down-sampling step, it could increase
rendering speed significantly. The small error might be hidden by the low-frequency
nature of the SSAO effect. A reference implementation (which uses HBAO though)
can be found at: https://github.com/nvpro-samples/gl_ssao

• Depth dependent Sample-Count: Far in the distance proper SSAO is not as
important as the primary target the user is looking at. We could therefore reduce
the sample count as a function of the distance to the camera. A similar approach
is also proposed in Mcguire et al. (2011).

9

https://github.com/nvpro-samples/gl_ssao


Figure 4: Detailed comparison of the processing times of the different stages of one frame.
Even though both benchmarks were run on desktop GPUs the result in both cases is very
different.

Alternatively, more modern approaches to SSAO could be implemented.

• DeepAO: Zhang et al. (2020) proposes a compute step where a generative network
combines normal and depth map into a depth buffer. As the 2.5d tiles currently
in use have a very distinct shape and resolution, the training on this data might
work quite well. They also found their solution to run faster compared to other
state-of-the-art methods. This solution requires Compute-Shaders which are not
accessible in the current OpenGL/OpenGL ES Renderer.

• VAO++: Bokšanský et al. (2017) proposes to use Volumetric Ambient Occlusion
which first analyses the geometry in the depth buffer to realize a smaller sampling
radius. That means fewer samples might result in SSAO of similar visual quality.

4.3 Optimise shadow algorithm

In general the cascaded shadow mapping that is currently implemented might not be the
ideal solution for Alpine Maps due to several reasons:

• Especially for top-down views most of the cascades are unnecessary and empty.

• With the fine granularity of our mesh, shadow map rendering is quite slow.

Currently we use the same set of tiles for the rendering of the shadow maps as we
do for the camera view resulting in the popping of shadows when moving around. It
might be feasible to use a lower-quality tile set, fetched with respect to the light’s
perspective.

Shadow Tiles

10



Additionally, the following algorithms might be a better fit or a good addition to the
Alpine Maps project:

4.3.1 Screen space shadows

Screen space shadows 5 can add fine small scale details purely by interpreting the depth
buffer. Especially from top-down views or views far away from the camera, it might be
superior to traditional shadowing algorithms. It might be possible that with a proper
screen space shadow step we will be able to reduce cascaded shadow mapping to fewer
cascades. Furthermore, bias issues that occur in the current version might be reduced.

4.3.2 Virtual shadow maps

This might be the best, but also most complicated shadowing solution for Alpine Maps.
The great advantage is that Virtual Shadow Maps 6 (VSMs) provide a consistent shadow
appearance across various distances, a significant improvement over the often low-resolution
and blurry distant shadows produced by cascaded shadow mapping. VSMs require a
bunch of modern graphics features though that might only be accessible with a native
Vulkan/DirectX Renderer.

4.4 Optimise height lines

An idea on how to gain height lines with a specific line width would contain two rendering
steps. In this example, I explain the idea of fixed height lines every 100 m in altitude,
but the proposed solution could be extended to different scales.

• Render black/white alternately every 100 m into a height line buffer (Meaning: First
100m are black, second 100m are white,...)

• Apply edge detection on the height line buffer and alternatively increase black areas
to achieve specific line width

• Merge with back buffer in compose step

References
Bokšanský, J., Pospíšil, A., and Bittner, J. (2017). VAO++: Prac-

tical Volumetric Ambient Occlusion for Games. pages 031–039.
https://diglib.eg.org/bitstream/handle/10.2312/sre20171192/031-039.pdf.

Mcguire, M., Osman, B., Bukowski, M., and Hennessy, P. (2011). The alchemy screen-
space ambient obscurance algorithm. pages 25–32.

Zhang, D., Xian, C., Luo, G., Xiong, Y., and Han, C. (2020). Deepao: Efficient screen
space ambient occlusion generation via deep network. IEEE Access, 8:64434–64441.

5https://www.bendstudio.com/blog/inside-bend-screen-space-shadows/
6https://ktstephano.github.io/rendering/stratusgfx/svsm

11

https://www.bendstudio.com/blog/inside-bend-screen-space-shadows/
https://ktstephano.github.io/rendering/stratusgfx/svsm

	Introduction
	Implementation
	Uniform Buffer Objects
	GUI Rework
	Frame Profiler
	Shading
	Deferred Shading
	GBuffer Layout
	Screen Space Ambient Occlusion (SSAO)
	Cascaded Shadow Mapping
	Further implementations
	Overlays
	Shader precompilation
	Shader download service
	Height lines
	Camera Presets
	Sun Angle Calculation
	URL Parameters


	Performance
	Tile-Sorting
	Deferred vs. Forward-Rendering
	Rendering Stages in comparison

	Future work
	Shader-Meta-Compiler
	Optimise SSAO
	Optimise shadow algorithm
	Screen space shadows
	Virtual shadow maps

	Optimise height lines


